xref: /openbmc/linux/sound/drivers/vx/vx_mixer.c (revision 12eb4683)
1 /*
2  * Driver for Digigram VX soundcards
3  *
4  * Common mixer part
5  *
6  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <sound/core.h>
24 #include <sound/control.h>
25 #include <sound/tlv.h>
26 #include <sound/vx_core.h>
27 #include "vx_cmd.h"
28 
29 
30 /*
31  * write a codec data (24bit)
32  */
33 static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data)
34 {
35 	unsigned long flags;
36 
37 	if (snd_BUG_ON(!chip->ops->write_codec))
38 		return;
39 
40 	if (chip->chip_status & VX_STAT_IS_STALE)
41 		return;
42 
43 	spin_lock_irqsave(&chip->lock, flags);
44 	chip->ops->write_codec(chip, codec, data);
45 	spin_unlock_irqrestore(&chip->lock, flags);
46 }
47 
48 /*
49  * Data type used to access the Codec
50  */
51 union vx_codec_data {
52 	u32 l;
53 #ifdef SNDRV_BIG_ENDIAN
54 	struct w {
55 		u16 h;
56 		u16 l;
57 	} w;
58 	struct b {
59 		u8 hh;
60 		u8 mh;
61 		u8 ml;
62 		u8 ll;
63 	} b;
64 #else /* LITTLE_ENDIAN */
65 	struct w {
66 		u16 l;
67 		u16 h;
68 	} w;
69 	struct b {
70 		u8 ll;
71 		u8 ml;
72 		u8 mh;
73 		u8 hh;
74 	} b;
75 #endif
76 };
77 
78 #define SET_CDC_DATA_SEL(di,s)          ((di).b.mh = (u8) (s))
79 #define SET_CDC_DATA_REG(di,r)          ((di).b.ml = (u8) (r))
80 #define SET_CDC_DATA_VAL(di,d)          ((di).b.ll = (u8) (d))
81 #define SET_CDC_DATA_INIT(di)           ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR))
82 
83 /*
84  * set up codec register and write the value
85  * @codec: the codec id, 0 or 1
86  * @reg: register index
87  * @val: data value
88  */
89 static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val)
90 {
91 	union vx_codec_data data;
92 	/* DAC control register */
93 	SET_CDC_DATA_INIT(data);
94 	SET_CDC_DATA_REG(data, reg);
95 	SET_CDC_DATA_VAL(data, val);
96 	vx_write_codec_reg(chip, codec, data.l);
97 }
98 
99 
100 /*
101  * vx_set_analog_output_level - set the output attenuation level
102  * @codec: the output codec, 0 or 1.  (1 for VXP440 only)
103  * @left: left output level, 0 = mute
104  * @right: right output level
105  */
106 static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right)
107 {
108 	left  = chip->hw->output_level_max - left;
109 	right = chip->hw->output_level_max - right;
110 
111 	if (chip->ops->akm_write) {
112 		chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left);
113 		chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
114 	} else {
115 		/* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */
116 		vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left);
117 		vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
118 	}
119 }
120 
121 
122 /*
123  * vx_toggle_dac_mute -  mute/unmute DAC
124  * @mute: 0 = unmute, 1 = mute
125  */
126 
127 #define DAC_ATTEN_MIN	0x08
128 #define DAC_ATTEN_MAX	0x38
129 
130 void vx_toggle_dac_mute(struct vx_core *chip, int mute)
131 {
132 	unsigned int i;
133 	for (i = 0; i < chip->hw->num_codecs; i++) {
134 		if (chip->ops->akm_write)
135 			chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */
136 		else
137 			vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER,
138 					 mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN);
139 	}
140 }
141 
142 /*
143  * vx_reset_codec - reset and initialize the codecs
144  */
145 void vx_reset_codec(struct vx_core *chip, int cold_reset)
146 {
147 	unsigned int i;
