xref: /openbmc/linux/sound/drivers/dummy.c (revision 10863737)
1 /*
2  *  Dummy soundcard
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20 
21 #include <linux/init.h>
22 #include <linux/err.h>
23 #include <linux/platform_device.h>
24 #include <linux/jiffies.h>
25 #include <linux/slab.h>
26 #include <linux/time.h>
27 #include <linux/wait.h>
28 #include <linux/hrtimer.h>
29 #include <linux/math64.h>
30 #include <linux/module.h>
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/tlv.h>
34 #include <sound/pcm.h>
35 #include <sound/rawmidi.h>
36 #include <sound/info.h>
37 #include <sound/initval.h>
38 
39 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
40 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)");
41 MODULE_LICENSE("GPL");
42 MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}");
43 
44 #define MAX_PCM_DEVICES		4
45 #define MAX_PCM_SUBSTREAMS	128
46 #define MAX_MIDI_DEVICES	2
47 
48 /* defaults */
49 #define MAX_BUFFER_SIZE		(64*1024)
50 #define MIN_PERIOD_SIZE		64
51 #define MAX_PERIOD_SIZE		MAX_BUFFER_SIZE
52 #define USE_FORMATS 		(SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE)
53 #define USE_RATE		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000
54 #define USE_RATE_MIN		5500
55 #define USE_RATE_MAX		48000
56 #define USE_CHANNELS_MIN 	1
57 #define USE_CHANNELS_MAX 	2
58 #define USE_PERIODS_MIN 	1
59 #define USE_PERIODS_MAX 	1024
60 
61 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
62 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
63 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0};
64 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL};
65 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1};
66 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8};
67 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
68 #ifdef CONFIG_HIGH_RES_TIMERS
69 static bool hrtimer = 1;
70 #endif
71 static bool fake_buffer = 1;
72 
73 module_param_array(index, int, NULL, 0444);
74 MODULE_PARM_DESC(index, "Index value for dummy soundcard.");
75 module_param_array(id, charp, NULL, 0444);
76 MODULE_PARM_DESC(id, "ID string for dummy soundcard.");
77 module_param_array(enable, bool, NULL, 0444);
78 MODULE_PARM_DESC(enable, "Enable this dummy soundcard.");
79 module_param_array(model, charp, NULL, 0444);
80 MODULE_PARM_DESC(model, "Soundcard model.");
81 module_param_array(pcm_devs, int, NULL, 0444);
82 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver.");
83 module_param_array(pcm_substreams, int, NULL, 0444);
84 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver.");
85 //module_param_array(midi_devs, int, NULL, 0444);
86 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver.");
87 module_param(fake_buffer, bool, 0444);
88 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations.");
89 #ifdef CONFIG_HIGH_RES_TIMERS
90 module_param(hrtimer, bool, 0644);
91 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source.");
92 #endif
93 
94 static struct platform_device *devices[SNDRV_CARDS];
95 
96 #define MIXER_ADDR_MASTER	0
97 #define MIXER_ADDR_LINE		1
98 #define MIXER_ADDR_MIC		2
99 #define MIXER_ADDR_SYNTH	3
100 #define MIXER_ADDR_CD		4
101 #define MIXER_ADDR_LAST		4
102 
103 struct dummy_timer_ops {
104 	int (*create)(struct snd_pcm_substream *);
105 	void (*free)(struct snd_pcm_substream *);
106 	int (*prepare)(struct snd_pcm_substream *);
107 	int (*start)(struct snd_pcm_substream *);
108 	int (*stop)(struct snd_pcm_substream *);
109 	snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *);
110 };
111 
112 #define get_dummy_ops(substream) \
113 	(*(const struct dummy_timer_ops **)(substream)->runtime->private_data)
114 
115 struct dummy_model {
116 	const char *name;
117 	int (*playback_constraints)(struct snd_pcm_runtime *runtime);
118 	int (*capture_constraints)(struct snd_pcm_runtime *runtime);
119 	u64 formats;
120 	size_t buffer_bytes_max;
121 	size_t period_bytes_min;
122 	size_t period_bytes_max;
123 	unsigned int periods_min;
124 	unsigned int periods_max;
125 	unsigned int rates;
126 	unsigned int rate_min;
127 	unsigned int rate_max;
128 	unsigned int channels_min;
129 	unsigned int channels_max;
130 };
131 
132 struct snd_dummy {
133 	struct snd_card *card;
134 	struct dummy_model *model;
135 	struct snd_pcm *pcm;
136 	struct snd_pcm_hardware pcm_hw;
137 	spinlock_t mixer_lock;
138 	int mixer_volume[MIXER_ADDR_LAST+1][2];
139 	int capture_source[MIXER_ADDR_LAST+1][2];
140 	int iobox;
141 	struct snd_kcontrol *cd_volume_ctl;
142 	struct snd_kcontrol *cd_switch_ctl;
143 };
144 
145 /*
146  * card models
147  */
148 
149 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime)
