1 /* 2 * Dummy soundcard 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/init.h> 22 #include <linux/err.h> 23 #include <linux/platform_device.h> 24 #include <linux/jiffies.h> 25 #include <linux/slab.h> 26 #include <linux/time.h> 27 #include <linux/wait.h> 28 #include <linux/hrtimer.h> 29 #include <linux/math64.h> 30 #include <linux/module.h> 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/tlv.h> 34 #include <sound/pcm.h> 35 #include <sound/rawmidi.h> 36 #include <sound/info.h> 37 #include <sound/initval.h> 38 39 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 40 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)"); 41 MODULE_LICENSE("GPL"); 42 MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}"); 43 44 #define MAX_PCM_DEVICES 4 45 #define MAX_PCM_SUBSTREAMS 128 46 #define MAX_MIDI_DEVICES 2 47 48 /* defaults */ 49 #define MAX_BUFFER_SIZE (64*1024) 50 #define MIN_PERIOD_SIZE 64 51 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE 52 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE) 53 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000 54 #define USE_RATE_MIN 5500 55 #define USE_RATE_MAX 48000 56 #define USE_CHANNELS_MIN 1 57 #define USE_CHANNELS_MAX 2 58 #define USE_PERIODS_MIN 1 59 #define USE_PERIODS_MAX 1024 60 61 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 62 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 63 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0}; 64 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL}; 65 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1}; 66 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8}; 67 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2}; 68 #ifdef CONFIG_HIGH_RES_TIMERS 69 static bool hrtimer = 1; 70 #endif 71 static bool fake_buffer = 1; 72 73 module_param_array(index, int, NULL, 0444); 74 MODULE_PARM_DESC(index, "Index value for dummy soundcard."); 75 module_param_array(id, charp, NULL, 0444); 76 MODULE_PARM_DESC(id, "ID string for dummy soundcard."); 77 module_param_array(enable, bool, NULL, 0444); 78 MODULE_PARM_DESC(enable, "Enable this dummy soundcard."); 79 module_param_array(model, charp, NULL, 0444); 80 MODULE_PARM_DESC(model, "Soundcard model."); 81 module_param_array(pcm_devs, int, NULL, 0444); 82 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver."); 83 module_param_array(pcm_substreams, int, NULL, 0444); 84 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver."); 85 //module_param_array(midi_devs, int, NULL, 0444); 86 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver."); 87 module_param(fake_buffer, bool, 0444); 88 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations."); 89 #ifdef CONFIG_HIGH_RES_TIMERS 90 module_param(hrtimer, bool, 0644); 91 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source."); 92 #endif 93 94 static struct platform_device *devices[SNDRV_CARDS]; 95 96 #define MIXER_ADDR_MASTER 0 97 #define MIXER_ADDR_LINE 1 98 #define MIXER_ADDR_MIC 2 99 #define MIXER_ADDR_SYNTH 3 100 #define MIXER_ADDR_CD 4 101 #define MIXER_ADDR_LAST 4 102 103 struct dummy_timer_ops { 104 int (*create)(struct snd_pcm_substream *); 105 void (*free)(struct snd_pcm_substream *); 106 int (*prepare)(struct snd_pcm_substream *); 107 int (*start)(struct snd_pcm_substream *); 108 int (*stop)(struct snd_pcm_substream *); 109 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *); 110 }; 111 112 struct dummy_model { 113 const char *name; 114 int (*playback_constraints)(struct snd_pcm_runtime *runtime); 115 int (*capture_constraints)(struct snd_pcm_runtime *runtime); 116 u64 formats; 117 size_t buffer_bytes_max; 118 size_t period_bytes_min; 119 size_t period_bytes_max; 120 unsigned int periods_min; 121 unsigned int periods_max; 122 unsigned int rates; 123 unsigned int rate_min; 124 unsigned int rate_max; 125 unsigned int channels_min; 126 unsigned int channels_max; 127 }; 128 129 struct snd_dummy { 130 struct snd_card *card; 131 struct dummy_model *model; 132 struct snd_pcm *pcm; 133 struct snd_pcm_hardware pcm_hw; 134 spinlock_t mixer_lock; 135 int mixer_volume[MIXER_ADDR_LAST+1][2]; 136 int capture_source[MIXER_ADDR_LAST+1][2]; 137 int iobox; 138 struct snd_kcontrol *cd_volume_ctl; 139 struct snd_kcontrol *cd_switch_ctl; 140 const struct dummy_timer_ops *timer_ops; 141 }; 142 143 /* 144 * card models 145 */ 146 147 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime) 