148 	int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65;
149 
150 	chip->ops->reset_codec(chip);
151 
152 	/* AKM codecs should be initialized in reset_codec callback */
153 	if (! chip->ops->akm_write) {
154 		/* initialize old codecs */
155 		for (i = 0; i < chip->hw->num_codecs; i++) {
156 			/* DAC control register (change level when zero crossing + mute) */
157 			vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX);
158 			/* ADC control register */
159 			vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00);
160 			/* Port mode register */
161 			vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port);
162 			/* Clock control register */
163 			vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00);
164 		}
165 	}
166 
167 	/* mute analog output */
168 	for (i = 0; i < chip->hw->num_codecs; i++) {
169 		chip->output_level[i][0] = 0;
170 		chip->output_level[i][1] = 0;
171 		vx_set_analog_output_level(chip, i, 0, 0);
172 	}
173 }
174 
175 /*
176  * change the audio input source
177  * @src: the target source (VX_AUDIO_SRC_XXX)
178  */
179 static void vx_change_audio_source(struct vx_core *chip, int src)
180 {
181 	unsigned long flags;
182 
183 	if (chip->chip_status & VX_STAT_IS_STALE)
184 		return;
185 
186 	spin_lock_irqsave(&chip->lock, flags);
187 	chip->ops->change_audio_source(chip, src);
188 	spin_unlock_irqrestore(&chip->lock, flags);
189 }
190 
191 
192 /*
193  * change the audio source if necessary and possible
194  * returns 1 if the source is actually changed.
195  */
196 int vx_sync_audio_source(struct vx_core *chip)
197 {
198 	if (chip->audio_source_target == chip->audio_source ||
199 	    chip->pcm_running)
200 		return 0;
201 	vx_change_audio_source(chip, chip->audio_source_target);
202 	chip->audio_source = chip->audio_source_target;
203 	return 1;
204 }
205 
206 
207 /*
208  * audio level, mute, monitoring
209  */
210 struct vx_audio_level {
211 	unsigned int has_level: 1;
212 	unsigned int has_monitor_level: 1;
213 	unsigned int has_mute: 1;
214 	unsigned int has_monitor_mute: 1;
215 	unsigned int mute;
216 	unsigned int monitor_mute;
217 	short level;
218 	short monitor_level;
219 };
220 
221 static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture,
222 				 struct vx_audio_level *info)
223 {
224 	struct vx_rmh rmh;
225 
226 	if (chip->chip_status & VX_STAT_IS_STALE)
227 		return -EBUSY;
228 
229         vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
230 	if (capture)
231 		rmh.Cmd[0] |= COMMAND_RECORD_MASK;
232 	/* Add Audio IO mask */
233 	rmh.Cmd[1] = 1 << audio;
234 	rmh.Cmd[2] = 0;
235 	if (info->has_level) {
236 		rmh.Cmd[0] |=  VALID_AUDIO_IO_DIGITAL_LEVEL;
237 		rmh.Cmd[2] |= info->level;
238         }
239 	if (info->has_monitor_level) {
240 		rmh.Cmd[0] |=  VALID_AUDIO_IO_MONITORING_LEVEL;
241 		rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10);
242         }
243 	if (info->has_mute) {
244 		rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL;
245 		if (info->mute)
246 			rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL;
247 	}
248 	if (info->has_monitor_mute) {
249 		/* validate flag for M2 at least to unmute it */
250 		rmh.Cmd[0] |=  VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2;
251 		if (info->monitor_mute)
252 			rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1;
253 	}
254 
255 	return vx_send_msg(chip, &rmh);
256 }
257 
258 
259 #if 0 // not used
