1 /* 2 * Dummy soundcard 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/init.h> 22 #include <linux/err.h> 23 #include <linux/platform_device.h> 24 #include <linux/jiffies.h> 25 #include <linux/slab.h> 26 #include <linux/time.h> 27 #include <linux/wait.h> 28 #include <linux/hrtimer.h> 29 #include <linux/math64.h> 30 #include <linux/module.h> 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/tlv.h> 34 #include <sound/pcm.h> 35 #include <sound/rawmidi.h> 36 #include <sound/info.h> 37 #include <sound/initval.h> 38 39 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 40 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)"); 41 MODULE_LICENSE("GPL"); 42 MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}"); 43 44 #define MAX_PCM_DEVICES 4 45 #define MAX_PCM_SUBSTREAMS 128 46 #define MAX_MIDI_DEVICES 2 47 48 /* defaults */ 49 #define MAX_BUFFER_SIZE (64*1024) 50 #define MIN_PERIOD_SIZE 64 51 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE 52 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE) 53 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000 54 #define USE_RATE_MIN 5500 55 #define USE_RATE_MAX 48000 56 #define USE_CHANNELS_MIN 1 57 #define USE_CHANNELS_MAX 2 58 #define USE_PERIODS_MIN 1 59 #define USE_PERIODS_MAX 1024 60 61 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 62 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 63 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0}; 64 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL}; 65 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1}; 66 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8}; 67 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2}; 68 #ifdef CONFIG_HIGH_RES_TIMERS 69 static bool hrtimer = 1; 70 #endif 71 static bool fake_buffer = 1; 72 73 module_param_array(index, int, NULL, 0444); 74 MODULE_PARM_DESC(index, "Index value for dummy soundcard."); 75 module_param_array(id, charp, NULL, 0444); 76 MODULE_PARM_DESC(id, "ID string for dummy soundcard."); 77 module_param_array(enable, bool, NULL, 0444); 78 MODULE_PARM_DESC(enable, "Enable this dummy soundcard."); 79 module_param_array(model, charp, NULL, 0444); 80 MODULE_PARM_DESC(model, "Soundcard model."); 81 module_param_array(pcm_devs, int, NULL, 0444); 82 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver."); 83 module_param_array(pcm_substreams, int, NULL, 0444); 84 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver."); 85 //module_param_array(midi_devs, int, NULL, 0444); 86 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver."); 87 module_param(fake_buffer, bool, 0444); 88 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations."); 89 #ifdef CONFIG_HIGH_RES_TIMERS 90 module_param(hrtimer, bool, 0644); 91 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source."); 92 #endif 93 94 static struct platform_device *devices[SNDRV_CARDS]; 95 96 #define MIXER_ADDR_MASTER 0 97 #define MIXER_ADDR_LINE 1 98 #define MIXER_ADDR_MIC 2 99 #define MIXER_ADDR_SYNTH 3 100 #define MIXER_ADDR_CD 4 101 #define MIXER_ADDR_LAST 4 102 103 struct dummy_timer_ops { 104 int (*create)(struct snd_pcm_substream *); 105 void (*free)(struct snd_pcm_substream *); 106 int (*prepare)(struct snd_pcm_substream *); 107 int (*start)(struct snd_pcm_substream *); 108 int (*stop)(struct snd_pcm_substream *); 109 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *); 110 }; 111 112 struct dummy_model { 113 const char *name; 114 int (*playback_constraints)(struct snd_pcm_runtime *runtime); 115 int (*capture_constraints)(struct snd_pcm_runtime *runtime); 116 u64 formats; 117 size_t buffer_bytes_max; 118 size_t period_bytes_min; 119 size_t period_bytes_max; 120 unsigned int periods_min; 121 unsigned int periods_max; 122 unsigned int rates; 123 unsigned int rate_min; 124 unsigned int rate_max; 125 unsigned int channels_min; 126 unsigned int channels_max; 127 }; 128 129 struct snd_dummy { 130 struct snd_card *card; 131 struct dummy_model *model; 132 struct snd_pcm *pcm; 133 struct snd_pcm_hardware pcm_hw; 134 spinlock_t mixer_lock; 135 int mixer_volume[MIXER_ADDR_LAST+1][2]; 136 int capture_source[MIXER_ADDR_LAST+1][2]; 137 int iobox; 138 struct snd_kcontrol *cd_volume_ctl; 139 struct snd_kcontrol *cd_switch_ctl; 140 const struct dummy_timer_ops *timer_ops; 141 }; 142 143 /* 144 * card models 145 */ 146 147 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime) 