150 {
151 	int err;
152 	err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
153 	if (err < 0)
154 		return err;
155 	err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX);
156 	if (err < 0)
157 		return err;
158 	return 0;
159 }
160 
161 static struct dummy_model model_emu10k1 = {
162 	.name = "emu10k1",
163 	.playback_constraints = emu10k1_playback_constraints,
164 	.buffer_bytes_max = 128 * 1024,
165 };
166 
167 static struct dummy_model model_rme9652 = {
168 	.name = "rme9652",
169 	.buffer_bytes_max = 26 * 64 * 1024,
170 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
171 	.channels_min = 26,
172 	.channels_max = 26,
173 	.periods_min = 2,
174 	.periods_max = 2,
175 };
176 
177 static struct dummy_model model_ice1712 = {
178 	.name = "ice1712",
179 	.buffer_bytes_max = 256 * 1024,
180 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
181 	.channels_min = 10,
182 	.channels_max = 10,
183 	.periods_min = 1,
184 	.periods_max = 1024,
185 };
186 
187 static struct dummy_model model_uda1341 = {
188 	.name = "uda1341",
189 	.buffer_bytes_max = 16380,
190 	.formats = SNDRV_PCM_FMTBIT_S16_LE,
191 	.channels_min = 2,
192 	.channels_max = 2,
193 	.periods_min = 2,
194 	.periods_max = 255,
195 };
196 
197 static struct dummy_model model_ac97 = {
198 	.name = "ac97",
199 	.formats = SNDRV_PCM_FMTBIT_S16_LE,
200 	.channels_min = 2,
201 	.channels_max = 2,
202 	.rates = SNDRV_PCM_RATE_48000,
203 	.rate_min = 48000,
204 	.rate_max = 48000,
205 };
206 
207 static struct dummy_model model_ca0106 = {
208 	.name = "ca0106",
209 	.formats = SNDRV_PCM_FMTBIT_S16_LE,
210 	.buffer_bytes_max = ((65536-64)*8),
211 	.period_bytes_max = (65536-64),
212 	.periods_min = 2,
213 	.periods_max = 8,
214 	.channels_min = 2,
215 	.channels_max = 2,
216 	.rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000,
217 	.rate_min = 48000,
218 	.rate_max = 192000,
219 };
220 
221 static struct dummy_model *dummy_models[] = {
222 	&model_emu10k1,
223 	&model_rme9652,
224 	&model_ice1712,
225 	&model_uda1341,
226 	&model_ac97,
227 	&model_ca0106,
228 	NULL
229 };
230 
231 /*
232  * system timer interface
233  */
234 
235 struct dummy_systimer_pcm {
236 	/* ops must be the first item */
237 	const struct dummy_timer_ops *timer_ops;
238 	spinlock_t lock;
239 	struct timer_list timer;
240 	unsigned long base_time;
241 	unsigned int frac_pos;	/* fractional sample position (based HZ) */
242 	unsigned int frac_period_rest;
243 	unsigned int frac_buffer_size;	/* buffer_size * HZ */
244 	unsigned int frac_period_size;	/* period_size * HZ */
245 	unsigned int rate;
246 	int elapsed;
247 	struct snd_pcm_substream *substream;
248 };
249 
250 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm)
251 {
252 	mod_timer(&dpcm->timer, jiffies +
253 		(dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate);
254 }
255 
256 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm)
257 {
258 	unsigned long delta;
259 
260 	delta = jiffies - dpcm->base_time;
261 	if (!delta)
262 		return;
263 	dpcm->base_time += delta;
264 	delta *= dpcm->rate;
265 	dpcm->frac_pos += delta;
266 	while (dpcm->frac_pos >= dpcm->frac_buffer_size)
267 		dpcm->frac_pos -= dpcm->frac_buffer_size;
268 	while (dpcm->frac_period_rest <= delta) {
269 		dpcm->elapsed++;
270 		dpcm->frac_period_rest += dpcm->frac_period_size;
271 	}
272 	dpcm->frac_period_rest -= delta;
273 }
274 
275 static int dummy_systimer_start(struct snd_pcm_substream *substream)
276 {
277 	struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
278 	spin_lock(&dpcm->lock);
279 	dpcm->base_time = jiffies;
280 	dummy_systimer_rearm(dpcm);
281 	spin_unlock(&dpcm->lock);
282 	return 0;
283 }
284 
285 static int dummy_systimer_stop(struct snd_pcm_substream *substream)
286 {
287 	struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
288 	spin_lock(&dpcm->lock);
289 	del_timer(&dpcm->timer);
290 	spin_unlock(&dpcm->lock);
291 	return 0;
292 }
293 
294 static int dummy_systimer_prepare(struct snd_pcm_substream *substream)
295 {
296 	struct snd_pcm_runtime *runtime = substream->runtime;
297 	struct dummy_systimer_pcm *dpcm = runtime->private_data;
298 
299 	dpcm->frac_pos = 0;
300 	dpcm->rate = runtime->rate;
301 	dpcm->frac_buffer_size = runtime->buffer_size * HZ;
302 	dpcm->frac_period_size = runtime->period_size * HZ;
303 	dpcm->frac_period_rest = dpcm->frac_period_size;
304 	dpcm->elapsed = 0;
305 
306 	return 0;
307 }
308 
309 static void dummy_systimer_callback(unsigned long data)
310 {
311 	struct dummy_systimer_pcm *dpcm = (struct dummy_systimer_pcm *)data;
312 	unsigned long flags;
313 	int elapsed = 0;
314 
315 	spin_lock_irqsave(&dpcm->lock, flags);
