xref: /openbmc/linux/sound/core/pcm_lib.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35 
36 #include "pcm_local.h"
37 
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47 
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50 
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 	struct snd_pcm_runtime *runtime = substream->runtime;
63 	snd_pcm_uframes_t frames, ofs, transfer;
64 	int err;
65 
66 	if (runtime->silence_size < runtime->boundary) {
67 		snd_pcm_sframes_t noise_dist, n;
68 		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 		if (runtime->silence_start != appl_ptr) {
70 			n = appl_ptr - runtime->silence_start;
71 			if (n < 0)
72 				n += runtime->boundary;
73 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 				runtime->silence_filled -= n;
75 			else
76 				runtime->silence_filled = 0;
77 			runtime->silence_start = appl_ptr;
78 		}
79 		if (runtime->silence_filled >= runtime->buffer_size)
80 			return;
81 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 			return;
84 		frames = runtime->silence_threshold - noise_dist;
85 		if (frames > runtime->silence_size)
86 			frames = runtime->silence_size;
87 	} else {
88 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
89 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 			if (avail > runtime->buffer_size)
91 				avail = runtime->buffer_size;
92 			runtime->silence_filled = avail > 0 ? avail : 0;
93 			runtime->silence_start = (runtime->status->hw_ptr +
94 						  runtime->silence_filled) %
95 						 runtime->boundary;
96 		} else {
97 			ofs = runtime->status->hw_ptr;
98 			frames = new_hw_ptr - ofs;
99 			if ((snd_pcm_sframes_t)frames < 0)
100 				frames += runtime->boundary;
101 			runtime->silence_filled -= frames;
102 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 				runtime->silence_filled = 0;
104 				runtime->silence_start = new_hw_ptr;
105 			} else {
106 				runtime->silence_start = ofs;
107 			}
108 		}
109 		frames = runtime->buffer_size - runtime->silence_filled;
110 	}
111 	if (snd_BUG_ON(frames > runtime->buffer_size))
112 		return;
113 	if (frames == 0)
114 		return;
115 	ofs = runtime->silence_start % runtime->buffer_size;
116 	while (frames > 0) {
117 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 		err = fill_silence_frames(substream, ofs, transfer);
119 		snd_BUG_ON(err < 0);
120 		runtime->silence_filled += transfer;
121 		frames -= transfer;
122 		ofs = 0;
123 	}
124 }
125 
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 			   char *name, size_t len)
129 {
130 	snprintf(name, len, "pcmC%dD%d%c:%d",
131 		 substream->pcm->card->number,
132 		 substream->pcm->device,
133 		 substream->stream ? 'c' : 'p',
134 		 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138 
139 #define XRUN_DEBUG_BASIC	(1<<0)
140 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
142 
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144 
145 #define xrun_debug(substream, mask) \
146 			((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)	0
149 #endif
150 
151 #define dump_stack_on_xrun(substream) do {			\
152 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
153 			dump_stack();				\
154 	} while (0)
155 
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158 	struct snd_pcm_runtime *runtime = substream->runtime;
159 
160 	trace_xrun(substream);
161 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 		char name[16];
166 		snd_pcm_debug_name(substream, name, sizeof(name));
167 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 		dump_stack_on_xrun(substream);
169 	}
170 }
171 
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
174 	do {								\
175 		trace_hw_ptr_error(substream, reason);	\
176 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
177 			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 					   (in_interrupt) ? 'Q' : 'P', ##args);	\
179 			dump_stack_on_xrun(substream);			\
180 		}							\
181 	} while (0)
182 
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184 
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186 
187 #endif
188 
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 			 struct snd_pcm_runtime *runtime)
191 {
192 	snd_pcm_uframes_t avail;
193 
194 	avail = snd_pcm_avail(substream);
195 	if (avail > runtime->avail_max)
196 		runtime->avail_max = avail;
197 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
198 		if (avail >= runtime->buffer_size) {
199 			snd_pcm_drain_done(substream);
200 			return -EPIPE;
201 		}
202 	} else {
203 		if (avail >= runtime->stop_threshold) {
204 			xrun(substream);
205 			return -EPIPE;
206 		}
207 	}
208 	if (runtime->twake) {
209 		if (avail >= runtime->twake)
210 			wake_up(&runtime->tsleep);
211 	} else if (avail >= runtime->control->avail_min)
212 		wake_up(&runtime->sleep);
213 	return 0;
214 }
215 
216 static void update_audio_tstamp(struct snd_pcm_substream *substream,
217 				struct timespec *curr_tstamp,
218 				struct timespec *audio_tstamp)
219 {
220 	struct snd_pcm_runtime *runtime = substream->runtime;
221 	u64 audio_frames, audio_nsecs;
222 	struct timespec driver_tstamp;
223 
224 	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
225 		return;
226 
227 	if (!(substream->ops->get_time_info) ||
228 		(runtime->audio_tstamp_report.actual_type ==
229 			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
230 
231 		/*
232 		 * provide audio timestamp derived from pointer position
233 		 * add delay only if requested
234 		 */
235 
236 		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
237 
238 		if (runtime->audio_tstamp_config.report_delay) {
239 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
240 				audio_frames -=  runtime->delay;
241 			else
242 				audio_frames +=  runtime->delay;
243 		}
244 		audio_nsecs = div_u64(audio_frames * 1000000000LL,
245 				runtime->rate);
246 		*audio_tstamp = ns_to_timespec(audio_nsecs);
247 	}
248 	if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
249 		runtime->status->audio_tstamp = *audio_tstamp;
250 		runtime->status->tstamp = *curr_tstamp;
251 	}
252 
253 	/*
254 	 * re-take a driver timestamp to let apps detect if the reference tstamp
255 	 * read by low-level hardware was provided with a delay
256 	 */
257 	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
258 	runtime->driver_tstamp = driver_tstamp;
259 }
260 
261 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
262 				  unsigned int in_interrupt)
263 {
264 	struct snd_pcm_runtime *runtime = substream->runtime;
265 	snd_pcm_uframes_t pos;
266 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
267 	snd_pcm_sframes_t hdelta, delta;
268 	unsigned long jdelta;
269 	unsigned long curr_jiffies;
270 	struct timespec curr_tstamp;
271 	struct timespec audio_tstamp;
272 	int crossed_boundary = 0;
273 
274 	old_hw_ptr = runtime->status->hw_ptr;
275 
276 	/*
277 	 * group pointer, time and jiffies reads to allow for more
278 	 * accurate correlations/corrections.
