1 /* 2 * Dummy soundcard 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/init.h> 22 #include <linux/err.h> 23 #include <linux/platform_device.h> 24 #include <linux/jiffies.h> 25 #include <linux/slab.h> 26 #include <linux/time.h> 27 #include <linux/wait.h> 28 #include <linux/hrtimer.h> 29 #include <linux/math64.h> 30 #include <linux/module.h> 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/tlv.h> 34 #include <sound/pcm.h> 35 #include <sound/rawmidi.h> 36 #include <sound/info.h> 37 #include <sound/initval.h> 38 39 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 40 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)"); 41 MODULE_LICENSE("GPL"); 42 MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}"); 43 44 #define MAX_PCM_DEVICES 4 45 #define MAX_PCM_SUBSTREAMS 128 46 #define MAX_MIDI_DEVICES 2 47 48 /* defaults */ 49 #define MAX_BUFFER_SIZE (64*1024) 50 #define MIN_PERIOD_SIZE 64 51 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE 52 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE) 53 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000 54 #define USE_RATE_MIN 5500 55 #define USE_RATE_MAX 48000 56 #define USE_CHANNELS_MIN 1 57 #define USE_CHANNELS_MAX 2 58 #define USE_PERIODS_MIN 1 59 #define USE_PERIODS_MAX 1024 60 61 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 62 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 63 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0}; 64 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL}; 65 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1}; 66 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8}; 67 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2}; 68 #ifdef CONFIG_HIGH_RES_TIMERS 69 static bool hrtimer = 1; 70 #endif 71 static bool fake_buffer = 1; 72 73 module_param_array(index, int, NULL, 0444); 74 MODULE_PARM_DESC(index, "Index value for dummy soundcard."); 75 module_param_array(id, charp, NULL, 0444); 76 MODULE_PARM_DESC(id, "ID string for dummy soundcard."); 77 module_param_array(enable, bool, NULL, 0444); 78 MODULE_PARM_DESC(enable, "Enable this dummy soundcard."); 79 module_param_array(model, charp, NULL, 0444); 80 MODULE_PARM_DESC(model, "Soundcard model."); 81 module_param_array(pcm_devs, int, NULL, 0444); 82 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver."); 83 module_param_array(pcm_substreams, int, NULL, 0444); 84 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver."); 85 //module_param_array(midi_devs, int, NULL, 0444); 86 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver."); 87 module_param(fake_buffer, bool, 0444); 88 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations."); 89 #ifdef CONFIG_HIGH_RES_TIMERS 90 module_param(hrtimer, bool, 0644); 91 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source."); 92 #endif 93 94 static struct platform_device *devices[SNDRV_CARDS]; 95 96 #define MIXER_ADDR_MASTER 0 97 #define MIXER_ADDR_LINE 1 98 #define MIXER_ADDR_MIC 2 99 #define MIXER_ADDR_SYNTH 3 100 #define MIXER_ADDR_CD 4 101 #define MIXER_ADDR_LAST 4 102 103 struct dummy_timer_ops { 104 int (*create)(struct snd_pcm_substream *); 105 void (*free)(struct snd_pcm_substream *); 106 int (*prepare)(struct snd_pcm_substream *); 107 int (*start)(struct snd_pcm_substream *); 108 int (*stop)(struct snd_pcm_substream *); 109 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *); 110 }; 111 112 #define get_dummy_ops(substream) \ 113 (*(const struct dummy_timer_ops **)(substream)->runtime->private_data) 114 115 struct dummy_model { 116 const char *name; 117 int (*playback_constraints)(struct snd_pcm_runtime *runtime); 118 int (*capture_constraints)(struct snd_pcm_runtime *runtime); 119 u64 formats; 120 size_t buffer_bytes_max; 121 size_t period_bytes_min; 122 size_t period_bytes_max; 123 unsigned int periods_min; 124 unsigned int periods_max; 125 unsigned int rates; 126 unsigned int rate_min; 127 unsigned int rate_max; 128 unsigned int channels_min; 129 unsigned int channels_max; 130 }; 131 132 struct snd_dummy { 133 struct snd_card *card; 134 struct dummy_model *model; 135 struct snd_pcm *pcm; 136 struct snd_pcm_hardware pcm_hw; 137 spinlock_t mixer_lock; 138 int mixer_volume[MIXER_ADDR_LAST+1][2]; 139 int capture_source[MIXER_ADDR_LAST+1][2]; 140 int iobox; 141 struct snd_kcontrol *cd_volume_ctl; 142 struct snd_kcontrol *cd_switch_ctl; 143 }; 144 145 /* 146 * card models 147 */ 148 149 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime) 150 { 151 int err; 152 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 153 if (err < 0) 154 return err; 155 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX); 156 if (err < 0) 157 return err; 158 return 0; 159 } 160 161 static struct dummy_model model_emu10k1 = { 162 .name = "emu10k1", 163 .playback_constraints = emu10k1_playback_constraints, 164 .buffer_bytes_max = 128 * 1024, 165 }; 166 167 static struct dummy_model model_rme9652 = { 168 .name = "rme9652", 169 .buffer_bytes_max = 26 * 64 * 1024, 170 .formats = SNDRV_PCM_FMTBIT_S32_LE, 171 .channels_min = 26, 172 .channels_max = 26, 173 .periods_min = 2, 174 .periods_max = 2, 175 }; 176 177 static struct dummy_model model_ice1712 = { 178 .name = "ice1712", 179 .buffer_bytes_max = 256 * 1024, 180 .formats = SNDRV_PCM_FMTBIT_S32_LE, 181 .channels_min = 10, 182 .channels_max = 10, 183 .periods_min = 1, 184 .periods_max = 1024, 185 }; 186 187 static struct dummy_model model_uda1341 = { 188 .name = "uda1341", 189 .buffer_bytes_max = 16380, 190 .formats = SNDRV_PCM_FMTBIT_S16_LE, 191 .channels_min = 2, 192 .channels_max = 2, 193 .periods_min = 2, 194 .periods_max = 255, 195 }; 196 197 static struct dummy_model model_ac97 = { 198 .name = "ac97", 199 .formats = SNDRV_PCM_FMTBIT_S16_LE, 200 .channels_min = 2, 201 .channels_max = 2, 202 .rates = SNDRV_PCM_RATE_48000, 203 .rate_min = 48000, 204 .rate_max = 48000, 205 }; 206 207 static struct dummy_model model_ca0106 = { 208 .name = "ca0106", 209 .formats = SNDRV_PCM_FMTBIT_S16_LE, 210 .buffer_bytes_max = ((65536-64)*8), 211 .period_bytes_max = (65536-64), 212 .periods_min = 2, 213 .periods_max = 8, 214 .channels_min = 2, 215 .channels_max = 2, 216 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000, 217 .rate_min = 48000, 218 .rate_max = 192000, 219 }; 220 221 static struct dummy_model *dummy_models[] = { 222 &model_emu10k1, 223 &model_rme9652, 224 &model_ice1712, 225 &model_uda1341, 226 &model_ac97, 227 &model_ca0106, 228 NULL 229 }; 230 231 /* 232 * system timer interface 233 */ 234 235 struct dummy_systimer_pcm { 236 /* ops must be the first item */ 237 const struct dummy_timer_ops *timer_ops; 238 spinlock_t lock; 239 struct timer_list timer; 240 unsigned long base_time; 241 unsigned int frac_pos; /* fractional sample position (based HZ) */ 242 unsigned int frac_period_rest; 243 unsigned int frac_buffer_size; /* buffer_size * HZ */ 244 unsigned int frac_period_size; /* period_size * HZ */ 245 unsigned int rate; 246 int elapsed; 247 struct snd_pcm_substream *substream; 248 }; 249 250 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm) 251 { 252 mod_timer(&dpcm->timer, jiffies + 253 (dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate); 254 } 255 256 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm) 257 { 258 unsigned long delta; 259 260 delta = jiffies - dpcm->base_time; 261 if (!delta) 262 return; 263 dpcm->base_time += delta; 264 delta *= dpcm->rate; 265 dpcm->frac_pos += delta; 266 while (dpcm->frac_pos >= dpcm->frac_buffer_size) 267 dpcm->frac_pos -= dpcm->frac_buffer_size; 268 while (dpcm->frac_period_rest <= delta) { 269 dpcm->elapsed++; 270 dpcm->frac_period_rest += dpcm->frac_period_size; 271 } 272 dpcm->frac_period_rest -= delta; 273 } 274 275 static int dummy_systimer_start(struct snd_pcm_substream *substream) 276 { 277 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 278 spin_lock(&dpcm->lock); 279 dpcm->base_time = jiffies; 280 dummy_systimer_rearm(dpcm); 281 spin_unlock(&dpcm->lock); 282 return 0; 283 } 284 285 static int dummy_systimer_stop(struct snd_pcm_substream *substream) 286 { 287 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 288 spin_lock(&dpcm->lock); 289 del_timer(&dpcm->timer); 290 spin_unlock(&dpcm->lock); 291 return 0; 292 } 293 294 static int dummy_systimer_prepare(struct snd_pcm_substream *substream) 295 { 296 struct snd_pcm_runtime *runtime = substream->runtime; 297 struct dummy_systimer_pcm *dpcm = runtime->private_data; 298 299 dpcm->frac_pos = 0; 300 dpcm->rate = runtime->rate; 301 dpcm->frac_buffer_size = runtime->buffer_size * HZ; 302 dpcm->frac_period_size = runtime->period_size * HZ; 303 dpcm->frac_period_rest = dpcm->frac_period_size; 304 dpcm->elapsed = 0; 305 306 return 0; 307 } 308 309 static void dummy_systimer_callback(struct