1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Dummy soundcard 4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 5 */ 6 7 #include <linux/init.h> 8 #include <linux/err.h> 9 #include <linux/platform_device.h> 10 #include <linux/jiffies.h> 11 #include <linux/slab.h> 12 #include <linux/time.h> 13 #include <linux/wait.h> 14 #include <linux/hrtimer.h> 15 #include <linux/math64.h> 16 #include <linux/module.h> 17 #include <sound/core.h> 18 #include <sound/control.h> 19 #include <sound/tlv.h> 20 #include <sound/pcm.h> 21 #include <sound/rawmidi.h> 22 #include <sound/info.h> 23 #include <sound/initval.h> 24 25 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 26 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)"); 27 MODULE_LICENSE("GPL"); 28 MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}"); 29 30 #define MAX_PCM_DEVICES 4 31 #define MAX_PCM_SUBSTREAMS 128 32 #define MAX_MIDI_DEVICES 2 33 34 /* defaults */ 35 #define MAX_BUFFER_SIZE (64*1024) 36 #define MIN_PERIOD_SIZE 64 37 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE 38 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE) 39 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000 40 #define USE_RATE_MIN 5500 41 #define USE_RATE_MAX 48000 42 #define USE_CHANNELS_MIN 1 43 #define USE_CHANNELS_MAX 2 44 #define USE_PERIODS_MIN 1 45 #define USE_PERIODS_MAX 1024 46 47 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 48 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 49 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0}; 50 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL}; 51 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1}; 52 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8}; 53 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2}; 54 #ifdef CONFIG_HIGH_RES_TIMERS 55 static bool hrtimer = 1; 56 #endif 57 static bool fake_buffer = 1; 58 59 module_param_array(index, int, NULL, 0444); 60 MODULE_PARM_DESC(index, "Index value for dummy soundcard."); 61 module_param_array(id, charp, NULL, 0444); 62 MODULE_PARM_DESC(id, "ID string for dummy soundcard."); 63 module_param_array(enable, bool, NULL, 0444); 64 MODULE_PARM_DESC(enable, "Enable this dummy soundcard."); 65 module_param_array(model, charp, NULL, 0444); 66 MODULE_PARM_DESC(model, "Soundcard model."); 67 module_param_array(pcm_devs, int, NULL, 0444); 68 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver."); 69 module_param_array(pcm_substreams, int, NULL, 0444); 70 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver."); 71 //module_param_array(midi_devs, int, NULL, 0444); 72 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver."); 73 module_param(fake_buffer, bool, 0444); 74 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations."); 75 #ifdef CONFIG_HIGH_RES_TIMERS 76 module_param(hrtimer, bool, 0644); 77 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source."); 78 #endif 79 80 static struct platform_device *devices[SNDRV_CARDS]; 81 82 #define MIXER_ADDR_MASTER 0 83 #define MIXER_ADDR_LINE 1 84 #define MIXER_ADDR_MIC 2 85 #define MIXER_ADDR_SYNTH 3 86 #define MIXER_ADDR_CD 4 87 #define MIXER_ADDR_LAST 4 88 89 struct dummy_timer_ops { 90 int (*create)(struct snd_pcm_substream *); 91 void (*free)(struct snd_pcm_substream *); 92 int (*prepare)(struct snd_pcm_substream *); 93 int (*start)(struct snd_pcm_substream *); 94 int (*stop)(struct snd_pcm_substream *); 95 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *); 96 }; 97 98 #define get_dummy_ops(substream) \ 99 (*(const struct dummy_timer_ops **)(substream)->runtime->private_data) 100 101 struct dummy_model { 102 const char *name; 103 int (*playback_constraints)(struct snd_pcm_runtime *runtime); 104 int (*capture_constraints)(struct snd_pcm_runtime *runtime); 105 u64 formats; 106 size_t buffer_bytes_max; 107 size_t period_bytes_min; 108 size_t period_bytes_max; 109 unsigned int periods_min; 110 unsigned int periods_max; 111 unsigned int rates; 112 unsigned int rate_min; 113 unsigned int rate_max; 114 unsigned int channels_min; 115 unsigned int channels_max; 116 }; 117 118 struct snd_dummy { 119 struct snd_card *card; 120 struct dummy_model *model; 121 struct snd_pcm *pcm; 122 struct snd_pcm_hardware pcm_hw; 123 spinlock_t mixer_lock; 124 int mixer_volume[MIXER_ADDR_LAST+1][2]; 125 int capture_source[MIXER_ADDR_LAST+1][2]; 126 int iobox; 127 struct snd_kcontrol *cd_volume_ctl; 128 struct snd_kcontrol *cd_switch_ctl; 129 }; 130 131 /* 132 * card models 133 */ 134 135 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime) 136 { 137 int err; 138 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 139 if (err < 0) 140 return err; 141 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX); 142 if (err < 0) 143 return err; 144 return 0; 145 } 146 147 static struct dummy_model model_emu10k1 = { 148 .name = "emu10k1", 149 .playback_constraints = emu10k1_playback_constraints, 150 .buffer_bytes_max = 128 * 1024, 151 }; 152 153 static struct dummy_model model_rme9652 = { 154 .name = "rme9652", 155 .buffer_bytes_max = 26 * 64 * 1024, 156 .formats = SNDRV_PCM_FMTBIT_S32_LE, 157 .channels_min = 26, 158 .channels_max = 26, 159 .periods_min = 2, 160 .periods_max = 2, 161 }; 162 163 static struct dummy_model model_ice1712 = { 164 .name = "ice1712", 165 .buffer_bytes_max = 256 * 1024, 166 .formats = SNDRV_PCM_FMTBIT_S32_LE, 167 .channels_min = 10, 168 .channels_max = 10, 169 .periods_min = 1, 170 .periods_max = 1024, 171 }; 172 173 static struct dummy_model model_uda1341 = { 174 .name = "uda1341", 175 .buffer_bytes_max = 16380, 176 .formats = SNDRV_PCM_FMTBIT_S16_LE, 177 .channels_min = 2, 178 .channels_max = 2, 179 .periods_min = 2, 180 .periods_max = 255, 181 }; 182 183 static struct dummy_model model_ac97 = { 184 .name = "ac97", 185 .formats = SNDRV_PCM_FMTBIT_S16_LE, 186 .channels_min = 2, 187 .channels_max = 2, 188 .rates = SNDRV_PCM_RATE_48000, 189 .rate_min = 48000, 190 .rate_max = 48000, 191 }; 192 193 static struct dummy_model model_ca0106 = { 194 .name = "ca0106", 195 .formats = SNDRV_PCM_FMTBIT_S16_LE, 196 .buffer_bytes_max = ((65536-64)*8), 197 .period_bytes_max = (65536-64), 198 .periods_min = 2, 199 .periods_max = 8, 200 .channels_min = 2, 201 .channels_max = 2, 202 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000, 203 .rate_min = 48000, 204 .rate_max = 192000, 205 }; 206 207 static struct dummy_model *dummy_models[] = { 208 &model_emu10k1, 209 &model_rme9652, 210 &model_ice1712, 211 &model_uda1341, 212 &model_ac97, 213 &model_ca0106, 214 NULL 215 }; 216 217 /* 218 * system timer interface 219 */ 220 221 struct dummy_systimer_pcm { 222 /* ops must be the first item */ 223 const struct dummy_timer_ops *timer_ops; 224 spinlock_t lock; 225 struct timer_list timer; 226 unsigned long base_time; 227 unsigned int frac_pos; /* fractional sample position (based HZ) */ 228 unsigned int frac_period_rest; 229 unsigned int frac_buffer_size; /* buffer_size * HZ */ 230 unsigned int frac_period_size; /* period_size * HZ */ 231 unsigned int rate; 232 int elapsed; 233 struct snd_pcm_substream *substream; 234 }; 235 236 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm) 237 { 238 mod_timer(&dpcm->timer, jiffies + 239 (dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate); 240 } 241 242 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm) 243 { 244 unsigned long delta; 245 246 delta = jiffies - dpcm->base_time; 247 if (!delta) 248 return; 249 dpcm->base_time += delta; 250 delta *= dpcm->rate; 251 dpcm->frac_pos += delta; 252 while (dpcm->frac_pos >= dpcm->frac_buffer_size) 253 dpcm->frac_pos -= dpcm->frac_buffer_size; 254 while (dpcm->frac_period_rest <= delta) { 255 dpcm->elapsed++; 256 dpcm->frac_period_rest += dpcm->frac_period_size; 257 } 258 dpcm->frac_period_rest -= delta; 259 } 260 261 static int dummy_systimer_start(struct snd_pcm_substream *substream) 262 { 263 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 264 spin_lock(&dpcm->lock); 265 dpcm->base_time = jiffies; 266 dummy_systimer_rearm(dpcm); 267 spin_unlock(&dpcm->lock); 268 return 0; 269 } 270 271 static int dummy_systimer_stop(struct snd_pcm_substream *substream) 272 { 273 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 274 spin_lock(&dpcm->lock); 275 del_timer(&dpcm->timer); 276 spin_unlock(&dpcm->lock); 277 return 0; 278 } 279 280 static int dummy_systimer_prepare(struct snd_pcm_substream *substream) 281 { 282 struct snd_pcm_runtime *runtime = substream->runtime; 283 struct dummy_systimer_pcm *dpcm = runtime->private_data; 284 285 dpcm->frac_pos = 0; 286 dpcm->rate = runtime->rate; 287 dpcm->frac_buffer_size = runtime->buffer_size * HZ; 288 dpcm->frac_period_size = runtime->period_size * HZ; 289 dpcm->frac_period_rest = dpcm->frac_period_size; 290 dpcm->elapsed = 0; 291 292 return 0; 