148 { 149 int err; 150 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 151 if (err < 0) 152 return err; 153 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX); 154 if (err < 0) 155 return err; 156 return 0; 157 } 158 159 struct dummy_model model_emu10k1 = { 160 .name = "emu10k1", 161 .playback_constraints = emu10k1_playback_constraints, 162 .buffer_bytes_max = 128 * 1024, 163 }; 164 165 struct dummy_model model_rme9652 = { 166 .name = "rme9652", 167 .buffer_bytes_max = 26 * 64 * 1024, 168 .formats = SNDRV_PCM_FMTBIT_S32_LE, 169 .channels_min = 26, 170 .channels_max = 26, 171 .periods_min = 2, 172 .periods_max = 2, 173 }; 174 175 struct dummy_model model_ice1712 = { 176 .name = "ice1712", 177 .buffer_bytes_max = 256 * 1024, 178 .formats = SNDRV_PCM_FMTBIT_S32_LE, 179 .channels_min = 10, 180 .channels_max = 10, 181 .periods_min = 1, 182 .periods_max = 1024, 183 }; 184 185 struct dummy_model model_uda1341 = { 186 .name = "uda1341", 187 .buffer_bytes_max = 16380, 188 .formats = SNDRV_PCM_FMTBIT_S16_LE, 189 .channels_min = 2, 190 .channels_max = 2, 191 .periods_min = 2, 192 .periods_max = 255, 193 }; 194 195 struct dummy_model model_ac97 = { 196 .name = "ac97", 197 .formats = SNDRV_PCM_FMTBIT_S16_LE, 198 .channels_min = 2, 199 .channels_max = 2, 200 .rates = SNDRV_PCM_RATE_48000, 201 .rate_min = 48000, 202 .rate_max = 48000, 203 }; 204 205 struct dummy_model model_ca0106 = { 206 .name = "ca0106", 207 .formats = SNDRV_PCM_FMTBIT_S16_LE, 208 .buffer_bytes_max = ((65536-64)*8), 209 .period_bytes_max = (65536-64), 210 .periods_min = 2, 211 .periods_max = 8, 212 .channels_min = 2, 213 .channels_max = 2, 214 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000, 215 .rate_min = 48000, 216 .rate_max = 192000, 217 }; 218 219 struct dummy_model *dummy_models[] = { 220 &model_emu10k1, 221 &model_rme9652, 222 &model_ice1712, 223 &model_uda1341, 224 &model_ac97, 225 &model_ca0106, 226 NULL 227 }; 228 229 /* 230 * system timer interface 231 */ 232 233 struct dummy_systimer_pcm { 234 spinlock_t lock; 235 struct timer_list timer; 236 unsigned long base_time; 237 unsigned int frac_pos; /* fractional sample position (based HZ) */ 238 unsigned int frac_period_rest; 239 unsigned int frac_buffer_size; /* buffer_size * HZ */ 240 unsigned int frac_period_size; /* period_size * HZ */ 241 unsigned int rate; 242 int elapsed; 243 struct snd_pcm_substream *substream; 244 }; 245 246 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm) 247 { 248 mod_timer(&dpcm->timer, jiffies + 249 (dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate); 250 } 251 252 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm) 253 { 254 unsigned long delta; 255 256 delta = jiffies - dpcm->base_time; 257 if (!delta) 258 return; 259 dpcm->base_time += delta; 260 delta *= dpcm->rate; 261 dpcm->frac_pos += delta; 262 while (dpcm->frac_pos >= dpcm->frac_buffer_size) 263 dpcm->frac_pos -= dpcm->frac_buffer_size; 264 while (dpcm->frac_period_rest <= delta) { 265 dpcm->elapsed++; 266 dpcm->frac_period_rest += dpcm->frac_period_size; 267 } 268 dpcm->frac_period_rest -= delta; 269 } 270 271 static int dummy_systimer_start(struct snd_pcm_substream *substream) 272 { 273 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 274 spin_lock(&dpcm->lock); 275 dpcm->base_time = jiffies; 276 dummy_systimer_rearm(dpcm); 277 spin_unlock(&dpcm->lock); 278 return 0; 279 } 280 281 static int dummy_systimer_stop(struct snd_pcm_substream *substream) 282 { 283 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 284 spin_lock(&dpcm->lock); 285 del_timer(&dpcm->timer); 286 spin_unlock(&dpcm->lock); 287 return 0; 288 } 289 290 static int dummy_systimer_prepare(struct snd_pcm_substream *substream) 291 { 292 struct snd_pcm_runtime *runtime = substream->runtime; 293 struct dummy_systimer_pcm *dpcm = runtime->private_data; 294 295 dpcm->frac_pos = 0; 296 dpcm->rate = runtime->rate; 297 dpcm->frac_buffer_size = runtime->buffer_size * HZ; 298 dpcm->frac_period_size = runtime->period_size * HZ; 299 dpcm->frac_period_rest = dpcm->frac_period_size; 300 dpcm->elapsed = 0; 301 302 return 0; 303 } 304 305 static void dummy_systimer_callback(unsigned long data) 306 { 307 struct dummy_systimer_pcm *dpcm = (struct dummy_systimer_pcm *)data; 308 unsigned long flags; 309 int elapsed = 0; 310 311 spin_lock_irqsave(&dpcm->lock, flags); 312 dummy_systimer_update(dpcm); 