1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <linux/export.h> 27 #include <sound/core.h> 28 #include <sound/control.h> 29 #include <sound/tlv.h> 30 #include <sound/info.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/timer.h> 34 35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 36 #define CREATE_TRACE_POINTS 37 #include "pcm_trace.h" 38 #else 39 #define trace_hwptr(substream, pos, in_interrupt) 40 #define trace_xrun(substream) 41 #define trace_hw_ptr_error(substream, reason) 42 #endif 43 44 /* 45 * fill ring buffer with silence 46 * runtime->silence_start: starting pointer to silence area 47 * runtime->silence_filled: size filled with silence 48 * runtime->silence_threshold: threshold from application 49 * runtime->silence_size: maximal size from application 50 * 51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 52 */ 53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 54 { 55 struct snd_pcm_runtime *runtime = substream->runtime; 56 snd_pcm_uframes_t frames, ofs, transfer; 57 58 if (runtime->silence_size < runtime->boundary) { 59 snd_pcm_sframes_t noise_dist, n; 60 if (runtime->silence_start != runtime->control->appl_ptr) { 61 n = runtime->control->appl_ptr - runtime->silence_start; 62 if (n < 0) 63 n += runtime->boundary; 64 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 65 runtime->silence_filled -= n; 66 else 67 runtime->silence_filled = 0; 68 runtime->silence_start = runtime->control->appl_ptr; 69 } 70 if (runtime->silence_filled >= runtime->buffer_size) 71 return; 72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 74 return; 75 frames = runtime->silence_threshold - noise_dist; 76 if (frames > runtime->silence_size) 77 frames = runtime->silence_size; 78 } else { 79 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 81 if (avail > runtime->buffer_size) 82 avail = runtime->buffer_size; 83 runtime->silence_filled = avail > 0 ? avail : 0; 84 runtime->silence_start = (runtime->status->hw_ptr + 85 runtime->silence_filled) % 86 runtime->boundary; 87 } else { 88 ofs = runtime->status->hw_ptr; 89 frames = new_hw_ptr - ofs; 90 if ((snd_pcm_sframes_t)frames < 0) 91 frames += runtime->boundary; 92 runtime->silence_filled -= frames; 93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 94 runtime->silence_filled = 0; 95 runtime->silence_start = new_hw_ptr; 96 } else { 97 runtime->silence_start = ofs; 98 } 99 } 100 frames = runtime->buffer_size - runtime->silence_filled; 101 } 102 if (snd_BUG_ON(frames > runtime->buffer_size)) 103 return; 104 if (frames == 0) 105 return; 106 ofs = runtime->silence_start % runtime->buffer_size; 107 while (frames > 0) { 108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 111 if (substream->ops->silence) { 112 int err; 113 err = substream->ops->silence(substream, -1, ofs, transfer); 114 snd_BUG_ON(err < 0); 115 } else { 116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 118 } 119 } else { 120 unsigned int c; 121 unsigned int channels = runtime->channels; 122 if (substream->ops->silence) { 123 for (c = 0; c < channels; ++c) { 124 int err; 125 err = substream->ops->silence(substream, c, ofs, transfer); 126 snd_BUG_ON(err < 0); 127 } 128 } else { 129 size_t dma_csize = runtime->dma_bytes / channels; 130 for (c = 0; c < channels; ++c) { 131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 133 } 134 } 135 } 136 runtime->silence_filled += transfer; 137 frames -= transfer; 138 ofs = 0; 139 } 140 } 141 142 #ifdef CONFIG_SND_DEBUG 143 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 144 char *name, size_t len) 145 { 146 snprintf(name, len, "pcmC%dD%d%c:%d", 147 substream->pcm->card->number, 148 substream->pcm->device, 149 substream->stream ? 'c' : 'p', 150 substream->number); 151 } 152 EXPORT_SYMBOL(snd_pcm_debug_name); 153 #endif 154 155 #define XRUN_DEBUG_BASIC (1<<0) 156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 158 159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 160 161 #define xrun_debug(substream, mask) \ 162 ((substream)->pstr->xrun_debug & (mask)) 163 #else 164 #define xrun_debug(substream, mask) 0 165 #endif 166 167 #define dump_stack_on_xrun(substream) do { \ 168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 169 dump_stack(); \ 170 } while (0) 171 172 static void xrun(struct snd_pcm_substream *substream) 173 { 174 struct snd_pcm_runtime *runtime = substream->runtime; 175 176 trace_xrun(substream); 177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 181 char name[16]; 182 snd_pcm_debug_name(substream, name, sizeof(name)); 183 pcm_warn(substream->pcm, "XRUN: %s\n", name); 184 dump_stack_on_xrun(substream); 185 } 186 } 187 188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 190 do { \ 191 trace_hw_ptr_error(substream, reason); \ 192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 194 (in_interrupt) ? 'Q' : 'P', ##args); \ 195 dump_stack_on_xrun(substream); \ 196 } \ 197 } while (0) 198 199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 200 201 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 202 203 #endif 204 205 int snd_pcm_update_state(struct snd_pcm_substream *substream, 206 struct snd_pcm_runtime *runtime) 207 { 208 snd_pcm_uframes_t avail; 209 210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 211 avail = snd_pcm_playback_avail(runtime); 212 else 213 avail = snd_pcm_capture_avail(runtime); 214 if (avail > runtime->avail_max) 215 runtime->avail_max = avail; 216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 217 if (avail >= runtime->buffer_size) { 218 snd_pcm_drain_done(substream); 219 return -EPIPE; 220 } 221 } else { 222 if (avail >= runtime->stop_threshold) { 223 xrun(substream); 224 return -EPIPE; 225 } 226 } 227 if (runtime->twake) { 228 if (avail >= runtime->twake) 229 wake_up(&runtime->tsleep); 230 } else if (avail >= runtime->control->avail_min) 231 wake_up(&runtime->sleep); 232 return 0; 233 } 234 235 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 236 unsigned int in_interrupt) 237 { 238 struct snd_pcm_runtime *runtime = substream->runtime; 239 snd_pcm_uframes_t pos; 240 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 241 snd_pcm_sframes_t hdelta, delta; 242 unsigned long jdelta; 243 unsigned long curr_jiffies; 244 struct timespec curr_tstamp; 245 struct timespec audio_tstamp; 246 int crossed_boundary = 0; 247 248 old_hw_ptr = runtime->status->hw_ptr; 249 250 /* 251 * group pointer, time and jiffies reads to allow for more 252 * accurate correlations/corrections. 253 * The values are stored at the end of this routine after 254 * corrections for hw_ptr position 255 */ 256 pos = substream->ops->pointer(substream); 257 curr_jiffies = jiffies; 258 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 259 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 260 261 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) && 262 (substream->ops->wall_clock)) 263 substream->ops->wall_clock(substream, &audio_tstamp); 264 } 265 266 if (pos == SNDRV_PCM_POS_XRUN) { 267 xrun(substream); 268 return -EPIPE; 269 } 270 if (pos >= runtime->buffer_size) { 271 if (printk_ratelimit()) { 272 char name[16]; 273 snd_pcm_debug_name(substream, name, sizeof(name)); 274 pcm_err(substream->pcm, 275 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 276 name, pos, runtime->buffer_size, 277 runtime->period_size); 278 } 279 pos = 0; 280 } 281 pos -= pos % runtime->min_align; 282 trace_hwptr(substream, pos, in_interrupt); 283 hw_base = runtime->hw_ptr_base; 284 new_hw_ptr = hw_base + pos; 285 if (in_interrupt) { 286 /* we know that one period was processed */ 287 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 288 delta = runtime->hw_ptr_interrupt + runtime->period_size; 289 if (delta > new_hw_ptr) { 290 /* check for double acknowledged interrupts */ 291 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 292 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 293 hw_base += runtime->buffer_size; 294 if (hw_base >= runtime->boundary) { 295 hw_base = 0; 296 crossed_boundary++; 297 } 298 new_hw_ptr = hw_base + pos; 299 goto __delta; 300 } 301 } 302 } 303 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 304 /* pointer crosses the end of the ring buffer */ 305 if (new_hw_ptr < old_hw_ptr) { 306 hw_base += runtime->buffer_size; 307 if (hw_base >= runtime->boundary) { 308 hw_base = 0; 309 crossed_boundary++; 310 } 311 new_hw_ptr = hw_base + pos; 312 } 313 __delta: 314 delta = new_hw_ptr - old_hw_ptr; 315 if (delta < 0) 316 delta += runtime->boundary; 317 318 if (runtime->no_period_wakeup) { 319 snd_pcm_sframes_t xrun_threshold; 320 /* 321 * Without regular period interrupts, we have to check 322 * the elapsed time to detect xruns. 