316 	dummy_systimer_update(dpcm);
317 	dummy_systimer_rearm(dpcm);
318 	elapsed = dpcm->elapsed;
319 	dpcm->elapsed = 0;
320 	spin_unlock_irqrestore(&dpcm->lock, flags);
321 	if (elapsed)
322 		snd_pcm_period_elapsed(dpcm->substream);
323 }
324 
325 static snd_pcm_uframes_t
326 dummy_systimer_pointer(struct snd_pcm_substream *substream)
327 {
328 	struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
329 	snd_pcm_uframes_t pos;
330 
331 	spin_lock(&dpcm->lock);
332 	dummy_systimer_update(dpcm);
333 	pos = dpcm->frac_pos / HZ;
334 	spin_unlock(&dpcm->lock);
335 	return pos;
336 }
337 
338 static int dummy_systimer_create(struct snd_pcm_substream *substream)
339 {
340 	struct dummy_systimer_pcm *dpcm;
341 
342 	dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
343 	if (!dpcm)
344 		return -ENOMEM;
345 	substream->runtime->private_data = dpcm;
346 	setup_timer(&dpcm->timer, dummy_systimer_callback,
347 			(unsigned long) dpcm);
348 	spin_lock_init(&dpcm->lock);
349 	dpcm->substream = substream;
350 	return 0;
351 }
352 
353 static void dummy_systimer_free(struct snd_pcm_substream *substream)
354 {
355 	kfree(substream->runtime->private_data);
356 }
357 
358 static const struct dummy_timer_ops dummy_systimer_ops = {
359 	.create =	dummy_systimer_create,
360 	.free =		dummy_systimer_free,
361 	.prepare =	dummy_systimer_prepare,
362 	.start =	dummy_systimer_start,
363 	.stop =		dummy_systimer_stop,
364 	.pointer =	dummy_systimer_pointer,
365 };
366 
367 #ifdef CONFIG_HIGH_RES_TIMERS
368 /*
369  * hrtimer interface
370  */
371 
372 struct dummy_hrtimer_pcm {
373 	/* ops must be the first item */
374 	const struct dummy_timer_ops *timer_ops;
375 	ktime_t base_time;
376 	ktime_t period_time;
377 	atomic_t running;
378 	struct hrtimer timer;
379 	struct tasklet_struct tasklet;
380 	struct snd_pcm_substream *substream;
381 };
382 
383 static void dummy_hrtimer_pcm_elapsed(unsigned long priv)
384 {
385 	struct dummy_hrtimer_pcm *dpcm = (struct dummy_hrtimer_pcm *)priv;
386 	if (atomic_read(&dpcm->running))
387 		snd_pcm_period_elapsed(dpcm->substream);
388 }
389 
390 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer)
391 {
392 	struct dummy_hrtimer_pcm *dpcm;
393 
394 	dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer);
395 	if (!atomic_read(&dpcm->running))
396 		return HRTIMER_NORESTART;
397 	tasklet_schedule(&dpcm->tasklet);
398 	hrtimer_forward_now(timer, dpcm->period_time);
399 	return HRTIMER_RESTART;
400 }
401 
402 static int dummy_hrtimer_start(struct snd_pcm_substream *substream)
403 {
404 	struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
405 
406 	dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer);
407 	hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL);
408 	atomic_set(&dpcm->running, 1);
409 	return 0;
410 }
411 
412 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream)
413 {
414 	struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
415 
416 	atomic_set(&dpcm->running, 0);
417 	hrtimer_cancel(&dpcm->timer);
418 	return 0;
419 }
420 
421 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm)
422 {
423 	hrtimer_cancel(&dpcm->timer);
424 	tasklet_kill(&dpcm->tasklet);
425 }
426 
427 static snd_pcm_uframes_t
428 dummy_hrtimer_pointer(struct snd_pcm_substream *substream)
429 {
430 	struct snd_pcm_runtime *runtime = substream->runtime;
431 	struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
432 	u64 delta;
433 	u32 pos;
434 
435 	delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer),
436 			       dpcm->base_time);
437 	delta = div_u64(delta * runtime->rate + 999999, 1000000);
438 	div_u64_rem(delta, runtime->buffer_size, &pos);
439 	return pos;
440 }
441 
442 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream)
443 {
444 	struct snd_pcm_runtime *runtime = substream->runtime;
445 	struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
446 	unsigned int period, rate;
447 	long sec;
448 	unsigned long nsecs;
449 
450 	dummy_hrtimer_sync(dpcm);
451 	period = runtime->period_size;
452 	rate = runtime->rate;
453 	sec = period / rate;
454 	period %= rate;
455 	nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate);
456 	dpcm->period_time = ktime_set(sec, nsecs);
457 
458 	return 0;
459 }
460 
461 static int dummy_hrtimer_create(struct snd_pcm_substream *substream)
462 {
463 	struct dummy_hrtimer_pcm *dpcm;
464 
465 	dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
466 	if (!dpcm)
467 		return -ENOMEM;
468 	substream->runtime->private_data = dpcm;
469 	hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
470 	dpcm->timer.function = dummy_hrtimer_callback;