313 dummy_systimer_rearm(dpcm); 314 elapsed = dpcm->elapsed; 315 dpcm->elapsed = 0; 316 spin_unlock_irqrestore(&dpcm->lock, flags); 317 if (elapsed) 318 snd_pcm_period_elapsed(dpcm->substream); 319 } 320 321 static snd_pcm_uframes_t 322 dummy_systimer_pointer(struct snd_pcm_substream *substream) 323 { 324 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 325 snd_pcm_uframes_t pos; 326 327 spin_lock(&dpcm->lock); 328 dummy_systimer_update(dpcm); 329 pos = dpcm->frac_pos / HZ; 330 spin_unlock(&dpcm->lock); 331 return pos; 332 } 333 334 static int dummy_systimer_create(struct snd_pcm_substream *substream) 335 { 336 struct dummy_systimer_pcm *dpcm; 337 338 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 339 if (!dpcm) 340 return -ENOMEM; 341 substream->runtime->private_data = dpcm; 342 setup_timer(&dpcm->timer, dummy_systimer_callback, 343 (unsigned long) dpcm); 344 spin_lock_init(&dpcm->lock); 345 dpcm->substream = substream; 346 return 0; 347 } 348 349 static void dummy_systimer_free(struct snd_pcm_substream *substream) 350 { 351 kfree(substream->runtime->private_data); 352 } 353 354 static struct dummy_timer_ops dummy_systimer_ops = { 355 .create = dummy_systimer_create, 356 .free = dummy_systimer_free, 357 .prepare = dummy_systimer_prepare, 358 .start = dummy_systimer_start, 359 .stop = dummy_systimer_stop, 360 .pointer = dummy_systimer_pointer, 361 }; 362 363 #ifdef CONFIG_HIGH_RES_TIMERS 364 /* 365 * hrtimer interface 366 */ 367 368 struct dummy_hrtimer_pcm { 369 ktime_t base_time; 370 ktime_t period_time; 371 atomic_t running; 372 struct hrtimer timer; 373 struct tasklet_struct tasklet; 374 struct snd_pcm_substream *substream; 375 }; 376 377 static void dummy_hrtimer_pcm_elapsed(unsigned long priv) 378 { 379 struct dummy_hrtimer_pcm *dpcm = (struct dummy_hrtimer_pcm *)priv; 380 if (atomic_read(&dpcm->running)) 381 snd_pcm_period_elapsed(dpcm->substream); 382 } 383 384 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer) 385 { 386 struct dummy_hrtimer_pcm *dpcm; 387 388 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer); 389 if (!atomic_read(&dpcm->running)) 390 return HRTIMER_NORESTART; 391 tasklet_schedule(&dpcm->tasklet); 392 hrtimer_forward_now(timer, dpcm->period_time); 393 return HRTIMER_RESTART; 394 } 395 396 static int dummy_hrtimer_start(struct snd_pcm_substream *substream) 397 { 398 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 399 400 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer); 401 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL); 402 atomic_set(&dpcm->running, 1); 403 return 0; 404 } 405 406 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream) 407 { 408 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 409 410 atomic_set(&dpcm->running, 0); 411 hrtimer_cancel(&dpcm->timer); 412 return 0; 413 } 414 415 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm) 416 { 417 tasklet_kill(&dpcm->tasklet); 418 } 419 420 static snd_pcm_uframes_t 421 dummy_hrtimer_pointer(struct snd_pcm_substream *substream) 422 { 423 struct snd_pcm_runtime *runtime = substream->runtime; 424 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 425 u64 delta; 426 u32 pos; 427 428 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer), 429 dpcm->base_time); 430 delta = div_u64(delta * runtime->rate + 999999, 1000000); 431 div_u64_rem(delta, runtime->buffer_size, &pos); 432 return pos; 433 } 434 435 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream) 436 { 437 struct snd_pcm_runtime *runtime = substream->runtime; 438 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 439 unsigned int period, rate; 440 long sec; 441 unsigned long nsecs; 442 443 dummy_hrtimer_sync(dpcm); 444 period = runtime->period_size; 445 rate = runtime->rate; 446 sec = period / rate; 447 period %= rate; 448 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate); 449 dpcm->period_time = ktime_set(sec, nsecs); 450 451 return 0; 452 } 453 454 static int dummy_hrtimer_create(struct snd_pcm_substream *substream) 455 { 456 struct dummy_hrtimer_pcm *dpcm; 457 458 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 459 if (!dpcm) 460 return -ENOMEM; 461 substream->runtime->private_data = dpcm; 462 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 463 dpcm->timer.function = dummy_hrtimer_callback; 464 dpcm->substream = substream; 465 atomic_set(&dpcm->running, 0); 466 