323 */ 324 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 325 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 326 goto no_delta_check; 327 hdelta = jdelta - delta * HZ / runtime->rate; 328 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 329 while (hdelta > xrun_threshold) { 330 delta += runtime->buffer_size; 331 hw_base += runtime->buffer_size; 332 if (hw_base >= runtime->boundary) { 333 hw_base = 0; 334 crossed_boundary++; 335 } 336 new_hw_ptr = hw_base + pos; 337 hdelta -= runtime->hw_ptr_buffer_jiffies; 338 } 339 goto no_delta_check; 340 } 341 342 /* something must be really wrong */ 343 if (delta >= runtime->buffer_size + runtime->period_size) { 344 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 345 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 346 substream->stream, (long)pos, 347 (long)new_hw_ptr, (long)old_hw_ptr); 348 return 0; 349 } 350 351 /* Do jiffies check only in xrun_debug mode */ 352 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 353 goto no_jiffies_check; 354 355 /* Skip the jiffies check for hardwares with BATCH flag. 356 * Such hardware usually just increases the position at each IRQ, 357 * thus it can't give any strange position. 358 */ 359 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 360 goto no_jiffies_check; 361 hdelta = delta; 362 if (hdelta < runtime->delay) 363 goto no_jiffies_check; 364 hdelta -= runtime->delay; 365 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 366 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 367 delta = jdelta / 368 (((runtime->period_size * HZ) / runtime->rate) 369 + HZ/100); 370 /* move new_hw_ptr according jiffies not pos variable */ 371 new_hw_ptr = old_hw_ptr; 372 hw_base = delta; 373 /* use loop to avoid checks for delta overflows */ 374 /* the delta value is small or zero in most cases */ 375 while (delta > 0) { 376 new_hw_ptr += runtime->period_size; 377 if (new_hw_ptr >= runtime->boundary) { 378 new_hw_ptr -= runtime->boundary; 379 crossed_boundary--; 380 } 381 delta--; 382 } 383 /* align hw_base to buffer_size */ 384 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 385 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 386 (long)pos, (long)hdelta, 387 (long)runtime->period_size, jdelta, 388 ((hdelta * HZ) / runtime->rate), hw_base, 389 (unsigned long)old_hw_ptr, 390 (unsigned long)new_hw_ptr); 391 /* reset values to proper state */ 392 delta = 0; 393 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 394 } 395 no_jiffies_check: 396 if (delta > runtime->period_size + runtime->period_size / 2) { 397 hw_ptr_error(substream, in_interrupt, 398 "Lost interrupts?", 399 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 400 substream->stream, (long)delta, 401 (long)new_hw_ptr, 402 (long)old_hw_ptr); 403 } 404 405 no_delta_check: 406 if (runtime->status->hw_ptr == new_hw_ptr) 407 return 0; 408 409 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 410 runtime->silence_size > 0) 411 snd_pcm_playback_silence(substream, new_hw_ptr); 412 413 if (in_interrupt) { 414 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 415 if (delta < 0) 416 delta += runtime->boundary; 417 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 418 runtime->hw_ptr_interrupt += delta; 419 if (runtime->hw_ptr_interrupt >= runtime->boundary) 420 runtime->hw_ptr_interrupt -= runtime->boundary; 421 } 422 runtime->hw_ptr_base = hw_base; 423 runtime->status->hw_ptr = new_hw_ptr; 424 runtime->hw_ptr_jiffies = curr_jiffies; 425 if (crossed_boundary) { 426 snd_BUG_ON(crossed_boundary != 1); 427 runtime->hw_ptr_wrap += runtime->boundary; 428 } 429 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 430 runtime->status->tstamp = curr_tstamp; 431 432 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) { 433 /* 434 * no wall clock available, provide audio timestamp 435 * derived from pointer position+delay 436 */ 437 u64 audio_frames, audio_nsecs; 438 439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 440 audio_frames = runtime->hw_ptr_wrap 441 + runtime->status->hw_ptr 442 - runtime->delay; 443 else 444 audio_frames = runtime->hw_ptr_wrap 445 + runtime->status->hw_ptr 446 + runtime->delay; 447 audio_nsecs = div_u64(audio_frames * 1000000000LL, 448 runtime->rate); 449 audio_tstamp = ns_to_timespec(audio_nsecs); 450 } 451 runtime->status->audio_tstamp = audio_tstamp; 452 } 453 454 return snd_pcm_update_state(substream, runtime); 455 } 456 457 /* CAUTION: call it with irq disabled */ 458 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 459 { 460 return snd_pcm_update_hw_ptr0(substream, 0); 461 } 462 463 /** 464 * snd_pcm_set_ops - set the PCM operators 465 * @pcm: the pcm instance 466 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 467 * @ops: the operator table 468 * 469 * Sets the given PCM operators to the pcm instance. 470 */ 471 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 472 const struct snd_pcm_ops *ops) 473 { 474 struct snd_pcm_str *stream = &pcm->streams[direction]; 475 struct snd_pcm_substream *substream; 476 477 for (substream = stream->substream; substream != NULL; substream = substream->next) 478 substream->ops = ops; 479 } 480 481 EXPORT_SYMBOL(snd_pcm_set_ops); 482 483 /** 484 * snd_pcm_sync - set the PCM sync id 485 * @substream: the pcm substream 486 * 487 * Sets the PCM sync identifier for the card. 488 */ 489 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 490 { 491 struct snd_pcm_runtime *runtime = substream->runtime; 492 493 runtime->sync.id32[0] = substream->pcm->card->number; 494 runtime->sync.id32[1] = -1; 495 runtime->sync.id32[2] = -1; 496 runtime->sync.id32[3] = -1; 497 } 498 499 EXPORT_SYMBOL(snd_pcm_set_sync); 500 501 /* 502 * Standard ioctl routine 503 */ 504 505 static inline unsigned int div32(unsigned int a, unsigned int b, 506 unsigned int *r) 507 { 508 if (b == 0) { 509 *r = 0; 510 return UINT_MAX; 511 } 512 *r = a % b; 513 return a / b; 514 } 515 516 static inline unsigned int div_down(unsigned int a, unsigned int b) 517 { 518 if (b == 0) 519 return UINT_MAX; 520 return a / b; 521 } 522 523 static inline unsigned int div_up(unsigned int a, unsigned int b) 524 { 525 unsigned int r; 526 unsigned int q; 527 if (b == 0) 528 return UINT_MAX; 529 q = div32(a, b, &r); 530 if (r) 531 ++q; 532 return q; 533 } 534 535 static inline unsigned int mul(unsigned int a, unsigned int b) 536 { 537 if (a == 0) 538 return 0; 539 if (div_down(UINT_MAX, a) < b) 540 return UINT_MAX; 541 return a * b; 542 } 543 544 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 545 unsigned int c, unsigned int *r) 546 { 547 u_int64_t n = (u_int64_t) a * b; 548 if (c == 0) { 549 snd_BUG_ON(!n); 550 *r = 0; 551 return UINT_MAX; 552 } 553 n = div_u64_rem(n, c, r); 554 if (n >= UINT_MAX) { 555 *r = 0; 556 return UINT_MAX; 557 } 558 return n; 559 } 560 561 /** 562 * snd_interval_refine - refine the interval value of configurator 563 * @i: the interval value to refine 564 * @v: the interval value to refer to 565 * 566 * Refines the interval value with the reference value. 567 * The interval is changed to the range satisfying both intervals. 568 * The interval status (min, max, integer, etc.) are evaluated. 569 * 570 * Return: Positive if the value is changed, zero if it's not changed, or a 571 * negative error code. 572 */ 573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 574 { 575 int changed = 0; 576 if (snd_BUG_ON(snd_interval_empty(i))) 577 return -EINVAL; 578 if (i->min < v->min) { 579 i->min = v->min; 580 i->openmin = v->openmin; 581 changed = 1; 582 } else if (i->min == v->min && !i->openmin && v->openmin) { 583 i->openmin = 1; 584 changed = 1; 585 } 586 if (i->max > v->max) { 587 i->max = v->max; 588 i->openmax = v->openmax; 589 changed = 1; 590 } else if (i->max == v->max && !i->openmax && v->openmax) { 591 i->openmax = 1; 592 changed = 1; 593 } 594 if (!i->integer && v->integer) { 595 i->integer = 1; 596 changed = 1; 597 } 598 if (i->integer) { 599 if (i->openmin) { 600 i->min++; 601 i->openmin = 0; 602 } 603 if (i->openmax) { 604 i->max--; 605 i->openmax = 0; 606 } 607 } else if (!i->openmin && !i->openmax && i->min == i->max) 608 i->integer = 1; 609 if (snd_interval_checkempty(i)) { 610 snd_interval_none(i); 611 return -EINVAL; 612 } 613 return changed; 614 } 615 616 EXPORT_SYMBOL(snd_interval_refine); 617 618 static int snd_interval_refine_first(struct snd_interval *i) 619 { 620 if (snd_BUG_ON(snd_interval_empty(i))) 621 return -EINVAL; 622 if (snd_interval_single(i)) 623 return 0; 624 i->max = i->min; 625 i->openmax = i->openmin; 626 if (i->openmax) 627 i->max++; 628 return 1; 629 } 630 631 static int snd_interval_refine_last(struct snd_interval *i) 632 { 633 if (snd_BUG_ON(snd_interval_empty(i))) 634 return -EINVAL; 635 if (snd_interval_single(i)) 636 return 0; 637 i->min = i->max; 638 i->openmin = i->openmax; 639 if (i->openmin) 640 i->min--; 641 return 1; 642 } 643 644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 645 { 646 if (a->empty || b->empty) { 647 snd_interval_none(c); 648 return; 649 } 650 c->empty = 0; 651 c->min = mul(a->min, b->min); 652 c->openmin = (a->openmin || b->openmin); 653 c->max = mul(a->max, b->max); 654 c->openmax = (a->openmax || b->openmax); 655 c->integer = (a->integer && b->integer); 656 } 657 658 /** 659 * snd_interval_div - refine the interval value with division 660 * @a: dividend 661 * @b: divisor 662 * @c: quotient 663 * 664 * c = a / b 665 * 666 * Returns non-zero if the value is changed, zero if not changed. 