260 static int vx_read_audio_level(struct vx_core *chip, int audio, int capture,
261 			       struct vx_audio_level *info)
262 {
263 	int err;
264 	struct vx_rmh rmh;
265 
266 	memset(info, 0, sizeof(*info));
267         vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS);
268 	if (capture)
269 		rmh.Cmd[0] |= COMMAND_RECORD_MASK;
270 	/* Add Audio IO mask */
271 	rmh.Cmd[1] = 1 << audio;
272 	err = vx_send_msg(chip, &rmh);
273 	if (err < 0)
274 		return err;
275 	info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL;
276 	info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL;
277 	info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0;
278 	info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0;
279 	return 0;
280 }
281 #endif // not used
282 
283 /*
284  * set the monitoring level and mute state of the given audio
285  * no more static, because must be called from vx_pcm to demute monitoring
286  */
287 int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active)
288 {
289 	struct vx_audio_level info;
290 
291 	memset(&info, 0, sizeof(info));
292 	info.has_monitor_level = 1;
293 	info.monitor_level = level;
294 	info.has_monitor_mute = 1;
295 	info.monitor_mute = !active;
296 	chip->audio_monitor[audio] = level;
297 	chip->audio_monitor_active[audio] = active;
298 	return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
299 }
300 
301 
302 /*
303  * set the mute status of the given audio
304  */
305 static int vx_set_audio_switch(struct vx_core *chip, int audio, int active)
306 {
307 	struct vx_audio_level info;
308 
309 	memset(&info, 0, sizeof(info));
310 	info.has_mute = 1;
311 	info.mute = !active;
312 	chip->audio_active[audio] = active;
313 	return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
314 }
315 
316 /*
317  * set the mute status of the given audio
318  */
319 static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level)
320 {
321 	struct vx_audio_level info;
322 
323 	memset(&info, 0, sizeof(info));
324 	info.has_level = 1;
325 	info.level = level;
326 	chip->audio_gain[capture][audio] = level;
327 	return vx_adjust_audio_level(chip, audio, capture, &info);
328 }
329 
330 /*
331  * reset all audio levels
332  */
333 static void vx_reset_audio_levels(struct vx_core *chip)
334 {
335 	unsigned int i, c;
336 	struct vx_audio_level info;
337 
338 	memset(chip->audio_gain, 0, sizeof(chip->audio_gain));
339 	memset(chip->audio_active, 0, sizeof(chip->audio_active));
340 	memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor));
341 	memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active));
342 
343 	for (c = 0; c < 2; c++) {
344 		for (i = 0; i < chip->hw->num_ins * 2; i++) {
345 			memset(&info, 0, sizeof(info));
346 			if (c == 0) {
347 				info.has_monitor_level = 1;
348 				info.has_mute = 1;
349 				info.has_monitor_mute = 1;
350 			}
351 			info.has_level = 1;
352 			info.level = CVAL_0DB; /* default: 0dB */
353 			vx_adjust_audio_level(chip, i, c, &info);
354 			chip->audio_gain[c][i] = CVAL_0DB;
355 			chip->audio_monitor[i] = CVAL_0DB;
356 		}
357 	}
358 }
359 
360 
361 /*
362  * VU, peak meter record
363  */
364 
365 #define VU_METER_CHANNELS	2
366 
367 struct vx_vu_meter {
368 	int saturated;
369 	int vu_level;
370 	int peak_level;
371 };
372 
373 /*
374  * get the VU and peak meter values
375  * @audio: the audio index
376  * @capture: 0 = playback, 1 = capture operation
377  * @info: the array of vx_vu_meter records (size = 2).
