xref: /openbmc/linux/sound/drivers/vx/vx_mixer.c (revision 8730046c)
1 /*
2  * Driver for Digigram VX soundcards
3  *
4  * Common mixer part
5  *
6  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <sound/core.h>
24 #include <sound/control.h>
25 #include <sound/tlv.h>
26 #include <sound/vx_core.h>
27 #include "vx_cmd.h"
28 
29 
30 /*
31  * write a codec data (24bit)
32  */
33 static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data)
34 {
35 	if (snd_BUG_ON(!chip->ops->write_codec))
36 		return;
37 
38 	if (chip->chip_status & VX_STAT_IS_STALE)
39 		return;
40 
41 	mutex_lock(&chip->lock);
42 	chip->ops->write_codec(chip, codec, data);
43 	mutex_unlock(&chip->lock);
44 }
45 
46 /*
47  * Data type used to access the Codec
48  */
49 union vx_codec_data {
50 	u32 l;
51 #ifdef SNDRV_BIG_ENDIAN
52 	struct w {
53 		u16 h;
54 		u16 l;
55 	} w;
56 	struct b {
57 		u8 hh;
58 		u8 mh;
59 		u8 ml;
60 		u8 ll;
61 	} b;
62 #else /* LITTLE_ENDIAN */
63 	struct w {
64 		u16 l;
65 		u16 h;
66 	} w;
67 	struct b {
68 		u8 ll;
69 		u8 ml;
70 		u8 mh;
71 		u8 hh;
72 	} b;
73 #endif
74 };
75 
76 #define SET_CDC_DATA_SEL(di,s)          ((di).b.mh = (u8) (s))
77 #define SET_CDC_DATA_REG(di,r)          ((di).b.ml = (u8) (r))
78 #define SET_CDC_DATA_VAL(di,d)          ((di).b.ll = (u8) (d))
79 #define SET_CDC_DATA_INIT(di)           ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR))
80 
81 /*
82  * set up codec register and write the value
83  * @codec: the codec id, 0 or 1
84  * @reg: register index
85  * @val: data value
86  */
87 static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val)
88 {
89 	union vx_codec_data data;
90 	/* DAC control register */
91 	SET_CDC_DATA_INIT(data);
92 	SET_CDC_DATA_REG(data, reg);
93 	SET_CDC_DATA_VAL(data, val);
94 	vx_write_codec_reg(chip, codec, data.l);
95 }
96 
97 
98 /*
99  * vx_set_analog_output_level - set the output attenuation level
100  * @codec: the output codec, 0 or 1.  (1 for VXP440 only)
101  * @left: left output level, 0 = mute
102  * @right: right output level
103  */
104 static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right)
105 {
106 	left  = chip->hw->output_level_max - left;
107 	right = chip->hw->output_level_max - right;
108 
109 	if (chip->ops->akm_write) {
110 		chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left);
111 		chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
112 	} else {
113 		/* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */
114 		vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left);
115 		vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
116 	}
117 }
118 
119 
120 /*
121  * vx_toggle_dac_mute -  mute/unmute DAC
122  * @mute: 0 = unmute, 1 = mute
123  */
124 
125 #define DAC_ATTEN_MIN	0x08
126 #define DAC_ATTEN_MAX	0x38
127 
128 void vx_toggle_dac_mute(struct vx_core *chip, int mute)
129 {
130 	unsigned int i;
131 	for (i = 0; i < chip->hw->num_codecs; i++) {
132 		if (chip->ops->akm_write)
133 			chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */
134 		else
135 			vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER,
136 					 mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN);
137 	}
138 }
139 
140 /*
141  * vx_reset_codec - reset and initialize the codecs
142  */
143 void vx_reset_codec(struct vx_core *chip, int cold_reset)
144 {
145 	unsigned int i;
146 	int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65;
147 
148 	chip->ops->reset_codec(chip);
149 
150 	/* AKM codecs should be initialized in reset_codec callback */
151 	if (! chip->ops->akm_write) {
152 		/* initialize old codecs */
153 		for (i = 0; i < chip->hw->num_codecs; i++) {
154 			/* DAC control register (change level when zero crossing + mute) */
155 			vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX);
156 			/* ADC control register */
157 			vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00);
158 			/* Port mode register */
159 			vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port);
160 			/* Clock control register */
161 			vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00);
162 		}
163 	}
164 
165 	/* mute analog output */
166 	for (i = 0; i < chip->hw->num_codecs; i++) {
167 		chip->output_level[i][0] = 0;
168 		chip->output_level[i][1] = 0;
169 		vx_set_analog_output_level(chip, i, 0, 0);
170 	}
171 }
172 
173 /*
174  * change the audio input source
175  * @src: the target source (VX_AUDIO_SRC_XXX)
176  */
177 static void vx_change_audio_source(struct vx_core *chip, int src)
178 {
179 	if (chip->chip_status & VX_STAT_IS_STALE)
180 		return;
181 
182 	mutex_lock(&chip->lock);
183 	chip->ops->change_audio_source(chip, src);
184 	mutex_unlock(&chip->lock);
185 }
186 
187 
188 /*
189  * change the audio source if necessary and possible
190  * returns 1 if the source is actually changed.