timer_list *t) 310 { 311 struct dummy_systimer_pcm *dpcm = from_timer(dpcm, t, timer); 312 unsigned long flags; 313 int elapsed = 0; 314 315 spin_lock_irqsave(&dpcm->lock, flags); 316 dummy_systimer_update(dpcm); 317 dummy_systimer_rearm(dpcm); 318 elapsed = dpcm->elapsed; 319 dpcm->elapsed = 0; 320 spin_unlock_irqrestore(&dpcm->lock, flags); 321 if (elapsed) 322 snd_pcm_period_elapsed(dpcm->substream); 323 } 324 325 static snd_pcm_uframes_t 326 dummy_systimer_pointer(struct snd_pcm_substream *substream) 327 { 328 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 329 snd_pcm_uframes_t pos; 330 331 spin_lock(&dpcm->lock); 332 dummy_systimer_update(dpcm); 333 pos = dpcm->frac_pos / HZ; 334 spin_unlock(&dpcm->lock); 335 return pos; 336 } 337 338 static int dummy_systimer_create(struct snd_pcm_substream *substream) 339 { 340 struct dummy_systimer_pcm *dpcm; 341 342 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 343 if (!dpcm) 344 return -ENOMEM; 345 substream->runtime->private_data = dpcm; 346 timer_setup(&dpcm->timer, dummy_systimer_callback, 0); 347 spin_lock_init(&dpcm->lock); 348 dpcm->substream = substream; 349 return 0; 350 } 351 352 static void dummy_systimer_free(struct snd_pcm_substream *substream) 353 { 354 kfree(substream->runtime->private_data); 355 } 356 357 static const struct dummy_timer_ops dummy_systimer_ops = { 358 .create = dummy_systimer_create, 359 .free = dummy_systimer_free, 360 .prepare = dummy_systimer_prepare, 361 .start = dummy_systimer_start, 362 .stop = dummy_systimer_stop, 363 .pointer = dummy_systimer_pointer, 364 }; 365 366 #ifdef CONFIG_HIGH_RES_TIMERS 367 /* 368 * hrtimer interface 369 */ 370 371 struct dummy_hrtimer_pcm { 372 /* ops must be the first item */ 373 const struct dummy_timer_ops *timer_ops; 374 ktime_t base_time; 375 ktime_t period_time; 376 atomic_t running; 377 struct hrtimer timer; 378 struct snd_pcm_substream *substream; 379 }; 380 381 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer) 382 { 383 struct dummy_hrtimer_pcm *dpcm; 384 385 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer); 386 if (!atomic_read(&dpcm->running)) 387 return HRTIMER_NORESTART; 388 /* 389 * In cases of XRUN and draining, this calls .trigger to stop PCM 390 * substream. 391 */ 392 snd_pcm_period_elapsed(dpcm->substream); 393 if (!atomic_read(&dpcm->running)) 394 return HRTIMER_NORESTART; 395 396 hrtimer_forward_now(timer, dpcm->period_time); 397 return HRTIMER_RESTART; 398 } 399 400 static int dummy_hrtimer_start(struct snd_pcm_substream *substream) 401 { 402 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 403 404 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer); 405 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL_SOFT); 406 atomic_set(&dpcm->running, 1); 407 return 0; 408 } 409 410 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream) 411 { 412 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 413 414 atomic_set(&dpcm->running, 0); 415 if (!hrtimer_callback_running(&dpcm->timer)) 416 hrtimer_cancel(&dpcm->timer); 417 return 0; 418 } 419 420 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm) 421 { 422 hrtimer_cancel(&dpcm->timer); 423 } 424 425 static snd_pcm_uframes_t 426 dummy_hrtimer_pointer(struct snd_pcm_substream *substream) 427 { 428 struct snd_pcm_runtime *runtime = substream->runtime; 429 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 430 u64 delta; 431 u32 pos; 432 433 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer), 434 dpcm->base_time); 435 delta = div_u64(delta * runtime->rate + 999999, 1000000); 436 div_u64_rem(delta, runtime->buffer_size, &pos); 437 return pos; 438 } 439 440 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream) 441 { 442 struct snd_pcm_runtime *runtime = substream->runtime; 443 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 444 unsigned int period, rate; 445 long sec; 446 unsigned long nsecs; 447 448 dummy_hrtimer_sync(dpcm); 449 period = runtime->period_size; 450 rate = runtime->rate; 451 sec = period / rate; 452 period %= rate; 453 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate); 454 dpcm->period_time = ktime_set(sec, nsecs); 455 456 return 0; 457 } 458 459 static int dummy_hrtimer_create(struct snd_pcm_substream *substream) 460 { 461 struct dummy_hrtimer_pcm *dpcm; 462 463 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 464 if (!dpcm) 465 return -ENOMEM; 