1 /* 2 * Driver for Digigram VX soundcards 3 * 4 * IEC958 stuff 5 * 6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/delay.h> 24 #include <sound/core.h> 25 #include <sound/vx_core.h> 26 #include "vx_cmd.h" 27 28 29 /* 30 * vx_modify_board_clock - tell the board that its clock has been modified 31 * @sync: DSP needs to resynchronize its FIFO 32 */ 33 static int vx_modify_board_clock(struct vx_core *chip, int sync) 34 { 35 struct vx_rmh rmh; 36 37 vx_init_rmh(&rmh, CMD_MODIFY_CLOCK); 38 /* Ask the DSP to resynchronize its FIFO. */ 39 if (sync) 40 rmh.Cmd[0] |= CMD_MODIFY_CLOCK_S_BIT; 41 return vx_send_msg(chip, &rmh); 42 } 43 44 /* 45 * vx_modify_board_inputs - resync audio inputs 46 */ 47 static int vx_modify_board_inputs(struct vx_core *chip) 48 { 49 struct vx_rmh rmh; 50 51 vx_init_rmh(&rmh, CMD_RESYNC_AUDIO_INPUTS); 52 rmh.Cmd[0] |= 1 << 0; /* reference: AUDIO 0 */ 53 return vx_send_msg(chip, &rmh); 54 } 55 56 /* 57 * vx_read_one_cbit - read one bit from UER config 58 * @index: the bit index 59 * returns 0 or 1. 60 */ 61 static int vx_read_one_cbit(struct vx_core *chip, int index) 62 { 63 int val; 64 65 mutex_lock(&chip->lock); 66 if (chip->type >= VX_TYPE_VXPOCKET) { 67 vx_outb(chip, CSUER, 1); /* read */ 68 vx_outb(chip, RUER, index & XX_UER_CBITS_OFFSET_MASK); 69 val = (vx_inb(chip, RUER) >> 7) & 0x01; 70 } else { 71 vx_outl(chip, CSUER, 1); /* read */ 72 vx_outl(chip, RUER, index & XX_UER_CBITS_OFFSET_MASK); 73 val = (vx_inl(chip, RUER) >> 7) & 0x01; 74 } 75 mutex_unlock(&chip->lock); 76 return val; 77 } 78 79 /* 80 * vx_write_one_cbit - write one bit to UER config 81 * @index: the bit index 82 * @val: bit value, 0 or 1 83 */ 84 static void vx_write_one_cbit(struct vx_core *chip, int index, int val) 85 { 86 val = !!val; /* 0 or 1 */ 87 mutex_lock(&chip->lock); 88 if (vx_is_pcmcia(chip)) { 89 vx_outb(chip, CSUER, 0); /* write */ 90 vx_outb(chip, RUER, (val << 7) | (index & XX_UER_CBITS_OFFSET_MASK)); 91 } else { 92 vx_outl(chip, CSUER, 0); /* write */ 93 vx_outl(chip, RUER, (val << 7) | (index & XX_UER_CBITS_OFFSET_MASK)); 94 } 95 mutex_unlock(&chip->lock); 96 } 97 98 /* 99 * vx_read_uer_status - read the current UER status 100 * @mode: pointer to store the UER mode, VX_UER_MODE_XXX 101 * 102 * returns the frequency of UER, or 0 if not sync, 103 * or a negative error code. 104 */ 105 static int vx_read_uer_status(struct vx_core *chip, unsigned int *mode) 106 { 107 int val, freq; 108 109 /* Default values */ 110 freq = 0; 111 112 /* Read UER status */ 113 if (vx_is_pcmcia(chip)) 114 val = vx_inb(chip, CSUER); 115 else 116 val = vx_inl(chip, CSUER); 117 if (val < 0) 118 return val; 119 /* If clock is present, read frequency */ 120 if (val & VX_SUER_CLOCK_PRESENT_MASK) { 121 switch (val & VX_SUER_FREQ_MASK) { 122 case VX_SUER_FREQ_32KHz_MASK: 123 freq = 32000; 124 break; 125 case VX_SUER_FREQ_44KHz_MASK: 126 freq = 44100; 127 break; 128 case VX_SUER_FREQ_48KHz_MASK: 129 freq = 48000; 130 break; 131 } 132 } 133 if (val & VX_SUER_DATA_PRESENT_MASK) 134 /* bit 0 corresponds to consumer/professional bit */ 135 *mode = vx_read_one_cbit(chip, 0) ? 136 VX_UER_MODE_PROFESSIONAL : VX_UER_MODE_CONSUMER; 137 else 138 *mode = VX_UER_MODE_NOT_PRESENT; 139 140 return freq; 141 } 142 143 144 /* 145 * compute the sample clock value from frequency 146 * 147 * The formula is as follows: 148 * 149 * HexFreq = (dword) ((double) ((double) 28224000 / (double) Frequency)) 150 * switch ( HexFreq & 0x00000F00 ) 151 * case 0x00000100: ; 152 * case 0x00000200: 153 * case 0x00000300: HexFreq -= 0x00000201 ; 154 * case 0x00000400: 155 * case 0x00000500: 156 * case 0x00000600: 157 * case 0x00000700: HexFreq = (dword) (((double) 28224000 / (double) (Frequency*2)) - 1) 158 * default : HexFreq = (dword) ((double) 28224000 / (double) (Frequency*4)) - 