293 } 294 295 static void dummy_systimer_callback(struct timer_list *t) 296 { 297 struct dummy_systimer_pcm *dpcm = from_timer(dpcm, t, timer); 298 unsigned long flags; 299 int elapsed = 0; 300 301 spin_lock_irqsave(&dpcm->lock, flags); 302 dummy_systimer_update(dpcm); 303 dummy_systimer_rearm(dpcm); 304 elapsed = dpcm->elapsed; 305 dpcm->elapsed = 0; 306 spin_unlock_irqrestore(&dpcm->lock, flags); 307 if (elapsed) 308 snd_pcm_period_elapsed(dpcm->substream); 309 } 310 311 static snd_pcm_uframes_t 312 dummy_systimer_pointer(struct snd_pcm_substream *substream) 313 { 314 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 315 snd_pcm_uframes_t pos; 316 317 spin_lock(&dpcm->lock); 318 dummy_systimer_update(dpcm); 319 pos = dpcm->frac_pos / HZ; 320 spin_unlock(&dpcm->lock); 321 return pos; 322 } 323 324 static int dummy_systimer_create(struct snd_pcm_substream *substream) 325 { 326 struct dummy_systimer_pcm *dpcm; 327 328 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 329 if (!dpcm) 330 return -ENOMEM; 331 substream->runtime->private_data = dpcm; 332 timer_setup(&dpcm->timer, dummy_systimer_callback, 0); 333 spin_lock_init(&dpcm->lock); 334 dpcm->substream = substream; 335 return 0; 336 } 337 338 static void dummy_systimer_free(struct snd_pcm_substream *substream) 339 { 340 kfree(substream->runtime->private_data); 341 } 342 343 static const struct dummy_timer_ops dummy_systimer_ops = { 344 .create = dummy_systimer_create, 345 .free = dummy_systimer_free, 346 .prepare = dummy_systimer_prepare, 347 .start = dummy_systimer_start, 348 .stop = dummy_systimer_stop, 349 .pointer = dummy_systimer_pointer, 350 }; 351 352 #ifdef CONFIG_HIGH_RES_TIMERS 353 /* 354 * hrtimer interface 355 */ 356 357 struct dummy_hrtimer_pcm { 358 /* ops must be the first item */ 359 const struct dummy_timer_ops *timer_ops; 360 ktime_t base_time; 361 ktime_t period_time; 362 atomic_t running; 363 struct hrtimer timer; 364 struct snd_pcm_substream *substream; 365 }; 366 367 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer) 368 { 369 struct dummy_hrtimer_pcm *dpcm; 370 371 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer); 372 if (!atomic_read(&dpcm->running)) 373 return HRTIMER_NORESTART; 374 /* 375 * In cases of XRUN and draining, this calls .trigger to stop PCM 376 * substream. 377 */ 378 snd_pcm_period_elapsed(dpcm->substream); 379 if (!atomic_read(&dpcm->running)) 380 return HRTIMER_NORESTART; 381 382 hrtimer_forward_now(timer, dpcm->period_time); 383 return HRTIMER_RESTART; 384 } 385 386 static int dummy_hrtimer_start(struct snd_pcm_substream *substream) 387 { 388 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 389 390 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer); 391 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL_SOFT); 392 atomic_set(&dpcm->running, 1); 393 return 0; 394 } 395 396 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream) 397 { 398 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 399 400 atomic_set(&dpcm->running, 0); 401 if (!hrtimer_callback_running(&dpcm->timer)) 402 hrtimer_cancel(&dpcm->timer); 403 return 0; 404 } 405 406 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm) 407 { 408 hrtimer_cancel(&dpcm->timer); 409 } 410 411 static snd_pcm_uframes_t 412 dummy_hrtimer_pointer(struct snd_pcm_substream *substream) 413 { 414 struct snd_pcm_runtime *runtime = substream->runtime; 415 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 416 u64 delta; 417 u32 pos; 418 419 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer), 420 dpcm->base_time); 421 delta = div_u64(delta * runtime->rate + 999999, 1000000); 422 div_u64_rem(delta, runtime->buffer_size, &pos); 423 return pos; 424 } 425 426 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream) 427 { 428 struct snd_pcm_runtime *runtime = substream->runtime; 429 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 430 unsigned int period, rate; 431 long sec; 432 unsigned long nsecs; 433 434 dummy_hrtimer_sync(dpcm); 435 period = runtime->period_size; 436 rate = runtime->rate; 437 sec = period / rate; 438 period %= rate; 439 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate); 440 dpcm->period_time = ktime_set(sec, nsecs); 441 442 return 0; 443 } 444 445 static int dummy_hrtimer_create(struct snd_pcm_substream *substream) 446 { 447 struct dummy_hrtimer_pcm *dpcm; 448 449 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 