148 { 149 int err; 150 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 151 if (err < 0) 152 return err; 153 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX); 154 if (err < 0) 155 return err; 156 return 0; 157 } 158 159 struct dummy_model model_emu10k1 = { 160 .name = "emu10k1", 161 .playback_constraints = emu10k1_playback_constraints, 162 .buffer_bytes_max = 128 * 1024, 163 }; 164 165 struct dummy_model model_rme9652 = { 166 .name = "rme9652", 167 .buffer_bytes_max = 26 * 64 * 1024, 168 .formats = SNDRV_PCM_FMTBIT_S32_LE, 169 .channels_min = 26, 170 .channels_max = 26, 171 .periods_min = 2, 172 .periods_max = 2, 173 }; 174 175 struct dummy_model model_ice1712 = { 176 .name = "ice1712", 177 .buffer_bytes_max = 256 * 1024, 178 .formats = SNDRV_PCM_FMTBIT_S32_LE, 179 .channels_min = 10, 180 .channels_max = 10, 181 .periods_min = 1, 182 .periods_max = 1024, 183 }; 184 185 struct dummy_model model_uda1341 = { 186 .name = "uda1341", 187 .buffer_bytes_max = 16380, 188 .formats = SNDRV_PCM_FMTBIT_S16_LE, 189 .channels_min = 2, 190 .channels_max = 2, 191 .periods_min = 2, 192 .periods_max = 255, 193 }; 194 195 struct dummy_model model_ac97 = { 196 .name = "ac97", 197 .formats = SNDRV_PCM_FMTBIT_S16_LE, 198 .channels_min = 2, 199 .channels_max = 2, 200 .rates = SNDRV_PCM_RATE_48000, 201 .rate_min = 48000, 202 .rate_max = 48000, 203 }; 204 205 struct dummy_model model_ca0106 = { 206 .name = "ca0106", 207 .formats = SNDRV_PCM_FMTBIT_S16_LE, 208 .buffer_bytes_max = ((65536-64)*8), 209 .period_bytes_max = (65536-64), 210 .periods_min = 2, 211 .periods_max = 8, 212 .channels_min = 2, 213 .channels_max = 2, 214 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000, 215 .rate_min = 48000, 216 .rate_max = 192000, 217 }; 218 219 struct dummy_model *dummy_models[] = { 220 &model_emu10k1, 221 &model_rme9652, 222 &model_ice1712, 223 &model_uda1341, 224 &model_ac97, 225 &model_ca0106, 226 NULL 227 }; 228 229 /* 230 * system timer interface 231 */ 232 233 struct dummy_systimer_pcm { 234 spinlock_t lock; 235 struct timer_list timer; 236 unsigned long base_time; 237 unsigned int frac_pos; /* fractional sample position (based HZ) */ 238 unsigned int frac_period_rest; 239 unsigned int frac_buffer_size; /* buffer_size * HZ */ 240 unsigned int frac_period_size; /* period_size * HZ */ 241 unsigned int rate; 242 int elapsed; 243 struct snd_pcm_substream *substream; 244 }; 245 246 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm) 247 { 248 dpcm->timer.expires = jiffies + 249 (dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate; 250 add_timer(&dpcm->timer); 251 } 252 253 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm) 254 { 255 unsigned long delta; 256 257 delta = jiffies - dpcm->base_time; 258 if (!delta) 259 return; 260 dpcm->base_time += delta; 261 delta *= dpcm->rate; 262 dpcm->frac_pos += delta; 263 while (dpcm->frac_pos >= dpcm->frac_buffer_size) 264 dpcm->frac_pos -= dpcm->frac_buffer_size; 265 while (dpcm->frac_period_rest <= delta) { 266 dpcm->elapsed++; 267 dpcm->frac_period_rest += dpcm->frac_period_size; 268 } 269 dpcm->frac_period_rest -= delta; 270 } 271 272 static int dummy_systimer_start(struct snd_pcm_substream *substream) 273 { 274 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 275 spin_lock(&dpcm->lock); 276 dpcm->base_time = jiffies; 277 dummy_systimer_rearm(dpcm); 278 spin_unlock(&dpcm->lock); 279 return 0; 280 } 281 282 static int dummy_systimer_stop(struct snd_pcm_substream *substream) 283 { 284 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 285 spin_lock(&dpcm->lock); 286 del_timer(&dpcm->timer); 287 spin_unlock(&dpcm->lock); 288 return 0; 289 } 290 291 static int dummy_systimer_prepare(struct snd_pcm_substream *substream) 292 { 293 struct snd_pcm_runtime *runtime = substream->runtime; 294 struct dummy_systimer_pcm *dpcm = runtime->private_data; 295 296 dpcm->frac_pos = 0; 297 dpcm->rate = runtime->rate; 298 dpcm->frac_buffer_size = runtime->buffer_size * HZ; 299 dpcm->frac_period_size = runtime->period_size * HZ; 300 dpcm->frac_period_rest = dpcm->frac_period_size; 301 dpcm->elapsed = 0; 302 303 return 0; 304 } 305 306 static void dummy_systimer_callback(unsigned long data) 307 { 308 struct dummy_systimer_pcm *dpcm = (struct dummy_systimer_pcm *)data; 309 unsigned long flags; 310 int elapsed = 0; 311 312 spin_lock_irqsave(&dpcm->lock, flags); 313 dummy_systimer_update(dpcm); 314 