279 	 * The values are stored at the end of this routine after
280 	 * corrections for hw_ptr position
281 	 */
282 	pos = substream->ops->pointer(substream);
283 	curr_jiffies = jiffies;
284 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
285 		if ((substream->ops->get_time_info) &&
286 			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
287 			substream->ops->get_time_info(substream, &curr_tstamp,
288 						&audio_tstamp,
289 						&runtime->audio_tstamp_config,
290 						&runtime->audio_tstamp_report);
291 
292 			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
293 			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
294 				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
295 		} else
296 			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
297 	}
298 
299 	if (pos == SNDRV_PCM_POS_XRUN) {
300 		xrun(substream);
301 		return -EPIPE;
302 	}
303 	if (pos >= runtime->buffer_size) {
304 		if (printk_ratelimit()) {
305 			char name[16];
306 			snd_pcm_debug_name(substream, name, sizeof(name));
307 			pcm_err(substream->pcm,
308 				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
309 				name, pos, runtime->buffer_size,
310 				runtime->period_size);
311 		}
312 		pos = 0;
313 	}
314 	pos -= pos % runtime->min_align;
315 	trace_hwptr(substream, pos, in_interrupt);
316 	hw_base = runtime->hw_ptr_base;
317 	new_hw_ptr = hw_base + pos;
318 	if (in_interrupt) {
319 		/* we know that one period was processed */
320 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
321 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
322 		if (delta > new_hw_ptr) {
323 			/* check for double acknowledged interrupts */
324 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
325 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
326 				hw_base += runtime->buffer_size;
327 				if (hw_base >= runtime->boundary) {
328 					hw_base = 0;
329 					crossed_boundary++;
330 				}
331 				new_hw_ptr = hw_base + pos;
332 				goto __delta;
333 			}
334 		}
335 	}
336 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
337 	/* pointer crosses the end of the ring buffer */
338 	if (new_hw_ptr < old_hw_ptr) {
339 		hw_base += runtime->buffer_size;
340 		if (hw_base >= runtime->boundary) {
341 			hw_base = 0;
342 			crossed_boundary++;
343 		}
344 		new_hw_ptr = hw_base + pos;
345 	}
346       __delta:
347 	delta = new_hw_ptr - old_hw_ptr;
348 	if (delta < 0)
349 		delta += runtime->boundary;
350 
351 	if (runtime->no_period_wakeup) {
352 		snd_pcm_sframes_t xrun_threshold;
353 		/*
354 		 * Without regular period interrupts, we have to check
355 		 * the elapsed time to detect xruns.
356 		 */
357 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
358 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
359 			goto no_delta_check;
360 		hdelta = jdelta - delta * HZ / runtime->rate;
361 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
362 		while (hdelta > xrun_threshold) {
363 			delta += runtime->buffer_size;
364 			hw_base += runtime->buffer_size;
365 			if (hw_base >= runtime->boundary) {
366 				hw_base = 0;
367 				crossed_boundary++;
368 			}
369 			new_hw_ptr = hw_base + pos;
370 			hdelta -= runtime->hw_ptr_buffer_jiffies;
371 		}
372 		goto no_delta_check;
373 	}
374 
375 	/* something must be really wrong */
376 	if (delta >= runtime->buffer_size + runtime->period_size) {
377 		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
378 			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
379 			     substream->stream, (long)pos,
380 			     (long)new_hw_ptr, (long)old_hw_ptr);
381 		return 0;
382 	}
383 
384 	/* Do jiffies check only in xrun_debug mode */
385 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
386 		goto no_jiffies_check;
387 
388 	/* Skip the jiffies check for hardwares with BATCH flag.
389 	 * Such hardware usually just increases the position at each IRQ,
390 	 * thus it can't give any strange position.