450 if (!dpcm) 451 return -ENOMEM; 452 substream->runtime->private_data = dpcm; 453 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT); 454 dpcm->timer.function = dummy_hrtimer_callback; 455 dpcm->substream = substream; 456 atomic_set(&dpcm->running, 0); 457 return 0; 458 } 459 460 static void dummy_hrtimer_free(struct snd_pcm_substream *substream) 461 { 462 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 463 dummy_hrtimer_sync(dpcm); 464 kfree(dpcm); 465 } 466 467 static const struct dummy_timer_ops dummy_hrtimer_ops = { 468 .create = dummy_hrtimer_create, 469 .free = dummy_hrtimer_free, 470 .prepare = dummy_hrtimer_prepare, 471 .start = dummy_hrtimer_start, 472 .stop = dummy_hrtimer_stop, 473 .pointer = dummy_hrtimer_pointer, 474 }; 475 476 #endif /* CONFIG_HIGH_RES_TIMERS */ 477 478 /* 479 * PCM interface 480 */ 481 482 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 483 { 484 switch (cmd) { 485 case SNDRV_PCM_TRIGGER_START: 486 case SNDRV_PCM_TRIGGER_RESUME: 487 return get_dummy_ops(substream)->start(substream); 488 case SNDRV_PCM_TRIGGER_STOP: 489 case SNDRV_PCM_TRIGGER_SUSPEND: 490 return get_dummy_ops(substream)->stop(substream); 491 } 492 return -EINVAL; 493 } 494 495 static int dummy_pcm_prepare(struct snd_pcm_substream *substream) 496 { 497 return get_dummy_ops(substream)->prepare(substream); 498 } 499 500 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream) 501 { 502 return get_dummy_ops(substream)->pointer(substream); 503 } 504 505 static const struct snd_pcm_hardware dummy_pcm_hardware = { 506 .info = (SNDRV_PCM_INFO_MMAP | 507 SNDRV_PCM_INFO_INTERLEAVED | 508 SNDRV_PCM_INFO_RESUME | 509 SNDRV_PCM_INFO_MMAP_VALID), 510 .formats = USE_FORMATS, 511 .rates = USE_RATE, 512 .rate_min = USE_RATE_MIN, 513 .rate_max = USE_RATE_MAX, 514 .channels_min = USE_CHANNELS_MIN, 515 .channels_max = USE_CHANNELS_MAX, 516 .buffer_bytes_max = MAX_BUFFER_SIZE, 517 .period_bytes_min = MIN_PERIOD_SIZE, 518 .period_bytes_max = MAX_PERIOD_SIZE, 519 .periods_min = USE_PERIODS_MIN, 520 .periods_max = USE_PERIODS_MAX, 521 .fifo_size = 0, 522 }; 523 524 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream, 525 struct snd_pcm_hw_params *hw_params) 526 { 527 if (fake_buffer) { 528 /* runtime->dma_bytes has to be set manually to allow mmap */ 529 substream->runtime->dma_bytes = params_buffer_bytes(hw_params); 530 return 0; 531 } 532 return snd_pcm_lib_malloc_pages(substream, 533 params_buffer_bytes(hw_params)); 534 } 535 536 static int dummy_pcm_hw_free(struct snd_pcm_substream *substream) 537 { 538 if (fake_buffer) 539 return 0; 540 return snd_pcm_lib_free_pages(substream); 541 } 542 543 static int dummy_pcm_open(struct snd_pcm_substream *substream) 544 { 545 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 546 struct dummy_model *model = dummy->model; 547 struct snd_pcm_runtime *runtime = substream->runtime; 548 const struct dummy_timer_ops *ops; 549 int err; 550 551 ops = &dummy_systimer_ops; 552 #ifdef CONFIG_HIGH_RES_TIMERS 553 if (hrtimer) 554 ops = &dummy_hrtimer_ops; 555 #endif 556 557 err = ops->create(substream); 558 if (err < 0) 559 return err; 560 get_dummy_ops(substream) = ops; 561 562 runtime->hw = dummy->pcm_hw; 563 if (substream->pcm->device & 1) { 564 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED; 565 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED; 566 } 567 if (substream->pcm->device & 2) 568 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | 569 SNDRV_PCM_INFO_MMAP_VALID); 570 571 if (model == NULL) 572 return 0; 573 574 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 575 if (model->playback_constraints) 576 err = model->playback_constraints(substream->runtime); 577 } else { 578 if (model->capture_constraints) 579 err = model->capture_constraints(substream->runtime); 580 } 581 if (err < 0) { 582 get_dummy_ops(substream)->free(substream); 583 return err; 584 } 585 return 0; 586 } 587 588 static int dummy_pcm_close(struct snd_pcm_substream *substream) 589 { 590 get_dummy_ops(substream)->free(substream); 591 return 0; 592 } 593 594 /* 595 * dummy buffer handling 596 */ 597 598 static void *dummy_page[2]; 599 600 static void free_fake_buffer(void) 601 { 602 if (fake_buffer) { 603 int i; 604 for (i = 0; i < 2; i++) 605 if (dummy_page[i]) { 606 free_page((unsigned long)dummy_page[i]); 607 dummy_page[i] = NULL; 608 } 609 } 610 } 611 