dummy_systimer_rearm(dpcm); 315 elapsed = dpcm->elapsed; 316 dpcm->elapsed = 0; 317 spin_unlock_irqrestore(&dpcm->lock, flags); 318 if (elapsed) 319 snd_pcm_period_elapsed(dpcm->substream); 320 } 321 322 static snd_pcm_uframes_t 323 dummy_systimer_pointer(struct snd_pcm_substream *substream) 324 { 325 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 326 snd_pcm_uframes_t pos; 327 328 spin_lock(&dpcm->lock); 329 dummy_systimer_update(dpcm); 330 pos = dpcm->frac_pos / HZ; 331 spin_unlock(&dpcm->lock); 332 return pos; 333 } 334 335 static int dummy_systimer_create(struct snd_pcm_substream *substream) 336 { 337 struct dummy_systimer_pcm *dpcm; 338 339 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 340 if (!dpcm) 341 return -ENOMEM; 342 substream->runtime->private_data = dpcm; 343 init_timer(&dpcm->timer); 344 dpcm->timer.data = (unsigned long) dpcm; 345 dpcm->timer.function = dummy_systimer_callback; 346 spin_lock_init(&dpcm->lock); 347 dpcm->substream = substream; 348 return 0; 349 } 350 351 static void dummy_systimer_free(struct snd_pcm_substream *substream) 352 { 353 kfree(substream->runtime->private_data); 354 } 355 356 static struct dummy_timer_ops dummy_systimer_ops = { 357 .create = dummy_systimer_create, 358 .free = dummy_systimer_free, 359 .prepare = dummy_systimer_prepare, 360 .start = dummy_systimer_start, 361 .stop = dummy_systimer_stop, 362 .pointer = dummy_systimer_pointer, 363 }; 364 365 #ifdef CONFIG_HIGH_RES_TIMERS 366 /* 367 * hrtimer interface 368 */ 369 370 struct dummy_hrtimer_pcm { 371 ktime_t base_time; 372 ktime_t period_time; 373 atomic_t running; 374 struct hrtimer timer; 375 struct tasklet_struct tasklet; 376 struct snd_pcm_substream *substream; 377 }; 378 379 static void dummy_hrtimer_pcm_elapsed(unsigned long priv) 380 { 381 struct dummy_hrtimer_pcm *dpcm = (struct dummy_hrtimer_pcm *)priv; 382 if (atomic_read(&dpcm->running)) 383 snd_pcm_period_elapsed(dpcm->substream); 384 } 385 386 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer) 387 { 388 struct dummy_hrtimer_pcm *dpcm; 389 390 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer); 391 if (!atomic_read(&dpcm->running)) 392 return HRTIMER_NORESTART; 393 tasklet_schedule(&dpcm->tasklet); 394 hrtimer_forward_now(timer, dpcm->period_time); 395 return HRTIMER_RESTART; 396 } 397 398 static int dummy_hrtimer_start(struct snd_pcm_substream *substream) 399 { 400 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 401 402 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer); 403 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL); 404 atomic_set(&dpcm->running, 1); 405 return 0; 406 } 407 408 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream) 409 { 410 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 411 412 atomic_set(&dpcm->running, 0); 413 hrtimer_cancel(&dpcm->timer); 414 return 0; 415 } 416 417 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm) 418 { 419 tasklet_kill(&dpcm->tasklet); 420 } 421 422 static snd_pcm_uframes_t 423 dummy_hrtimer_pointer(struct snd_pcm_substream *substream) 424 { 425 struct snd_pcm_runtime *runtime = substream->runtime; 426 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 427 u64 delta; 428 u32 pos; 429 430 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer), 431 dpcm->base_time); 432 delta = div_u64(delta * runtime->rate + 999999, 1000000); 433 div_u64_rem(delta, runtime->buffer_size, &pos); 434 return pos; 435 } 436 437 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream) 438 { 439 struct snd_pcm_runtime *runtime = substream->runtime; 440 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 441 unsigned int period, rate; 442 long sec; 443 unsigned long nsecs; 444 445 dummy_hrtimer_sync(dpcm); 446 period = runtime->period_size; 447 rate = runtime->rate; 448 sec = period / rate; 449 period %= rate; 450 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate); 451 dpcm->period_time = ktime_set(sec, nsecs); 452 453 return 0; 454 } 455 456 static int dummy_hrtimer_create(struct snd_pcm_substream *substream) 457 { 458 struct dummy_hrtimer_pcm *dpcm; 459 460 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 461 if (!dpcm) 462 return -ENOMEM; 463 substream->runtime->private_data = dpcm; 464 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 465 dpcm->timer.function = dummy_hrtimer_callback; 466 dpcm->substream = substream; 467 atomic_set(&dpcm->running, 