391 	 */
392 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
393 		goto no_jiffies_check;
394 	hdelta = delta;
395 	if (hdelta < runtime->delay)
396 		goto no_jiffies_check;
397 	hdelta -= runtime->delay;
398 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
399 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
400 		delta = jdelta /
401 			(((runtime->period_size * HZ) / runtime->rate)
402 								+ HZ/100);
403 		/* move new_hw_ptr according jiffies not pos variable */
404 		new_hw_ptr = old_hw_ptr;
405 		hw_base = delta;
406 		/* use loop to avoid checks for delta overflows */
407 		/* the delta value is small or zero in most cases */
408 		while (delta > 0) {
409 			new_hw_ptr += runtime->period_size;
410 			if (new_hw_ptr >= runtime->boundary) {
411 				new_hw_ptr -= runtime->boundary;
412 				crossed_boundary--;
413 			}
414 			delta--;
415 		}
416 		/* align hw_base to buffer_size */
417 		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
418 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
419 			     (long)pos, (long)hdelta,
420 			     (long)runtime->period_size, jdelta,
421 			     ((hdelta * HZ) / runtime->rate), hw_base,
422 			     (unsigned long)old_hw_ptr,
423 			     (unsigned long)new_hw_ptr);
424 		/* reset values to proper state */
425 		delta = 0;
426 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
427 	}
428  no_jiffies_check:
429 	if (delta > runtime->period_size + runtime->period_size / 2) {
430 		hw_ptr_error(substream, in_interrupt,
431 			     "Lost interrupts?",
432 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
433 			     substream->stream, (long)delta,
434 			     (long)new_hw_ptr,
435 			     (long)old_hw_ptr);
436 	}
437 
438  no_delta_check:
439 	if (runtime->status->hw_ptr == new_hw_ptr) {
440 		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
441 		return 0;
442 	}
443 
444 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
445 	    runtime->silence_size > 0)
446 		snd_pcm_playback_silence(substream, new_hw_ptr);
447 
448 	if (in_interrupt) {
449 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
450 		if (delta < 0)
451 			delta += runtime->boundary;
452 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
453 		runtime->hw_ptr_interrupt += delta;
454 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
455 			runtime->hw_ptr_interrupt -= runtime->boundary;
456 	}
457 	runtime->hw_ptr_base = hw_base;
458 	runtime->status->hw_ptr = new_hw_ptr;
459 	runtime->hw_ptr_jiffies = curr_jiffies;
460 	if (crossed_boundary) {
461 		snd_BUG_ON(crossed_boundary != 1);
462 		runtime->hw_ptr_wrap += runtime->boundary;
463 	}
464 
465 	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
466 
467 	return snd_pcm_update_state(substream, runtime);
468 }
469 
470 /* CAUTION: call it with irq disabled */
471 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
472 {
473 	return snd_pcm_update_hw_ptr0(substream, 0);
474 }
475 
476 /**
477  * snd_pcm_set_ops - set the PCM operators
478  * @pcm: the pcm instance
479  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
480  * @ops: the operator table
481  *
482  * Sets the given PCM operators to the pcm instance.
483  */
484 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
485 		     const struct snd_pcm_ops *ops)
486 {
487 	struct snd_pcm_str *stream = &pcm->streams[direction];
488 	struct snd_pcm_substream *substream;
489 
490 	for (substream = stream->substream; substream != NULL; substream = substream->next)
491 		substream->ops = ops;
492 }
493 EXPORT_SYMBOL(snd_pcm_set_ops);
494 
495 /**
496  * snd_pcm_sync - set the PCM sync id
497  * @substream: the pcm substream
498  *
499  * Sets the PCM sync identifier for the card.
500  */
501 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
502 {
503 	struct snd_pcm_runtime *runtime = substream->runtime;
504 
505 	runtime->sync.id32[0] = substream->pcm->card->number;
506 	runtime->sync.id32[1] = -1;
507 	runtime->sync.id32[2] = -1;
508 	runtime->sync.id32[3] = -1;
509 }
510 EXPORT_SYMBOL(snd_pcm_set_sync);
511 
512 /*
513  *  Standard ioctl routine
514  */
515 
516 static inline unsigned int div32(unsigned int a, unsigned int b,
517 				 unsigned int *r)
518 {
519 	if (b == 0) {
520 		*r = 0;
521 		return UINT_MAX;
522 	}
523 	*r = a % b;
524 	return a / b;
525 }
526 
527 static inline unsigned int div_down(unsigned int a, unsigned int b)
528 {
529 	if (b == 0)
530 		return UINT_MAX;
531 	return a / b;
532 }
533 
534 static inline unsigned int div_up(unsigned int a, unsigned int b)
535 {
536 	unsigned int r;
537 	unsigned int q;
538 	if (b == 0)
539 		return UINT_MAX;
540 	q = div32(a, b, &r);
541 	if (r)
542 		++q;
543 	return q;
544 }
545 
546 static inline unsigned int mul(unsigned int a, unsigned int b)
547 {
548 	if (a == 0)
549 		return 0;
550 	if (div_down(UINT_MAX, a) < b)
551 		return UINT_MAX;
552 	return a * b;
553 }
554 
555 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
556 				    unsigned int c, unsigned int *r)
557 {
558 	u_int64_t n = (u_int64_t) a * b;
559 	if (c == 0) {
560 		*r = 0;
561 		return UINT_MAX;
562 	}
563 	n = div_u64_rem(n, c, r);
564 	if (n >= UINT_MAX) {
565 		*r = 0;
566 		return UINT_MAX;
567 	}
568 	return n;
569 }
570 
571 /**
572  * snd_interval_refine - refine the interval value of configurator
573  * @i: the interval value to refine
574  * @v: the interval value to refer to
575  *
576  * Refines the interval value with the reference value.
577  * The interval is changed to the range satisfying both intervals.
578  * The interval status (min, max, integer, etc.) are evaluated.
579  *
580  * Return: Positive if the value is changed, zero if it's not changed, or a
581  * negative error code.