667 */ 668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 669 { 670 unsigned int r; 671 if (a->empty || b->empty) { 672 snd_interval_none(c); 673 return; 674 } 675 c->empty = 0; 676 c->min = div32(a->min, b->max, &r); 677 c->openmin = (r || a->openmin || b->openmax); 678 if (b->min > 0) { 679 c->max = div32(a->max, b->min, &r); 680 if (r) { 681 c->max++; 682 c->openmax = 1; 683 } else 684 c->openmax = (a->openmax || b->openmin); 685 } else { 686 c->max = UINT_MAX; 687 c->openmax = 0; 688 } 689 c->integer = 0; 690 } 691 692 /** 693 * snd_interval_muldivk - refine the interval value 694 * @a: dividend 1 695 * @b: dividend 2 696 * @k: divisor (as integer) 697 * @c: result 698 * 699 * c = a * b / k 700 * 701 * Returns non-zero if the value is changed, zero if not changed. 702 */ 703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 704 unsigned int k, struct snd_interval *c) 705 { 706 unsigned int r; 707 if (a->empty || b->empty) { 708 snd_interval_none(c); 709 return; 710 } 711 c->empty = 0; 712 c->min = muldiv32(a->min, b->min, k, &r); 713 c->openmin = (r || a->openmin || b->openmin); 714 c->max = muldiv32(a->max, b->max, k, &r); 715 if (r) { 716 c->max++; 717 c->openmax = 1; 718 } else 719 c->openmax = (a->openmax || b->openmax); 720 c->integer = 0; 721 } 722 723 /** 724 * snd_interval_mulkdiv - refine the interval value 725 * @a: dividend 1 726 * @k: dividend 2 (as integer) 727 * @b: divisor 728 * @c: result 729 * 730 * c = a * k / b 731 * 732 * Returns non-zero if the value is changed, zero if not changed. 733 */ 734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 735 const struct snd_interval *b, struct snd_interval *c) 736 { 737 unsigned int r; 738 if (a->empty || b->empty) { 739 snd_interval_none(c); 740 return; 741 } 742 c->empty = 0; 743 c->min = muldiv32(a->min, k, b->max, &r); 744 c->openmin = (r || a->openmin || b->openmax); 745 if (b->min > 0) { 746 c->max = muldiv32(a->max, k, b->min, &r); 747 if (r) { 748 c->max++; 749 c->openmax = 1; 750 } else 751 c->openmax = (a->openmax || b->openmin); 752 } else { 753 c->max = UINT_MAX; 754 c->openmax = 0; 755 } 756 c->integer = 0; 757 } 758 759 /* ---- */ 760 761 762 /** 763 * snd_interval_ratnum - refine the interval value 764 * @i: interval to refine 765 * @rats_count: number of ratnum_t 766 * @rats: ratnum_t array 767 * @nump: pointer to store the resultant numerator 768 * @denp: pointer to store the resultant denominator 769 * 770 * Return: Positive if the value is changed, zero if it's not changed, or a 771 * negative error code. 772 */ 773 int snd_interval_ratnum(struct snd_interval *i, 774 unsigned int rats_count, struct snd_ratnum *rats, 775 unsigned int *nump, unsigned int *denp) 776 { 777 unsigned int best_num, best_den; 778 int best_diff; 779 unsigned int k; 780 struct snd_interval t; 781 int err; 782 unsigned int result_num, result_den; 783 int result_diff; 784 785 best_num = best_den = best_diff = 0; 786 for (k = 0; k < rats_count; ++k) { 787 unsigned int num = rats[k].num; 788 unsigned int den; 789 unsigned int q = i->min; 790 int diff; 791 if (q == 0) 792 q = 1; 793 den = div_up(num, q); 794 if (den < rats[k].den_min) 795 continue; 796 if (den > rats[k].den_max) 797 den = rats[k].den_max; 798 else { 799 unsigned int r; 800 r = (den - rats[k].den_min) % rats[k].den_step; 801 if (r != 0) 802 den -= r; 803 } 804 diff = num - q * den; 805 if (diff < 0) 806 diff = -diff; 807 if (best_num == 0 || 808 diff * best_den < best_diff * den) { 809 best_diff = diff; 810 best_den = den; 811 best_num = num; 812 } 813 } 814 if (best_den == 0) { 815 i->empty = 1; 816 return -EINVAL; 817 } 818 t.min = div_down(best_num, best_den); 819 t.openmin = !!(best_num % best_den); 820 821 result_num = best_num; 822 result_diff = best_diff; 823 result_den = best_den; 824 best_num = best_den = best_diff = 0; 825 for (k = 0; k < rats_count; ++k) { 826 unsigned int num = rats[k].num; 827 unsigned int den; 828 unsigned int q = i->max; 829 int diff; 830 if (q == 0) { 831 i->empty = 1; 832 return -EINVAL; 833 } 834 den = div_down(num, q); 835 if (den > rats[k].den_max) 836 continue; 837 if (den < rats[k].den_min) 838 den = rats[k].den_min; 839 else { 840 unsigned int r; 841 r = (den - rats[k].den_min) % rats[k].den_step; 842 if (r != 0) 843 den += rats[k].den_step - r; 844 } 845 diff = q * den - num; 846 if (diff < 0) 847 diff = -diff; 848 if (best_num == 0 || 849 diff * best_den < best_diff * den) { 850 best_diff = diff; 851 best_den = den; 852 best_num = num; 853 } 854 } 855 if (best_den == 0) { 856 i->empty = 1; 857 return -EINVAL; 858 } 859 t.max = div_up(best_num, best_den); 860 t.openmax = !!(best_num % best_den); 861 t.integer = 0; 862 err = snd_interval_refine(i, &t); 863 if (err < 0) 864 return err; 865 866 if (snd_interval_single(i)) { 867 if (best_diff * result_den < result_diff * best_den) { 868 result_num = best_num; 869 result_den = best_den; 870 } 871 if (nump) 872 *nump = result_num; 873 if (denp) 874 *denp = result_den; 875 } 876 return err; 877 } 878 879 EXPORT_SYMBOL(snd_interval_ratnum); 880 881 /** 882 * snd_interval_ratden - refine the interval value 883 * @i: interval to refine 884 * @rats_count: number of struct ratden 885 * @rats: struct ratden array 886 * @nump: pointer to store the resultant numerator 887 * @denp: pointer to store the resultant denominator 888 * 889 * Return: Positive if the value is changed, zero if it's not changed, or a 890 * negative error code. 891 */ 892 static int snd_interval_ratden(struct snd_interval *i, 893 unsigned int rats_count, struct snd_ratden *rats, 894 unsigned int *nump, unsigned int *denp) 895 { 896 unsigned int best_num, best_diff, best_den; 897 unsigned int k; 898 struct snd_interval t; 899 int err; 900 901 best_num = best_den = best_diff = 0; 902 for (k = 0; k < rats_count; ++k) { 903 unsigned int num; 904 unsigned int den = rats[k].den; 905 unsigned int q = i->min; 906 int diff; 907 num = mul(q, den); 908 if (num > rats[k].num_max) 909 continue; 910 if (num < rats[k].num_min) 911 num = rats[k].num_max; 912 else { 913 unsigned int r; 914 r = (num - rats[k].num_min) % rats[k].num_step; 915 if (r != 0) 916 num += rats[k].num_step - r; 917 } 918 diff = num - q * den; 919 if (best_num == 0 || 920 diff * best_den < best_diff * den) { 921 best_diff = diff; 922 best_den = den; 923 best_num = num; 924 } 925 } 926 if (best_den == 0) { 927 i->empty = 1; 928 return -EINVAL; 929 } 930 t.min = div_down(best_num, best_den); 931 t.openmin = !!(best_num % best_den); 932 933 best_num = best_den = best_diff = 0; 934 for (k = 0; k < rats_count; ++k) { 935 unsigned int num; 936 unsigned int den = rats[k].den; 937 unsigned int q = i->max; 938 int diff; 939 num = mul(q, den); 940 if (num < rats[k].num_min) 941 continue; 942 if (num > rats[k].num_max) 943 num = rats[k].num_max; 944 else { 945 unsigned int r; 946 r = (num - rats[k].num_min) % rats[k].num_step; 947 if (r != 0) 948 num -= r; 949 } 950 diff = q * den - num; 951 if (best_num == 0 || 952 diff * best_den < best_diff * den) { 953 best_diff = diff; 954 best_den = den; 955 best_num = num; 956 } 957 } 958 if (best_den == 0) { 959 i->empty = 1; 960 return -EINVAL; 961 } 962 t.max = div_up(best_num, best_den); 963 t.openmax = !!(best_num % best_den); 964 t.integer = 0; 965 err = snd_interval_refine(i, &t); 966 if (err < 0) 967 return err; 968 969 if (snd_interval_single(i)) { 970 if (nump) 971 *nump = best_num; 972 if (denp) 973 *denp = best_den; 974 } 975 return err; 976 } 977 978 /** 979 * snd_interval_list - refine the interval value from the list 980 * @i: the interval value to refine 981 * @count: the number of elements in the list 982 * @list: the value list 983 * @mask: the bit-mask to evaluate 984 * 985 * Refines the interval value from the list. 986 * When mask is non-zero, only the elements corresponding to bit 1 are 987 * evaluated. 988 * 989 * Return: Positive if the value is changed, zero if it's not changed, or a 990 * negative error code. 991 */ 992 int snd_interval_list(struct snd_interval *i, unsigned int count, 993 const unsigned int *list, unsigned int mask) 994 { 995 unsigned int k; 996 struct snd_interval list_range; 997 998 if (!count) { 999 i->empty = 1; 1000 return -EINVAL; 1001 } 1002 snd_interval_any(&list_range); 1003 list_range.min = UINT_MAX; 1004 list_range.max = 0; 1005 for (k = 0; k < count; k++) { 1006 if (mask && !(mask & (1 << k))) 1007 continue; 1008 if (!snd_interval_test(i, list[k])) 1009 continue; 1010 list_range.min = min(list_range.min, list[k]); 1011 list_range.max = max(list_range.max, list[k]); 1012 } 1013 return snd_interval_refine(i, &list_range); 1014 } 1015 1016 EXPORT_SYMBOL(snd_interval_list); 1017 1018 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1019 { 1020 unsigned int n; 1021 int changed = 0; 1022 n = i->min % step; 1023 if (n != 0 || i->openmin) { 1024 i->min += step - n; 1025 i->openmin = 0; 1026 changed = 1; 1027 } 1028 n = i->max % step; 1029 if (n != 0 || i->openmax) { 1030 i->max -= n; 1031 i->openmax = 0; 1032 changed = 1; 1033 } 1034 if (snd_interval_checkempty(i)) { 1035 i->empty = 1; 1036 return -EINVAL; 1037 } 1038 return changed; 1039 } 1040 1041 /* Info constraints helpers */ 1042 1043 /** 1044 * snd_pcm_hw_rule_add - add the hw-constraint rule 1045 * @runtime: the pcm runtime instance 1046 * @cond: condition bits 1047 * @var: the variable to evaluate 1048 * @func: the evaluation function 1049 * @private: the private data pointer passed to function 1050 * @dep: the dependent variables 1051 * 1052 * Return: Zero if successful, or a negative error code on failure. 