tasklet_init(&dpcm->tasklet, dummy_hrtimer_pcm_elapsed, 467 (unsigned long)dpcm); 468 return 0; 469 } 470 471 static void dummy_hrtimer_free(struct snd_pcm_substream *substream) 472 { 473 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 474 dummy_hrtimer_sync(dpcm); 475 kfree(dpcm); 476 } 477 478 static struct dummy_timer_ops dummy_hrtimer_ops = { 479 .create = dummy_hrtimer_create, 480 .free = dummy_hrtimer_free, 481 .prepare = dummy_hrtimer_prepare, 482 .start = dummy_hrtimer_start, 483 .stop = dummy_hrtimer_stop, 484 .pointer = dummy_hrtimer_pointer, 485 }; 486 487 #endif /* CONFIG_HIGH_RES_TIMERS */ 488 489 /* 490 * PCM interface 491 */ 492 493 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 494 { 495 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 496 497 switch (cmd) { 498 case SNDRV_PCM_TRIGGER_START: 499 case SNDRV_PCM_TRIGGER_RESUME: 500 return dummy->timer_ops->start(substream); 501 case SNDRV_PCM_TRIGGER_STOP: 502 case SNDRV_PCM_TRIGGER_SUSPEND: 503 return dummy->timer_ops->stop(substream); 504 } 505 return -EINVAL; 506 } 507 508 static int dummy_pcm_prepare(struct snd_pcm_substream *substream) 509 { 510 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 511 512 return dummy->timer_ops->prepare(substream); 513 } 514 515 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream) 516 { 517 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 518 519 return dummy->timer_ops->pointer(substream); 520 } 521 522 static struct snd_pcm_hardware dummy_pcm_hardware = { 523 .info = (SNDRV_PCM_INFO_MMAP | 524 SNDRV_PCM_INFO_INTERLEAVED | 525 SNDRV_PCM_INFO_RESUME | 526 SNDRV_PCM_INFO_MMAP_VALID), 527 .formats = USE_FORMATS, 528 .rates = USE_RATE, 529 .rate_min = USE_RATE_MIN, 530 .rate_max = USE_RATE_MAX, 531 .channels_min = USE_CHANNELS_MIN, 532 .channels_max = USE_CHANNELS_MAX, 533 .buffer_bytes_max = MAX_BUFFER_SIZE, 534 .period_bytes_min = MIN_PERIOD_SIZE, 535 .period_bytes_max = MAX_PERIOD_SIZE, 536 .periods_min = USE_PERIODS_MIN, 537 .periods_max = USE_PERIODS_MAX, 538 .fifo_size = 0, 539 }; 540 541 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream, 542 struct snd_pcm_hw_params *hw_params) 543 { 544 if (fake_buffer) { 545 /* runtime->dma_bytes has to be set manually to allow mmap */ 546 substream->runtime->dma_bytes = params_buffer_bytes(hw_params); 547 return 0; 548 } 549 return snd_pcm_lib_malloc_pages(substream, 550 params_buffer_bytes(hw_params)); 551 } 552 553 static int dummy_pcm_hw_free(struct snd_pcm_substream *substream) 554 { 555 if (fake_buffer) 556 return 0; 557 return snd_pcm_lib_free_pages(substream); 558 } 559 560 static int dummy_pcm_open(struct snd_pcm_substream *substream) 561 { 562 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 563 struct dummy_model *model = dummy->model; 564 struct snd_pcm_runtime *runtime = substream->runtime; 565 int err; 566 567 dummy->timer_ops = &dummy_systimer_ops; 568 #ifdef CONFIG_HIGH_RES_TIMERS 569 if (hrtimer) 570 dummy->timer_ops = &dummy_hrtimer_ops; 571 #endif 572 573 err = dummy->timer_ops->create(substream); 574 if (err < 0) 575 return err; 576 577 runtime->hw = dummy->pcm_hw; 578 if (substream->pcm->device & 1) { 579 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED; 580 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED; 581 } 582 if (substream->pcm->device & 2) 583 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | 584 SNDRV_PCM_INFO_MMAP_VALID); 585 586 if (model == NULL) 587 return 0; 588 589 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 590 if (model->playback_constraints) 591 err = model->playback_constraints(substream->runtime); 592 } else { 593 if (model->capture_constraints) 594 err = model->capture_constraints(substream->runtime); 595 } 596 if (err < 0) { 597 dummy->timer_ops->free(substream); 598 return err; 599 } 600 return 0; 601 } 602 603 static int dummy_pcm_close(struct snd_pcm_substream *substream) 604 { 605 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 606 dummy->timer_ops->free(substream); 607 return 0; 608 } 609 610 /* 611 * dummy buffer handling 612 */ 613 614 static void *dummy_page[2]; 615 616 static void free_fake_buffer(void) 617 { 618 if (fake_buffer) { 619 int i; 620 for (i = 0; i < 2; i++) 621 if (dummy_page[i]) { 622 free_page((unsigned long)dummy_page[i]); 623 dummy_page[i] = NULL; 624 } 625 } 626 } 627 628 static int alloc_fake_buffer(void) 629 { 630 int i; 631 