0); 468 tasklet_init(&dpcm->tasklet, dummy_hrtimer_pcm_elapsed, 469 (unsigned long)dpcm); 470 return 0; 471 } 472 473 static void dummy_hrtimer_free(struct snd_pcm_substream *substream) 474 { 475 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 476 dummy_hrtimer_sync(dpcm); 477 kfree(dpcm); 478 } 479 480 static struct dummy_timer_ops dummy_hrtimer_ops = { 481 .create = dummy_hrtimer_create, 482 .free = dummy_hrtimer_free, 483 .prepare = dummy_hrtimer_prepare, 484 .start = dummy_hrtimer_start, 485 .stop = dummy_hrtimer_stop, 486 .pointer = dummy_hrtimer_pointer, 487 }; 488 489 #endif /* CONFIG_HIGH_RES_TIMERS */ 490 491 /* 492 * PCM interface 493 */ 494 495 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 496 { 497 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 498 499 switch (cmd) { 500 case SNDRV_PCM_TRIGGER_START: 501 case SNDRV_PCM_TRIGGER_RESUME: 502 return dummy->timer_ops->start(substream); 503 case SNDRV_PCM_TRIGGER_STOP: 504 case SNDRV_PCM_TRIGGER_SUSPEND: 505 return dummy->timer_ops->stop(substream); 506 } 507 return -EINVAL; 508 } 509 510 static int dummy_pcm_prepare(struct snd_pcm_substream *substream) 511 { 512 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 513 514 return dummy->timer_ops->prepare(substream); 515 } 516 517 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream) 518 { 519 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 520 521 return dummy->timer_ops->pointer(substream); 522 } 523 524 static struct snd_pcm_hardware dummy_pcm_hardware = { 525 .info = (SNDRV_PCM_INFO_MMAP | 526 SNDRV_PCM_INFO_INTERLEAVED | 527 SNDRV_PCM_INFO_RESUME | 528 SNDRV_PCM_INFO_MMAP_VALID), 529 .formats = USE_FORMATS, 530 .rates = USE_RATE, 531 .rate_min = USE_RATE_MIN, 532 .rate_max = USE_RATE_MAX, 533 .channels_min = USE_CHANNELS_MIN, 534 .channels_max = USE_CHANNELS_MAX, 535 .buffer_bytes_max = MAX_BUFFER_SIZE, 536 .period_bytes_min = MIN_PERIOD_SIZE, 537 .period_bytes_max = MAX_PERIOD_SIZE, 538 .periods_min = USE_PERIODS_MIN, 539 .periods_max = USE_PERIODS_MAX, 540 .fifo_size = 0, 541 }; 542 543 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream, 544 struct snd_pcm_hw_params *hw_params) 545 { 546 if (fake_buffer) { 547 /* runtime->dma_bytes has to be set manually to allow mmap */ 548 substream->runtime->dma_bytes = params_buffer_bytes(hw_params); 549 return 0; 550 } 551 return snd_pcm_lib_malloc_pages(substream, 552 params_buffer_bytes(hw_params)); 553 } 554 555 static int dummy_pcm_hw_free(struct snd_pcm_substream *substream) 556 { 557 if (fake_buffer) 558 return 0; 559 return snd_pcm_lib_free_pages(substream); 560 } 561 562 static int dummy_pcm_open(struct snd_pcm_substream *substream) 563 { 564 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 565 struct dummy_model *model = dummy->model; 566 struct snd_pcm_runtime *runtime = substream->runtime; 567 int err; 568 569 dummy->timer_ops = &dummy_systimer_ops; 570 #ifdef CONFIG_HIGH_RES_TIMERS 571 if (hrtimer) 572 dummy->timer_ops = &dummy_hrtimer_ops; 573 #endif 574 575 err = dummy->timer_ops->create(substream); 576 if (err < 0) 577 return err; 578 579 runtime->hw = dummy->pcm_hw; 580 if (substream->pcm->device & 1) { 581 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED; 582 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED; 583 } 584 if (substream->pcm->device & 2) 585 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | 586 SNDRV_PCM_INFO_MMAP_VALID); 587 588 if (model == NULL) 589 return 0; 590 591 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 592 if (model->playback_constraints) 593 err = model->playback_constraints(substream->runtime); 594 } else { 595 if (model->capture_constraints) 596 err = model->capture_constraints(substream->runtime); 597 } 598 if (err < 0) { 599 dummy->timer_ops->free(substream); 600 return err; 601 } 602 return 0; 603 } 604 605 static int dummy_pcm_close(struct snd_pcm_substream *substream) 606 { 607 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 608 dummy->timer_ops->free(substream); 609 return 0; 610 } 611 612 /* 613 * dummy buffer handling 614 */ 615 616 static void *dummy_page[2]; 617 618 static void free_fake_buffer(void) 619 { 620 if (fake_buffer) { 621 int i; 622 for (i = 0; i < 2; i++) 623 if (dummy_page[i]) { 624 free_page((unsigned long)dummy_page[i]); 625 dummy_page[i] = NULL; 626 } 627 } 628 } 629 630 static int alloc_fake_buffer(void) 631 { 632 int i; 