471 	dpcm->substream = substream;
472 	atomic_set(&dpcm->running, 0);
473 	tasklet_init(&dpcm->tasklet, dummy_hrtimer_pcm_elapsed,
474 		     (unsigned long)dpcm);
475 	return 0;
476 }
477 
478 static void dummy_hrtimer_free(struct snd_pcm_substream *substream)
479 {
480 	struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
481 	dummy_hrtimer_sync(dpcm);
482 	kfree(dpcm);
483 }
484 
485 static const struct dummy_timer_ops dummy_hrtimer_ops = {
486 	.create =	dummy_hrtimer_create,
487 	.free =		dummy_hrtimer_free,
488 	.prepare =	dummy_hrtimer_prepare,
489 	.start =	dummy_hrtimer_start,
490 	.stop =		dummy_hrtimer_stop,
491 	.pointer =	dummy_hrtimer_pointer,
492 };
493 
494 #endif /* CONFIG_HIGH_RES_TIMERS */
495 
496 /*
497  * PCM interface
498  */
499 
500 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
501 {
502 	switch (cmd) {
503 	case SNDRV_PCM_TRIGGER_START:
504 	case SNDRV_PCM_TRIGGER_RESUME:
505 		return get_dummy_ops(substream)->start(substream);
506 	case SNDRV_PCM_TRIGGER_STOP:
507 	case SNDRV_PCM_TRIGGER_SUSPEND:
508 		return get_dummy_ops(substream)->stop(substream);
509 	}
510 	return -EINVAL;
511 }
512 
513 static int dummy_pcm_prepare(struct snd_pcm_substream *substream)
514 {
515 	return get_dummy_ops(substream)->prepare(substream);
516 }
517 
518 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream)
519 {
520 	return get_dummy_ops(substream)->pointer(substream);
521 }
522 
523 static const struct snd_pcm_hardware dummy_pcm_hardware = {
524 	.info =			(SNDRV_PCM_INFO_MMAP |
525 				 SNDRV_PCM_INFO_INTERLEAVED |
526 				 SNDRV_PCM_INFO_RESUME |
527 				 SNDRV_PCM_INFO_MMAP_VALID),
528 	.formats =		USE_FORMATS,
529 	.rates =		USE_RATE,
530 	.rate_min =		USE_RATE_MIN,
531 	.rate_max =		USE_RATE_MAX,
532 	.channels_min =		USE_CHANNELS_MIN,
533 	.channels_max =		USE_CHANNELS_MAX,
534 	.buffer_bytes_max =	MAX_BUFFER_SIZE,
535 	.period_bytes_min =	MIN_PERIOD_SIZE,
536 	.period_bytes_max =	MAX_PERIOD_SIZE,
537 	.periods_min =		USE_PERIODS_MIN,
538 	.periods_max =		USE_PERIODS_MAX,
539 	.fifo_size =		0,
540 };
541 
542 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream,
543 			       struct snd_pcm_hw_params *hw_params)
544 {
545 	if (fake_buffer) {
546 		/* runtime->dma_bytes has to be set manually to allow mmap */
547 		substream->runtime->dma_bytes = params_buffer_bytes(hw_params);
548 		return 0;
549 	}
550 	return snd_pcm_lib_malloc_pages(substream,
551 					params_buffer_bytes(hw_params));
552 }
553 
554 static int dummy_pcm_hw_free(struct snd_pcm_substream *substream)
555 {
556 	if (fake_buffer)
557 		return 0;
558 	return snd_pcm_lib_free_pages(substream);
559 }
560 
561 static int dummy_pcm_open(struct snd_pcm_substream *substream)
562 {
563 	struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
564 	struct dummy_model *model = dummy->model;
565 	struct snd_pcm_runtime *runtime = substream->runtime;
566 	const struct dummy_timer_ops *ops;
567 	int err;
568 
569 	ops = &dummy_systimer_ops;
570 #ifdef CONFIG_HIGH_RES_TIMERS
571 	if (hrtimer)
572 		ops = &dummy_hrtimer_ops;
573 #endif
574 
575 	err = ops->create(substream);
576 	if (err < 0)
577 		return err;
578 	get_dummy_ops(substream) = ops;
579 
580 	runtime->hw = dummy->pcm_hw;
581 	if (substream->pcm->device & 1) {
582 		runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED;
583 		runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED;
584 	}
585 	if (substream->pcm->device & 2)
586 		runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP |
587 				      SNDRV_PCM_INFO_MMAP_VALID);
588 
589 	if (model == NULL)
590 		return 0;
591 
592 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
593 		if (model->playback_constraints)
594 			err = model->playback_constraints(substream->runtime);
595 	} else {
596 		if (model->capture_constraints)
597 			err = model->capture_constraints(substream->runtime);
598 	}
599 	if (err < 0) {
600 		get_dummy_ops(substream)->free(substream);
601 		return err;
602 	}
603 	return 0;
604 }
605 
606 static int dummy_pcm_close(struct snd_pcm_substream *substream)
607 {
608 	get_dummy_ops(substream)->free(substream);
609 	return 0;
610 }
611 
612 /*
613  * dummy buffer handling
614  */
615 
616 static void *dummy_page[2];
617 
618 static void free_fake_buffer(void)
619 {
620 	if (fake_buffer) {
621 		int i;
622 		for (i = 0; i < 2; i++)
623 			if (dummy_page[i]) {
624 				free_page((unsigned long)dummy_page[i]);
625 				dummy_page[i] = NULL;
626 			}
627 	}
628 }
629 
630 static int alloc_fake_buffer(void)
631 {
632 	int i;
633 
634 	if (!fake_buffer)
635 		return 0;
636 	for (i = 0; i < 2; i++) {