378  */
379 static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info)
380 {
381 	struct vx_rmh rmh;
382 	int i, err;
383 
384 	if (chip->chip_status & VX_STAT_IS_STALE)
385 		return -EBUSY;
386 
387 	vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER);
388 	rmh.LgStat += 2 * VU_METER_CHANNELS;
389 	if (capture)
390 		rmh.Cmd[0] |= COMMAND_RECORD_MASK;
391 
392         /* Add Audio IO mask */
393 	rmh.Cmd[1] = 0;
394 	for (i = 0; i < VU_METER_CHANNELS; i++)
395 		rmh.Cmd[1] |= 1 << (audio + i);
396 	err = vx_send_msg(chip, &rmh);
397 	if (err < 0)
398 		return err;
399 	/* Read response */
400 	for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) {
401 		info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0;
402 		info->vu_level = rmh.Stat[i + 1];
403 		info->peak_level = rmh.Stat[i + 2];
404 		info++;
405 	}
406 	return 0;
407 }
408 
409 
410 /*
411  * control API entries
412  */
413 
414 /*
415  * output level control
416  */
417 static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
418 {
419 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
420 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
421 	uinfo->count = 2;
422 	uinfo->value.integer.min = 0;
423 	uinfo->value.integer.max = chip->hw->output_level_max;
424 	return 0;
425 }
426 
427 static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
428 {
429 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
430 	int codec = kcontrol->id.index;
431 	mutex_lock(&chip->mixer_mutex);
432 	ucontrol->value.integer.value[0] = chip->output_level[codec][0];
433 	ucontrol->value.integer.value[1] = chip->output_level[codec][1];
434 	mutex_unlock(&chip->mixer_mutex);
435 	return 0;
436 }
437 
438 static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
439 {
440 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
441 	int codec = kcontrol->id.index;
442 	unsigned int val[2], vmax;
443 
444 	vmax = chip->hw->output_level_max;
445 	val[0] = ucontrol->value.integer.value[0];
446 	val[1] = ucontrol->value.integer.value[1];
447 	if (val[0] > vmax || val[1] > vmax)
448 		return -EINVAL;
449 	mutex_lock(&chip->mixer_mutex);
450 	if (val[0] != chip->output_level[codec][0] ||
451 	    val[1] != chip->output_level[codec][1]) {
452 		vx_set_analog_output_level(chip, codec, val[0], val[1]);
453 		chip->output_level[codec][0] = val[0];
454 		chip->output_level[codec][1] = val[1];
455 		mutex_unlock(&chip->mixer_mutex);
456 		return 1;
457 	}
458 	mutex_unlock(&chip->mixer_mutex);
459 	return 0;
460 }
461 
462 static struct snd_kcontrol_new vx_control_output_level = {
463 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
464 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
465 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
466 	.name =		"Master Playback Volume",
467 	.info =		vx_output_level_info,
468 	.get =		vx_output_level_get,
469 	.put =		vx_output_level_put,
470 	/* tlv will be filled later */
471 };
472 
473 /*
474  * audio source select
475  */
476 static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
477 {
478 	static char *texts_mic[3] = {
479 		"Digital", "Line", "Mic"
480 	};
481 	static char *texts_vx2[2] = {
482 		"Digital", "Analog"
483 	};
484 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
485 
486 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
487 	uinfo->count = 1;
488 	if (chip->type >= VX_TYPE_VXPOCKET) {
489 		uinfo->value.enumerated.items = 3;
490 		if (uinfo->value.enumerated.item > 2)
491 			uinfo->value.enumerated.item = 2;
492 		strcpy(uinfo->value.enumerated.name,
493 		       texts_mic[uinfo->value.enumerated.item]);
494 	} else {
495 		uinfo->value.enumerated.items = 2;
496 		if (uinfo->value.enumerated.item > 1)
497 			uinfo->value.enumerated.item = 1;
498 		strcpy(uinfo->value.enumerated.name,
499 		       texts_vx2[uinfo->value.enumerated.item]);
500 	}
501 	return 0;
502 }
503 
504 static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
505 {
506 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
507 	ucontrol->value.enumerated.item[0] = chip->audio_source_target;
508 	return 0;
509 }
510 
511 static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
512 {
513 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
514 
515 	if (chip->type >= VX_TYPE_VXPOCKET) {