633 634 if (!fake_buffer) 635 return 0; 636 for (i = 0; i < 2; i++) { 637 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL); 638 if (!dummy_page[i]) { 639 free_fake_buffer(); 640 return -ENOMEM; 641 } 642 } 643 return 0; 644 } 645 646 static int dummy_pcm_copy(struct snd_pcm_substream *substream, 647 int channel, snd_pcm_uframes_t pos, 648 void __user *dst, snd_pcm_uframes_t count) 649 { 650 return 0; /* do nothing */ 651 } 652 653 static int dummy_pcm_silence(struct snd_pcm_substream *substream, 654 int channel, snd_pcm_uframes_t pos, 655 snd_pcm_uframes_t count) 656 { 657 return 0; /* do nothing */ 658 } 659 660 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream, 661 unsigned long offset) 662 { 663 return virt_to_page(dummy_page[substream->stream]); /* the same page */ 664 } 665 666 static struct snd_pcm_ops dummy_pcm_ops = { 667 .open = dummy_pcm_open, 668 .close = dummy_pcm_close, 669 .ioctl = snd_pcm_lib_ioctl, 670 .hw_params = dummy_pcm_hw_params, 671 .hw_free = dummy_pcm_hw_free, 672 .prepare = dummy_pcm_prepare, 673 .trigger = dummy_pcm_trigger, 674 .pointer = dummy_pcm_pointer, 675 }; 676 677 static struct snd_pcm_ops dummy_pcm_ops_no_buf = { 678 .open = dummy_pcm_open, 679 .close = dummy_pcm_close, 680 .ioctl = snd_pcm_lib_ioctl, 681 .hw_params = dummy_pcm_hw_params, 682 .hw_free = dummy_pcm_hw_free, 683 .prepare = dummy_pcm_prepare, 684 .trigger = dummy_pcm_trigger, 685 .pointer = dummy_pcm_pointer, 686 .copy = dummy_pcm_copy, 687 .silence = dummy_pcm_silence, 688 .page = dummy_pcm_page, 689 }; 690 691 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device, 692 int substreams) 693 { 694 struct snd_pcm *pcm; 695 struct snd_pcm_ops *ops; 696 int err; 697 698 err = snd_pcm_new(dummy->card, "Dummy PCM", device, 699 substreams, substreams, &pcm); 700 if (err < 0) 701 return err; 702 dummy->pcm = pcm; 703 if (fake_buffer) 704 ops = &dummy_pcm_ops_no_buf; 705 else 706 ops = &dummy_pcm_ops; 707 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops); 708 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops); 709 pcm->private_data = dummy; 710 pcm->info_flags = 0; 711 strcpy(pcm->name, "Dummy PCM"); 712 if (!fake_buffer) { 713 snd_pcm_lib_preallocate_pages_for_all(pcm, 714 SNDRV_DMA_TYPE_CONTINUOUS, 715 snd_dma_continuous_data(GFP_KERNEL), 716 0, 64*1024); 717 } 718 return 0; 719 } 720 721 /* 722 * mixer interface 723 */ 724 725 #define DUMMY_VOLUME(xname, xindex, addr) \ 726 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 727 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 728 .name = xname, .index = xindex, \ 729 .info = snd_dummy_volume_info, \ 730 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \ 731 .private_value = addr, \ 732 .tlv = { .p = db_scale_dummy } } 733 734 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol, 735 struct snd_ctl_elem_info *uinfo) 736 { 737 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 738 uinfo->count = 2; 739 uinfo->value.integer.min = -50; 740 uinfo->value.integer.max = 100; 741 return 0; 742 } 743 744 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol, 745 struct snd_ctl_elem_value *ucontrol) 746 { 747 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 748 int addr = kcontrol->private_value; 749 750 spin_lock_irq(&dummy->mixer_lock); 751 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0]; 752 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1]; 753 spin_unlock_irq(&dummy->mixer_lock); 754 return 0; 755 } 756 757 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol, 758 struct snd_ctl_elem_value *ucontrol) 759 { 760 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 761 int change, addr = kcontrol->private_value; 762 int left, right; 763 764 left = ucontrol->value.integer.value[0]; 765 if (left < -50) 766 left = -50; 767 if (left > 100) 768 left = 100; 769 right = ucontrol->value.integer.value[1]; 770 if (right < -50) 771 right = -50; 772 if (right > 100) 773 right = 100; 774 spin_lock_irq(&dummy->mixer_lock); 775 change = dummy->mixer_volume[addr][0] != left || 776 dummy->mixer_volume[addr][1] != right; 777 dummy->mixer_volume[addr][0] = left; 778 dummy->mixer_volume[addr][1] = right; 779 spin_unlock_irq(&dummy->mixer_lock); 780 return change; 781 } 782 783 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0); 784 785 #define DUMMY_CAPSRC(xname, xindex, addr) \ 786 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 