612 static int alloc_fake_buffer(void) 613 { 614 int i; 615 616 if (!fake_buffer) 617 return 0; 618 for (i = 0; i < 2; i++) { 619 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL); 620 if (!dummy_page[i]) { 621 free_fake_buffer(); 622 return -ENOMEM; 623 } 624 } 625 return 0; 626 } 627 628 static int dummy_pcm_copy(struct snd_pcm_substream *substream, 629 int channel, unsigned long pos, 630 void __user *dst, unsigned long bytes) 631 { 632 return 0; /* do nothing */ 633 } 634 635 static int dummy_pcm_copy_kernel(struct snd_pcm_substream *substream, 636 int channel, unsigned long pos, 637 void *dst, unsigned long bytes) 638 { 639 return 0; /* do nothing */ 640 } 641 642 static int dummy_pcm_silence(struct snd_pcm_substream *substream, 643 int channel, unsigned long pos, 644 unsigned long bytes) 645 { 646 return 0; /* do nothing */ 647 } 648 649 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream, 650 unsigned long offset) 651 { 652 return virt_to_page(dummy_page[substream->stream]); /* the same page */ 653 } 654 655 static struct snd_pcm_ops dummy_pcm_ops = { 656 .open = dummy_pcm_open, 657 .close = dummy_pcm_close, 658 .ioctl = snd_pcm_lib_ioctl, 659 .hw_params = dummy_pcm_hw_params, 660 .hw_free = dummy_pcm_hw_free, 661 .prepare = dummy_pcm_prepare, 662 .trigger = dummy_pcm_trigger, 663 .pointer = dummy_pcm_pointer, 664 }; 665 666 static struct snd_pcm_ops dummy_pcm_ops_no_buf = { 667 .open = dummy_pcm_open, 668 .close = dummy_pcm_close, 669 .ioctl = snd_pcm_lib_ioctl, 670 .hw_params = dummy_pcm_hw_params, 671 .hw_free = dummy_pcm_hw_free, 672 .prepare = dummy_pcm_prepare, 673 .trigger = dummy_pcm_trigger, 674 .pointer = dummy_pcm_pointer, 675 .copy_user = dummy_pcm_copy, 676 .copy_kernel = dummy_pcm_copy_kernel, 677 .fill_silence = dummy_pcm_silence, 678 .page = dummy_pcm_page, 679 }; 680 681 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device, 682 int substreams) 683 { 684 struct snd_pcm *pcm; 685 struct snd_pcm_ops *ops; 686 int err; 687 688 err = snd_pcm_new(dummy->card, "Dummy PCM", device, 689 substreams, substreams, &pcm); 690 if (err < 0) 691 return err; 692 dummy->pcm = pcm; 693 if (fake_buffer) 694 ops = &dummy_pcm_ops_no_buf; 695 else 696 ops = &dummy_pcm_ops; 697 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops); 698 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops); 699 pcm->private_data = dummy; 700 pcm->info_flags = 0; 701 strcpy(pcm->name, "Dummy PCM"); 702 if (!fake_buffer) { 703 snd_pcm_lib_preallocate_pages_for_all(pcm, 704 SNDRV_DMA_TYPE_CONTINUOUS, 705 snd_dma_continuous_data(GFP_KERNEL), 706 0, 64*1024); 707 } 708 return 0; 709 } 710 711 /* 712 * mixer interface 713 */ 714 715 #define DUMMY_VOLUME(xname, xindex, addr) \ 716 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 717 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 718 .name = xname, .index = xindex, \ 719 .info = snd_dummy_volume_info, \ 720 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \ 721 .private_value = addr, \ 722 .tlv = { .p = db_scale_dummy } } 723 724 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol, 725 struct snd_ctl_elem_info *uinfo) 726 { 727 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 728 uinfo->count = 2; 729 uinfo->value.integer.min = -50; 730 uinfo->value.integer.max = 100; 731 return 0; 732 } 733 734 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol, 735 struct snd_ctl_elem_value *ucontrol) 736 { 737 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 738 int addr = kcontrol->private_value; 739 740 spin_lock_irq(&dummy->mixer_lock); 741 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0]; 742 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1]; 743 spin_unlock_irq(&dummy->mixer_lock); 744 return 0; 745 } 746 747 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol, 748 struct snd_ctl_elem_value *ucontrol) 749 { 750 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 751 int change, addr = kcontrol->private_value; 752 int left, right; 753 754 left = ucontrol->value.integer.value[0]; 755 if (left < -50) 756 left = -50; 757 if (left > 100) 758 left = 100; 759 right = ucontrol->value.integer.value[1]; 760 if (right < -50) 761 right = -50; 762 if (right > 100) 763 right = 100; 764 spin_lock_irq(&dummy->mixer_lock); 765 change = dummy->mixer_volume[addr][0] != left || 766 dummy->mixer_volume[addr][1] != right; 767 