516 		if (ucontrol->value.enumerated.item[0] > 2)
517 			return -EINVAL;
518 	} else {
519 		if (ucontrol->value.enumerated.item[0] > 1)
520 			return -EINVAL;
521 	}
522 	mutex_lock(&chip->mixer_mutex);
523 	if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) {
524 		chip->audio_source_target = ucontrol->value.enumerated.item[0];
525 		vx_sync_audio_source(chip);
526 		mutex_unlock(&chip->mixer_mutex);
527 		return 1;
528 	}
529 	mutex_unlock(&chip->mixer_mutex);
530 	return 0;
531 }
532 
533 static struct snd_kcontrol_new vx_control_audio_src = {
534 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
535 	.name =		"Capture Source",
536 	.info =		vx_audio_src_info,
537 	.get =		vx_audio_src_get,
538 	.put =		vx_audio_src_put,
539 };
540 
541 /*
542  * clock mode selection
543  */
544 static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
545 {
546 	static char *texts[3] = {
547 		"Auto", "Internal", "External"
548 	};
549 
550 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
551 	uinfo->count = 1;
552 	uinfo->value.enumerated.items = 3;
553 	if (uinfo->value.enumerated.item > 2)
554 		uinfo->value.enumerated.item = 2;
555 	strcpy(uinfo->value.enumerated.name,
556 	       texts[uinfo->value.enumerated.item]);
557 	return 0;
558 }
559 
560 static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
561 {
562 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
563 	ucontrol->value.enumerated.item[0] = chip->clock_mode;
564 	return 0;
565 }
566 
567 static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
568 {
569 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
570 
571 	if (ucontrol->value.enumerated.item[0] > 2)
572 		return -EINVAL;
573 	mutex_lock(&chip->mixer_mutex);
574 	if (chip->clock_mode != ucontrol->value.enumerated.item[0]) {
575 		chip->clock_mode = ucontrol->value.enumerated.item[0];
576 		vx_set_clock(chip, chip->freq);
577 		mutex_unlock(&chip->mixer_mutex);
578 		return 1;
579 	}
580 	mutex_unlock(&chip->mixer_mutex);
581 	return 0;
582 }
583 
584 static struct snd_kcontrol_new vx_control_clock_mode = {
585 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
586 	.name =		"Clock Mode",
587 	.info =		vx_clock_mode_info,
588 	.get =		vx_clock_mode_get,
589 	.put =		vx_clock_mode_put,
590 };
591 
592 /*
593  * Audio Gain
594  */
595 static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
596 {
597 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
598 	uinfo->count = 2;
599 	uinfo->value.integer.min = 0;
600 	uinfo->value.integer.max = CVAL_MAX;
601 	return 0;
602 }
603 
604 static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
605 {
606 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
607 	int audio = kcontrol->private_value & 0xff;
608 	int capture = (kcontrol->private_value >> 8) & 1;
609 
610 	mutex_lock(&chip->mixer_mutex);
611 	ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio];
612 	ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1];
613 	mutex_unlock(&chip->mixer_mutex);
614 	return 0;
615 }
616 
617 static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
618 {
619 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
620 	int audio = kcontrol->private_value & 0xff;
621 	int capture = (kcontrol->private_value >> 8) & 1;
622 	unsigned int val[2];
623 
624 	val[0] = ucontrol->value.integer.value[0];
625 	val[1] = ucontrol->value.integer.value[1];
626 	if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
627 		return -EINVAL;
628 	mutex_lock(&chip->mixer_mutex);
629 	if (val[0] != chip->audio_gain[capture][audio] ||
630 	    val[1] != chip->audio_gain[capture][audio+1]) {
631 		vx_set_audio_gain(chip, audio, capture, val[0]);
632 		vx_set_audio_gain(chip, audio+1, capture, val[1]);
633 		mutex_unlock(&chip->mixer_mutex);
634 		return 1;
635 	}
636 	mutex_unlock(&chip->mixer_mutex);
637 	return 0;
638 }
639 
640 static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
641 {
642 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
643 	int audio = kcontrol->private_value & 0xff;
644 
645 	mutex_lock(&chip->mixer_mutex);
646 	ucontrol->value.integer.value[0] = chip->audio_monitor[audio];
647 	ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1];
648 	mutex_unlock(&chip->mixer_mutex);