1053 */ 1054 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1055 int var, 1056 snd_pcm_hw_rule_func_t func, void *private, 1057 int dep, ...) 1058 { 1059 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1060 struct snd_pcm_hw_rule *c; 1061 unsigned int k; 1062 va_list args; 1063 va_start(args, dep); 1064 if (constrs->rules_num >= constrs->rules_all) { 1065 struct snd_pcm_hw_rule *new; 1066 unsigned int new_rules = constrs->rules_all + 16; 1067 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1068 if (!new) { 1069 va_end(args); 1070 return -ENOMEM; 1071 } 1072 if (constrs->rules) { 1073 memcpy(new, constrs->rules, 1074 constrs->rules_num * sizeof(*c)); 1075 kfree(constrs->rules); 1076 } 1077 constrs->rules = new; 1078 constrs->rules_all = new_rules; 1079 } 1080 c = &constrs->rules[constrs->rules_num]; 1081 c->cond = cond; 1082 c->func = func; 1083 c->var = var; 1084 c->private = private; 1085 k = 0; 1086 while (1) { 1087 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1088 va_end(args); 1089 return -EINVAL; 1090 } 1091 c->deps[k++] = dep; 1092 if (dep < 0) 1093 break; 1094 dep = va_arg(args, int); 1095 } 1096 constrs->rules_num++; 1097 va_end(args); 1098 return 0; 1099 } 1100 1101 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1102 1103 /** 1104 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1105 * @runtime: PCM runtime instance 1106 * @var: hw_params variable to apply the mask 1107 * @mask: the bitmap mask 1108 * 1109 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1110 * 1111 * Return: Zero if successful, or a negative error code on failure. 1112 */ 1113 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1114 u_int32_t mask) 1115 { 1116 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1117 struct snd_mask *maskp = constrs_mask(constrs, var); 1118 *maskp->bits &= mask; 1119 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1120 if (*maskp->bits == 0) 1121 return -EINVAL; 1122 return 0; 1123 } 1124 1125 /** 1126 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1127 * @runtime: PCM runtime instance 1128 * @var: hw_params variable to apply the mask 1129 * @mask: the 64bit bitmap mask 1130 * 1131 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1132 * 1133 * Return: Zero if successful, or a negative error code on failure. 1134 */ 1135 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1136 u_int64_t mask) 1137 { 1138 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1139 struct snd_mask *maskp = constrs_mask(constrs, var); 1140 maskp->bits[0] &= (u_int32_t)mask; 1141 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1142 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1143 if (! maskp->bits[0] && ! maskp->bits[1]) 1144 return -EINVAL; 1145 return 0; 1146 } 1147 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1148 1149 /** 1150 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1151 * @runtime: PCM runtime instance 1152 * @var: hw_params variable to apply the integer constraint 1153 * 1154 * Apply the constraint of integer to an interval parameter. 1155 * 1156 * Return: Positive if the value is changed, zero if it's not changed, or a 1157 * negative error code. 1158 */ 1159 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1160 { 1161 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1162 return snd_interval_setinteger(constrs_interval(constrs, var)); 1163 } 1164 1165 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1166 1167 /** 1168 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1169 * @runtime: PCM runtime instance 1170 * @var: hw_params variable to apply the range 1171 * @min: the minimal value 1172 * @max: the maximal value 1173 * 1174 * Apply the min/max range constraint to an interval parameter. 1175 * 1176 * Return: Positive if the value is changed, zero if it's not changed, or a 1177 * negative error code. 1178 */ 1179 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1180 unsigned int min, unsigned int max) 1181 { 1182 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1183 struct snd_interval t; 1184 t.min = min; 1185 t.max = max; 1186 t.openmin = t.openmax = 0; 1187 t.integer = 0; 1188 return snd_interval_refine(constrs_interval(constrs, var), &t); 1189 } 1190 1191 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1192 1193 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1194 struct snd_pcm_hw_rule *rule) 1195 { 1196 struct snd_pcm_hw_constraint_list *list = rule->private; 1197 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1198 } 1199 1200 1201 /** 1202 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1203 * @runtime: PCM runtime instance 1204 * @cond: condition bits 1205 * @var: hw_params variable to apply the list constraint 1206 * @l: list 1207 * 1208 * Apply the list of constraints to an interval parameter. 1209 * 1210 * Return: Zero if successful, or a negative error code on failure. 1211 */ 1212 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1213 unsigned int cond, 1214 snd_pcm_hw_param_t var, 1215 const struct snd_pcm_hw_constraint_list *l) 1216 { 1217 return snd_pcm_hw_rule_add(runtime, cond, var, 1218 snd_pcm_hw_rule_list, (void *)l, 1219 var, -1); 1220 } 1221 1222 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1223 1224 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1225 struct snd_pcm_hw_rule *rule) 1226 { 1227 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1228 unsigned int num = 0, den = 0; 1229 int err; 1230 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1231 r->nrats, r->rats, &num, &den); 1232 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1233 params->rate_num = num; 1234 params->rate_den = den; 1235 } 1236 return err; 1237 } 1238 1239 /** 1240 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1241 * @runtime: PCM runtime instance 1242 * @cond: condition bits 1243 * @var: hw_params variable to apply the ratnums constraint 1244 * @r: struct snd_ratnums constriants 1245 * 1246 * Return: Zero if successful, or a negative error code on failure. 1247 */ 1248 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1249 unsigned int cond, 1250 snd_pcm_hw_param_t var, 1251 struct snd_pcm_hw_constraint_ratnums *r) 1252 { 1253 return snd_pcm_hw_rule_add(runtime, cond, var, 1254 snd_pcm_hw_rule_ratnums, r, 1255 var, -1); 1256 } 1257 1258 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1259 1260 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1261 struct snd_pcm_hw_rule *rule) 1262 { 1263 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1264 unsigned int num = 0, den = 0; 1265 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1266 r->nrats, r->rats, &num, &den); 1267 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1268 params->rate_num = num; 1269 params->rate_den = den; 1270 } 1271 return err; 1272 } 1273 1274 /** 1275 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1276 * @runtime: PCM runtime instance 1277 * @cond: condition bits 1278 * @var: hw_params variable to apply the ratdens constraint 1279 * @r: struct snd_ratdens constriants 1280 * 1281 * Return: Zero if successful, or a negative error code on failure. 1282 */ 1283 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1284 unsigned int cond, 1285 snd_pcm_hw_param_t var, 1286 struct snd_pcm_hw_constraint_ratdens *r) 1287 { 1288 return snd_pcm_hw_rule_add(runtime, cond, var, 1289 snd_pcm_hw_rule_ratdens, r, 1290 var, -1); 1291 } 1292 1293 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1294 1295 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1296 struct snd_pcm_hw_rule *rule) 1297 { 1298 unsigned int l = (unsigned long) rule->private; 1299 int width = l & 0xffff; 1300 unsigned int msbits = l >> 16; 1301 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1302 1303 if (!snd_interval_single(i)) 1304 return 0; 1305 1306 if ((snd_interval_value(i) == width) || 1307 (width == 0 && snd_interval_value(i) > msbits)) 1308 params->msbits = min_not_zero(params->msbits, msbits); 1309 1310 return 0; 1311 } 1312 1313 /** 1314 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1315 * @runtime: PCM runtime instance 1316 * @cond: condition bits 1317 * @width: sample bits width 1318 * @msbits: msbits width 1319 * 1320 * This constraint will set the number of most significant bits (msbits) if a 1321 * sample format with the specified width has been select. If width is set to 0 1322 * the msbits will be set for any sample format with a width larger than the 1323 * specified msbits. 1324 * 1325 * Return: Zero if successful, or a negative error code on failure. 