637 		dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL);
638 		if (!dummy_page[i]) {
639 			free_fake_buffer();
640 			return -ENOMEM;
641 		}
642 	}
643 	return 0;
644 }
645 
646 static int dummy_pcm_copy(struct snd_pcm_substream *substream,
647 			  int channel, unsigned long pos,
648 			  void __user *dst, unsigned long bytes)
649 {
650 	return 0; /* do nothing */
651 }
652 
653 static int dummy_pcm_copy_kernel(struct snd_pcm_substream *substream,
654 				 int channel, unsigned long pos,
655 				 void *dst, unsigned long bytes)
656 {
657 	return 0; /* do nothing */
658 }
659 
660 static int dummy_pcm_silence(struct snd_pcm_substream *substream,
661 			     int channel, unsigned long pos,
662 			     unsigned long bytes)
663 {
664 	return 0; /* do nothing */
665 }
666 
667 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream,
668 				   unsigned long offset)
669 {
670 	return virt_to_page(dummy_page[substream->stream]); /* the same page */
671 }
672 
673 static struct snd_pcm_ops dummy_pcm_ops = {
674 	.open =		dummy_pcm_open,
675 	.close =	dummy_pcm_close,
676 	.ioctl =	snd_pcm_lib_ioctl,
677 	.hw_params =	dummy_pcm_hw_params,
678 	.hw_free =	dummy_pcm_hw_free,
679 	.prepare =	dummy_pcm_prepare,
680 	.trigger =	dummy_pcm_trigger,
681 	.pointer =	dummy_pcm_pointer,
682 };
683 
684 static struct snd_pcm_ops dummy_pcm_ops_no_buf = {
685 	.open =		dummy_pcm_open,
686 	.close =	dummy_pcm_close,
687 	.ioctl =	snd_pcm_lib_ioctl,
688 	.hw_params =	dummy_pcm_hw_params,
689 	.hw_free =	dummy_pcm_hw_free,
690 	.prepare =	dummy_pcm_prepare,
691 	.trigger =	dummy_pcm_trigger,
692 	.pointer =	dummy_pcm_pointer,
693 	.copy_user =	dummy_pcm_copy,
694 	.copy_kernel =	dummy_pcm_copy_kernel,
695 	.fill_silence =	dummy_pcm_silence,
696 	.page =		dummy_pcm_page,
697 };
698 
699 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device,
700 			      int substreams)
701 {
702 	struct snd_pcm *pcm;
703 	struct snd_pcm_ops *ops;
704 	int err;
705 
706 	err = snd_pcm_new(dummy->card, "Dummy PCM", device,
707 			       substreams, substreams, &pcm);
708 	if (err < 0)
709 		return err;
710 	dummy->pcm = pcm;
711 	if (fake_buffer)
712 		ops = &dummy_pcm_ops_no_buf;
713 	else
714 		ops = &dummy_pcm_ops;
715 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops);
716 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops);
717 	pcm->private_data = dummy;
718 	pcm->info_flags = 0;
719 	strcpy(pcm->name, "Dummy PCM");
720 	if (!fake_buffer) {
721 		snd_pcm_lib_preallocate_pages_for_all(pcm,
722 			SNDRV_DMA_TYPE_CONTINUOUS,
723 			snd_dma_continuous_data(GFP_KERNEL),
724 			0, 64*1024);
725 	}
726 	return 0;
727 }
728 
729 /*
730  * mixer interface
731  */
732 
733 #define DUMMY_VOLUME(xname, xindex, addr) \
734 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
735   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
736   .name = xname, .index = xindex, \
737   .info = snd_dummy_volume_info, \
738   .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \
739   .private_value = addr, \
740   .tlv = { .p = db_scale_dummy } }
741 
742 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol,
743 				 struct snd_ctl_elem_info *uinfo)
744 {
745 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
746 	uinfo->count = 2;
747 	uinfo->value.integer.min = -50;
748 	uinfo->value.integer.max = 100;
749 	return 0;
750 }
751 
752 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol,
753 				struct snd_ctl_elem_value *ucontrol)
754 {
755 	struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
756 	int addr = kcontrol->private_value;
757 
758 	spin_lock_irq(&dummy->mixer_lock);
759 	ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0];
760 	ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1];
761 	spin_unlock_irq(&dummy->mixer_lock);
762 	return 0;
763 }
764 
765 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol,
766 				struct snd_ctl_elem_value *ucontrol)
767 {
768 	struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
769 	int change, addr = kcontrol->private_value;
770 	int left, right;
771 
772 	left = ucontrol->value.integer.value[0];
773 	if (left < -50)
774 		left = -50;
775 	if (left > 100)
776 		left = 100;
777 	right = ucontrol->value.integer.value[1];
778 	if (right < -50)
779 		right = -50;
780 	if (right > 100)
781 		right = 100;
782 	spin_lock_irq(&dummy->mixer_lock);
783 	change = dummy->mixer_volume[addr][0] != left ||
784 	         dummy->mixer_volume[addr][1] != right;
785 	dummy->mixer_volume[addr][0] = left;
786 	dummy->mixer_volume[addr][1] = right;
787 	spin_unlock_irq(&dummy->mixer_lock);
788 	return change;
789 }
790 
791 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0);