649 	return 0;
650 }
651 
652 static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
653 {
654 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
655 	int audio = kcontrol->private_value & 0xff;
656 	unsigned int val[2];
657 
658 	val[0] = ucontrol->value.integer.value[0];
659 	val[1] = ucontrol->value.integer.value[1];
660 	if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
661 		return -EINVAL;
662 
663 	mutex_lock(&chip->mixer_mutex);
664 	if (val[0] != chip->audio_monitor[audio] ||
665 	    val[1] != chip->audio_monitor[audio+1]) {
666 		vx_set_monitor_level(chip, audio, val[0],
667 				     chip->audio_monitor_active[audio]);
668 		vx_set_monitor_level(chip, audio+1, val[1],
669 				     chip->audio_monitor_active[audio+1]);
670 		mutex_unlock(&chip->mixer_mutex);
671 		return 1;
672 	}
673 	mutex_unlock(&chip->mixer_mutex);
674 	return 0;
675 }
676 
677 #define vx_audio_sw_info	snd_ctl_boolean_stereo_info
678 
679 static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
680 {
681 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
682 	int audio = kcontrol->private_value & 0xff;
683 
684 	mutex_lock(&chip->mixer_mutex);
685 	ucontrol->value.integer.value[0] = chip->audio_active[audio];
686 	ucontrol->value.integer.value[1] = chip->audio_active[audio+1];
687 	mutex_unlock(&chip->mixer_mutex);
688 	return 0;
689 }
690 
691 static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
692 {
693 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
694 	int audio = kcontrol->private_value & 0xff;
695 
696 	mutex_lock(&chip->mixer_mutex);
697 	if (ucontrol->value.integer.value[0] != chip->audio_active[audio] ||
698 	    ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) {
699 		vx_set_audio_switch(chip, audio,
700 				    !!ucontrol->value.integer.value[0]);
701 		vx_set_audio_switch(chip, audio+1,
702 				    !!ucontrol->value.integer.value[1]);
703 		mutex_unlock(&chip->mixer_mutex);
704 		return 1;
705 	}
706 	mutex_unlock(&chip->mixer_mutex);
707 	return 0;
708 }
709 
710 static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
711 {
712 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
713 	int audio = kcontrol->private_value & 0xff;
714 
715 	mutex_lock(&chip->mixer_mutex);
716 	ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio];
717 	ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1];
718 	mutex_unlock(&chip->mixer_mutex);
719 	return 0;
720 }
721 
722 static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
723 {
724 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
725 	int audio = kcontrol->private_value & 0xff;
726 
727 	mutex_lock(&chip->mixer_mutex);
728 	if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] ||
729 	    ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) {
730 		vx_set_monitor_level(chip, audio, chip->audio_monitor[audio],
731 				     !!ucontrol->value.integer.value[0]);
732 		vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1],
733 				     !!ucontrol->value.integer.value[1]);
734 		mutex_unlock(&chip->mixer_mutex);
735 		return 1;
736 	}
737 	mutex_unlock(&chip->mixer_mutex);
738 	return 0;
739 }
740 
741 static const DECLARE_TLV_DB_SCALE(db_scale_audio_gain, -10975, 25, 0);
742 
743 static struct snd_kcontrol_new vx_control_audio_gain = {
744 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
745 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
746 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
747 	/* name will be filled later */
748 	.info =         vx_audio_gain_info,
749 	.get =          vx_audio_gain_get,
750 	.put =          vx_audio_gain_put,
751 	.tlv = { .p = db_scale_audio_gain },
752 };
753 static struct snd_kcontrol_new vx_control_output_switch = {
754 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
755 	.name =         "PCM Playback Switch",
756 	.info =         vx_audio_sw_info,
757 	.get =          vx_audio_sw_get,
758 	.put =          vx_audio_sw_put
759 };
760 static struct snd_kcontrol_new vx_control_monitor_gain = {
761 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
762 	.name =         "Monitoring Volume",
763 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
764 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
765 	.info =         vx_audio_gain_info,	/* shared */