0x000001FF 159 */ 160 161 static int vx_calc_clock_from_freq(struct vx_core *chip, int freq) 162 { 163 int hexfreq; 164 165 if (snd_BUG_ON(freq <= 0)) 166 return 0; 167 168 hexfreq = (28224000 * 10) / freq; 169 hexfreq = (hexfreq + 5) / 10; 170 171 /* max freq = 55125 Hz */ 172 if (snd_BUG_ON(hexfreq <= 0x00000200)) 173 return 0; 174 175 if (hexfreq <= 0x03ff) 176 return hexfreq - 0x00000201; 177 if (hexfreq <= 0x07ff) 178 return (hexfreq / 2) - 1; 179 if (hexfreq <= 0x0fff) 180 return (hexfreq / 4) + 0x000001ff; 181 182 return 0x5fe; /* min freq = 6893 Hz */ 183 } 184 185 186 /* 187 * vx_change_clock_source - change the clock source 188 * @source: the new source 189 */ 190 static void vx_change_clock_source(struct vx_core *chip, int source) 191 { 192 /* we mute DAC to prevent clicks */ 193 vx_toggle_dac_mute(chip, 1); 194 mutex_lock(&chip->lock); 195 chip->ops->set_clock_source(chip, source); 196 chip->clock_source = source; 197 mutex_unlock(&chip->lock); 198 /* unmute */ 199 vx_toggle_dac_mute(chip, 0); 200 } 201 202 203 /* 204 * set the internal clock 205 */ 206 void vx_set_internal_clock(struct vx_core *chip, unsigned int freq) 207 { 208 int clock; 209 210 /* Get real clock value */ 211 clock = vx_calc_clock_from_freq(chip, freq); 212 snd_printdd(KERN_DEBUG "set internal clock to 0x%x from freq %d\n", clock, freq); 213 mutex_lock(&chip->lock); 214 if (vx_is_pcmcia(chip)) { 215 vx_outb(chip, HIFREQ, (clock >> 8) & 0x0f); 216 vx_outb(chip, LOFREQ, clock & 0xff); 217 } else { 218 vx_outl(chip, HIFREQ, (clock >> 8) & 0x0f); 219 vx_outl(chip, LOFREQ, clock & 0xff); 220 } 221 mutex_unlock(&chip->lock); 222 } 223 224 225 /* 226 * set the iec958 status bits 227 * @bits: 32-bit status bits 228 */ 229 void vx_set_iec958_status(struct vx_core *chip, unsigned int bits) 230 { 231 int i; 232 233 if (chip->chip_status & VX_STAT_IS_STALE) 234 return; 235 236 for (i = 0; i < 32; i++) 237 vx_write_one_cbit(chip, i, bits & (1 << i)); 238 } 239 240 241 /* 242 * vx_set_clock - change the clock and audio source if necessary 243 */ 244 int vx_set_clock(struct vx_core *chip, unsigned int freq) 245 { 246 int src_changed = 0; 247 248 if (chip->chip_status & VX_STAT_IS_STALE) 249 return 0; 250 251 /* change the audio source if possible */ 252 vx_sync_audio_source(chip); 253 254 if (chip->clock_mode == VX_CLOCK_MODE_EXTERNAL || 255 (chip->clock_mode == VX_CLOCK_MODE_AUTO && 256 chip->audio_source == VX_AUDIO_SRC_DIGITAL)) { 257 if (chip->clock_source != UER_SYNC) { 258 vx_change_clock_source(chip, UER_SYNC); 259 mdelay(6); 260 src_changed = 1; 261 } 262 } else if (chip->clock_mode == VX_CLOCK_MODE_INTERNAL || 263 (chip->clock_mode == VX_CLOCK_MODE_AUTO && 264 chip->audio_source != VX_AUDIO_SRC_DIGITAL)) { 265 if (chip->clock_source != INTERNAL_QUARTZ) { 266 vx_change_clock_source(chip, INTERNAL_QUARTZ); 267 src_changed = 1; 268 } 269 if (chip->freq == freq) 270 return 0; 271 vx_set_internal_clock(chip, freq); 272 if (src_changed) 273 vx_modify_board_inputs(chip); 274 } 275 if (chip->freq == freq) 276 return 0; 277 chip->freq = freq; 278 vx_modify_board_clock(chip, 1); 279 return 0; 280 } 281 282 283 /* 284 * vx_change_frequency - called from interrupt handler 285 */ 286 int vx_change_frequency(struct vx_core *chip) 287 { 288 int freq; 289 290 if (chip->chip_status & VX_STAT_IS_STALE) 291 return 0; 292 293 if (chip->clock_source == INTERNAL_QUARTZ) 294 return 0; 295 /* 296 * Read the real UER board frequency 297 */ 298 freq = vx_read_uer_status(chip, &chip->uer_detected); 299 if (freq < 0) 300 return freq; 301 /* 302 * The frequency computed by the DSP is good and 303 * is different from the previous computed. 304 */ 305 if (freq == 48000 || freq == 44100 || freq == 32000) 306 chip->freq_detected = freq; 307 308 return 0; 309 } 310