466 substream->runtime->private_data = dpcm; 467 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT); 468 dpcm->timer.function = dummy_hrtimer_callback; 469 dpcm->substream = substream; 470 atomic_set(&dpcm->running, 0); 471 return 0; 472 } 473 474 static void dummy_hrtimer_free(struct snd_pcm_substream *substream) 475 { 476 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 477 dummy_hrtimer_sync(dpcm); 478 kfree(dpcm); 479 } 480 481 static const struct dummy_timer_ops dummy_hrtimer_ops = { 482 .create = dummy_hrtimer_create, 483 .free = dummy_hrtimer_free, 484 .prepare = dummy_hrtimer_prepare, 485 .start = dummy_hrtimer_start, 486 .stop = dummy_hrtimer_stop, 487 .pointer = dummy_hrtimer_pointer, 488 }; 489 490 #endif /* CONFIG_HIGH_RES_TIMERS */ 491 492 /* 493 * PCM interface 494 */ 495 496 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 497 { 498 switch (cmd) { 499 case SNDRV_PCM_TRIGGER_START: 500 case SNDRV_PCM_TRIGGER_RESUME: 501 return get_dummy_ops(substream)->start(substream); 502 case SNDRV_PCM_TRIGGER_STOP: 503 case SNDRV_PCM_TRIGGER_SUSPEND: 504 return get_dummy_ops(substream)->stop(substream); 505 } 506 return -EINVAL; 507 } 508 509 static int dummy_pcm_prepare(struct snd_pcm_substream *substream) 510 { 511 return get_dummy_ops(substream)->prepare(substream); 512 } 513 514 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream) 515 { 516 return get_dummy_ops(substream)->pointer(substream); 517 } 518 519 static const struct snd_pcm_hardware dummy_pcm_hardware = { 520 .info = (SNDRV_PCM_INFO_MMAP | 521 SNDRV_PCM_INFO_INTERLEAVED | 522 SNDRV_PCM_INFO_RESUME | 523 SNDRV_PCM_INFO_MMAP_VALID), 524 .formats = USE_FORMATS, 525 .rates = USE_RATE, 526 .rate_min = USE_RATE_MIN, 527 .rate_max = USE_RATE_MAX, 528 .channels_min = USE_CHANNELS_MIN, 529 .channels_max = USE_CHANNELS_MAX, 530 .buffer_bytes_max = MAX_BUFFER_SIZE, 531 .period_bytes_min = MIN_PERIOD_SIZE, 532 .period_bytes_max = MAX_PERIOD_SIZE, 533 .periods_min = USE_PERIODS_MIN, 534 .periods_max = USE_PERIODS_MAX, 535 .fifo_size = 0, 536 }; 537 538 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream, 539 struct snd_pcm_hw_params *hw_params) 540 { 541 if (fake_buffer) { 542 /* runtime->dma_bytes has to be set manually to allow mmap */ 543 substream->runtime->dma_bytes = params_buffer_bytes(hw_params); 544 return 0; 545 } 546 return snd_pcm_lib_malloc_pages(substream, 547 params_buffer_bytes(hw_params)); 548 } 549 550 static int dummy_pcm_hw_free(struct snd_pcm_substream *substream) 551 { 552 if (fake_buffer) 553 return 0; 554 return snd_pcm_lib_free_pages(substream); 555 } 556 557 static int dummy_pcm_open(struct snd_pcm_substream *substream) 558 { 559 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 560 struct dummy_model *model = dummy->model; 561 struct snd_pcm_runtime *runtime = substream->runtime; 562 const struct dummy_timer_ops *ops; 563 int err; 564 565 ops = &dummy_systimer_ops; 566 #ifdef CONFIG_HIGH_RES_TIMERS 567 if (hrtimer) 568 ops = &dummy_hrtimer_ops; 569 #endif 570 571 err = ops->create(substream); 572 if (err < 0) 573 return err; 574 get_dummy_ops(substream) = ops; 575 576 runtime->hw = dummy->pcm_hw; 577 if (substream->pcm->device & 1) { 578 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED; 579 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED; 580 } 581 if (substream->pcm->device & 2) 582 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | 583 SNDRV_PCM_INFO_MMAP_VALID); 584 585 if (model == NULL) 586 return 0; 587 588 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 589 if (model->playback_constraints) 590 err = model->playback_constraints(substream->runtime); 591 } else { 592 if (model->capture_constraints) 593 err = model->capture_constraints(substream->runtime); 594 } 595 if (err < 0) { 596 get_dummy_ops(substream)->free(substream); 597 return err; 598 } 599 return 0; 600 } 601 602 static int dummy_pcm_close(struct snd_pcm_substream *substream) 603 { 604 get_dummy_ops(substream)->free(substream); 605 return 0; 606 } 607 608 /* 609 * dummy buffer handling 610 */ 611 612 static void *dummy_page[2]; 613 614 static void free_fake_buffer(void) 615 { 616 if (fake_buffer) { 617 int i; 618 for (i = 0; i < 2; i++) 619 if (dummy_page[i]) { 620 free_page((unsigned long)dummy_page[i]); 621 dummy_page[i] = NULL; 622 } 623 } 624 } 625 626 static int alloc_fake_buffer(void) 627 { 