582  */
583 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
584 {
585 	int changed = 0;
586 	if (snd_BUG_ON(snd_interval_empty(i)))
587 		return -EINVAL;
588 	if (i->min < v->min) {
589 		i->min = v->min;
590 		i->openmin = v->openmin;
591 		changed = 1;
592 	} else if (i->min == v->min && !i->openmin && v->openmin) {
593 		i->openmin = 1;
594 		changed = 1;
595 	}
596 	if (i->max > v->max) {
597 		i->max = v->max;
598 		i->openmax = v->openmax;
599 		changed = 1;
600 	} else if (i->max == v->max && !i->openmax && v->openmax) {
601 		i->openmax = 1;
602 		changed = 1;
603 	}
604 	if (!i->integer && v->integer) {
605 		i->integer = 1;
606 		changed = 1;
607 	}
608 	if (i->integer) {
609 		if (i->openmin) {
610 			i->min++;
611 			i->openmin = 0;
612 		}
613 		if (i->openmax) {
614 			i->max--;
615 			i->openmax = 0;
616 		}
617 	} else if (!i->openmin && !i->openmax && i->min == i->max)
618 		i->integer = 1;
619 	if (snd_interval_checkempty(i)) {
620 		snd_interval_none(i);
621 		return -EINVAL;
622 	}
623 	return changed;
624 }
625 EXPORT_SYMBOL(snd_interval_refine);
626 
627 static int snd_interval_refine_first(struct snd_interval *i)
628 {
629 	if (snd_BUG_ON(snd_interval_empty(i)))
630 		return -EINVAL;
631 	if (snd_interval_single(i))
632 		return 0;
633 	i->max = i->min;
634 	i->openmax = i->openmin;
635 	if (i->openmax)
636 		i->max++;
637 	return 1;
638 }
639 
640 static int snd_interval_refine_last(struct snd_interval *i)
641 {
642 	if (snd_BUG_ON(snd_interval_empty(i)))
643 		return -EINVAL;
644 	if (snd_interval_single(i))
645 		return 0;
646 	i->min = i->max;
647 	i->openmin = i->openmax;
648 	if (i->openmin)
649 		i->min--;
650 	return 1;
651 }
652 
653 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
654 {
655 	if (a->empty || b->empty) {
656 		snd_interval_none(c);
657 		return;
658 	}
659 	c->empty = 0;
660 	c->min = mul(a->min, b->min);
661 	c->openmin = (a->openmin || b->openmin);
662 	c->max = mul(a->max,  b->max);
663 	c->openmax = (a->openmax || b->openmax);
664 	c->integer = (a->integer && b->integer);
665 }
666 
667 /**
668  * snd_interval_div - refine the interval value with division
669  * @a: dividend
670  * @b: divisor
671  * @c: quotient
672  *
673  * c = a / b
674  *
675  * Returns non-zero if the value is changed, zero if not changed.
676  */
677 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
678 {
679 	unsigned int r;
680 	if (a->empty || b->empty) {
681 		snd_interval_none(c);
682 		return;
683 	}
684 	c->empty = 0;
685 	c->min = div32(a->min, b->max, &r);
686 	c->openmin = (r || a->openmin || b->openmax);
687 	if (b->min > 0) {
688 		c->max = div32(a->max, b->min, &r);
689 		if (r) {
690 			c->max++;
691 			c->openmax = 1;
692 		} else
693 			c->openmax = (a->openmax || b->openmin);
694 	} else {
695 		c->max = UINT_MAX;
696 		c->openmax = 0;
697 	}
698 	c->integer = 0;
699 }
700 
701 /**
702  * snd_interval_muldivk - refine the interval value
703  * @a: dividend 1
704  * @b: dividend 2
705  * @k: divisor (as integer)
706  * @c: result
707   *
708  * c = a * b / k
709  *
710  * Returns non-zero if the value is changed, zero if not changed.
711  */
712 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
713 		      unsigned int k, struct snd_interval *c)
714 {
715 	unsigned int r;
716 	if (a->empty || b->empty) {
717 		snd_interval_none(c);
718 		return;
719 	}
720 	c->empty = 0;
721 	c->min = muldiv32(a->min, b->min, k, &r);
722 	c->openmin = (r || a->openmin || b->openmin);
723 	c->max = muldiv32(a->max, b->max, k, &r);
724 	if (r) {
725 		c->max++;
726 		c->openmax = 1;
727 	} else
728 		c->openmax = (a->openmax || b->openmax);
729 	c->integer = 0;
730 }
731 
732 /**
733  * snd_interval_mulkdiv - refine the interval value
734  * @a: dividend 1
735  * @k: dividend 2 (as integer)
736  * @b: divisor
737  * @c: result
738  *
739  * c = a * k / b
740  *
741  * Returns non-zero if the value is changed, zero if not changed.
742  */
743 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
744 		      const struct snd_interval *b, struct snd_interval *c)
745 {
746 	unsigned int r;
747 	if (a->empty || b->empty) {
748 		snd_interval_none(c);
749 		return;
750 	}
751 	c->empty = 0;
752 	c->min = muldiv32(a->min, k, b->max, &r);
753 	c->openmin = (r || a->openmin || b->openmax);
754 	if (b->min > 0) {
755 		c->max = muldiv32(a->max, k, b->min, &r);
756 		if (r) {
757 			c->max++;
758 			c->openmax = 1;
759 		} else
760 			c->openmax = (a->openmax || b->openmin);
761 	} else {
762 		c->max = UINT_MAX;
763 		c->openmax = 0;
764 	}
765 	c->integer = 0;
766 }
767 
768 /* ---- */
769 
770 
771 /**
772  * snd_interval_ratnum - refine the interval value
773  * @i: interval to refine
774  * @rats_count: number of ratnum_t
775  * @rats: ratnum_t array
776  * @nump: pointer to store the resultant numerator
777  * @denp: pointer to store the resultant denominator
778  *
779  * Return: Positive if the value is changed, zero if it's not changed, or a
780  * negative error code.