1326 */ 1327 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1328 unsigned int cond, 1329 unsigned int width, 1330 unsigned int msbits) 1331 { 1332 unsigned long l = (msbits << 16) | width; 1333 return snd_pcm_hw_rule_add(runtime, cond, -1, 1334 snd_pcm_hw_rule_msbits, 1335 (void*) l, 1336 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1337 } 1338 1339 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1340 1341 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1342 struct snd_pcm_hw_rule *rule) 1343 { 1344 unsigned long step = (unsigned long) rule->private; 1345 return snd_interval_step(hw_param_interval(params, rule->var), step); 1346 } 1347 1348 /** 1349 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1350 * @runtime: PCM runtime instance 1351 * @cond: condition bits 1352 * @var: hw_params variable to apply the step constraint 1353 * @step: step size 1354 * 1355 * Return: Zero if successful, or a negative error code on failure. 1356 */ 1357 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1358 unsigned int cond, 1359 snd_pcm_hw_param_t var, 1360 unsigned long step) 1361 { 1362 return snd_pcm_hw_rule_add(runtime, cond, var, 1363 snd_pcm_hw_rule_step, (void *) step, 1364 var, -1); 1365 } 1366 1367 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1368 1369 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1370 { 1371 static unsigned int pow2_sizes[] = { 1372 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1373 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1374 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1375 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1376 }; 1377 return snd_interval_list(hw_param_interval(params, rule->var), 1378 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1379 } 1380 1381 /** 1382 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1383 * @runtime: PCM runtime instance 1384 * @cond: condition bits 1385 * @var: hw_params variable to apply the power-of-2 constraint 1386 * 1387 * Return: Zero if successful, or a negative error code on failure. 1388 */ 1389 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1390 unsigned int cond, 1391 snd_pcm_hw_param_t var) 1392 { 1393 return snd_pcm_hw_rule_add(runtime, cond, var, 1394 snd_pcm_hw_rule_pow2, NULL, 1395 var, -1); 1396 } 1397 1398 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1399 1400 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1401 struct snd_pcm_hw_rule *rule) 1402 { 1403 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1404 struct snd_interval *rate; 1405 1406 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1407 return snd_interval_list(rate, 1, &base_rate, 0); 1408 } 1409 1410 /** 1411 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1412 * @runtime: PCM runtime instance 1413 * @base_rate: the rate at which the hardware does not resample 1414 * 1415 * Return: Zero if successful, or a negative error code on failure. 1416 */ 1417 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1418 unsigned int base_rate) 1419 { 1420 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1421 SNDRV_PCM_HW_PARAM_RATE, 1422 snd_pcm_hw_rule_noresample_func, 1423 (void *)(uintptr_t)base_rate, 1424 SNDRV_PCM_HW_PARAM_RATE, -1); 1425 } 1426 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1427 1428 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1429 snd_pcm_hw_param_t var) 1430 { 1431 if (hw_is_mask(var)) { 1432 snd_mask_any(hw_param_mask(params, var)); 1433 params->cmask |= 1 << var; 1434 params->rmask |= 1 << var; 1435 return; 1436 } 1437 if (hw_is_interval(var)) { 1438 snd_interval_any(hw_param_interval(params, var)); 1439 params->cmask |= 1 << var; 1440 params->rmask |= 1 << var; 1441 return; 1442 } 1443 snd_BUG(); 1444 } 1445 1446 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1447 { 1448 unsigned int k; 1449 memset(params, 0, sizeof(*params)); 1450 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1451 _snd_pcm_hw_param_any(params, k); 1452 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1453 _snd_pcm_hw_param_any(params, k); 1454 params->info = ~0U; 1455 } 1456 1457 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1458 1459 /** 1460 * snd_pcm_hw_param_value - return @params field @var value 1461 * @params: the hw_params instance 1462 * @var: parameter to retrieve 1463 * @dir: pointer to the direction (-1,0,1) or %NULL 1464 * 1465 * Return: The value for field @var if it's fixed in configuration space 1466 * defined by @params. -%EINVAL otherwise. 1467 */ 1468 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1469 snd_pcm_hw_param_t var, int *dir) 1470 { 1471 if (hw_is_mask(var)) { 1472 const struct snd_mask *mask = hw_param_mask_c(params, var); 1473 if (!snd_mask_single(mask)) 1474 return -EINVAL; 1475 if (dir) 1476 *dir = 0; 1477 return snd_mask_value(mask); 1478 } 1479 if (hw_is_interval(var)) { 1480 const struct snd_interval *i = hw_param_interval_c(params, var); 1481 if (!snd_interval_single(i)) 1482 return -EINVAL; 1483 if (dir) 1484 *dir = i->openmin; 1485 return snd_interval_value(i); 1486 } 1487 return -EINVAL; 1488 } 1489 1490 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1491 1492 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1493 snd_pcm_hw_param_t var) 1494 { 1495 if (hw_is_mask(var)) { 1496 snd_mask_none(hw_param_mask(params, var)); 1497 params->cmask |= 1 << var; 1498 params->rmask |= 1 << var; 1499 } else if (hw_is_interval(var)) { 1500 snd_interval_none(hw_param_interval(params, var)); 1501 params->cmask |= 1 << var; 1502 params->rmask |= 1 << var; 1503 } else { 1504 snd_BUG(); 1505 } 1506 } 1507 1508 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1509 1510 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1511 snd_pcm_hw_param_t var) 1512 { 1513 int changed; 1514 if (hw_is_mask(var)) 1515 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1516 else if (hw_is_interval(var)) 1517 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1518 else 1519 return -EINVAL; 1520 if (changed) { 1521 params->cmask |= 1 << var; 1522 params->rmask |= 1 << var; 1523 } 1524 return changed; 1525 } 1526 1527 1528 /** 1529 * snd_pcm_hw_param_first - refine config space and return minimum value 1530 * @pcm: PCM instance 1531 * @params: the hw_params instance 1532 * @var: parameter to retrieve 1533 * @dir: pointer to the direction (-1,0,1) or %NULL 1534 * 1535 * Inside configuration space defined by @params remove from @var all 1536 * values > minimum. Reduce configuration space accordingly. 1537 * 1538 * Return: The minimum, or a negative error code on failure. 1539 */ 1540 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1541 struct snd_pcm_hw_params *params, 1542 snd_pcm_hw_param_t var, int *dir) 1543 { 1544 int changed = _snd_pcm_hw_param_first(params, var); 1545 if (changed < 0) 1546 return changed; 1547 if (params->rmask) { 1548 int err = snd_pcm_hw_refine(pcm, params); 1549 if (snd_BUG_ON(err < 0)) 1550 return err; 1551 } 1552 return snd_pcm_hw_param_value(params, var, dir); 1553 } 1554 1555 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1556 1557 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1558 snd_pcm_hw_param_t var) 1559 { 1560 int changed; 1561 if (hw_is_mask(var)) 1562 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1563 else if (hw_is_interval(var)) 1564 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1565 else 1566 return -EINVAL; 1567 if (changed) { 1568 params->cmask |= 1 << var; 1569 params->rmask |= 1 << var; 1570 } 1571 return changed; 1572 } 1573 1574 1575 /** 1576 * snd_pcm_hw_param_last - refine config space and return maximum value 1577 * @pcm: PCM instance 1578 * @params: the hw_params instance 1579 * @var: parameter to retrieve 1580 * @dir: pointer to the direction (-1,0,1) or %NULL 1581 * 1582 * Inside configuration space defined by @params remove from @var all 1583 * values < maximum. Reduce configuration space accordingly. 1584 * 1585 * Return: The maximum, or a negative error code on failure. 1586 */ 1587 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1588 struct snd_pcm_hw_params *params, 1589 snd_pcm_hw_param_t var, int *dir) 1590 { 1591 int changed = _snd_pcm_hw_param_last(params, var); 1592 if (changed < 0) 1593 return changed; 1594 if (params->rmask) { 1595 int err = snd_pcm_hw_refine(pcm, params); 1596 if (snd_BUG_ON(err < 0)) 1597 return err; 1598 } 1599 return snd_pcm_hw_param_value(params, var, dir); 1600 } 1601 1602 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1603 1604 /** 1605 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1606 * @pcm: PCM instance 1607 * @params: the hw_params instance 1608 * 1609 * Choose one configuration from configuration space defined by @params. 1610 * The configuration chosen is that obtained fixing in this order: 1611 * first access, first format, first subformat, min channels, 1612 * min rate, min period time, max buffer size, min tick time 1613 * 1614 * Return: Zero if successful, or a negative error code on failure. 