dummy->mixer_volume[addr][0] = left; 768 dummy->mixer_volume[addr][1] = right; 769 spin_unlock_irq(&dummy->mixer_lock); 770 return change; 771 } 772 773 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0); 774 775 #define DUMMY_CAPSRC(xname, xindex, addr) \ 776 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 777 .info = snd_dummy_capsrc_info, \ 778 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \ 779 .private_value = addr } 780 781 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info 782 783 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol, 784 struct snd_ctl_elem_value *ucontrol) 785 { 786 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 787 int addr = kcontrol->private_value; 788 789 spin_lock_irq(&dummy->mixer_lock); 790 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0]; 791 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1]; 792 spin_unlock_irq(&dummy->mixer_lock); 793 return 0; 794 } 795 796 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 797 { 798 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 799 int change, addr = kcontrol->private_value; 800 int left, right; 801 802 left = ucontrol->value.integer.value[0] & 1; 803 right = ucontrol->value.integer.value[1] & 1; 804 spin_lock_irq(&dummy->mixer_lock); 805 change = dummy->capture_source[addr][0] != left && 806 dummy->capture_source[addr][1] != right; 807 dummy->capture_source[addr][0] = left; 808 dummy->capture_source[addr][1] = right; 809 spin_unlock_irq(&dummy->mixer_lock); 810 return change; 811 } 812 813 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol, 814 struct snd_ctl_elem_info *info) 815 { 816 static const char *const names[] = { "None", "CD Player" }; 817 818 return snd_ctl_enum_info(info, 1, 2, names); 819 } 820 821 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol, 822 struct snd_ctl_elem_value *value) 823 { 824 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 825 826 value->value.enumerated.item[0] = dummy->iobox; 827 return 0; 828 } 829 830 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol, 831 struct snd_ctl_elem_value *value) 832 { 833 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 834 int changed; 835 836 if (value->value.enumerated.item[0] > 1) 837 return -EINVAL; 838 839 changed = value->value.enumerated.item[0] != dummy->iobox; 840 if (changed) { 841 dummy->iobox = value->value.enumerated.item[0]; 842 843 if (dummy->iobox) { 844 dummy->cd_volume_ctl->vd[0].access &= 845 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 846 dummy->cd_switch_ctl->vd[0].access &= 847 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 848 } else { 849 dummy->cd_volume_ctl->vd[0].access |= 850 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 851 dummy->cd_switch_ctl->vd[0].access |= 852 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 853 } 854 855 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 856 &dummy->cd_volume_ctl->id); 857 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 858 &dummy->cd_switch_ctl->id); 859 } 860 861 return changed; 862 } 863 864 static struct snd_kcontrol_new snd_dummy_controls[] = { 865 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER), 866 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER), 867 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH), 868 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH), 869 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE), 870 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE), 871 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC), 872 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC), 873 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD), 874 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD), 875 { 876 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 877 .name = "External I/O Box", 878 .info = snd_dummy_iobox_info, 879 .get = snd_dummy_iobox_get, 880 .put = snd_dummy_iobox_put, 881 }, 882 }; 883 884 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy) 885 { 886 struct snd_card *card = dummy->card; 887 struct snd_kcontrol *kcontrol; 888 unsigned int idx; 889 int err; 890 891 spin_lock_init(&dummy->mixer_lock); 892 strcpy(card->mixername, "Dummy Mixer"); 893 dummy->iobox = 1; 894 895 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) { 896 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy); 897 err = snd_ctl_add(card, kcontrol); 