792 
793 #define DUMMY_CAPSRC(xname, xindex, addr) \
794 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
795   .info = snd_dummy_capsrc_info, \
796   .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \
797   .private_value = addr }
798 
799 #define snd_dummy_capsrc_info	snd_ctl_boolean_stereo_info
800 
801 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol,
802 				struct snd_ctl_elem_value *ucontrol)
803 {
804 	struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
805 	int addr = kcontrol->private_value;
806 
807 	spin_lock_irq(&dummy->mixer_lock);
808 	ucontrol->value.integer.value[0] = dummy->capture_source[addr][0];
809 	ucontrol->value.integer.value[1] = dummy->capture_source[addr][1];
810 	spin_unlock_irq(&dummy->mixer_lock);
811 	return 0;
812 }
813 
814 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
815 {
816 	struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
817 	int change, addr = kcontrol->private_value;
818 	int left, right;
819 
820 	left = ucontrol->value.integer.value[0] & 1;
821 	right = ucontrol->value.integer.value[1] & 1;
822 	spin_lock_irq(&dummy->mixer_lock);
823 	change = dummy->capture_source[addr][0] != left &&
824 	         dummy->capture_source[addr][1] != right;
825 	dummy->capture_source[addr][0] = left;
826 	dummy->capture_source[addr][1] = right;
827 	spin_unlock_irq(&dummy->mixer_lock);
828 	return change;
829 }
830 
831 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol,
832 				struct snd_ctl_elem_info *info)
833 {
834 	const char *const names[] = { "None", "CD Player" };
835 
836 	return snd_ctl_enum_info(info, 1, 2, names);
837 }
838 
839 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol,
840 			       struct snd_ctl_elem_value *value)
841 {
842 	struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
843 
844 	value->value.enumerated.item[0] = dummy->iobox;
845 	return 0;
846 }
847 
848 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol,
849 			       struct snd_ctl_elem_value *value)
850 {
851 	struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
852 	int changed;
853 
854 	if (value->value.enumerated.item[0] > 1)
855 		return -EINVAL;
856 
857 	changed = value->value.enumerated.item[0] != dummy->iobox;
858 	if (changed) {
859 		dummy->iobox = value->value.enumerated.item[0];
860 
861 		if (dummy->iobox) {
862 			dummy->cd_volume_ctl->vd[0].access &=
863 				~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
864 			dummy->cd_switch_ctl->vd[0].access &=
865 				~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
866 		} else {
867 			dummy->cd_volume_ctl->vd[0].access |=
868 				SNDRV_CTL_ELEM_ACCESS_INACTIVE;
869 			dummy->cd_switch_ctl->vd[0].access |=
870 				SNDRV_CTL_ELEM_ACCESS_INACTIVE;
871 		}
872 
873 		snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO,
874 			       &dummy->cd_volume_ctl->id);
875 		snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO,
876 			       &dummy->cd_switch_ctl->id);
877 	}
878 
879 	return changed;
880 }
881 
882 static struct snd_kcontrol_new snd_dummy_controls[] = {
883 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER),
884 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER),
885 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH),
886 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH),
887 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE),
888 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE),
889 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC),
890 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC),
891 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD),
892 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD),
893 {
894 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
895 	.name  = "External I/O Box",
896 	.info  = snd_dummy_iobox_info,
897 	.get   = snd_dummy_iobox_get,
898 	.put   = snd_dummy_iobox_put,
899 },
900 };
901 
902 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy)
903 {
904 	struct snd_card *card = dummy->card;
905 	struct snd_kcontrol *kcontrol;
906 	unsigned int idx;
907 	int err;
908 
909 	spin_lock_init(&dummy->mixer_lock);
910 	strcpy(card->mixername, "Dummy Mixer");
911 	dummy->iobox = 1;
912 
913 	for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) {
914 		kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy);
915 		err = snd_ctl_add(card, kcontrol);
916 		if (err < 0)
917 			return err;
918 		if (!strcmp(kcontrol->id.name, "CD Volume"))
919 			dummy->cd_volume_ctl = kcontrol;
920 		else if (!strcmp(kcontrol->id.name, "CD Capture Switch"))
921 			dummy->cd_switch_ctl = kcontrol;
922 
923 	}