787 .info = snd_dummy_capsrc_info, \ 788 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \ 789 .private_value = addr } 790 791 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info 792 793 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol, 794 struct snd_ctl_elem_value *ucontrol) 795 { 796 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 797 int addr = kcontrol->private_value; 798 799 spin_lock_irq(&dummy->mixer_lock); 800 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0]; 801 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1]; 802 spin_unlock_irq(&dummy->mixer_lock); 803 return 0; 804 } 805 806 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 807 { 808 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 809 int change, addr = kcontrol->private_value; 810 int left, right; 811 812 left = ucontrol->value.integer.value[0] & 1; 813 right = ucontrol->value.integer.value[1] & 1; 814 spin_lock_irq(&dummy->mixer_lock); 815 change = dummy->capture_source[addr][0] != left && 816 dummy->capture_source[addr][1] != right; 817 dummy->capture_source[addr][0] = left; 818 dummy->capture_source[addr][1] = right; 819 spin_unlock_irq(&dummy->mixer_lock); 820 return change; 821 } 822 823 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol, 824 struct snd_ctl_elem_info *info) 825 { 826 const char *const names[] = { "None", "CD Player" }; 827 828 return snd_ctl_enum_info(info, 1, 2, names); 829 } 830 831 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol, 832 struct snd_ctl_elem_value *value) 833 { 834 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 835 836 value->value.enumerated.item[0] = dummy->iobox; 837 return 0; 838 } 839 840 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol, 841 struct snd_ctl_elem_value *value) 842 { 843 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 844 int changed; 845 846 if (value->value.enumerated.item[0] > 1) 847 return -EINVAL; 848 849 changed = value->value.enumerated.item[0] != dummy->iobox; 850 if (changed) { 851 dummy->iobox = value->value.enumerated.item[0]; 852 853 if (dummy->iobox) { 854 dummy->cd_volume_ctl->vd[0].access &= 855 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 856 dummy->cd_switch_ctl->vd[0].access &= 857 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 858 } else { 859 dummy->cd_volume_ctl->vd[0].access |= 860 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 861 dummy->cd_switch_ctl->vd[0].access |= 862 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 863 } 864 865 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 866 &dummy->cd_volume_ctl->id); 867 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 868 &dummy->cd_switch_ctl->id); 869 } 870 871 return changed; 872 } 873 874 static struct snd_kcontrol_new snd_dummy_controls[] = { 875 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER), 876 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER), 877 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH), 878 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH), 879 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE), 880 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE), 881 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC), 882 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC), 883 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD), 884 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD), 885 { 886 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 887 .name = "External I/O Box", 888 .info = snd_dummy_iobox_info, 889 .get = snd_dummy_iobox_get, 890 .put = snd_dummy_iobox_put, 891 }, 892 }; 893 894 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy) 895 { 896 struct snd_card *card = dummy->card; 897 struct snd_kcontrol *kcontrol; 898 unsigned int idx; 899 int err; 900 901 spin_lock_init(&dummy->mixer_lock); 902 strcpy(card->mixername, "Dummy Mixer"); 903 dummy->iobox = 1; 904 905 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) { 906 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy); 907 err = snd_ctl_add(card, kcontrol); 908 if (err < 0) 909 return err; 910 if (!strcmp(kcontrol->id.name, "CD Volume")) 911 dummy->cd_volume_ctl = kcontrol; 912 else if (!strcmp(kcontrol->id.name, "CD Capture Switch")) 913 dummy->cd_switch_ctl = kcontrol; 914 915 } 916 return 0; 917 } 918 919 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_PROC_FS) 