632 if (!fake_buffer) 633 return 0; 634 for (i = 0; i < 2; i++) { 635 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL); 636 if (!dummy_page[i]) { 637 free_fake_buffer(); 638 return -ENOMEM; 639 } 640 } 641 return 0; 642 } 643 644 static int dummy_pcm_copy(struct snd_pcm_substream *substream, 645 int channel, snd_pcm_uframes_t pos, 646 void __user *dst, snd_pcm_uframes_t count) 647 { 648 return 0; /* do nothing */ 649 } 650 651 static int dummy_pcm_silence(struct snd_pcm_substream *substream, 652 int channel, snd_pcm_uframes_t pos, 653 snd_pcm_uframes_t count) 654 { 655 return 0; /* do nothing */ 656 } 657 658 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream, 659 unsigned long offset) 660 { 661 return virt_to_page(dummy_page[substream->stream]); /* the same page */ 662 } 663 664 static struct snd_pcm_ops dummy_pcm_ops = { 665 .open = dummy_pcm_open, 666 .close = dummy_pcm_close, 667 .ioctl = snd_pcm_lib_ioctl, 668 .hw_params = dummy_pcm_hw_params, 669 .hw_free = dummy_pcm_hw_free, 670 .prepare = dummy_pcm_prepare, 671 .trigger = dummy_pcm_trigger, 672 .pointer = dummy_pcm_pointer, 673 }; 674 675 static struct snd_pcm_ops dummy_pcm_ops_no_buf = { 676 .open = dummy_pcm_open, 677 .close = dummy_pcm_close, 678 .ioctl = snd_pcm_lib_ioctl, 679 .hw_params = dummy_pcm_hw_params, 680 .hw_free = dummy_pcm_hw_free, 681 .prepare = dummy_pcm_prepare, 682 .trigger = dummy_pcm_trigger, 683 .pointer = dummy_pcm_pointer, 684 .copy = dummy_pcm_copy, 685 .silence = dummy_pcm_silence, 686 .page = dummy_pcm_page, 687 }; 688 689 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device, 690 int substreams) 691 { 692 struct snd_pcm *pcm; 693 struct snd_pcm_ops *ops; 694 int err; 695 696 err = snd_pcm_new(dummy->card, "Dummy PCM", device, 697 substreams, substreams, &pcm); 698 if (err < 0) 699 return err; 700 dummy->pcm = pcm; 701 if (fake_buffer) 702 ops = &dummy_pcm_ops_no_buf; 703 else 704 ops = &dummy_pcm_ops; 705 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops); 706 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops); 707 pcm->private_data = dummy; 708 pcm->info_flags = 0; 709 strcpy(pcm->name, "Dummy PCM"); 710 if (!fake_buffer) { 711 snd_pcm_lib_preallocate_pages_for_all(pcm, 712 SNDRV_DMA_TYPE_CONTINUOUS, 713 snd_dma_continuous_data(GFP_KERNEL), 714 0, 64*1024); 715 } 716 return 0; 717 } 718 719 /* 720 * mixer interface 721 */ 722 723 #define DUMMY_VOLUME(xname, xindex, addr) \ 724 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 725 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 726 .name = xname, .index = xindex, \ 727 .info = snd_dummy_volume_info, \ 728 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \ 729 .private_value = addr, \ 730 .tlv = { .p = db_scale_dummy } } 731 732 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol, 733 struct snd_ctl_elem_info *uinfo) 734 { 735 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 736 uinfo->count = 2; 737 uinfo->value.integer.min = -50; 738 uinfo->value.integer.max = 100; 739 return 0; 740 } 741 742 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol, 743 struct snd_ctl_elem_value *ucontrol) 744 { 745 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 746 int addr = kcontrol->private_value; 747 748 spin_lock_irq(&dummy->mixer_lock); 749 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0]; 750 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1]; 751 spin_unlock_irq(&dummy->mixer_lock); 752 return 0; 753 } 754 755 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol, 756 struct snd_ctl_elem_value *ucontrol) 757 { 758 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 759 int change, addr = kcontrol->private_value; 760 int left, right; 761 762 left = ucontrol->value.integer.value[0]; 763 if (left < -50) 764 left = -50; 765 if (left > 100) 766 left = 100; 767 right = ucontrol->value.integer.value[1]; 768 if (right < -50) 769 right = -50; 770 if (right > 100) 771 right = 100; 772 spin_lock_irq(&dummy->mixer_lock); 773 change = dummy->mixer_volume[addr][0] != left || 774 dummy->mixer_volume[addr][1] != right; 775 dummy->mixer_volume[addr][0] = left; 776 dummy->mixer_volume[addr][1] = right; 777 spin_unlock_irq(&dummy->mixer_lock); 778 return change; 779 } 780 781 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0); 782 783 #define DUMMY_CAPSRC(xname, xindex, addr) \ 784 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 