781  */
782 int snd_interval_ratnum(struct snd_interval *i,
783 			unsigned int rats_count, const struct snd_ratnum *rats,
784 			unsigned int *nump, unsigned int *denp)
785 {
786 	unsigned int best_num, best_den;
787 	int best_diff;
788 	unsigned int k;
789 	struct snd_interval t;
790 	int err;
791 	unsigned int result_num, result_den;
792 	int result_diff;
793 
794 	best_num = best_den = best_diff = 0;
795 	for (k = 0; k < rats_count; ++k) {
796 		unsigned int num = rats[k].num;
797 		unsigned int den;
798 		unsigned int q = i->min;
799 		int diff;
800 		if (q == 0)
801 			q = 1;
802 		den = div_up(num, q);
803 		if (den < rats[k].den_min)
804 			continue;
805 		if (den > rats[k].den_max)
806 			den = rats[k].den_max;
807 		else {
808 			unsigned int r;
809 			r = (den - rats[k].den_min) % rats[k].den_step;
810 			if (r != 0)
811 				den -= r;
812 		}
813 		diff = num - q * den;
814 		if (diff < 0)
815 			diff = -diff;
816 		if (best_num == 0 ||
817 		    diff * best_den < best_diff * den) {
818 			best_diff = diff;
819 			best_den = den;
820 			best_num = num;
821 		}
822 	}
823 	if (best_den == 0) {
824 		i->empty = 1;
825 		return -EINVAL;
826 	}
827 	t.min = div_down(best_num, best_den);
828 	t.openmin = !!(best_num % best_den);
829 
830 	result_num = best_num;
831 	result_diff = best_diff;
832 	result_den = best_den;
833 	best_num = best_den = best_diff = 0;
834 	for (k = 0; k < rats_count; ++k) {
835 		unsigned int num = rats[k].num;
836 		unsigned int den;
837 		unsigned int q = i->max;
838 		int diff;
839 		if (q == 0) {
840 			i->empty = 1;
841 			return -EINVAL;
842 		}
843 		den = div_down(num, q);
844 		if (den > rats[k].den_max)
845 			continue;
846 		if (den < rats[k].den_min)
847 			den = rats[k].den_min;
848 		else {
849 			unsigned int r;
850 			r = (den - rats[k].den_min) % rats[k].den_step;
851 			if (r != 0)
852 				den += rats[k].den_step - r;
853 		}
854 		diff = q * den - num;
855 		if (diff < 0)
856 			diff = -diff;
857 		if (best_num == 0 ||
858 		    diff * best_den < best_diff * den) {
859 			best_diff = diff;
860 			best_den = den;
861 			best_num = num;
862 		}
863 	}
864 	if (best_den == 0) {
865 		i->empty = 1;
866 		return -EINVAL;
867 	}
868 	t.max = div_up(best_num, best_den);
869 	t.openmax = !!(best_num % best_den);
870 	t.integer = 0;
871 	err = snd_interval_refine(i, &t);
872 	if (err < 0)
873 		return err;
874 
875 	if (snd_interval_single(i)) {
876 		if (best_diff * result_den < result_diff * best_den) {
877 			result_num = best_num;
878 			result_den = best_den;
879 		}
880 		if (nump)
881 			*nump = result_num;
882 		if (denp)
883 			*denp = result_den;
884 	}
885 	return err;
886 }
887 EXPORT_SYMBOL(snd_interval_ratnum);
888 
889 /**
890  * snd_interval_ratden - refine the interval value
891  * @i: interval to refine
892  * @rats_count: number of struct ratden
893  * @rats: struct ratden array
894  * @nump: pointer to store the resultant numerator
895  * @denp: pointer to store the resultant denominator
896  *
897  * Return: Positive if the value is changed, zero if it's not changed, or a
898  * negative error code.
899  */
900 static int snd_interval_ratden(struct snd_interval *i,
901 			       unsigned int rats_count,
902 			       const struct snd_ratden *rats,
903 			       unsigned int *nump, unsigned int *denp)
904 {
905 	unsigned int best_num, best_diff, best_den;
906 	unsigned int k;
907 	struct snd_interval t;
908 	int err;
909 
910 	best_num = best_den = best_diff = 0;
911 	for (k = 0; k < rats_count; ++k) {
912 		unsigned int num;
913 		unsigned int den = rats[k].den;
914 		unsigned int q = i->min;
915 		int diff;
916 		num = mul(q, den);
917 		if (num > rats[k].num_max)
918 			continue;
919 		if (num < rats[k].num_min)
920 			num = rats[k].num_max;
921 		else {
922 			unsigned int r;
923 			r = (num - rats[k].num_min) % rats[k].num_step;
924 			if (r != 0)
925 				num += rats[k].num_step - r;
926 		}
927 		diff = num - q * den;
928 		if (best_num == 0 ||
929 		    diff * best_den < best_diff * den) {
930 			best_diff = diff;
931 			best_den = den;
932 			best_num = num;
933 		}
934 	}
935 	if (best_den == 0) {
936 		i->empty = 1;
937 		return -EINVAL;
938 	}
939 	t.min = div_down(best_num, best_den);
940 	t.openmin = !!(best_num % best_den);
941 
942 	best_num = best_den = best_diff = 0;
943 	for (k = 0; k < rats_count; ++k) {
944 		unsigned int num;
945 		unsigned int den = rats[k].den;
946 		unsigned int q = i->max;
947 		int diff;
948 		num = mul(q, den);
949 		if (num < rats[k].num_min)
950 			continue;
951 		if (num > rats[k].num_max)
952 			num = rats[k].num_max;
953 		else {
954 			unsigned int r;
955 			r = (num - rats[k].num_min) % rats[k].num_step;
956 			if (r != 0)
957 				num -= r;
958 		}
959 		diff = q * den - num;
960 		if (best_num == 0 ||
961 		    diff * best_den < best_diff * den) {
962 			best_diff = diff;
963 			best_den = den;
964 			best_num = num;
965 		}
966 	}
967 	if (best_den == 0) {
968 		i->empty = 1;
969 		return -EINVAL;
970 	}
971 	t.max = div_up(best_num, best_den);
972 	t.openmax = !!(best_num % best_den);
973 	t.integer = 0;
974 	err = snd_interval_refine(i, &t);
975 	if (err < 0)
976 		return err;
977 
978 	if (snd_interval_single(i)) {
979 		if (nump)
980 			*nump = best_num;
981 		if (denp)
982 			*denp = best_den;
983 	}
984 	return err;
985 }
986 
987 /**
988  * snd_interval_list - refine the interval value from the list
989  * @i: the interval value to refine
990  * @count: the number of elements in the list
991  * @list: the value list
992  * @mask: the bit-mask to evaluate
993  *
994  * Refines the interval value from the list.