924 	return 0;
925 }
926 
927 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS)
928 /*
929  * proc interface
930  */
931 static void print_formats(struct snd_dummy *dummy,
932 			  struct snd_info_buffer *buffer)
933 {
934 	int i;
935 
936 	for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) {
937 		if (dummy->pcm_hw.formats & (1ULL << i))
938 			snd_iprintf(buffer, " %s", snd_pcm_format_name(i));
939 	}
940 }
941 
942 static void print_rates(struct snd_dummy *dummy,
943 			struct snd_info_buffer *buffer)
944 {
945 	static int rates[] = {
946 		5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000,
947 		64000, 88200, 96000, 176400, 192000,
948 	};
949 	int i;
950 
951 	if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS)
952 		snd_iprintf(buffer, " continuous");
953 	if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT)
954 		snd_iprintf(buffer, " knot");
955 	for (i = 0; i < ARRAY_SIZE(rates); i++)
956 		if (dummy->pcm_hw.rates & (1 << i))
957 			snd_iprintf(buffer, " %d", rates[i]);
958 }
959 
960 #define get_dummy_int_ptr(dummy, ofs) \
961 	(unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs))
962 #define get_dummy_ll_ptr(dummy, ofs) \
963 	(unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs))
964 
965 struct dummy_hw_field {
966 	const char *name;
967 	const char *format;
968 	unsigned int offset;
969 	unsigned int size;
970 };
971 #define FIELD_ENTRY(item, fmt) {		   \
972 	.name = #item,				   \
973 	.format = fmt,				   \
974 	.offset = offsetof(struct snd_pcm_hardware, item), \
975 	.size = sizeof(dummy_pcm_hardware.item) }
976 
977 static struct dummy_hw_field fields[] = {
978 	FIELD_ENTRY(formats, "%#llx"),
979 	FIELD_ENTRY(rates, "%#x"),
980 	FIELD_ENTRY(rate_min, "%d"),
981 	FIELD_ENTRY(rate_max, "%d"),
982 	FIELD_ENTRY(channels_min, "%d"),
983 	FIELD_ENTRY(channels_max, "%d"),
984 	FIELD_ENTRY(buffer_bytes_max, "%ld"),
985 	FIELD_ENTRY(period_bytes_min, "%ld"),
986 	FIELD_ENTRY(period_bytes_max, "%ld"),
987 	FIELD_ENTRY(periods_min, "%d"),
988 	FIELD_ENTRY(periods_max, "%d"),
989 };
990 
991 static void dummy_proc_read(struct snd_info_entry *entry,
992 			    struct snd_info_buffer *buffer)
993 {
994 	struct snd_dummy *dummy = entry->private_data;
995 	int i;
996 
997 	for (i = 0; i < ARRAY_SIZE(fields); i++) {
998 		snd_iprintf(buffer, "%s ", fields[i].name);
999 		if (fields[i].size == sizeof(int))
1000 			snd_iprintf(buffer, fields[i].format,
1001 				*get_dummy_int_ptr(dummy, fields[i].offset));
1002 		else
1003 			snd_iprintf(buffer, fields[i].format,
1004 				*get_dummy_ll_ptr(dummy, fields[i].offset));
1005 		if (!strcmp(fields[i].name, "formats"))
1006 			print_formats(dummy, buffer);
1007 		else if (!strcmp(fields[i].name, "rates"))
1008 			print_rates(dummy, buffer);
1009 		snd_iprintf(buffer, "\n");
1010 	}
1011 }
1012 
1013 static void dummy_proc_write(struct snd_info_entry *entry,
1014 			     struct snd_info_buffer *buffer)
1015 {
1016 	struct snd_dummy *dummy = entry->private_data;
1017 	char line[64];
1018 
1019 	while (!snd_info_get_line(buffer, line, sizeof(line))) {
1020 		char item[20];
1021 		const char *ptr;
1022 		unsigned long long val;
1023 		int i;
1024 
1025 		ptr = snd_info_get_str(item, line, sizeof(item));
1026 		for (i = 0; i < ARRAY_SIZE(fields); i++) {
1027 			if (!strcmp(item, fields[i].name))
1028 				break;
1029 		}
1030 		if (i >= ARRAY_SIZE(fields))
1031 			continue;
1032 		snd_info_get_str(item, ptr, sizeof(item));
1033 		if (kstrtoull(item, 0, &val))
1034 			continue;
1035 		if (fields[i].size == sizeof(int))
1036 			*get_dummy_int_ptr(dummy, fields[i].offset) = val;
1037 		else
1038 			*get_dummy_ll_ptr(dummy, fields[i].offset) = val;
1039 	}
1040 }
1041 
1042 static void dummy_proc_init(struct snd_dummy *chip)
1043 {
1044 	struct snd_info_entry *entry;
1045 
1046 	if (!snd_card_proc_new(chip->card, "dummy_pcm", &entry)) {
1047 		snd_info_set_text_ops(entry, chip, dummy_proc_read);
1048 		entry->c.text.write = dummy_proc_write;
1049 		entry->mode |= S_IWUSR;
1050 		entry->private_data = chip;
1051 	}
1052 }
1053 #else
1054 #define dummy_proc_init(x)
1055 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */
1056 
1057 static int snd_dummy_probe(struct platform_device *devptr)
1058 {
1059 	struct snd_card *card;
1060 	struct snd_dummy *dummy;
1061 	struct dummy_model *m = NULL, **mdl;
1062 	int idx, err;
1063 	int dev = devptr->id;
1064 
1065 	err = snd_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE,
1066 			   sizeof(struct snd_dummy), &card);
1067 	if (err < 0)
1068 		return err;
1069 	dummy = card->private_data;
1070 	dummy->card = card;