1615 */ 1616 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1617 struct snd_pcm_hw_params *params) 1618 { 1619 static int vars[] = { 1620 SNDRV_PCM_HW_PARAM_ACCESS, 1621 SNDRV_PCM_HW_PARAM_FORMAT, 1622 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1623 SNDRV_PCM_HW_PARAM_CHANNELS, 1624 SNDRV_PCM_HW_PARAM_RATE, 1625 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1626 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1627 SNDRV_PCM_HW_PARAM_TICK_TIME, 1628 -1 1629 }; 1630 int err, *v; 1631 1632 for (v = vars; *v != -1; v++) { 1633 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1634 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1635 else 1636 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1637 if (snd_BUG_ON(err < 0)) 1638 return err; 1639 } 1640 return 0; 1641 } 1642 1643 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1644 void *arg) 1645 { 1646 struct snd_pcm_runtime *runtime = substream->runtime; 1647 unsigned long flags; 1648 snd_pcm_stream_lock_irqsave(substream, flags); 1649 if (snd_pcm_running(substream) && 1650 snd_pcm_update_hw_ptr(substream) >= 0) 1651 runtime->status->hw_ptr %= runtime->buffer_size; 1652 else { 1653 runtime->status->hw_ptr = 0; 1654 runtime->hw_ptr_wrap = 0; 1655 } 1656 snd_pcm_stream_unlock_irqrestore(substream, flags); 1657 return 0; 1658 } 1659 1660 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1661 void *arg) 1662 { 1663 struct snd_pcm_channel_info *info = arg; 1664 struct snd_pcm_runtime *runtime = substream->runtime; 1665 int width; 1666 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1667 info->offset = -1; 1668 return 0; 1669 } 1670 width = snd_pcm_format_physical_width(runtime->format); 1671 if (width < 0) 1672 return width; 1673 info->offset = 0; 1674 switch (runtime->access) { 1675 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1676 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1677 info->first = info->channel * width; 1678 info->step = runtime->channels * width; 1679 break; 1680 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1681 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1682 { 1683 size_t size = runtime->dma_bytes / runtime->channels; 1684 info->first = info->channel * size * 8; 1685 info->step = width; 1686 break; 1687 } 1688 default: 1689 snd_BUG(); 1690 break; 1691 } 1692 return 0; 1693 } 1694 1695 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1696 void *arg) 1697 { 1698 struct snd_pcm_hw_params *params = arg; 1699 snd_pcm_format_t format; 1700 int channels; 1701 ssize_t frame_size; 1702 1703 params->fifo_size = substream->runtime->hw.fifo_size; 1704 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1705 format = params_format(params); 1706 channels = params_channels(params); 1707 frame_size = snd_pcm_format_size(format, channels); 1708 if (frame_size > 0) 1709 params->fifo_size /= (unsigned)frame_size; 1710 } 1711 return 0; 1712 } 1713 1714 /** 1715 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1716 * @substream: the pcm substream instance 1717 * @cmd: ioctl command 1718 * @arg: ioctl argument 1719 * 1720 * Processes the generic ioctl commands for PCM. 1721 * Can be passed as the ioctl callback for PCM ops. 1722 * 1723 * Return: Zero if successful, or a negative error code on failure. 1724 */ 1725 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1726 unsigned int cmd, void *arg) 1727 { 1728 switch (cmd) { 1729 case SNDRV_PCM_IOCTL1_INFO: 1730 return 0; 1731 case SNDRV_PCM_IOCTL1_RESET: 1732 return snd_pcm_lib_ioctl_reset(substream, arg); 1733 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1734 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1735 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1736 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1737 } 1738 return -ENXIO; 1739 } 1740 1741 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1742 1743 /** 1744 * snd_pcm_period_elapsed - update the pcm status for the next period 1745 * @substream: the pcm substream instance 1746 * 1747 * This function is called from the interrupt handler when the 1748 * PCM has processed the period size. It will update the current 1749 * pointer, wake up sleepers, etc. 1750 * 1751 * Even if more than one periods have elapsed since the last call, you 1752 * have to call this only once. 1753 */ 1754 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1755 { 1756 struct snd_pcm_runtime *runtime; 1757 unsigned long flags; 1758 1759 if (PCM_RUNTIME_CHECK(substream)) 1760 return; 1761 runtime = substream->runtime; 1762 1763 if (runtime->transfer_ack_begin) 1764 runtime->transfer_ack_begin(substream); 1765 1766 snd_pcm_stream_lock_irqsave(substream, flags); 1767 if (!snd_pcm_running(substream) || 1768 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1769 goto _end; 1770 1771 if (substream->timer_running) 1772 snd_timer_interrupt(substream->timer, 1); 1773 _end: 1774 snd_pcm_stream_unlock_irqrestore(substream, flags); 1775 if (runtime->transfer_ack_end) 1776 runtime->transfer_ack_end(substream); 1777 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1778 } 1779 1780 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1781 1782 /* 1783 * Wait until avail_min data becomes available 1784 * Returns a negative error code if any error occurs during operation. 1785 * The available space is stored on availp. When err = 0 and avail = 0 1786 * on the capture stream, it indicates the stream is in DRAINING state. 1787 */ 1788 static int wait_for_avail(struct snd_pcm_substream *substream, 1789 snd_pcm_uframes_t *availp) 1790 { 1791 struct snd_pcm_runtime *runtime = substream->runtime; 1792 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1793 wait_queue_t wait; 1794 int err = 0; 1795 snd_pcm_uframes_t avail = 0; 1796 long wait_time, tout; 1797 1798 init_waitqueue_entry(&wait, current); 1799 set_current_state(TASK_INTERRUPTIBLE); 1800 add_wait_queue(&runtime->tsleep, &wait); 1801 1802 if (runtime->no_period_wakeup) 1803 wait_time = MAX_SCHEDULE_TIMEOUT; 1804 else { 1805 wait_time = 10; 1806 if (runtime->rate) { 1807 long t = runtime->period_size * 2 / runtime->rate; 1808 wait_time = max(t, wait_time); 1809 } 1810 wait_time = msecs_to_jiffies(wait_time * 1000); 1811 } 1812 1813 for (;;) { 1814 if (signal_pending(current)) { 1815 err = -ERESTARTSYS; 1816 break; 1817 } 1818 1819 /* 1820 * We need to check if space became available already 1821 * (and thus the wakeup happened already) first to close 1822 * the race of space already having become available. 1823 * This check must happen after been added to the waitqueue 1824 * and having current state be INTERRUPTIBLE. 1825 */ 1826 if (is_playback) 1827 avail = snd_pcm_playback_avail(runtime); 1828 else 1829 avail = snd_pcm_capture_avail(runtime); 1830 if (avail >= runtime->twake) 1831 break; 1832 snd_pcm_stream_unlock_irq(substream); 1833 1834 tout = schedule_timeout(wait_time); 1835 1836 snd_pcm_stream_lock_irq(substream); 1837 set_current_state(TASK_INTERRUPTIBLE); 1838 switch (runtime->status->state) { 1839 case SNDRV_PCM_STATE_SUSPENDED: 1840 err = -ESTRPIPE; 1841 goto _endloop; 1842 case SNDRV_PCM_STATE_XRUN: 1843 err = -EPIPE; 1844 goto _endloop; 1845 case SNDRV_PCM_STATE_DRAINING: 1846 if (is_playback) 1847 err = -EPIPE; 1848 else 1849 avail = 0; /* indicate draining */ 1850 goto _endloop; 1851 case SNDRV_PCM_STATE_OPEN: 1852 case SNDRV_PCM_STATE_SETUP: 1853 case SNDRV_PCM_STATE_DISCONNECTED: 1854 err = -EBADFD; 1855 goto _endloop; 1856 case SNDRV_PCM_STATE_PAUSED: 1857 continue; 1858 } 1859 if (!tout) { 1860 pcm_dbg(substream->pcm, 1861 "%s write error (DMA or IRQ trouble?)\n", 1862 is_playback ? "playback" : "capture"); 1863 err = -EIO; 1864 break; 1865 } 1866 } 1867 _endloop: 1868 set_current_state(TASK_RUNNING); 1869 remove_wait_queue(&runtime->tsleep, &wait); 1870 *availp = avail; 1871 return err; 1872 } 1873 1874 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1875 unsigned int hwoff, 1876 unsigned long data, unsigned int off, 1877 snd_pcm_uframes_t frames) 1878 { 1879 struct snd_pcm_runtime *runtime = substream->runtime; 1880 int err; 1881 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1882 if (substream->ops->copy) { 1883 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1884 return err; 1885 } else { 1886 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1887 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1888 return -EFAULT; 1889 } 1890 return 0; 1891 } 1892 1893 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1894 unsigned long data, unsigned int off, 1895 snd_pcm_uframes_t size); 1896 1897 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1898 unsigned long data, 1899 snd_pcm_uframes_t size, 1900 int nonblock, 1901 transfer_f transfer) 1902 { 1903 struct snd_pcm_runtime *runtime = substream->runtime; 1904 snd_pcm_uframes_t xfer = 0; 1905 snd_pcm_uframes_t offset = 0; 1906 snd_pcm_uframes_t avail; 1907 int err = 0; 1908 1909 if (size == 0) 1910 return 0; 1911 1912 snd_pcm_stream_lock_irq(substream); 1913 switch (runtime->status->state) { 1914 case SNDRV_PCM_STATE_PREPARED: 1915 case SNDRV_PCM_STATE_RUNNING: 1916 case SNDRV_PCM_STATE_PAUSED: 1917 break; 1918 case SNDRV_PCM_STATE_XRUN: 1919 err = -EPIPE; 1920 