995  * When mask is non-zero, only the elements corresponding to bit 1 are
996  * evaluated.
997  *
998  * Return: Positive if the value is changed, zero if it's not changed, or a
999  * negative error code.
1000  */
1001 int snd_interval_list(struct snd_interval *i, unsigned int count,
1002 		      const unsigned int *list, unsigned int mask)
1003 {
1004         unsigned int k;
1005 	struct snd_interval list_range;
1006 
1007 	if (!count) {
1008 		i->empty = 1;
1009 		return -EINVAL;
1010 	}
1011 	snd_interval_any(&list_range);
1012 	list_range.min = UINT_MAX;
1013 	list_range.max = 0;
1014         for (k = 0; k < count; k++) {
1015 		if (mask && !(mask & (1 << k)))
1016 			continue;
1017 		if (!snd_interval_test(i, list[k]))
1018 			continue;
1019 		list_range.min = min(list_range.min, list[k]);
1020 		list_range.max = max(list_range.max, list[k]);
1021         }
1022 	return snd_interval_refine(i, &list_range);
1023 }
1024 EXPORT_SYMBOL(snd_interval_list);
1025 
1026 /**
1027  * snd_interval_ranges - refine the interval value from the list of ranges
1028  * @i: the interval value to refine
1029  * @count: the number of elements in the list of ranges
1030  * @ranges: the ranges list
1031  * @mask: the bit-mask to evaluate
1032  *
1033  * Refines the interval value from the list of ranges.
1034  * When mask is non-zero, only the elements corresponding to bit 1 are
1035  * evaluated.
1036  *
1037  * Return: Positive if the value is changed, zero if it's not changed, or a
1038  * negative error code.
1039  */
1040 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1041 			const struct snd_interval *ranges, unsigned int mask)
1042 {
1043 	unsigned int k;
1044 	struct snd_interval range_union;
1045 	struct snd_interval range;
1046 
1047 	if (!count) {
1048 		snd_interval_none(i);
1049 		return -EINVAL;
1050 	}
1051 	snd_interval_any(&range_union);
1052 	range_union.min = UINT_MAX;
1053 	range_union.max = 0;
1054 	for (k = 0; k < count; k++) {
1055 		if (mask && !(mask & (1 << k)))
1056 			continue;
1057 		snd_interval_copy(&range, &ranges[k]);
1058 		if (snd_interval_refine(&range, i) < 0)
1059 			continue;
1060 		if (snd_interval_empty(&range))
1061 			continue;
1062 
1063 		if (range.min < range_union.min) {
1064 			range_union.min = range.min;
1065 			range_union.openmin = 1;
1066 		}
1067 		if (range.min == range_union.min && !range.openmin)
1068 			range_union.openmin = 0;
1069 		if (range.max > range_union.max) {
1070 			range_union.max = range.max;
1071 			range_union.openmax = 1;
1072 		}
1073 		if (range.max == range_union.max && !range.openmax)
1074 			range_union.openmax = 0;
1075 	}
1076 	return snd_interval_refine(i, &range_union);
1077 }
1078 EXPORT_SYMBOL(snd_interval_ranges);
1079 
1080 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1081 {
1082 	unsigned int n;
1083 	int changed = 0;
1084 	n = i->min % step;
1085 	if (n != 0 || i->openmin) {
1086 		i->min += step - n;
1087 		i->openmin = 0;
1088 		changed = 1;
1089 	}
1090 	n = i->max % step;
1091 	if (n != 0 || i->openmax) {
1092 		i->max -= n;
1093 		i->openmax = 0;
1094 		changed = 1;
1095 	}
1096 	if (snd_interval_checkempty(i)) {
1097 		i->empty = 1;
1098 		return -EINVAL;
1099 	}
1100 	return changed;
1101 }
1102 
1103 /* Info constraints helpers */
1104 
1105 /**
1106  * snd_pcm_hw_rule_add - add the hw-constraint rule
1107  * @runtime: the pcm runtime instance
1108  * @cond: condition bits
1109  * @var: the variable to evaluate
1110  * @func: the evaluation function
1111  * @private: the private data pointer passed to function
1112  * @dep: the dependent variables
1113  *
1114  * Return: Zero if successful, or a negative error code on failure.
1115  */
1116 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1117 			int var,
1118 			snd_pcm_hw_rule_func_t func, void *private,
1119 			int dep, ...)