898 if (err < 0) 899 return err; 900 if (!strcmp(kcontrol->id.name, "CD Volume")) 901 dummy->cd_volume_ctl = kcontrol; 902 else if (!strcmp(kcontrol->id.name, "CD Capture Switch")) 903 dummy->cd_switch_ctl = kcontrol; 904 905 } 906 return 0; 907 } 908 909 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS) 910 /* 911 * proc interface 912 */ 913 static void print_formats(struct snd_dummy *dummy, 914 struct snd_info_buffer *buffer) 915 { 916 int i; 917 918 for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { 919 if (dummy->pcm_hw.formats & (1ULL << i)) 920 snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); 921 } 922 } 923 924 static void print_rates(struct snd_dummy *dummy, 925 struct snd_info_buffer *buffer) 926 { 927 static int rates[] = { 928 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 929 64000, 88200, 96000, 176400, 192000, 930 }; 931 int i; 932 933 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS) 934 snd_iprintf(buffer, " continuous"); 935 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT) 936 snd_iprintf(buffer, " knot"); 937 for (i = 0; i < ARRAY_SIZE(rates); i++) 938 if (dummy->pcm_hw.rates & (1 << i)) 939 snd_iprintf(buffer, " %d", rates[i]); 940 } 941 942 #define get_dummy_int_ptr(dummy, ofs) \ 943 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs)) 944 #define get_dummy_ll_ptr(dummy, ofs) \ 945 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs)) 946 947 struct dummy_hw_field { 948 const char *name; 949 const char *format; 950 unsigned int offset; 951 unsigned int size; 952 }; 953 #define FIELD_ENTRY(item, fmt) { \ 954 .name = #item, \ 955 .format = fmt, \ 956 .offset = offsetof(struct snd_pcm_hardware, item), \ 957 .size = sizeof(dummy_pcm_hardware.item) } 958 959 static struct dummy_hw_field fields[] = { 960 FIELD_ENTRY(formats, "%#llx"), 961 FIELD_ENTRY(rates, "%#x"), 962 FIELD_ENTRY(rate_min, "%d"), 963 FIELD_ENTRY(rate_max, "%d"), 964 FIELD_ENTRY(channels_min, "%d"), 965 FIELD_ENTRY(channels_max, "%d"), 966 FIELD_ENTRY(buffer_bytes_max, "%ld"), 967 FIELD_ENTRY(period_bytes_min, "%ld"), 968 FIELD_ENTRY(period_bytes_max, "%ld"), 969 FIELD_ENTRY(periods_min, "%d"), 970 FIELD_ENTRY(periods_max, "%d"), 971 }; 972 973 static void dummy_proc_read(struct snd_info_entry *entry, 974 struct snd_info_buffer *buffer) 975 { 976 struct snd_dummy *dummy = entry->private_data; 977 int i; 978 979 for (i = 0; i < ARRAY_SIZE(fields); i++) { 980 snd_iprintf(buffer, "%s ", fields[i].name); 981 if (fields[i].size == sizeof(int)) 982 snd_iprintf(buffer, fields[i].format, 983 *get_dummy_int_ptr(dummy, fields[i].offset)); 984 else 985 snd_iprintf(buffer, fields[i].format, 986 *get_dummy_ll_ptr(dummy, fields[i].offset)); 987 if (!strcmp(fields[i].name, "formats")) 988 print_formats(dummy, buffer); 989 else if (!strcmp(fields[i].name, "rates")) 990 print_rates(dummy, buffer); 991 snd_iprintf(buffer, "\n"); 992 } 993 } 994 995 static void dummy_proc_write(struct snd_info_entry *entry, 996 struct snd_info_buffer *buffer) 997 { 998 struct snd_dummy *dummy = entry->private_data; 999 char line[64]; 1000 1001 while (!snd_info_get_line(buffer, line, sizeof(line))) { 1002 char item[20]; 1003 const char *ptr; 1004 unsigned long long val; 1005 int i; 1006 1007 ptr = snd_info_get_str(item, line, sizeof(item)); 1008 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1009 if (!strcmp(item, fields[i].name)) 1010 break; 1011 } 1012 if (i >= ARRAY_SIZE(fields)) 1013 continue; 1014 snd_info_get_str(item, ptr, sizeof(item)); 1015 if (kstrtoull(item, 0, &val)) 1016 continue; 1017 if (fields[i].size == sizeof(int)) 1018 *get_dummy_int_ptr(dummy, fields[i].offset) = val; 1019 else 1020 *get_dummy_ll_ptr(dummy, fields[i].offset) = val; 1021 } 1022 } 1023 1024 static void dummy_proc_init(struct snd_dummy *chip) 1025 { 1026 snd_card_rw_proc_new(chip->card, "dummy_pcm", chip, 1027 dummy_proc_read, dummy_proc_write); 1028 } 1029 #else 1030 #define dummy_proc_init(x) 1031 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */ 1032 1033 static int snd_dummy_probe(struct platform_device *devptr) 1034 { 1035 struct snd_card *card; 1036 struct snd_dummy *dummy; 1037 struct dummy_model *m = NULL, **mdl; 1038 int idx, err; 1039 int dev = devptr->id; 1040 1041 err = snd_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE, 1042 sizeof(struct snd_dummy), &card); 1043 if (err < 0) 1044 return err; 1045 