766 	.get =          vx_audio_monitor_get,
767 	.put =          vx_audio_monitor_put,
768 	.tlv = { .p = db_scale_audio_gain },
769 };
770 static struct snd_kcontrol_new vx_control_monitor_switch = {
771 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
772 	.name =         "Monitoring Switch",
773 	.info =         vx_audio_sw_info,	/* shared */
774 	.get =          vx_monitor_sw_get,
775 	.put =          vx_monitor_sw_put
776 };
777 
778 
779 /*
780  * IEC958 status bits
781  */
782 static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
783 {
784 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
785 	uinfo->count = 1;
786 	return 0;
787 }
788 
789 static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
790 {
791 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
792 
793 	mutex_lock(&chip->mixer_mutex);
794 	ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff;
795 	ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff;
796 	ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff;
797 	ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff;
798 	mutex_unlock(&chip->mixer_mutex);
799         return 0;
800 }
801 
802 static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
803 {
804 	ucontrol->value.iec958.status[0] = 0xff;
805 	ucontrol->value.iec958.status[1] = 0xff;
806 	ucontrol->value.iec958.status[2] = 0xff;
807 	ucontrol->value.iec958.status[3] = 0xff;
808         return 0;
809 }
810 
811 static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
812 {
813 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
814 	unsigned int val;
815 
816 	val = (ucontrol->value.iec958.status[0] << 0) |
817 	      (ucontrol->value.iec958.status[1] << 8) |
818 	      (ucontrol->value.iec958.status[2] << 16) |
819 	      (ucontrol->value.iec958.status[3] << 24);
820 	mutex_lock(&chip->mixer_mutex);
821 	if (chip->uer_bits != val) {
822 		chip->uer_bits = val;
823 		vx_set_iec958_status(chip, val);
824 		mutex_unlock(&chip->mixer_mutex);
825 		return 1;
826 	}
827 	mutex_unlock(&chip->mixer_mutex);
828 	return 0;
829 }
830 
831 static struct snd_kcontrol_new vx_control_iec958_mask = {
832 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
833 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
834 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
835 	.info =		vx_iec958_info,	/* shared */
836 	.get =		vx_iec958_mask_get,
837 };
838 
839 static struct snd_kcontrol_new vx_control_iec958 = {
840 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
841 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
842 	.info =         vx_iec958_info,
843 	.get =          vx_iec958_get,
844 	.put =          vx_iec958_put
845 };
846 
847 
848 /*
849  * VU meter
850  */
851 
852 #define METER_MAX	0xff
853 #define METER_SHIFT	16
854 
855 static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
856 {
857 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
858 	uinfo->count = 2;
859 	uinfo->value.integer.min = 0;
860 	uinfo->value.integer.max = METER_MAX;
861 	return 0;
862 }
863 
864 static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
865 {
866 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
867 	struct vx_vu_meter meter[2];
868 	int audio = kcontrol->private_value & 0xff;
869 	int capture = (kcontrol->private_value >> 8) & 1;
870 
871 	vx_get_audio_vu_meter(chip, audio, capture, meter);
872 	ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT;
873 	ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT;
874 	return 0;
875 }
876 
877 static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
878 {
879 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
880 	struct vx_vu_meter meter[2];
881 	int audio = kcontrol->private_value & 0xff;
882 	int capture = (kcontrol->private_value >> 8) & 1;
883 
884 	vx_get_audio_vu_meter(chip, audio, capture, meter);
885 	ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT;
886 	ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT;
887 	return 0;
888 }
889 
890 #define vx_saturation_info	snd_ctl_boolean_stereo_info
891 
892 static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
893 {
894 	struct vx_core *chip = snd_kcontrol_chip(kcontrol);
895 	struct vx_vu_meter meter[2];