191  */
192 int vx_sync_audio_source(struct vx_core *chip)
193 {
194 	if (chip->audio_source_target == chip->audio_source ||
195 	    chip->pcm_running)
196 		return 0;
197 	vx_change_audio_source(chip, chip->audio_source_target);
198 	chip->audio_source = chip->audio_source_target;
199 	return 1;
200 }
201 
202 
203 /*
204  * audio level, mute, monitoring
205  */
206 struct vx_audio_level {
207 	unsigned int has_level: 1;
208 	unsigned int has_monitor_level: 1;
209 	unsigned int has_mute: 1;
210 	unsigned int has_monitor_mute: 1;
211 	unsigned int mute;
212 	unsigned int monitor_mute;
213 	short level;
214 	short monitor_level;
215 };
216 
217 static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture,
218 				 struct vx_audio_level *info)
219 {
220 	struct vx_rmh rmh;
221 
222 	if (chip->chip_status & VX_STAT_IS_STALE)
223 		return -EBUSY;
224 
225         vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
226 	if (capture)
227 		rmh.Cmd[0] |= COMMAND_RECORD_MASK;
228 	/* Add Audio IO mask */
229 	rmh.Cmd[1] = 1 << audio;
230 	rmh.Cmd[2] = 0;
231 	if (info->has_level) {
232 		rmh.Cmd[0] |=  VALID_AUDIO_IO_DIGITAL_LEVEL;
233 		rmh.Cmd[2] |= info->level;
234         }
235 	if (info->has_monitor_level) {
236 		rmh.Cmd[0] |=  VALID_AUDIO_IO_MONITORING_LEVEL;
237 		rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10);
238         }
239 	if (info->has_mute) {
240 		rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL;
241 		if (info->mute)
242 			rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL;
243 	}
244 	if (info->has_monitor_mute) {
245 		/* validate flag for M2 at least to unmute it */
246 		rmh.Cmd[0] |=  VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2;
247 		if (info->monitor_mute)
248 			rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1;
249 	}
250 
251 	return vx_send_msg(chip, &rmh);
252 }
253 
254 
255 #if 0 // not used
256 static int vx_read_audio_level(struct vx_core *chip, int audio, int capture,
257 			       struct vx_audio_level *info)
258 {
259 	int err;
260 	struct vx_rmh rmh;
261 
262 	memset(info, 0, sizeof(*info));
263         vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS);
264 	if (capture)
265 		rmh.Cmd[0] |= COMMAND_RECORD_MASK;
266 	/* Add Audio IO mask */
267 	rmh.Cmd[1] = 1 << audio;
268 	err = vx_send_msg(chip, &rmh);
269 	if (err < 0)
270 		return err;
271 	info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL;
272 	info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL;
273 	info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0;
274 	info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0;
275 	return 0;
276 }
277 #endif // not used
278 
279 /*
280  * set the monitoring level and mute state of the given audio
281  * no more static, because must be called from vx_pcm to demute monitoring
282  */
283 int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active)
284 {
285 	struct vx_audio_level info;
286 
287 	memset(&info, 0, sizeof(info));
288 	info.has_monitor_level = 1;
289 	info.monitor_level = level;
290 	info.has_monitor_mute = 1;
291 	info.monitor_mute = !active;
292 	chip->audio_monitor[audio] = level;
293 	chip->audio_monitor_active[audio] = active;
294 	return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
295 }
296 
297 
298 /*
299  * set the mute status of the given audio
300  */
301 static int vx_set_audio_switch(struct vx_core *chip, int audio, int active)
302 {
303 	struct vx_audio_level info;
304 
305 	memset(&info, 0, sizeof(info));
306 	info.has_mute = 1;
307 	info.mute = !active;
308 	chip->audio_active[audio] = active;
309 	return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
310 }
311 
312 /*
313  * set the mute status of the given audio
314  */
315 static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level)
316 {
317 	struct vx_audio_level info;
318 
319 	memset(&info, 0, sizeof(info));
320 	info.has_level = 1;
321 	info.level = level;
322 	chip->audio_gain[capture][audio] = level;
323 	return vx_adjust_audio_level(chip, audio, capture, &info);
324 }
325 
326 /*
327  * reset all audio levels
328  */
329 static void vx_reset_audio_levels(struct vx_core *chip)
330 {
331 	unsigned int i, c;
332 	struct vx_audio_level info;
333 
334 	memset(chip->audio_gain, 0, sizeof(chip->audio_gain));
335 	memset(chip->audio_active, 0, sizeof(chip->audio_active));