1120 {
1121 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1122 	struct snd_pcm_hw_rule *c;
1123 	unsigned int k;
1124 	va_list args;
1125 	va_start(args, dep);
1126 	if (constrs->rules_num >= constrs->rules_all) {
1127 		struct snd_pcm_hw_rule *new;
1128 		unsigned int new_rules = constrs->rules_all + 16;
1129 		new = krealloc(constrs->rules, new_rules * sizeof(*c),
1130 			       GFP_KERNEL);
1131 		if (!new) {
1132 			va_end(args);
1133 			return -ENOMEM;
1134 		}
1135 		constrs->rules = new;
1136 		constrs->rules_all = new_rules;
1137 	}
1138 	c = &constrs->rules[constrs->rules_num];
1139 	c->cond = cond;
1140 	c->func = func;
1141 	c->var = var;
1142 	c->private = private;
1143 	k = 0;
1144 	while (1) {
1145 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1146 			va_end(args);
1147 			return -EINVAL;
1148 		}
1149 		c->deps[k++] = dep;
1150 		if (dep < 0)
1151 			break;
1152 		dep = va_arg(args, int);
1153 	}
1154 	constrs->rules_num++;
1155 	va_end(args);
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1159 
1160 /**
1161  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1162  * @runtime: PCM runtime instance
1163  * @var: hw_params variable to apply the mask
1164  * @mask: the bitmap mask
1165  *
1166  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1167  *
1168  * Return: Zero if successful, or a negative error code on failure.
1169  */
1170 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1171 			       u_int32_t mask)
1172 {
1173 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1174 	struct snd_mask *maskp = constrs_mask(constrs, var);
1175 	*maskp->bits &= mask;
1176 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1177 	if (*maskp->bits == 0)
1178 		return -EINVAL;
1179 	return 0;
1180 }
1181 
1182 /**
1183  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1184  * @runtime: PCM runtime instance
1185  * @var: hw_params variable to apply the mask
1186  * @mask: the 64bit bitmap mask
1187  *
1188  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1189  *
1190  * Return: Zero if successful, or a negative error code on failure.
1191  */
1192 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1193 				 u_int64_t mask)
1194 {
1195 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1196 	struct snd_mask *maskp = constrs_mask(constrs, var);
1197 	maskp->bits[0] &= (u_int32_t)mask;
1198 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1199 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1200 	if (! maskp->bits[0] && ! maskp->bits[1])
1201 		return -EINVAL;
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1205 
1206 /**
1207  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1208  * @runtime: PCM runtime instance
1209  * @var: hw_params variable to apply the integer constraint
1210  *
1211  * Apply the constraint of integer to an interval parameter.
1212  *
1213  * Return: Positive if the value is changed, zero if it's not changed, or a
1214  * negative error code.
1215  */
1216 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1217 {
1218 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1219 	return snd_interval_setinteger(constrs_interval(constrs, var));
1220 }
1221 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1222 
1223 /**
1224  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1225  * @runtime: PCM runtime instance
1226  * @var: hw_params variable to apply the range
1227  * @min: the minimal value
1228  * @max: the maximal value
1229  *
1230  * Apply the min/max range constraint to an interval parameter.
1231  *
1232  * Return: Positive if the value is changed, zero if it's not changed, or a
1233  * negative error code.
1234  */
1235 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1236 				 unsigned int min, unsigned int max)
1237 {
1238 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1239 	struct snd_interval t;
1240 	t.min = min;
1241 	t.max = max;
1242 	t.openmin = t.openmax = 0;
1243 	t.integer = 0;
1244 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1245 }
1246 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1247 
1248 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1249 				struct snd_pcm_hw_rule *rule)
1250 {
1251 	struct snd_pcm_hw_constraint_list *list = rule->private;
1252 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1253 }
1254 
1255 
1256 /**
1257  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1258  * @runtime: PCM runtime instance
1259  * @cond: condition bits
1260  * @var: hw_params variable to apply the list constraint
1261  * @l: list
1262  *
1263  * Apply the list of constraints to an interval parameter.
1264  *
1265  * Return: Zero if successful, or a negative error code on failure.
1266  */
1267 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1268 			       unsigned int cond,
1269 			       snd_pcm_hw_param_t var,
1270 			       const struct snd_pcm_hw_constraint_list *l)
1271 {
1272 	return snd_pcm_hw_rule_add(runtime, cond, var,
1273 				   snd_pcm_hw_rule_list, (void *)l,
1274 				   var, -1);
1275 }
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1277 
1278 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1279 				  struct snd_pcm_hw_rule *rule)
1280 {
1281 	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1282 	return snd_interval_ranges(hw_param_interval(params, rule->var),
1283 				   r->count, r->ranges, r->mask);
1284 }
1285 
1286 
1287 /**
1288  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1289  * @runtime: PCM runtime instance
1290  * @cond: condition bits
1291  * @var: hw_params variable to apply the list of range constraints
1292  * @r: ranges
1293  *
1294  * Apply the list of range constraints to an interval parameter.
1295  *
1296  * Return: Zero if successful, or a negative error code on failure.
1297  */
1298 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1299 				 unsigned int cond,
1300 				 snd_pcm_hw_param_t var,
1301 				 const struct snd_pcm_hw_constraint_ranges *r)
1302 {
1303 	return snd_pcm_hw_rule_add(runtime, cond, var,
1304 				   snd_pcm_hw_rule_ranges, (void *)r,
1305 				   var, -1);
1306 }
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1308 
1309 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1310 				   struct snd_pcm_hw_rule *rule)
1311 {
1312 	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1313 	unsigned int num = 0, den = 0;
1314 	int err;
1315 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1316 				  r->nrats, r->rats, &num, &den);
1317 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1318 		params->rate_num = num;
1319 		params->rate_den = den;
1320 	}
1321 	return err;
1322 }
1323 
1324 /**
1325  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1326  * @runtime: PCM runtime instance
1327  * @cond: condition bits
1328  * @var: hw_params variable to apply the ratnums constraint
1329  * @r: struct snd_ratnums constriants
1330  *
1331  * Return: Zero if successful, or a negative error code on failure.