628 int i; 629 630 if (!fake_buffer) 631 return 0; 632 for (i = 0; i < 2; i++) { 633 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL); 634 if (!dummy_page[i]) { 635 free_fake_buffer(); 636 return -ENOMEM; 637 } 638 } 639 return 0; 640 } 641 642 static int dummy_pcm_copy(struct snd_pcm_substream *substream, 643 int channel, unsigned long pos, 644 void __user *dst, unsigned long bytes) 645 { 646 return 0; /* do nothing */ 647 } 648 649 static int dummy_pcm_copy_kernel(struct snd_pcm_substream *substream, 650 int channel, unsigned long pos, 651 void *dst, unsigned long bytes) 652 { 653 return 0; /* do nothing */ 654 } 655 656 static int dummy_pcm_silence(struct snd_pcm_substream *substream, 657 int channel, unsigned long pos, 658 unsigned long bytes) 659 { 660 return 0; /* do nothing */ 661 } 662 663 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream, 664 unsigned long offset) 665 { 666 return virt_to_page(dummy_page[substream->stream]); /* the same page */ 667 } 668 669 static struct snd_pcm_ops dummy_pcm_ops = { 670 .open = dummy_pcm_open, 671 .close = dummy_pcm_close, 672 .ioctl = snd_pcm_lib_ioctl, 673 .hw_params = dummy_pcm_hw_params, 674 .hw_free = dummy_pcm_hw_free, 675 .prepare = dummy_pcm_prepare, 676 .trigger = dummy_pcm_trigger, 677 .pointer = dummy_pcm_pointer, 678 }; 679 680 static struct snd_pcm_ops dummy_pcm_ops_no_buf = { 681 .open = dummy_pcm_open, 682 .close = dummy_pcm_close, 683 .ioctl = snd_pcm_lib_ioctl, 684 .hw_params = dummy_pcm_hw_params, 685 .hw_free = dummy_pcm_hw_free, 686 .prepare = dummy_pcm_prepare, 687 .trigger = dummy_pcm_trigger, 688 .pointer = dummy_pcm_pointer, 689 .copy_user = dummy_pcm_copy, 690 .copy_kernel = dummy_pcm_copy_kernel, 691 .fill_silence = dummy_pcm_silence, 692 .page = dummy_pcm_page, 693 }; 694 695 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device, 696 int substreams) 697 { 698 struct snd_pcm *pcm; 699 struct snd_pcm_ops *ops; 700 int err; 701 702 err = snd_pcm_new(dummy->card, "Dummy PCM", device, 703 substreams, substreams, &pcm); 704 if (err < 0) 705 return err; 706 dummy->pcm = pcm; 707 if (fake_buffer) 708 ops = &dummy_pcm_ops_no_buf; 709 else 710 ops = &dummy_pcm_ops; 711 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops); 712 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops); 713 pcm->private_data = dummy; 714 pcm->info_flags = 0; 715 strcpy(pcm->name, "Dummy PCM"); 716 if (!fake_buffer) { 717 snd_pcm_lib_preallocate_pages_for_all(pcm, 718 SNDRV_DMA_TYPE_CONTINUOUS, 719 snd_dma_continuous_data(GFP_KERNEL), 720 0, 64*1024); 721 } 722 return 0; 723 } 724 725 /* 726 * mixer interface 727 */ 728 729 #define DUMMY_VOLUME(xname, xindex, addr) \ 730 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 731 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 732 .name = xname, .index = xindex, \ 733 .info = snd_dummy_volume_info, \ 734 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \ 735 .private_value = addr, \ 736 .tlv = { .p = db_scale_dummy } } 737 738 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol, 739 struct snd_ctl_elem_info *uinfo) 740 { 741 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 742 uinfo->count = 2; 743 uinfo->value.integer.min = -50; 744 uinfo->value.integer.max = 100; 745 return 0; 746 } 747 748 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol, 749 struct snd_ctl_elem_value *ucontrol) 750 { 751 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 752 int addr = kcontrol->private_value; 753 754 spin_lock_irq(&dummy->mixer_lock); 755 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0]; 756 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1]; 757 spin_unlock_irq(&dummy->mixer_lock); 758 return 0; 759 } 760 761 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol, 762 struct snd_ctl_elem_value *ucontrol) 763 { 764 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 765 int change, addr = kcontrol->private_value; 766 int left, right; 767 768 left = ucontrol->value.integer.value[0]; 769 if (left < -50) 770 left = -50; 771 if (left > 100) 772 left = 100; 773 right = ucontrol->value.integer.value[1]; 774 if (right < -50) 775 right = -50; 776 if (right > 100) 777 right = 100; 778 spin_lock_irq(&dummy->mixer_lock); 779 change = dummy->mixer_volume[addr][0] != left || 780 dummy->mixer_volume[addr][1] != right; 781 dummy->mixer_volume[addr][0] = left; 782 