336 	memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor));
337 	memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active));
338 
339 	for (c = 0; c < 2; c++) {
340 		for (i = 0; i < chip->hw->num_ins * 2; i++) {
341 			memset(&info, 0, sizeof(info));
342 			if (c == 0) {
343 				info.has_monitor_level = 1;
344 				info.has_mute = 1;
345 				info.has_monitor_mute = 1;
346 			}
347 			info.has_level = 1;
348 			info.level = CVAL_0DB; /* default: 0dB */
349 			vx_adjust_audio_level(chip, i, c, &info);
350 			chip->audio_gain[c][i] = CVAL_0DB;
351 			chip->audio_monitor[i] = CVAL_0DB;
352 		}
353 	}
354 }
355 
356 
357 /*
358  * VU, peak meter record
359  */
360 
361 #define VU_METER_CHANNELS	2
362 
363 struct vx_vu_meter {
364 	int saturated;
365 	int vu_level;
366 	int peak_level;
367 };
368 
369 /*
370  * get the VU and peak meter values
371  * @audio: the audio index
372  * @capture: 0 = playback, 1 = capture operation
373  * @info: the array of vx_vu_meter records (size = 2).
374  */
375 static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info)
376 {
377 	struct vx_rmh rmh;
378 	int i, err;
379 
380 	if (chip->chip_status & VX_STAT_IS_STALE)
381 		return -EBUSY;
382 
383 	vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER);
384 	rmh.LgStat += 2 * VU_METER_CHANNELS;
385 	if (capture)
386 		rmh.Cmd[0] |= COMMAND_RECORD_MASK;
387 
388         /* Add Audio IO mask */
389 	rmh.Cmd[1] = 0;
390 	for (i = 0; i < VU_METER_CHANNELS; i++)
391 		rmh.Cmd[1] |= 1 << (audio + i);
392 	err = vx_send_msg(chip, &rmh);
393 	if (err < 0)
394 		return err;
395 	/* Read response */
396 	for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) {
397 		info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0;
398 		info->vu_level = rmh.Stat[i + 1];
399 		info->peak_level = rmh.Stat[i + 2];
400 		info++;
401 	}
402 	return 0;
403 }
404 
405 
406 /*
407  * control API entries
408  */
409 
410 /*
411  * output level control
412  */
413 static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
414 {
415 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
416 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
417 	uinfo->count = 2;
418 	uinfo->value.integer.min = 0;
419 	uinfo->value.integer.max = chip->hw->output_level_max;
420 	return 0;
421 }
422 
423 static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
424 {
425 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
426 	int codec = kcontrol->id.index;
427 	mutex_lock(&chip->mixer_mutex);
428 	ucontrol->value.integer.value[0] = chip->output_level[codec][0];
429 	ucontrol->value.integer.value[1] = chip->output_level[codec][1];
430 	mutex_unlock(&chip->mixer_mutex);
431 	return 0;
432 }
433 
434 static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
435 {
436 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
437 	int codec = kcontrol->id.index;
438 	unsigned int val[2], vmax;
439 
440 	vmax = chip->hw->output_level_max;
441 	val[0] = ucontrol->value.integer.value[0];
442 	val[1] = ucontrol->value.integer.value[1];
443 	if (val[0] > vmax || val[1] > vmax)
444 		return -EINVAL;
445 	mutex_lock(&chip->mixer_mutex);
446 	if (val[0] != chip->output_level[codec][0] ||
447 	    val[1] != chip->output_level[codec][1]) {
448 		vx_set_analog_output_level(chip, codec, val[0], val[1]);
449 		chip->output_level[codec][0] = val[0];
450 		chip->output_level[codec][1] = val[1];
451 		mutex_unlock(&chip->mixer_mutex);
452 		return 1;
453 	}
454 	mutex_unlock(&chip->mixer_mutex);
455 	return 0;
456 }
457 
458 static struct snd_kcontrol_new vx_control_output_level = {
459 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
460 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
461 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
462 	.name =		"Master Playback Volume",
463 	.info =		vx_output_level_info,
464 	.get =		vx_output_level_get,
465 	.put =		vx_output_level_put,
466 	/* tlv will be filled later */
467 };
468 
469 /*
470  * audio source select
471  */
472 static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
473 {
474 	static const char * const texts_mic[3] = {
475 		"Digital", "Line", "Mic"
476 	};
477 	static const char * const texts_vx2[2] = {
478 		"Digital", "Analog"
479 	};
480 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
481 