920 /* 921 * proc interface 922 */ 923 static void print_formats(struct snd_dummy *dummy, 924 struct snd_info_buffer *buffer) 925 { 926 int i; 927 928 for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { 929 if (dummy->pcm_hw.formats & (1ULL << i)) 930 snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); 931 } 932 } 933 934 static void print_rates(struct snd_dummy *dummy, 935 struct snd_info_buffer *buffer) 936 { 937 static int rates[] = { 938 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 939 64000, 88200, 96000, 176400, 192000, 940 }; 941 int i; 942 943 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS) 944 snd_iprintf(buffer, " continuous"); 945 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT) 946 snd_iprintf(buffer, " knot"); 947 for (i = 0; i < ARRAY_SIZE(rates); i++) 948 if (dummy->pcm_hw.rates & (1 << i)) 949 snd_iprintf(buffer, " %d", rates[i]); 950 } 951 952 #define get_dummy_int_ptr(dummy, ofs) \ 953 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs)) 954 #define get_dummy_ll_ptr(dummy, ofs) \ 955 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs)) 956 957 struct dummy_hw_field { 958 const char *name; 959 const char *format; 960 unsigned int offset; 961 unsigned int size; 962 }; 963 #define FIELD_ENTRY(item, fmt) { \ 964 .name = #item, \ 965 .format = fmt, \ 966 .offset = offsetof(struct snd_pcm_hardware, item), \ 967 .size = sizeof(dummy_pcm_hardware.item) } 968 969 static struct dummy_hw_field fields[] = { 970 FIELD_ENTRY(formats, "%#llx"), 971 FIELD_ENTRY(rates, "%#x"), 972 FIELD_ENTRY(rate_min, "%d"), 973 FIELD_ENTRY(rate_max, "%d"), 974 FIELD_ENTRY(channels_min, "%d"), 975 FIELD_ENTRY(channels_max, "%d"), 976 FIELD_ENTRY(buffer_bytes_max, "%ld"), 977 FIELD_ENTRY(period_bytes_min, "%ld"), 978 FIELD_ENTRY(period_bytes_max, "%ld"), 979 FIELD_ENTRY(periods_min, "%d"), 980 FIELD_ENTRY(periods_max, "%d"), 981 }; 982 983 static void dummy_proc_read(struct snd_info_entry *entry, 984 struct snd_info_buffer *buffer) 985 { 986 struct snd_dummy *dummy = entry->private_data; 987 int i; 988 989 for (i = 0; i < ARRAY_SIZE(fields); i++) { 990 snd_iprintf(buffer, "%s ", fields[i].name); 991 if (fields[i].size == sizeof(int)) 992 snd_iprintf(buffer, fields[i].format, 993 *get_dummy_int_ptr(dummy, fields[i].offset)); 994 else 995 snd_iprintf(buffer, fields[i].format, 996 *get_dummy_ll_ptr(dummy, fields[i].offset)); 997 if (!strcmp(fields[i].name, "formats")) 998 print_formats(dummy, buffer); 999 else if (!strcmp(fields[i].name, "rates")) 1000 print_rates(dummy, buffer); 1001 snd_iprintf(buffer, "\n"); 1002 } 1003 } 1004 1005 static void dummy_proc_write(struct snd_info_entry *entry, 1006 struct snd_info_buffer *buffer) 1007 { 1008 struct snd_dummy *dummy = entry->private_data; 1009 char line[64]; 1010 1011 while (!snd_info_get_line(buffer, line, sizeof(line))) { 1012 char item[20]; 1013 const char *ptr; 1014 unsigned long long val; 1015 int i; 1016 1017 ptr = snd_info_get_str(item, line, sizeof(item)); 1018 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1019 if (!strcmp(item, fields[i].name)) 1020 break; 1021 } 1022 if (i >= ARRAY_SIZE(fields)) 1023 continue; 1024 snd_info_get_str(item, ptr, sizeof(item)); 1025 if (kstrtoull(item, 0, &val)) 1026 continue; 1027 if (fields[i].size == sizeof(int)) 1028 *get_dummy_int_ptr(dummy, fields[i].offset) = val; 1029 else 1030 *get_dummy_ll_ptr(dummy, fields[i].offset) = val; 1031 } 1032 } 1033 1034 static void dummy_proc_init(struct snd_dummy *chip) 1035 { 1036 struct snd_info_entry *entry; 1037 1038 if (!snd_card_proc_new(chip->card, "dummy_pcm", &entry)) { 1039 snd_info_set_text_ops(entry, chip, dummy_proc_read); 1040 entry->c.text.write = dummy_proc_write; 1041 entry->mode |= S_IWUSR; 1042 entry->private_data = chip; 1043 } 1044 } 1045 #else 1046 #define dummy_proc_init(x) 1047 #endif /* CONFIG_SND_DEBUG && CONFIG_PROC_FS */ 1048 1049 static int snd_dummy_probe(struct platform_device *devptr) 1050 { 1051 struct snd_card *card; 1052 struct snd_dummy *dummy; 1053 struct dummy_model *m = NULL, **mdl; 1054 int idx, err; 1055 int dev = devptr->id; 1056 1057 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 1058 sizeof(struct snd_dummy), &card); 1059 if (err < 0) 1060 return err; 1061 dummy = card->private_data; 1062 dummy->card = card; 1063 for (mdl = dummy_models; *mdl && model[dev]; mdl++) { 1064 if (strcmp(model[dev], (*mdl)->name) == 