dummy->mixer_volume[addr][1] = right; 783 spin_unlock_irq(&dummy->mixer_lock); 784 return change; 785 } 786 787 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0); 788 789 #define DUMMY_CAPSRC(xname, xindex, addr) \ 790 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 791 .info = snd_dummy_capsrc_info, \ 792 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \ 793 .private_value = addr } 794 795 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info 796 797 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol, 798 struct snd_ctl_elem_value *ucontrol) 799 { 800 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 801 int addr = kcontrol->private_value; 802 803 spin_lock_irq(&dummy->mixer_lock); 804 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0]; 805 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1]; 806 spin_unlock_irq(&dummy->mixer_lock); 807 return 0; 808 } 809 810 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 811 { 812 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 813 int change, addr = kcontrol->private_value; 814 int left, right; 815 816 left = ucontrol->value.integer.value[0] & 1; 817 right = ucontrol->value.integer.value[1] & 1; 818 spin_lock_irq(&dummy->mixer_lock); 819 change = dummy->capture_source[addr][0] != left && 820 dummy->capture_source[addr][1] != right; 821 dummy->capture_source[addr][0] = left; 822 dummy->capture_source[addr][1] = right; 823 spin_unlock_irq(&dummy->mixer_lock); 824 return change; 825 } 826 827 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol, 828 struct snd_ctl_elem_info *info) 829 { 830 static const char *const names[] = { "None", "CD Player" }; 831 832 return snd_ctl_enum_info(info, 1, 2, names); 833 } 834 835 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol, 836 struct snd_ctl_elem_value *value) 837 { 838 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 839 840 value->value.enumerated.item[0] = dummy->iobox; 841 return 0; 842 } 843 844 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol, 845 struct snd_ctl_elem_value *value) 846 { 847 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 848 int changed; 849 850 if (value->value.enumerated.item[0] > 1) 851 return -EINVAL; 852 853 changed = value->value.enumerated.item[0] != dummy->iobox; 854 if (changed) { 855 dummy->iobox = value->value.enumerated.item[0]; 856 857 if (dummy->iobox) { 858 dummy->cd_volume_ctl->vd[0].access &= 859 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 860 dummy->cd_switch_ctl->vd[0].access &= 861 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 862 } else { 863 dummy->cd_volume_ctl->vd[0].access |= 864 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 865 dummy->cd_switch_ctl->vd[0].access |= 866 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 867 } 868 869 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 870 &dummy->cd_volume_ctl->id); 871 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 872 &dummy->cd_switch_ctl->id); 873 } 874 875 return changed; 876 } 877 878 static struct snd_kcontrol_new snd_dummy_controls[] = { 879 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER), 880 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER), 881 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH), 882 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH), 883 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE), 884 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE), 885 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC), 886 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC), 887 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD), 888 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD), 889 { 890 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 891 .name = "External I/O Box", 892 .info = snd_dummy_iobox_info, 893 .get = snd_dummy_iobox_get, 894 .put = snd_dummy_iobox_put, 895 }, 896 }; 897 898 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy) 899 { 900 struct snd_card *card = dummy->card; 901 struct snd_kcontrol *kcontrol; 902 unsigned int idx; 903 int err; 904 905 spin_lock_init(&dummy->mixer_lock); 906 strcpy(card->mixername, "Dummy Mixer"); 907 dummy->iobox = 1; 908 909 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) { 910 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy); 911 err = snd_ctl_add(card, kcontrol); 912 if (err < 0) 913 return