482 	if (chip->type >= VX_TYPE_VXPOCKET)
483 		return snd_ctl_enum_info(uinfo, 1, 3, texts_mic);
484 	else
485 		return snd_ctl_enum_info(uinfo, 1, 2, texts_vx2);
486 }
487 
488 static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
489 {
490 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
491 	ucontrol->value.enumerated.item[0] = chip->audio_source_target;
492 	return 0;
493 }
494 
495 static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
496 {
497 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
498 
499 	if (chip->type >= VX_TYPE_VXPOCKET) {
500 		if (ucontrol->value.enumerated.item[0] > 2)
501 			return -EINVAL;
502 	} else {
503 		if (ucontrol->value.enumerated.item[0] > 1)
504 			return -EINVAL;
505 	}
506 	mutex_lock(&chip->mixer_mutex);
507 	if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) {
508 		chip->audio_source_target = ucontrol->value.enumerated.item[0];
509 		vx_sync_audio_source(chip);
510 		mutex_unlock(&chip->mixer_mutex);
511 		return 1;
512 	}
513 	mutex_unlock(&chip->mixer_mutex);
514 	return 0;
515 }
516 
517 static struct snd_kcontrol_new vx_control_audio_src = {
518 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
519 	.name =		"Capture Source",
520 	.info =		vx_audio_src_info,
521 	.get =		vx_audio_src_get,
522 	.put =		vx_audio_src_put,
523 };
524 
525 /*
526  * clock mode selection
527  */
528 static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
529 {
530 	static const char * const texts[3] = {
531 		"Auto", "Internal", "External"
532 	};
533 
534 	return snd_ctl_enum_info(uinfo, 1, 3, texts);
535 }
536 
537 static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
538 {
539 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
540 	ucontrol->value.enumerated.item[0] = chip->clock_mode;
541 	return 0;
542 }
543 
544 static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
545 {
546 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
547 
548 	if (ucontrol->value.enumerated.item[0] > 2)
549 		return -EINVAL;
550 	mutex_lock(&chip->mixer_mutex);
551 	if (chip->clock_mode != ucontrol->value.enumerated.item[0]) {
552 		chip->clock_mode = ucontrol->value.enumerated.item[0];
553 		vx_set_clock(chip, chip->freq);
554 		mutex_unlock(&chip->mixer_mutex);
555 		return 1;
556 	}
557 	mutex_unlock(&chip->mixer_mutex);
558 	return 0;
559 }
560 
561 static struct snd_kcontrol_new vx_control_clock_mode = {
562 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
563 	.name =		"Clock Mode",
564 	.info =		vx_clock_mode_info,
565 	.get =		vx_clock_mode_get,
566 	.put =		vx_clock_mode_put,
567 };
568 
569 /*
570  * Audio Gain
571  */
572 static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
573 {
574 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
575 	uinfo->count = 2;
576 	uinfo->value.integer.min = 0;
577 	uinfo->value.integer.max = CVAL_MAX;
578 	return 0;
579 }
580 
581 static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
582 {
583 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
584 	int audio = kcontrol->private_value & 0xff;
585 	int capture = (kcontrol->private_value >> 8) & 1;
586 
587 	mutex_lock(&chip->mixer_mutex);
588 	ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio];
589 	ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1];
590 	mutex_unlock(&chip->mixer_mutex);
591 	return 0;
592 }
593 
594 static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
595 {
596 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
597 	int audio = kcontrol->private_value & 0xff;
598 	int capture = (kcontrol->private_value >> 8) & 1;
599 	unsigned int val[2];
600 
601 	val[0] = ucontrol->value.integer.value[0];
602 	val[1] = ucontrol->value.integer.value[1];
603 	if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
604 		return -EINVAL;
605 	mutex_lock(&chip->mixer_mutex);
606 	if (val[0] != chip->audio_gain[capture][audio] ||
607 	    val[1] != chip->audio_gain[capture][audio+1]) {
608 		vx_set_audio_gain(chip, audio, capture, val[0]);
609 		vx_set_audio_gain(chip, audio+1, capture, val[1]);
610 		mutex_unlock(&chip->mixer_mutex);
611 		return 1;
612 	}
613 	mutex_unlock(&chip->mixer_mutex);
614 	return 0;
615 }
616 
617 static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
618 {
619 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
620 	int audio = kcontrol->private_value & 0xff;