goto _end_unlock; 1921 case SNDRV_PCM_STATE_SUSPENDED: 1922 err = -ESTRPIPE; 1923 goto _end_unlock; 1924 default: 1925 err = -EBADFD; 1926 goto _end_unlock; 1927 } 1928 1929 runtime->twake = runtime->control->avail_min ? : 1; 1930 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1931 snd_pcm_update_hw_ptr(substream); 1932 avail = snd_pcm_playback_avail(runtime); 1933 while (size > 0) { 1934 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1935 snd_pcm_uframes_t cont; 1936 if (!avail) { 1937 if (nonblock) { 1938 err = -EAGAIN; 1939 goto _end_unlock; 1940 } 1941 runtime->twake = min_t(snd_pcm_uframes_t, size, 1942 runtime->control->avail_min ? : 1); 1943 err = wait_for_avail(substream, &avail); 1944 if (err < 0) 1945 goto _end_unlock; 1946 } 1947 frames = size > avail ? avail : size; 1948 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1949 if (frames > cont) 1950 frames = cont; 1951 if (snd_BUG_ON(!frames)) { 1952 runtime->twake = 0; 1953 snd_pcm_stream_unlock_irq(substream); 1954 return -EINVAL; 1955 } 1956 appl_ptr = runtime->control->appl_ptr; 1957 appl_ofs = appl_ptr % runtime->buffer_size; 1958 snd_pcm_stream_unlock_irq(substream); 1959 err = transfer(substream, appl_ofs, data, offset, frames); 1960 snd_pcm_stream_lock_irq(substream); 1961 if (err < 0) 1962 goto _end_unlock; 1963 switch (runtime->status->state) { 1964 case SNDRV_PCM_STATE_XRUN: 1965 err = -EPIPE; 1966 goto _end_unlock; 1967 case SNDRV_PCM_STATE_SUSPENDED: 1968 err = -ESTRPIPE; 1969 goto _end_unlock; 1970 default: 1971 break; 1972 } 1973 appl_ptr += frames; 1974 if (appl_ptr >= runtime->boundary) 1975 appl_ptr -= runtime->boundary; 1976 runtime->control->appl_ptr = appl_ptr; 1977 if (substream->ops->ack) 1978 substream->ops->ack(substream); 1979 1980 offset += frames; 1981 size -= frames; 1982 xfer += frames; 1983 avail -= frames; 1984 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1985 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1986 err = snd_pcm_start(substream); 1987 if (err < 0) 1988 goto _end_unlock; 1989 } 1990 } 1991 _end_unlock: 1992 runtime->twake = 0; 1993 if (xfer > 0 && err >= 0) 1994 snd_pcm_update_state(substream, runtime); 1995 snd_pcm_stream_unlock_irq(substream); 1996 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1997 } 1998 1999 /* sanity-check for read/write methods */ 2000 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2001 { 2002 struct snd_pcm_runtime *runtime; 2003 if (PCM_RUNTIME_CHECK(substream)) 2004 return -ENXIO; 2005 runtime = substream->runtime; 2006 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 2007 return -EINVAL; 2008 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2009 return -EBADFD; 2010 return 0; 2011 } 2012 2013 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 2014 { 2015 struct snd_pcm_runtime *runtime; 2016 int nonblock; 2017 int err; 2018 2019 err = pcm_sanity_check(substream); 2020 if (err < 0) 2021 return err; 2022 runtime = substream->runtime; 2023 nonblock = !!(substream->f_flags & O_NONBLOCK); 2024 2025 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2026 runtime->channels > 1) 2027 return -EINVAL; 2028 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 2029 snd_pcm_lib_write_transfer); 2030 } 2031 2032 EXPORT_SYMBOL(snd_pcm_lib_write); 2033 2034 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 2035 unsigned int hwoff, 2036 unsigned long data, unsigned int off, 2037 snd_pcm_uframes_t frames) 2038 { 2039 struct snd_pcm_runtime *runtime = substream->runtime; 2040 int err; 2041 void __user **bufs = (void __user **)data; 2042 int channels = runtime->channels; 2043 int c; 2044 if (substream->ops->copy) { 2045 if (snd_BUG_ON(!substream->ops->silence)) 2046 return -EINVAL; 2047 for (c = 0; c < channels; ++c, ++bufs) { 2048 if (*bufs == NULL) { 2049 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 2050 return err; 2051 } else { 2052 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2053 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2054 return err; 2055 } 2056 } 2057 } else { 2058 /* default transfer behaviour */ 2059 size_t dma_csize = runtime->dma_bytes / channels; 2060 for (c = 0; c < channels; ++c, ++bufs) { 2061 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2062 if (*bufs == NULL) { 2063 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 2064 } else { 2065 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2066 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2067 return -EFAULT; 2068 } 2069 } 2070 } 2071 return 0; 2072 } 2073 2074 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2075 void __user **bufs, 2076 snd_pcm_uframes_t frames) 2077 { 2078 struct snd_pcm_runtime *runtime; 2079 int nonblock; 2080 int err; 2081 2082 err = pcm_sanity_check(substream); 2083 if (err < 0) 2084 return err; 2085 runtime = substream->runtime; 2086 nonblock = !!(substream->f_flags & O_NONBLOCK); 2087 2088 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2089 return -EINVAL; 2090 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2091 nonblock, snd_pcm_lib_writev_transfer); 2092 } 2093 2094 EXPORT_SYMBOL(snd_pcm_lib_writev); 2095 2096 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2097 unsigned int hwoff, 2098 unsigned long data, unsigned int off, 2099 snd_pcm_uframes_t frames) 2100 { 2101 struct snd_pcm_runtime *runtime = substream->runtime; 2102 int err; 2103 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2104 if (substream->ops->copy) { 2105 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2106 return err; 2107 } else { 2108 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2109 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2110 return -EFAULT; 2111 } 2112 return 0; 2113 } 2114 2115 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2116 unsigned long data, 2117 snd_pcm_uframes_t size, 2118 int nonblock, 2119 transfer_f transfer) 2120 { 2121 struct snd_pcm_runtime *runtime = substream->runtime; 2122 snd_pcm_uframes_t xfer = 0; 2123 snd_pcm_uframes_t offset = 0; 2124 snd_pcm_uframes_t avail; 2125 int err = 0; 2126 2127 if (size == 0) 2128 return 0; 2129 2130 snd_pcm_stream_lock_irq(substream); 2131 switch (runtime->status->state) { 2132 case SNDRV_PCM_STATE_PREPARED: 2133 if (size >= runtime->start_threshold) { 2134 err = snd_pcm_start(substream); 2135 if (err < 0) 2136 goto _end_unlock; 2137 } 2138 break; 2139 case SNDRV_PCM_STATE_DRAINING: 2140 case SNDRV_PCM_STATE_RUNNING: 2141 case SNDRV_PCM_STATE_PAUSED: 2142 break; 2143 case SNDRV_PCM_STATE_XRUN: 2144 err = -EPIPE; 2145 goto _end_unlock; 2146 case SNDRV_PCM_STATE_SUSPENDED: 2147 err = -ESTRPIPE; 2148 goto _end_unlock; 2149 default: 2150 err = -EBADFD; 2151 goto _end_unlock; 2152 } 2153 2154 runtime->twake = runtime->control->avail_min ? : 1; 2155 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2156 snd_pcm_update_hw_ptr(substream); 2157 avail = snd_pcm_capture_avail(runtime); 2158 while (size > 0) { 2159 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2160 snd_pcm_uframes_t cont; 2161 if (!avail) { 2162 if (runtime->status->state == 2163 SNDRV_PCM_STATE_DRAINING) { 2164 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2165 goto _end_unlock; 2166 } 2167 if (nonblock) { 2168 err = -EAGAIN; 2169 goto _end_unlock; 2170 } 2171 runtime->twake = min_t(snd_pcm_uframes_t, size, 2172 runtime->control->avail_min ? : 1); 2173 err = wait_for_avail(substream, &avail); 2174 if (err < 0) 2175 goto _end_unlock; 2176 if (!avail) 2177 continue; /* draining */ 2178 } 2179 frames = size > avail ? avail : size; 2180 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2181 if (frames > cont) 2182 frames = cont; 2183 if (snd_BUG_ON(!frames)) { 2184 runtime->twake = 0; 2185 snd_pcm_stream_unlock_irq(substream); 2186 return -EINVAL; 2187 } 2188 appl_ptr = runtime->control->appl_ptr; 2189 appl_ofs = appl_ptr % runtime->buffer_size; 2190 snd_pcm_stream_unlock_irq(substream); 2191 err = transfer(substream, appl_ofs, data, offset, frames); 2192 snd_pcm_stream_lock_irq(substream); 2193 if (err < 0) 2194 goto _end_unlock; 2195 switch (runtime->status->state) { 2196 case SNDRV_PCM_STATE_XRUN: 2197 err = -EPIPE; 2198 goto _end_unlock; 2199 case SNDRV_PCM_STATE_SUSPENDED: 2200 err = -ESTRPIPE; 2201 goto _end_unlock; 2202 default: 2203 break; 2204 } 2205 appl_ptr += frames; 2206 if (appl_ptr >= runtime->boundary) 2207 appl_ptr -= runtime->boundary; 2208 runtime->control->appl_ptr = appl_ptr; 2209 if (substream->ops->ack) 2210 substream->ops->ack(substream); 2211 2212 offset += frames; 2213 size -= frames; 2214 xfer += frames; 2215 avail -= frames; 2216 } 2217 _end_unlock: 2218 runtime->twake = 0; 2219 if (xfer > 0 && err >= 0) 2220 snd_pcm_update_state(substream, runtime); 2221 snd_pcm_stream_unlock_irq(substream); 2222 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2223 } 2224 2225 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2226 { 2227 struct snd_pcm_runtime *runtime; 2228 int nonblock; 2229 int err; 2230 2231 err = pcm_sanity_check(substream); 2232 if (err < 0) 2233 return err; 2234 runtime = substream->runtime; 2235 nonblock = !!