0) { 1065 printk(KERN_INFO 1066 "snd-dummy: Using model '%s' for card %i\n", 1067 (*mdl)->name, card->number); 1068 m = dummy->model = *mdl; 1069 break; 1070 } 1071 } 1072 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) { 1073 if (pcm_substreams[dev] < 1) 1074 pcm_substreams[dev] = 1; 1075 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS) 1076 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS; 1077 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]); 1078 if (err < 0) 1079 goto __nodev; 1080 } 1081 1082 dummy->pcm_hw = dummy_pcm_hardware; 1083 if (m) { 1084 if (m->formats) 1085 dummy->pcm_hw.formats = m->formats; 1086 if (m->buffer_bytes_max) 1087 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max; 1088 if (m->period_bytes_min) 1089 dummy->pcm_hw.period_bytes_min = m->period_bytes_min; 1090 if (m->period_bytes_max) 1091 dummy->pcm_hw.period_bytes_max = m->period_bytes_max; 1092 if (m->periods_min) 1093 dummy->pcm_hw.periods_min = m->periods_min; 1094 if (m->periods_max) 1095 dummy->pcm_hw.periods_max = m->periods_max; 1096 if (m->rates) 1097 dummy->pcm_hw.rates = m->rates; 1098 if (m->rate_min) 1099 dummy->pcm_hw.rate_min = m->rate_min; 1100 if (m->rate_max) 1101 dummy->pcm_hw.rate_max = m->rate_max; 1102 if (m->channels_min) 1103 dummy->pcm_hw.channels_min = m->channels_min; 1104 if (m->channels_max) 1105 dummy->pcm_hw.channels_max = m->channels_max; 1106 } 1107 1108 err = snd_card_dummy_new_mixer(dummy); 1109 if (err < 0) 1110 goto __nodev; 1111 strcpy(card->driver, "Dummy"); 1112 strcpy(card->shortname, "Dummy"); 1113 sprintf(card->longname, "Dummy %i", dev + 1); 1114 1115 dummy_proc_init(dummy); 1116 1117 snd_card_set_dev(card, &devptr->dev); 1118 1119 err = snd_card_register(card); 1120 if (err == 0) { 1121 platform_set_drvdata(devptr, card); 1122 return 0; 1123 } 1124 __nodev: 1125 snd_card_free(card); 1126 return err; 1127 } 1128 1129 static int snd_dummy_remove(struct platform_device *devptr) 1130 { 1131 snd_card_free(platform_get_drvdata(devptr)); 1132 return 0; 1133 } 1134 1135 #ifdef CONFIG_PM_SLEEP 1136 static int snd_dummy_suspend(struct device *pdev) 1137 { 1138 struct snd_card *card = dev_get_drvdata(pdev); 1139 struct snd_dummy *dummy = card->private_data; 1140 1141 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1142 snd_pcm_suspend_all(dummy->pcm); 1143 return 0; 1144 } 1145 1146 static int snd_dummy_resume(struct device *pdev) 1147 { 1148 struct snd_card *card = dev_get_drvdata(pdev); 1149 1150 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1151 return 0; 1152 } 1153 1154 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume); 1155 #define SND_DUMMY_PM_OPS &snd_dummy_pm 1156 #else 1157 #define SND_DUMMY_PM_OPS NULL 1158 #endif 1159 1160 #define SND_DUMMY_DRIVER "snd_dummy" 1161 1162 static struct platform_driver snd_dummy_driver = { 1163 .probe = snd_dummy_probe, 1164 .remove = snd_dummy_remove, 1165 .driver = { 1166 .name = SND_DUMMY_DRIVER, 1167 .owner = THIS_MODULE, 1168 .pm = SND_DUMMY_PM_OPS, 1169 }, 1170 }; 1171 1172 static void snd_dummy_unregister_all(void) 1173 { 1174 int i; 1175 1176 for (i = 0; i < ARRAY_SIZE(devices); ++i) 1177 platform_device_unregister(devices[i]); 1178 platform_driver_unregister(&snd_dummy_driver); 1179 free_fake_buffer(); 1180 } 1181 1182 static int __init alsa_card_dummy_init(void) 1183 { 1184 int i, cards, err; 1185 1186 err = platform_driver_register(&snd_dummy_driver); 1187 if (err < 0) 1188 return err; 1189 1190 err = alloc_fake_buffer(); 1191 if (err < 0) { 1192 platform_driver_unregister(&snd_dummy_driver); 1193 return err; 1194 } 1195 1196 cards = 0; 1197 for (i = 0; i < SNDRV_CARDS; i++) { 1198 struct platform_device *device; 1199 if (! enable[i]) 1200 continue; 1201 device = platform_device_register_simple(SND_DUMMY_DRIVER, 1202 i, NULL, 0); 1203 if (IS_ERR(device)) 1204 continue; 1205 if (!platform_get_drvdata(device)) { 1206 platform_device_unregister(device); 1207 continue; 1208 } 1209 devices[i] = device; 1210 cards++; 1211 } 1212 if (!cards) { 1213 #ifdef MODULE 1214 printk(KERN_ERR "Dummy soundcard not found or device busy\n"); 1215 #endif 1216 snd_dummy_unregister_all(); 1217 return -ENODEV; 1218 } 1219 return 0; 1220 } 1221 1222 static void __exit alsa_card_dummy_exit(void) 1223 { 1224 snd_dummy_unregister_all(); 1225 } 1226 1227 module_init(alsa_card_dummy_init) 1228 module_exit(alsa_card_dummy_exit) 1229