621 
622 	mutex_lock(&chip->mixer_mutex);
623 	ucontrol->value.integer.value[0] = chip->audio_monitor[audio];
624 	ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1];
625 	mutex_unlock(&chip->mixer_mutex);
626 	return 0;
627 }
628 
629 static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
630 {
631 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
632 	int audio = kcontrol->private_value & 0xff;
633 	unsigned int val[2];
634 
635 	val[0] = ucontrol->value.integer.value[0];
636 	val[1] = ucontrol->value.integer.value[1];
637 	if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
638 		return -EINVAL;
639 
640 	mutex_lock(&chip->mixer_mutex);
641 	if (val[0] != chip->audio_monitor[audio] ||
642 	    val[1] != chip->audio_monitor[audio+1]) {
643 		vx_set_monitor_level(chip, audio, val[0],
644 				     chip->audio_monitor_active[audio]);
645 		vx_set_monitor_level(chip, audio+1, val[1],
646 				     chip->audio_monitor_active[audio+1]);
647 		mutex_unlock(&chip->mixer_mutex);
648 		return 1;
649 	}
650 	mutex_unlock(&chip->mixer_mutex);
651 	return 0;
652 }
653 
654 #define vx_audio_sw_info	snd_ctl_boolean_stereo_info
655 
656 static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
657 {
658 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
659 	int audio = kcontrol->private_value & 0xff;
660 
661 	mutex_lock(&chip->mixer_mutex);
662 	ucontrol->value.integer.value[0] = chip->audio_active[audio];
663 	ucontrol->value.integer.value[1] = chip->audio_active[audio+1];
664 	mutex_unlock(&chip->mixer_mutex);
665 	return 0;
666 }
667 
668 static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
669 {
670 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
671 	int audio = kcontrol->private_value & 0xff;
672 
673 	mutex_lock(&chip->mixer_mutex);
674 	if (ucontrol->value.integer.value[0] != chip->audio_active[audio] ||
675 	    ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) {
676 		vx_set_audio_switch(chip, audio,
677 				    !!ucontrol->value.integer.value[0]);
678 		vx_set_audio_switch(chip, audio+1,
679 				    !!ucontrol->value.integer.value[1]);
680 		mutex_unlock(&chip->mixer_mutex);
681 		return 1;
682 	}
683 	mutex_unlock(&chip->mixer_mutex);
684 	return 0;
685 }
686 
687 static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
688 {
689 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
690 	int audio = kcontrol->private_value & 0xff;
691 
692 	mutex_lock(&chip->mixer_mutex);
693 	ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio];
694 	ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1];
695 	mutex_unlock(&chip->mixer_mutex);
696 	return 0;
697 }
698 
699 static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
700 {
701 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
702 	int audio = kcontrol->private_value & 0xff;
703 
704 	mutex_lock(&chip->mixer_mutex);
705 	if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] ||
706 	    ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) {
707 		vx_set_monitor_level(chip, audio, chip->audio_monitor[audio],
708 				     !!ucontrol->value.integer.value[0]);
709 		vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1],
710 				     !!ucontrol->value.integer.value[1]);
711 		mutex_unlock(&chip->mixer_mutex);
712 		return 1;
713 	}
714 	mutex_unlock(&chip->mixer_mutex);
715 	return 0;
716 }
717 
718 static const DECLARE_TLV_DB_SCALE(db_scale_audio_gain, -10975, 25, 0);
719 
720 static struct snd_kcontrol_new vx_control_audio_gain = {
721 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
722 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
723 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
724 	/* name will be filled later */
725 	.info =         vx_audio_gain_info,
726 	.get =          vx_audio_gain_get,
727 	.put =          vx_audio_gain_put,
728 	.tlv = { .p = db_scale_audio_gain },
729 };
730 static struct snd_kcontrol_new vx_control_output_switch = {
731 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
732 	.name =         "PCM Playback Switch",
733 	.info =         vx_audio_sw_info,
734 	.get =          vx_audio_sw_get,
735 	.put =          vx_audio_sw_put
736 };
737 static struct snd_kcontrol_new vx_control_monitor_gain = {
738 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
739 	.name =         "Monitoring Volume",