785 .info = snd_dummy_capsrc_info, \ 786 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \ 787 .private_value = addr } 788 789 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info 790 791 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol, 792 struct snd_ctl_elem_value *ucontrol) 793 { 794 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 795 int addr = kcontrol->private_value; 796 797 spin_lock_irq(&dummy->mixer_lock); 798 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0]; 799 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1]; 800 spin_unlock_irq(&dummy->mixer_lock); 801 return 0; 802 } 803 804 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 805 { 806 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 807 int change, addr = kcontrol->private_value; 808 int left, right; 809 810 left = ucontrol->value.integer.value[0] & 1; 811 right = ucontrol->value.integer.value[1] & 1; 812 spin_lock_irq(&dummy->mixer_lock); 813 change = dummy->capture_source[addr][0] != left && 814 dummy->capture_source[addr][1] != right; 815 dummy->capture_source[addr][0] = left; 816 dummy->capture_source[addr][1] = right; 817 spin_unlock_irq(&dummy->mixer_lock); 818 return change; 819 } 820 821 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol, 822 struct snd_ctl_elem_info *info) 823 { 824 const char *const names[] = { "None", "CD Player" }; 825 826 return snd_ctl_enum_info(info, 1, 2, names); 827 } 828 829 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol, 830 struct snd_ctl_elem_value *value) 831 { 832 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 833 834 value->value.enumerated.item[0] = dummy->iobox; 835 return 0; 836 } 837 838 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol, 839 struct snd_ctl_elem_value *value) 840 { 841 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 842 int changed; 843 844 if (value->value.enumerated.item[0] > 1) 845 return -EINVAL; 846 847 changed = value->value.enumerated.item[0] != dummy->iobox; 848 if (changed) { 849 dummy->iobox = value->value.enumerated.item[0]; 850 851 if (dummy->iobox) { 852 dummy->cd_volume_ctl->vd[0].access &= 853 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 854 dummy->cd_switch_ctl->vd[0].access &= 855 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 856 } else { 857 dummy->cd_volume_ctl->vd[0].access |= 858 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 859 dummy->cd_switch_ctl->vd[0].access |= 860 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 861 } 862 863 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 864 &dummy->cd_volume_ctl->id); 865 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 866 &dummy->cd_switch_ctl->id); 867 } 868 869 return changed; 870 } 871 872 static struct snd_kcontrol_new snd_dummy_controls[] = { 873 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER), 874 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER), 875 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH), 876 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH), 877 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE), 878 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE), 879 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC), 880 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC), 881 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD), 882 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD), 883 { 884 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 885 .name = "External I/O Box", 886 .info = snd_dummy_iobox_info, 887 .get = snd_dummy_iobox_get, 888 .put = snd_dummy_iobox_put, 889 }, 890 }; 891 892 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy) 893 { 894 struct snd_card *card = dummy->card; 895 struct snd_kcontrol *kcontrol; 896 unsigned int idx; 897 int err; 898 899 spin_lock_init(&dummy->mixer_lock); 900 strcpy(card->mixername, "Dummy Mixer"); 901 dummy->iobox = 1; 902 903 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) { 904 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy); 905 err = snd_ctl_add(card, kcontrol); 906 if (err < 0) 907 return err; 908 if (!strcmp(kcontrol->id.name, "CD Volume")) 909 dummy->cd_volume_ctl = kcontrol; 910 else if (!strcmp(kcontrol->id.name, "CD Capture Switch")) 911 dummy->cd_switch_ctl = kcontrol; 912 913 } 914 return 0; 915 } 916 917 