896 	int audio = kcontrol->private_value & 0xff;
897 
898 	vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */
899 	ucontrol->value.integer.value[0] = meter[0].saturated;
900 	ucontrol->value.integer.value[1] = meter[1].saturated;
901 	return 0;
902 }
903 
904 static struct snd_kcontrol_new vx_control_vu_meter = {
905 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
906 	.access =	SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
907 	/* name will be filled later */
908 	.info =		vx_vu_meter_info,
909 	.get =		vx_vu_meter_get,
910 };
911 
912 static struct snd_kcontrol_new vx_control_peak_meter = {
913 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
914 	.access =	SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
915 	/* name will be filled later */
916 	.info =		vx_vu_meter_info,	/* shared */
917 	.get =		vx_peak_meter_get,
918 };
919 
920 static struct snd_kcontrol_new vx_control_saturation = {
921 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
922 	.name =		"Input Saturation",
923 	.access =	SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
924 	.info =		vx_saturation_info,
925 	.get =		vx_saturation_get,
926 };
927 
928 
929 
930 /*
931  *
932  */
933 
934 int snd_vx_mixer_new(struct vx_core *chip)
935 {
936 	unsigned int i, c;
937 	int err;
938 	struct snd_kcontrol_new temp;
939 	struct snd_card *card = chip->card;
940 	char name[32];
941 
942 	strcpy(card->mixername, card->driver);
943 
944 	/* output level controls */
945 	for (i = 0; i < chip->hw->num_outs; i++) {
946 		temp = vx_control_output_level;
947 		temp.index = i;
948 		temp.tlv.p = chip->hw->output_level_db_scale;
949 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
950 			return err;
951 	}
952 
953 	/* PCM volumes, switches, monitoring */
954 	for (i = 0; i < chip->hw->num_outs; i++) {
955 		int val = i * 2;
956 		temp = vx_control_audio_gain;
957 		temp.index = i;
958 		temp.name = "PCM Playback Volume";
959 		temp.private_value = val;
960 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
961 			return err;
962 		temp = vx_control_output_switch;
963 		temp.index = i;
964 		temp.private_value = val;
965 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
966 			return err;
967 		temp = vx_control_monitor_gain;
968 		temp.index = i;
969 		temp.private_value = val;
970 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
971 			return err;
972 		temp = vx_control_monitor_switch;
973 		temp.index = i;
974 		temp.private_value = val;
975 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
976 			return err;
977 	}
978 	for (i = 0; i < chip->hw->num_outs; i++) {
979 		temp = vx_control_audio_gain;
980 		temp.index = i;
981 		temp.name = "PCM Capture Volume";
982 		temp.private_value = (i * 2) | (1 << 8);
983 		if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
984 			return err;
985 	}
986 
987 	/* Audio source */
988 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip))) < 0)
989 		return err;
990 	/* clock mode */
991 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip))) < 0)
992 		return err;
993 	/* IEC958 controls */
994 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip))) < 0)
995 		return err;
996 	if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip))) < 0)
997 		return err;
998 	/* VU, peak, saturation meters */
999 	for (c = 0; c < 2; c++) {
1000 		static char *dir[2] = { "Output", "Input" };
1001 		for (i = 0; i < chip->hw->num_ins; i++) {
1002 			int val = (i * 2) | (c << 8);
1003 			if (c == 1) {
1004 				temp = vx_control_saturation;
1005 				temp.index = i;
1006 				temp.private_value = val;
1007 				if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1008 					return err;
1009 			}
1010 			sprintf(name, "%s VU Meter", dir[c]);
1011 			temp = vx_control_vu_meter;
1012 			temp.index = i;
1013 			temp.name = name;
1014 			temp.private_value = val;
1015 			if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1016 				return err;
1017 			sprintf(name, "%s Peak Meter", dir[c]);
1018 			temp = vx_control_peak_meter;
1019 			temp.index = i;
1020 			temp.name = name;
1021 			temp.private_value = val;
1022 			if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1023 				return err;
1024 		}
1025 	}
1026 	vx_reset_audio_levels(chip);
1027 	return 0;
1028 }
1029