740 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
741 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
742 	.info =         vx_audio_gain_info,	/* shared */
743 	.get =          vx_audio_monitor_get,
744 	.put =          vx_audio_monitor_put,
745 	.tlv = { .p = db_scale_audio_gain },
746 };
747 static struct snd_kcontrol_new vx_control_monitor_switch = {
748 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
749 	.name =         "Monitoring Switch",
750 	.info =         vx_audio_sw_info,	/* shared */
751 	.get =          vx_monitor_sw_get,
752 	.put =          vx_monitor_sw_put
753 };
754 
755 
756 /*
757  * IEC958 status bits
758  */
759 static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
760 {
761 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
762 	uinfo->count = 1;
763 	return 0;
764 }
765 
766 static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
767 {
768 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
769 
770 	mutex_lock(&chip->mixer_mutex);
771 	ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff;
772 	ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff;
773 	ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff;
774 	ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff;
775 	mutex_unlock(&chip->mixer_mutex);
776         return 0;
777 }
778 
779 static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
780 {
781 	ucontrol->value.iec958.status[0] = 0xff;
782 	ucontrol->value.iec958.status[1] = 0xff;
783 	ucontrol->value.iec958.status[2] = 0xff;
784 	ucontrol->value.iec958.status[3] = 0xff;
785         return 0;
786 }
787 
788 static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
789 {
790 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
791 	unsigned int val;
792 
793 	val = (ucontrol->value.iec958.status[0] << 0) |
794 	      (ucontrol->value.iec958.status[1] << 8) |
795 	      (ucontrol->value.iec958.status[2] << 16) |
796 	      (ucontrol->value.iec958.status[3] << 24);
797 	mutex_lock(&chip->mixer_mutex);
798 	if (chip->uer_bits != val) {
799 		chip->uer_bits = val;
800 		vx_set_iec958_status(chip, val);
801 		mutex_unlock(&chip->mixer_mutex);
802 		return 1;
803 	}
804 	mutex_unlock(&chip->mixer_mutex);
805 	return 0;
806 }
807 
808 static struct snd_kcontrol_new vx_control_iec958_mask = {
809 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
810 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
811 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
812 	.info =		vx_iec958_info,	/* shared */
813 	.get =		vx_iec958_mask_get,
814 };
815 
816 static struct snd_kcontrol_new vx_control_iec958 = {
817 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
818 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
819 	.info =         vx_iec958_info,
820 	.get =          vx_iec958_get,
821 	.put =          vx_iec958_put
822 };
823 
824 
825 /*
826  * VU meter
827  */
828 
829 #define METER_MAX	0xff
830 #define METER_SHIFT	16
831 
832 static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
833 {
834 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
835 	uinfo->count = 2;
836 	uinfo->value.integer.min = 0;
837 	uinfo->value.integer.max = METER_MAX;
838 	return 0;
839 }
840 
841 static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
842 {
843 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
844 	struct vx_vu_meter meter[2];
845 	int audio = kcontrol->private_value & 0xff;
846 	int capture = (kcontrol->private_value >> 8) & 1;
847 
848 	vx_get_audio_vu_meter(chip, audio, capture, meter);
849 	ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT;
850 	ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT;
851 	return 0;
852 }
853 
854 static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
855 {
856 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
857 	struct vx_vu_meter meter[2];
858 	int audio = kcontrol->private_value & 0xff;
859 	int capture = (kcontrol->private_value >> 8) & 1;
860 
861 	vx_get_audio_vu_meter(chip, audio, capture, meter);
862 	ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT;
863 	ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT;
864 	return 0;
865 }
866 
867 #define vx_saturation_info	snd_ctl_boolean_stereo_info
868 
869 static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
870 {