1071 	for (mdl = dummy_models; *mdl && model[dev]; mdl++) {
1072 		if (strcmp(model[dev], (*mdl)->name) == 0) {
1073 			printk(KERN_INFO
1074 				"snd-dummy: Using model '%s' for card %i\n",
1075 				(*mdl)->name, card->number);
1076 			m = dummy->model = *mdl;
1077 			break;
1078 		}
1079 	}
1080 	for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) {
1081 		if (pcm_substreams[dev] < 1)
1082 			pcm_substreams[dev] = 1;
1083 		if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS)
1084 			pcm_substreams[dev] = MAX_PCM_SUBSTREAMS;
1085 		err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]);
1086 		if (err < 0)
1087 			goto __nodev;
1088 	}
1089 
1090 	dummy->pcm_hw = dummy_pcm_hardware;
1091 	if (m) {
1092 		if (m->formats)
1093 			dummy->pcm_hw.formats = m->formats;
1094 		if (m->buffer_bytes_max)
1095 			dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max;
1096 		if (m->period_bytes_min)
1097 			dummy->pcm_hw.period_bytes_min = m->period_bytes_min;
1098 		if (m->period_bytes_max)
1099 			dummy->pcm_hw.period_bytes_max = m->period_bytes_max;
1100 		if (m->periods_min)
1101 			dummy->pcm_hw.periods_min = m->periods_min;
1102 		if (m->periods_max)
1103 			dummy->pcm_hw.periods_max = m->periods_max;
1104 		if (m->rates)
1105 			dummy->pcm_hw.rates = m->rates;
1106 		if (m->rate_min)
1107 			dummy->pcm_hw.rate_min = m->rate_min;
1108 		if (m->rate_max)
1109 			dummy->pcm_hw.rate_max = m->rate_max;
1110 		if (m->channels_min)
1111 			dummy->pcm_hw.channels_min = m->channels_min;
1112 		if (m->channels_max)
1113 			dummy->pcm_hw.channels_max = m->channels_max;
1114 	}
1115 
1116 	err = snd_card_dummy_new_mixer(dummy);
1117 	if (err < 0)
1118 		goto __nodev;
1119 	strcpy(card->driver, "Dummy");
1120 	strcpy(card->shortname, "Dummy");
1121 	sprintf(card->longname, "Dummy %i", dev + 1);
1122 
1123 	dummy_proc_init(dummy);
1124 
1125 	err = snd_card_register(card);
1126 	if (err == 0) {
1127 		platform_set_drvdata(devptr, card);
1128 		return 0;
1129 	}
1130       __nodev:
1131 	snd_card_free(card);
1132 	return err;
1133 }
1134 
1135 static int snd_dummy_remove(struct platform_device *devptr)
1136 {
1137 	snd_card_free(platform_get_drvdata(devptr));
1138 	return 0;
1139 }
1140 
1141 #ifdef CONFIG_PM_SLEEP
1142 static int snd_dummy_suspend(struct device *pdev)
1143 {
1144 	struct snd_card *card = dev_get_drvdata(pdev);
1145 	struct snd_dummy *dummy = card->private_data;
1146 
1147 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1148 	snd_pcm_suspend_all(dummy->pcm);
1149 	return 0;
1150 }
1151 
1152 static int snd_dummy_resume(struct device *pdev)
1153 {
1154 	struct snd_card *card = dev_get_drvdata(pdev);
1155 
1156 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1157 	return 0;
1158 }
1159 
1160 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume);
1161 #define SND_DUMMY_PM_OPS	&snd_dummy_pm
1162 #else
1163 #define SND_DUMMY_PM_OPS	NULL
1164 #endif
1165 
1166 #define SND_DUMMY_DRIVER	"snd_dummy"
1167 
1168 static struct platform_driver snd_dummy_driver = {
1169 	.probe		= snd_dummy_probe,
1170 	.remove		= snd_dummy_remove,
1171 	.driver		= {
1172 		.name	= SND_DUMMY_DRIVER,
1173 		.pm	= SND_DUMMY_PM_OPS,
1174 	},
1175 };
1176 
1177 static void snd_dummy_unregister_all(void)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i < ARRAY_SIZE(devices); ++i)
1182 		platform_device_unregister(devices[i]);
1183 	platform_driver_unregister(&snd_dummy_driver);
1184 	free_fake_buffer();
1185 }
1186 
1187 static int __init alsa_card_dummy_init(void)
1188 {
1189 	int i, cards, err;
1190 
1191 	err = platform_driver_register(&snd_dummy_driver);
1192 	if (err < 0)
1193 		return err;
1194 
1195 	err = alloc_fake_buffer();
1196 	if (err < 0) {
1197 		platform_driver_unregister(&snd_dummy_driver);
1198 		return err;
1199 	}
1200 
1201 	cards = 0;
1202 	for (i = 0; i < SNDRV_CARDS; i++) {
1203 		struct platform_device *device;
1204 		if (! enable[i])
1205 			continue;
1206 		device = platform_device_register_simple(SND_DUMMY_DRIVER,
1207 							 i, NULL, 0);
1208 		if (IS_ERR(device))
1209 			continue;
1210 		if (!platform_get_drvdata(device)) {
1211 			platform_device_unregister(device);
1212 			continue;
1213 		}
1214 		devices[i] = device;
1215 		cards++;
1216 	}
1217 	if (!cards) {
1218 #ifdef MODULE
1219 		printk(KERN_ERR "Dummy soundcard not found or device busy\n");
1220 #endif
1221 		snd_dummy_unregister_all();
1222 		return -ENODEV;
1223 	}
1224 	return 0;
1225 }
1226 
1227 static void __exit alsa_card_dummy_exit(void)
1228 {
1229 	snd_dummy_unregister_all();
1230 }
1231 
1232 module_init(alsa_card_dummy_init)
1233 module_exit(alsa_card_dummy_exit)
1234