err; 914 if (!strcmp(kcontrol->id.name, "CD Volume")) 915 dummy->cd_volume_ctl = kcontrol; 916 else if (!strcmp(kcontrol->id.name, "CD Capture Switch")) 917 dummy->cd_switch_ctl = kcontrol; 918 919 } 920 return 0; 921 } 922 923 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS) 924 /* 925 * proc interface 926 */ 927 static void print_formats(struct snd_dummy *dummy, 928 struct snd_info_buffer *buffer) 929 { 930 int i; 931 932 for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { 933 if (dummy->pcm_hw.formats & (1ULL << i)) 934 snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); 935 } 936 } 937 938 static void print_rates(struct snd_dummy *dummy, 939 struct snd_info_buffer *buffer) 940 { 941 static int rates[] = { 942 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 943 64000, 88200, 96000, 176400, 192000, 944 }; 945 int i; 946 947 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS) 948 snd_iprintf(buffer, " continuous"); 949 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT) 950 snd_iprintf(buffer, " knot"); 951 for (i = 0; i < ARRAY_SIZE(rates); i++) 952 if (dummy->pcm_hw.rates & (1 << i)) 953 snd_iprintf(buffer, " %d", rates[i]); 954 } 955 956 #define get_dummy_int_ptr(dummy, ofs) \ 957 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs)) 958 #define get_dummy_ll_ptr(dummy, ofs) \ 959 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs)) 960 961 struct dummy_hw_field { 962 const char *name; 963 const char *format; 964 unsigned int offset; 965 unsigned int size; 966 }; 967 #define FIELD_ENTRY(item, fmt) { \ 968 .name = #item, \ 969 .format = fmt, \ 970 .offset = offsetof(struct snd_pcm_hardware, item), \ 971 .size = sizeof(dummy_pcm_hardware.item) } 972 973 static struct dummy_hw_field fields[] = { 974 FIELD_ENTRY(formats, "%#llx"), 975 FIELD_ENTRY(rates, "%#x"), 976 FIELD_ENTRY(rate_min, "%d"), 977 FIELD_ENTRY(rate_max, "%d"), 978 FIELD_ENTRY(channels_min, "%d"), 979 FIELD_ENTRY(channels_max, "%d"), 980 FIELD_ENTRY(buffer_bytes_max, "%ld"), 981 FIELD_ENTRY(period_bytes_min, "%ld"), 982 FIELD_ENTRY(period_bytes_max, "%ld"), 983 FIELD_ENTRY(periods_min, "%d"), 984 FIELD_ENTRY(periods_max, "%d"), 985 }; 986 987 static void dummy_proc_read(struct snd_info_entry *entry, 988 struct snd_info_buffer *buffer) 989 { 990 struct snd_dummy *dummy = entry->private_data; 991 int i; 992 993 for (i = 0; i < ARRAY_SIZE(fields); i++) { 994 snd_iprintf(buffer, "%s ", fields[i].name); 995 if (fields[i].size == sizeof(int)) 996 snd_iprintf(buffer, fields[i].format, 997 *get_dummy_int_ptr(dummy, fields[i].offset)); 998 else 999 snd_iprintf(buffer, fields[i].format, 1000 *get_dummy_ll_ptr(dummy, fields[i].offset)); 1001 if (!strcmp(fields[i].name, "formats")) 1002 print_formats(dummy, buffer); 1003 else if (!strcmp(fields[i].name, "rates")) 1004 print_rates(dummy, buffer); 1005 snd_iprintf(buffer, "\n"); 1006 } 1007 } 1008 1009 static void dummy_proc_write(struct snd_info_entry *entry, 1010 struct snd_info_buffer *buffer) 1011 { 1012 struct snd_dummy *dummy = entry->private_data; 1013 char line[64]; 1014 1015 while (!snd_info_get_line(buffer, line, sizeof(line))) { 1016 char item[20]; 1017 const char *ptr; 1018 unsigned long long val; 1019 int i; 1020 1021 ptr = snd_info_get_str(item, line, sizeof(item)); 1022 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1023 if (!strcmp(item, fields[i].name)) 1024 break; 1025 } 1026 if (i >= ARRAY_SIZE(fields)) 1027 continue; 1028 snd_info_get_str(item, ptr, sizeof(item)); 1029 if (kstrtoull(item, 0, &val)) 1030 continue; 1031 if (fields[i].size == sizeof(int)) 1032 *get_dummy_int_ptr(dummy, fields[i].offset) = val; 1033 else 1034 *get_dummy_ll_ptr(dummy, fields[i].offset) = val; 1035 } 1036 } 1037 1038 static void dummy_proc_init(struct snd_dummy *chip) 1039 { 1040 snd_card_rw_proc_new(chip->card, "dummy_pcm", chip, 1041 dummy_proc_read, dummy_proc_write); 1042 } 1043 #else 1044 #define dummy_proc_init(x) 1045 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */ 1046 1047 static int snd_dummy_probe(struct platform_device *devptr) 1048 { 1049 struct snd_card *card; 1050 struct snd_dummy *dummy; 1051 struct dummy_model *m = NULL, **mdl; 1052 int idx, err; 1053 int dev = devptr->id; 1054 1055 err = snd_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE, 1056 sizeof(struct snd_dummy), &card); 1057 if (err < 0) 1058 return err; 1059 dummy = card->private_data; 1060 dummy->card = card; 1061 for (mdl = dummy_models; *mdl && model[dev]; mdl++) { 1062 if (strcmp(model[dev], (*mdl)->name) == 0) { 1063 printk(KERN_INFO 1064 "snd-dummy: Using model '%s' for card %i\n", 1065 (*mdl)->name, card->number); 1066 m = dummy->model = *mdl; 1067 break; 1068 } 1069 } 1070 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) { 1071 if (pcm_substreams[dev] < 1) 1072 pcm_substreams[dev] = 1; 1073 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS) 1074 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS; 1075 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]); 1076 if (err < 0) 1077 goto __nodev; 1078 } 1079 1080 dummy->pcm_hw = dummy_pcm_hardware; 1081 if (m) { 1082 if (m->formats) 1083 dummy->pcm_hw.formats = m->formats; 1084 if (m->buffer_bytes_max) 1085 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max; 1086 if (m->period_bytes_min) 1087 dummy->pcm_hw.period_bytes_min = m->period_bytes_min; 1088 if (m->period_bytes_max) 1089 dummy->pcm_hw.period_bytes_max = m->period_bytes_max; 1090 if (m->periods_min) 1091 dummy->pcm_hw.periods_min = m->periods_min; 1092 if (m->periods_max) 1093 dummy->pcm_hw.periods_max = m->periods_max; 1094 if (m->rates) 1095 dummy->pcm_hw.rates = m->rates; 1096 if (m->rate_min) 1097 dummy->pcm_hw.rate_min = m->rate_min; 1098 if (m->rate_max) 1099 dummy->pcm_hw.rate_max = m->rate_max; 1100 if (m->channels_min) 1101 dummy->pcm_hw.channels_min = m->channels_min; 1102 if (m->channels_max) 1103 dummy->pcm_hw.channels_max = m->channels_max; 1104 } 1105 1106 err = snd_card_dummy_new_mixer(dummy); 1107 if (err < 0) 1108 goto __nodev; 1109 strcpy(card->driver, "Dummy"); 1110 strcpy(card->shortname, "Dummy"); 1111 sprintf(card->longname, "Dummy %i", dev + 1); 1112 1113 dummy_proc_init(dummy); 1114 1115 err = snd_card_register(card); 1116 if (err == 0) { 1117 platform_set_drvdata(devptr, card); 1118 return 0; 1119 } 1120 __nodev: 1121 snd_card_free(card); 1122 return err; 1123 } 1124 1125 static int snd_dummy_remove(struct platform_device *devptr) 1126 { 1127 snd_card_free(platform_get_drvdata(devptr)); 1128 return 0; 1129 } 1130 1131 #ifdef CONFIG_PM_SLEEP 1132 static int snd_dummy_suspend(struct device *pdev) 1133 { 1134 struct snd_card *card = dev_get_drvdata(pdev); 1135 1136 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1137 return 0; 1138 } 1139 1140 static int snd_dummy_resume(struct device *pdev) 1141 { 1142 struct snd_card *card = dev_get_drvdata(pdev); 1143 1144 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1145 return 0; 1146 } 1147 1148 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume); 1149 #define SND_DUMMY_PM_OPS &snd_dummy_pm 1150 #else 1151 #define SND_DUMMY_PM_OPS NULL 1152 #endif 1153 1154 #define SND_DUMMY_DRIVER "snd_dummy" 1155 1156 static struct platform_driver snd_dummy_driver = { 1157 .probe = snd_dummy_probe, 1158 .remove = snd_dummy_remove, 1159 .driver = { 1160 .name = SND_DUMMY_DRIVER, 1161 .pm = SND_DUMMY_PM_OPS, 1162 }, 1163 }; 1164 1165 static void snd_dummy_unregister_all(void) 1166 { 1167 int i; 1168 1169 for (i = 0; i < ARRAY_SIZE(devices); ++i) 1170 platform_device_unregister(devices[i]); 1171 platform_driver_unregister(&snd_dummy_driver); 1172 free_fake_buffer(); 1173 } 1174 1175 static int __init alsa_card_dummy_init(void) 1176 { 1177 int i, cards, err; 1178 1179 err = platform_driver_register(&snd_dummy_driver); 1180 if (err < 0) 1181 return err; 1182 1183 err = alloc_fake_buffer(); 1184 if (err < 0) { 1185 platform_driver_unregister(&snd_dummy_driver); 1186 return err; 1187 } 1188 1189 cards = 0; 1190 for (i = 0; i < SNDRV_CARDS; i++) { 1191 struct platform_device *device; 1192 if (! enable[i]) 1193 continue; 1194 device = platform_device_register_simple(SND_DUMMY_DRIVER, 1195 i, NULL, 0); 1196 if (IS_ERR(device)) 1197 continue; 1198 if (!platform_get_drvdata(device)) { 1199 platform_device_unregister(device); 1200 continue; 1201 } 1202 devices[i] = device; 1203 cards++; 1204 } 1205 if (!cards) { 1206 #ifdef MODULE 1207 printk(KERN_ERR "Dummy soundcard not found or device busy\n"); 1208 #endif 1209 snd_dummy_unregister_all(); 1210 return -ENODEV; 1211 } 1212 return 0; 1213 } 1214 1215 static void __exit alsa_card_dummy_exit(void) 1216 { 1217 snd_dummy_unregister_all(); 1218 } 1219 1220 module_init(alsa_card_dummy_init) 1221 module_exit(alsa_card_dummy_exit) 1222