871 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
872 	struct vx_vu_meter meter[2];
873 	int audio = kcontrol->private_value & 0xff;
874 
875 	vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */
876 	ucontrol->value.integer.value[0] = meter[0].saturated;
877 	ucontrol->value.integer.value[1] = meter[1].saturated;
878 	return 0;
879 }
880 
881 static struct snd_kcontrol_new vx_control_vu_meter = {
882 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
883 	.access =	SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
884 	/* name will be filled later */
885 	.info =		vx_vu_meter_info,
886 	.get =		vx_vu_meter_get,
887 };
888 
889 static struct snd_kcontrol_new vx_control_peak_meter = {
890 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
891 	.access =	SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
892 	/* name will be filled later */
893 	.info =		vx_vu_meter_info,	/* shared */
894 	.get =		vx_peak_meter_get,
895 };
896 
897 static struct snd_kcontrol_new vx_control_saturation = {
898 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
899 	.name =		"Input Saturation",
900 	.access =	SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
901 	.info =		vx_saturation_info,
902 	.get =		vx_saturation_get,
903 };
904 
905 
906 
907 /*
908  *
909  */
910 
911 int snd_vx_mixer_new(struct vx_core *chip)
912 {
913 	unsigned int i, c;
914 	int err;
915 	struct snd_kcontrol_new temp;
916 	struct snd_card *card = chip->card;
917 	char name[32];
918 
919 	strcpy(card->mixername, card->driver);
920 
921 	/* output level controls */
922 	for (i = 0; i < chip->hw->num_outs; i++) {
923 		temp = vx_control_output_level;
924 		temp.index = i;
925 		temp.tlv.p = chip->hw->output_level_db_scale;
926 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
927 			return err;
928 	}
929 
930 	/* PCM volumes, switches, monitoring */
931 	for (i = 0; i < chip->hw->num_outs; i++) {
932 		int val = i * 2;
933 		temp = vx_control_audio_gain;
934 		temp.index = i;
935 		temp.name = "PCM Playback Volume";
936 		temp.private_value = val;
937 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
938 			return err;
939 		temp = vx_control_output_switch;
940 		temp.index = i;
941 		temp.private_value = val;
942 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
943 			return err;
944 		temp = vx_control_monitor_gain;
945 		temp.index = i;
946 		temp.private_value = val;
947 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
948 			return err;
949 		temp = vx_control_monitor_switch;
950 		temp.index = i;
951 		temp.private_value = val;
952 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
953 			return err;
954 	}
955 	for (i = 0; i < chip->hw->num_outs; i++) {
956 		temp = vx_control_audio_gain;
957 		temp.index = i;
958 		temp.name = "PCM Capture Volume";
959 		temp.private_value = (i * 2) | (1 << 8);
960 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
961 			return err;
962 	}
963 
964 	/* Audio source */
965 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip))) < 0)
966 		return err;
967 	/* clock mode */
968 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip))) < 0)
969 		return err;
970 	/* IEC958 controls */
971 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip))) < 0)
972 		return err;
973 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip))) < 0)
974 		return err;
975 	/* VU, peak, saturation meters */
976 	for (c = 0; c < 2; c++) {
977 		static char *dir[2] = { "Output", "Input" };
978 		for (i = 0; i < chip->hw->num_ins; i++) {
979 			int val = (i * 2) | (c << 8);
980 			if (c == 1) {
981 				temp = vx_control_saturation;
982 				temp.index = i;
983 				temp.private_value = val;
984 				if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
985 					return err;
986 			}
987 			sprintf(name, "%s VU Meter", dir[c]);
988 			temp = vx_control_vu_meter;
989 			temp.index = i;
990 			temp.name = name;
991 			temp.private_value = val;
992 			if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
993 				return err;
994 			sprintf(name, "%s Peak Meter", dir[c]);
995 			temp = vx_control_peak_meter;
996 			temp.index = i;
997 			temp.name = name;
998 			temp.private_value = val;
999 			if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1000 				return err;
1001 		}
1002 	}
1003 	vx_reset_audio_levels(chip);
1004 	return 0;
1005 }
1006