(substream->f_flags & O_NONBLOCK); 2236 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2237 return -EINVAL; 2238 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2239 } 2240 2241 EXPORT_SYMBOL(snd_pcm_lib_read); 2242 2243 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2244 unsigned int hwoff, 2245 unsigned long data, unsigned int off, 2246 snd_pcm_uframes_t frames) 2247 { 2248 struct snd_pcm_runtime *runtime = substream->runtime; 2249 int err; 2250 void __user **bufs = (void __user **)data; 2251 int channels = runtime->channels; 2252 int c; 2253 if (substream->ops->copy) { 2254 for (c = 0; c < channels; ++c, ++bufs) { 2255 char __user *buf; 2256 if (*bufs == NULL) 2257 continue; 2258 buf = *bufs + samples_to_bytes(runtime, off); 2259 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2260 return err; 2261 } 2262 } else { 2263 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2264 for (c = 0; c < channels; ++c, ++bufs) { 2265 char *hwbuf; 2266 char __user *buf; 2267 if (*bufs == NULL) 2268 continue; 2269 2270 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2271 buf = *bufs + samples_to_bytes(runtime, off); 2272 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2273 return -EFAULT; 2274 } 2275 } 2276 return 0; 2277 } 2278 2279 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2280 void __user **bufs, 2281 snd_pcm_uframes_t frames) 2282 { 2283 struct snd_pcm_runtime *runtime; 2284 int nonblock; 2285 int err; 2286 2287 err = pcm_sanity_check(substream); 2288 if (err < 0) 2289 return err; 2290 runtime = substream->runtime; 2291 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2292 return -EBADFD; 2293 2294 nonblock = !!(substream->f_flags & O_NONBLOCK); 2295 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2296 return -EINVAL; 2297 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2298 } 2299 2300 EXPORT_SYMBOL(snd_pcm_lib_readv); 2301 2302 /* 2303 * standard channel mapping helpers 2304 */ 2305 2306 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2307 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2308 { .channels = 1, 2309 .map = { SNDRV_CHMAP_MONO } }, 2310 { .channels = 2, 2311 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2312 { .channels = 4, 2313 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2314 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2315 { .channels = 6, 2316 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2317 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2318 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2319 { .channels = 8, 2320 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2321 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2322 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2323 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2324 { } 2325 }; 2326 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2327 2328 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2329 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2330 { .channels = 1, 2331 .map = { SNDRV_CHMAP_MONO } }, 2332 { .channels = 2, 2333 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2334 { .channels = 4, 2335 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2336 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2337 { .channels = 6, 2338 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2339 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2340 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2341 { .channels = 8, 2342 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2343 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2344 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2345 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2346 { } 2347 }; 2348 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2349 2350 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2351 { 2352 if (ch > info->max_channels) 2353 return false; 2354 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2355 } 2356 2357 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2358 struct snd_ctl_elem_info *uinfo) 2359 { 2360 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2361 2362 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2363 uinfo->count = 0; 2364 uinfo->count = info->max_channels; 2365 uinfo->value.integer.min = 0; 2366 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2367 return 0; 2368 } 2369 2370 /* get callback for channel map ctl element 2371 * stores the channel position firstly matching with the current channels 2372 */ 2373 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2374 struct snd_ctl_elem_value *ucontrol) 2375 { 2376 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2377 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2378 struct snd_pcm_substream *substream; 2379 const struct snd_pcm_chmap_elem *map; 2380 2381 if (snd_BUG_ON(!info->chmap)) 2382 return -EINVAL; 2383 substream = snd_pcm_chmap_substream(info, idx); 2384 if (!substream) 2385 return -ENODEV; 2386 memset(ucontrol->value.integer.value, 0, 2387 sizeof(ucontrol->value.integer.value)); 2388 if (!substream->runtime) 2389 return 0; /* no channels set */ 2390 for (map = info->chmap; map->channels; map++) { 2391 int i; 2392 if (map->channels == substream->runtime->channels && 2393 valid_chmap_channels(info, map->channels)) { 2394 for (i = 0; i < map->channels; i++) 2395 ucontrol->value.integer.value[i] = map->map[i]; 2396 return 0; 2397 } 2398 } 2399 return -EINVAL; 2400 } 2401 2402 /* tlv callback for channel map ctl element 2403 * expands the pre-defined channel maps in a form of TLV 2404 */ 2405 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2406 unsigned int size, unsigned int __user *tlv) 2407 { 2408 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2409 const struct snd_pcm_chmap_elem *map; 2410 unsigned int __user *dst; 2411 int c, count = 0; 2412 2413 if (snd_BUG_ON(!info->chmap)) 2414 return -EINVAL; 2415 if (size < 8) 2416 return -ENOMEM; 2417 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2418 return -EFAULT; 2419 size -= 8; 2420 dst = tlv + 2; 2421 for (map = info->chmap; map->channels; map++) { 2422 int chs_bytes = map->channels * 4; 2423 if (!valid_chmap_channels(info, map->channels)) 2424 continue; 2425 if (size < 8) 2426 return -ENOMEM; 2427 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2428 put_user(chs_bytes, dst + 1)) 2429 return -EFAULT; 2430 dst += 2; 2431 size -= 8; 2432 count += 8; 2433 if (size < chs_bytes) 2434 return -ENOMEM; 2435 size -= chs_bytes; 2436 count += chs_bytes; 2437 for (c = 0; c < map->channels; c++) { 2438 if (put_user(map->map[c], dst)) 2439 return -EFAULT; 2440 dst++; 2441 } 2442 } 2443 if (put_user(count, tlv + 1)) 2444 return -EFAULT; 2445 return 0; 2446 } 2447 2448 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2449 { 2450 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2451 info->pcm->streams[info->stream].chmap_kctl = NULL; 2452 kfree(info); 2453 } 2454 2455 /** 2456 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2457 * @pcm: the assigned PCM instance 2458 * @stream: stream direction 2459 * @chmap: channel map elements (for query) 2460 * @max_channels: the max number of channels for the stream 2461 * @private_value: the value passed to each kcontrol's private_value field 2462 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2463 * 2464 * Create channel-mapping control elements assigned to the given PCM stream(s). 2465 * Return: Zero if successful, or a negative error value. 2466 */ 2467 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2468 const struct snd_pcm_chmap_elem *chmap, 2469 int max_channels, 2470 unsigned long private_value, 2471 struct snd_pcm_chmap **info_ret) 2472 { 2473 struct snd_pcm_chmap *info; 2474 struct snd_kcontrol_new knew = { 2475 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2476 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2477 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2478 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2479 .info = pcm_chmap_ctl_info, 2480 .get = pcm_chmap_ctl_get, 2481 .tlv.c = pcm_chmap_ctl_tlv, 2482 }; 2483 int err; 2484 2485 info = kzalloc(sizeof(*info), GFP_KERNEL); 2486 if (!info) 2487 return -ENOMEM; 2488 info->pcm = pcm; 2489 info->stream = stream; 2490 info->chmap = chmap; 2491 info->max_channels = max_channels; 2492 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2493 knew.name = "Playback Channel Map"; 2494 else 2495 knew.name = "Capture Channel Map"; 2496 knew.device = pcm->device; 2497 knew.count = pcm->streams[stream].substream_count; 2498 knew.private_value = private_value; 2499 info->kctl = snd_ctl_new1(&knew, info); 2500 if (!info->kctl) { 2501 kfree(info); 2502 return -ENOMEM; 2503 } 2504 info->kctl->private_free = pcm_chmap_ctl_private_free; 2505 err = snd_ctl_add(pcm->card, info->kctl); 2506 if (err < 0) 2507 return err; 2508 pcm->streams[stream].chmap_kctl = info->kctl; 2509 if (info_ret) 2510 *info_ret = info; 2511 return 0; 2512 } 2513 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2514