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_PROC_FS) 918 /* 919 * proc interface 920 */ 921 static void print_formats(struct snd_dummy *dummy, 922 struct snd_info_buffer *buffer) 923 { 924 int i; 925 926 for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { 927 if (dummy->pcm_hw.formats & (1ULL << i)) 928 snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); 929 } 930 } 931 932 static void print_rates(struct snd_dummy *dummy, 933 struct snd_info_buffer *buffer) 934 { 935 static int rates[] = { 936 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 937 64000, 88200, 96000, 176400, 192000, 938 }; 939 int i; 940 941 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS) 942 snd_iprintf(buffer, " continuous"); 943 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT) 944 snd_iprintf(buffer, " knot"); 945 for (i = 0; i < ARRAY_SIZE(rates); i++) 946 if (dummy->pcm_hw.rates & (1 << i)) 947 snd_iprintf(buffer, " %d", rates[i]); 948 } 949 950 #define get_dummy_int_ptr(dummy, ofs) \ 951 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs)) 952 #define get_dummy_ll_ptr(dummy, ofs) \ 953 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs)) 954 955 struct dummy_hw_field { 956 const char *name; 957 const char *format; 958 unsigned int offset; 959 unsigned int size; 960 }; 961 #define FIELD_ENTRY(item, fmt) { \ 962 .name = #item, \ 963 .format = fmt, \ 964 .offset = offsetof(struct snd_pcm_hardware, item), \ 965 .size = sizeof(dummy_pcm_hardware.item) } 966 967 static struct dummy_hw_field fields[] = { 968 FIELD_ENTRY(formats, "%#llx"), 969 FIELD_ENTRY(rates, "%#x"), 970 FIELD_ENTRY(rate_min, "%d"), 971 FIELD_ENTRY(rate_max, "%d"), 972 FIELD_ENTRY(channels_min, "%d"), 973 FIELD_ENTRY(channels_max, "%d"), 974 FIELD_ENTRY(buffer_bytes_max, "%ld"), 975 FIELD_ENTRY(period_bytes_min, "%ld"), 976 FIELD_ENTRY(period_bytes_max, "%ld"), 977 FIELD_ENTRY(periods_min, "%d"), 978 FIELD_ENTRY(periods_max, "%d"), 979 }; 980 981 static void dummy_proc_read(struct snd_info_entry *entry, 982 struct snd_info_buffer *buffer) 983 { 984 struct snd_dummy *dummy = entry->private_data; 985 int i; 986 987 for (i = 0; i < ARRAY_SIZE(fields); i++) { 988 snd_iprintf(buffer, "%s ", fields[i].name); 989 if (fields[i].size == sizeof(int)) 990 snd_iprintf(buffer, fields[i].format, 991 *get_dummy_int_ptr(dummy, fields[i].offset)); 992 else 993 snd_iprintf(buffer, fields[i].format, 994 *get_dummy_ll_ptr(dummy, fields[i].offset)); 995 if (!strcmp(fields[i].name, "formats")) 996 print_formats(dummy, buffer); 997 else if (!strcmp(fields[i].name, "rates")) 998 print_rates(dummy, buffer); 999 snd_iprintf(buffer, "\n"); 1000 } 1001 } 1002 1003 static void dummy_proc_write(struct snd_info_entry *entry, 1004 struct snd_info_buffer *buffer) 1005 { 1006 struct snd_dummy *dummy = entry->private_data; 1007 char line[64]; 1008 1009 while (!snd_info_get_line(buffer, line, sizeof(line))) { 1010 char item[20]; 1011 const char *ptr; 1012 unsigned long long val; 1013 int i; 1014 1015 ptr = snd_info_get_str(item, line, sizeof(item)); 1016 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1017 if (!strcmp(item, fields[i].name)) 1018 break; 1019 } 1020 if (i >= ARRAY_SIZE(fields)) 1021 continue; 1022 snd_info_get_str(item, ptr, sizeof(item)); 1023 if (kstrtoull(item, 0, &val)) 1024 continue; 1025 if (fields[i].size == sizeof(int)) 1026 *get_dummy_int_ptr(dummy, fields[i].offset) = val; 1027 else 1028 *get_dummy_ll_ptr(dummy, fields[i].offset) = val; 1029 } 1030 } 1031 1032 static void dummy_proc_init(struct snd_dummy *chip) 1033 { 1034 struct snd_info_entry *entry; 1035 1036 if (!snd_card_proc_new(chip->card, "dummy_pcm", &entry)) { 1037 snd_info_set_text_ops(entry, chip, dummy_proc_read); 1038 entry->c.text.write = dummy_proc_write; 1039 entry->mode |= S_IWUSR; 1040 entry->private_data = chip; 1041 } 1042 } 1043 #else 1044 #define dummy_proc_init(x) 1045 #endif /* CONFIG_SND_DEBUG && CONFIG_PROC_FS */ 1046 1047 static int snd_dummy_probe(struct platform_device *devptr) 1048 { 1049 struct snd_card *card; 1050 struct snd_dummy *dummy; 1051 struct dummy_model *m = NULL, **mdl; 1052 int idx, err; 1053 int dev = devptr->id; 1054 1055 err = snd_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE, 1056 sizeof(struct snd_dummy), &card); 1057 if (err < 0) 1058 return err; 1059 dummy = card->private_data; 1060 dummy->card = card; 1061 for (mdl = dummy_models; *mdl && model[dev]; mdl++) { 1062 if (strcmp(model[dev], (*mdl)->name) == 0) { 1063 printk(KERN_INFO 1064 "snd-dummy: Using model '%s' for card %i\n", 1065 (*mdl)->name, card->number); 1066 m = dummy->model = *mdl; 1067 break; 1068 } 1069 } 1070 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) { 1071 if (pcm_substreams[dev] < 1) 1072 pcm_substreams[dev] = 1; 1073 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS) 1074 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS; 1075 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]); 1076 if (err < 0) 1077 goto __nodev; 1078 } 1079 1080 dummy->pcm_hw = dummy_pcm_hardware; 1081 if (m) { 1082 if (m->formats) 1083 dummy->pcm_hw.formats = m->formats; 1084 if (m->buffer_bytes_max) 1085 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max; 1086 if (m->period_bytes_min) 1087 dummy->pcm_hw.period_bytes_min = m->period_bytes_min; 1088 if (m->period_bytes_max) 1089 dummy->pcm_hw.period_bytes_max = m->period_bytes_max; 1090 if (m->periods_min) 1091 dummy->pcm_hw.periods_min = m->periods_min; 1092 if (m->periods_max) 1093 dummy->pcm_hw.periods_max = m->periods_max; 1094 if (m->rates) 1095 dummy->pcm_hw.rates = m->rates; 1096 if (m->rate_min) 1097 dummy->pcm_hw.rate_min = m->rate_min; 1098 if (m->rate_max) 1099 dummy->pcm_hw.rate_max = m->rate_max; 1100 if (m->channels_min) 1101 dummy->pcm_hw.channels_min = m->channels_min; 1102 if (m->channels_max) 1103 dummy->pcm_hw.channels_max = m->channels_max; 1104 } 1105 1106 err = snd_card_dummy_new_mixer(dummy); 1107 if (err < 0) 1108 goto __nodev; 1109 strcpy(card->driver, "Dummy"); 1110 strcpy(card->shortname, "Dummy"); 1111 sprintf(card->longname, "Dummy %i", dev + 1); 1112 1113 dummy_proc_init(dummy); 1114 1115 err = snd_card_register(card); 1116 if (err == 0) { 1117 platform_set_drvdata(devptr, card); 1118 return 0; 1119 } 1120 __nodev: 1121 snd_card_free(card); 1122 return err; 1123 } 1124 1125 static int snd_dummy_remove(struct platform_device *devptr) 1126 { 1127 snd_card_free(platform_get_drvdata(devptr)); 1128 return 0; 1129 } 1130 1131 #ifdef CONFIG_PM_SLEEP 1132 static int snd_dummy_suspend(struct device *pdev) 1133 { 1134 struct snd_card *card = dev_get_drvdata(pdev); 1135 struct snd_dummy *dummy = card->private_data; 1136 1137 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1138 snd_pcm_suspend_all(dummy->pcm); 1139 return 0; 1140 } 1141 1142 static int snd_dummy_resume(struct device *pdev) 1143 { 1144 struct snd_card *card = dev_get_drvdata(pdev); 1145 1146 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1147 return 0; 1148 } 1149 1150 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume); 1151 #define SND_DUMMY_PM_OPS &snd_dummy_pm 1152 #else 1153 #define SND_DUMMY_PM_OPS NULL 1154 #endif 1155 1156 #define SND_DUMMY_DRIVER "snd_dummy" 1157 1158 static struct platform_driver snd_dummy_driver = { 1159 .probe = snd_dummy_probe, 1160 .remove = snd_dummy_remove, 1161 .driver = { 1162 .name = SND_DUMMY_DRIVER, 1163 .pm = SND_DUMMY_PM_OPS, 1164 }, 1165 }; 1166 1167 static void snd_dummy_unregister_all(void) 1168 { 1169 int i; 1170 1171 for (i = 0; i < ARRAY_SIZE(devices); ++i) 1172 platform_device_unregister(devices[i]); 1173 platform_driver_unregister(&snd_dummy_driver); 1174 free_fake_buffer(); 1175 } 1176 1177 static int __init alsa_card_dummy_init(void) 1178 { 1179 int i, cards, err; 1180 1181 err = platform_driver_register(&snd_dummy_driver); 1182 if (err < 0) 1183 return err; 1184 1185 err = alloc_fake_buffer(); 1186 if (err < 0) { 1187 platform_driver_unregister(&snd_dummy_driver); 1188 return err; 1189 } 1190 1191 cards = 0; 1192 for (i = 0; i < SNDRV_CARDS; i++) { 1193 struct platform_device *device; 1194 if (! enable[i]) 1195 continue; 1196 device = platform_device_register_simple(SND_DUMMY_DRIVER, 1197 i, NULL, 0); 1198 if (IS_ERR(device)) 1199 continue; 1200 if (!platform_get_drvdata(device)) { 1201 platform_device_unregister(device); 1202 continue; 1203 } 1204 devices[i] = device; 1205 cards++; 1206 } 1207 if (!cards) { 1208 #ifdef MODULE 1209 printk(KERN_ERR "Dummy soundcard not found or device busy\n"); 1210 #endif 1211 snd_dummy_unregister_all(); 1212 return -ENODEV; 1213 } 1214 return 0; 1215 } 1216 1217 static void __exit alsa_card_dummy_exit(void) 1218 { 1219 snd_dummy_unregister_all(); 1220 } 1221 1222 module_init(alsa_card_dummy_init) 1223 module_exit(alsa_card_dummy_exit) 1224