dummy = card->private_data; 1046 dummy->card = card; 1047 for (mdl = dummy_models; *mdl && model[dev]; mdl++) { 1048 if (strcmp(model[dev], (*mdl)->name) == 0) { 1049 printk(KERN_INFO 1050 "snd-dummy: Using model '%s' for card %i\n", 1051 (*mdl)->name, card->number); 1052 m = dummy->model = *mdl; 1053 break; 1054 } 1055 } 1056 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) { 1057 if (pcm_substreams[dev] < 1) 1058 pcm_substreams[dev] = 1; 1059 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS) 1060 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS; 1061 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]); 1062 if (err < 0) 1063 goto __nodev; 1064 } 1065 1066 dummy->pcm_hw = dummy_pcm_hardware; 1067 if (m) { 1068 if (m->formats) 1069 dummy->pcm_hw.formats = m->formats; 1070 if (m->buffer_bytes_max) 1071 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max; 1072 if (m->period_bytes_min) 1073 dummy->pcm_hw.period_bytes_min = m->period_bytes_min; 1074 if (m->period_bytes_max) 1075 dummy->pcm_hw.period_bytes_max = m->period_bytes_max; 1076 if (m->periods_min) 1077 dummy->pcm_hw.periods_min = m->periods_min; 1078 if (m->periods_max) 1079 dummy->pcm_hw.periods_max = m->periods_max; 1080 if (m->rates) 1081 dummy->pcm_hw.rates = m->rates; 1082 if (m->rate_min) 1083 dummy->pcm_hw.rate_min = m->rate_min; 1084 if (m->rate_max) 1085 dummy->pcm_hw.rate_max = m->rate_max; 1086 if (m->channels_min) 1087 dummy->pcm_hw.channels_min = m->channels_min; 1088 if (m->channels_max) 1089 dummy->pcm_hw.channels_max = m->channels_max; 1090 } 1091 1092 err = snd_card_dummy_new_mixer(dummy); 1093 if (err < 0) 1094 goto __nodev; 1095 strcpy(card->driver, "Dummy"); 1096 strcpy(card->shortname, "Dummy"); 1097 sprintf(card->longname, "Dummy %i", dev + 1); 1098 1099 dummy_proc_init(dummy); 1100 1101 err = snd_card_register(card); 1102 if (err == 0) { 1103 platform_set_drvdata(devptr, card); 1104 return 0; 1105 } 1106 __nodev: 1107 snd_card_free(card); 1108 return err; 1109 } 1110 1111 static int snd_dummy_remove(struct platform_device *devptr) 1112 { 1113 snd_card_free(platform_get_drvdata(devptr)); 1114 return 0; 1115 } 1116 1117 #ifdef CONFIG_PM_SLEEP 1118 static int snd_dummy_suspend(struct device *pdev) 1119 { 1120 struct snd_card *card = dev_get_drvdata(pdev); 1121 1122 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1123 return 0; 1124 } 1125 1126 static int snd_dummy_resume(struct device *pdev) 1127 { 1128 struct snd_card *card = dev_get_drvdata(pdev); 1129 1130 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1131 return 0; 1132 } 1133 1134 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume); 1135 #define SND_DUMMY_PM_OPS &snd_dummy_pm 1136 #else 1137 #define SND_DUMMY_PM_OPS NULL 1138 #endif 1139 1140 #define SND_DUMMY_DRIVER "snd_dummy" 1141 1142 static struct platform_driver snd_dummy_driver = { 1143 .probe = snd_dummy_probe, 1144 .remove = snd_dummy_remove, 1145 .driver = { 1146 .name = SND_DUMMY_DRIVER, 1147 .pm = SND_DUMMY_PM_OPS, 1148 }, 1149 }; 1150 1151 static void snd_dummy_unregister_all(void) 1152 { 1153 int i; 1154 1155 for (i = 0; i < ARRAY_SIZE(devices); ++i) 1156 platform_device_unregister(devices[i]); 1157 platform_driver_unregister(&snd_dummy_driver); 1158 free_fake_buffer(); 1159 } 1160 1161 static int __init alsa_card_dummy_init(void) 1162 { 1163 int i, cards, err; 1164 1165 err = platform_driver_register(&snd_dummy_driver); 1166 if (err < 0) 1167 return err; 1168 1169 err = alloc_fake_buffer(); 1170 if (err < 0) { 1171 platform_driver_unregister(&snd_dummy_driver); 1172 return err; 1173 } 1174 1175 cards = 0; 1176 for (i = 0; i < SNDRV_CARDS; i++) { 1177 struct platform_device *device; 1178 if (! enable[i]) 1179 continue; 1180 device = platform_device_register_simple(SND_DUMMY_DRIVER, 1181 i, NULL, 0); 1182 if (IS_ERR(device)) 1183 continue; 1184 if (!platform_get_drvdata(device)) { 1185 platform_device_unregister(device); 1186 continue; 1187 } 1188 devices[i] = device; 1189 cards++; 1190 } 1191 if (!cards) { 1192 #ifdef MODULE 1193 printk(KERN_ERR "Dummy soundcard not found or device busy\n"); 1194 #endif 1195 snd_dummy_unregister_all(); 1196 return -ENODEV; 1197 } 1198 return 0; 1199 } 1200 1201 static void __exit alsa_card_dummy_exit(void) 1202 { 1203 snd_dummy_unregister_all(); 1204 } 1205 1206 module_init(alsa_card_dummy_init) 1207 module_exit(alsa_card_dummy_exit) 1208