1332  */
1333 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1334 				  unsigned int cond,
1335 				  snd_pcm_hw_param_t var,
1336 				  const struct snd_pcm_hw_constraint_ratnums *r)
1337 {
1338 	return snd_pcm_hw_rule_add(runtime, cond, var,
1339 				   snd_pcm_hw_rule_ratnums, (void *)r,
1340 				   var, -1);
1341 }
1342 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1343 
1344 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1345 				   struct snd_pcm_hw_rule *rule)
1346 {
1347 	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1348 	unsigned int num = 0, den = 0;
1349 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1350 				  r->nrats, r->rats, &num, &den);
1351 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1352 		params->rate_num = num;
1353 		params->rate_den = den;
1354 	}
1355 	return err;
1356 }
1357 
1358 /**
1359  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1360  * @runtime: PCM runtime instance
1361  * @cond: condition bits
1362  * @var: hw_params variable to apply the ratdens constraint
1363  * @r: struct snd_ratdens constriants
1364  *
1365  * Return: Zero if successful, or a negative error code on failure.
1366  */
1367 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1368 				  unsigned int cond,
1369 				  snd_pcm_hw_param_t var,
1370 				  const struct snd_pcm_hw_constraint_ratdens *r)
1371 {
1372 	return snd_pcm_hw_rule_add(runtime, cond, var,
1373 				   snd_pcm_hw_rule_ratdens, (void *)r,
1374 				   var, -1);
1375 }
1376 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1377 
1378 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1379 				  struct snd_pcm_hw_rule *rule)
1380 {
1381 	unsigned int l = (unsigned long) rule->private;
1382 	int width = l & 0xffff;
1383 	unsigned int msbits = l >> 16;
1384 	const struct snd_interval *i =
1385 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1386 
1387 	if (!snd_interval_single(i))
1388 		return 0;
1389 
1390 	if ((snd_interval_value(i) == width) ||
1391 	    (width == 0 && snd_interval_value(i) > msbits))
1392 		params->msbits = min_not_zero(params->msbits, msbits);
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1399  * @runtime: PCM runtime instance
1400  * @cond: condition bits
1401  * @width: sample bits width
1402  * @msbits: msbits width
1403  *
1404  * This constraint will set the number of most significant bits (msbits) if a
1405  * sample format with the specified width has been select. If width is set to 0
1406  * the msbits will be set for any sample format with a width larger than the
1407  * specified msbits.
1408  *
1409  * Return: Zero if successful, or a negative error code on failure.
1410  */
1411 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1412 				 unsigned int cond,
1413 				 unsigned int width,
1414 				 unsigned int msbits)
1415 {
1416 	unsigned long l = (msbits << 16) | width;
1417 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1418 				    snd_pcm_hw_rule_msbits,
1419 				    (void*) l,
1420 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1421 }
1422 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1423 
1424 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1425 				struct snd_pcm_hw_rule *rule)
1426 {
1427 	unsigned long step = (unsigned long) rule->private;
1428 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1429 }
1430 
1431 /**
1432  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1433  * @runtime: PCM runtime instance
1434  * @cond: condition bits
1435  * @var: hw_params variable to apply the step constraint
1436  * @step: step size
1437  *
1438  * Return: Zero if successful, or a negative error code on failure.
1439  */
1440 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1441 			       unsigned int cond,
1442 			       snd_pcm_hw_param_t var,
1443 			       unsigned long step)
1444 {
1445 	return snd_pcm_hw_rule_add(runtime, cond, var,
1446 				   snd_pcm_hw_rule_step, (void *) step,
1447 				   var, -1);
1448 }
1449 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1450 
1451 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1452 {
1453 	static unsigned int pow2_sizes[] = {
1454 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1455 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1456 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1457 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1458 	};
1459 	return snd_interval_list(hw_param_interval(params, rule->var),
1460 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1461 }
1462 
1463 /**
1464  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1465  * @runtime: PCM runtime instance
1466  * @cond: condition bits
1467  * @var: hw_params variable to apply the power-of-2 constraint
1468  *
1469  * Return: Zero if successful, or a negative error code on failure.
1470  */
1471 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1472 			       unsigned int cond,
1473 			       snd_pcm_hw_param_t var)
1474 {
1475 	return snd_pcm_hw_rule_add(runtime, cond, var,
1476 				   snd_pcm_hw_rule_pow2, NULL,
1477 				   var, -1);
1478 }
1479 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1480 
1481 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1482 					   struct snd_pcm_hw_rule *rule)
1483 {
1484 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1485 	struct snd_interval *rate;
1486 
1487 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1488 	return snd_interval_list(rate, 1, &base_rate, 0);
1489 }
1490 
1491 /**
1492  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1493  * @runtime: PCM runtime instance
1494  * @base_rate: the rate at which the hardware does not resample
1495  *
1496  * Return: Zero if successful, or a negative error code on failure.
1497  */
1498 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1499 			       unsigned int base_rate)
1500 {
1501 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1502 				   SNDRV_PCM_HW_PARAM_RATE,
1503 				   snd_pcm_hw_rule_noresample_func,
1504 				   (void *)(uintptr_t)base_rate,
1505 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1506 }
1507 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1508 
1509 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1510 				  snd_pcm_hw_param_t var)
1511 {
1512 	if (hw_is_mask(var)) {
1513 		snd_mask_any(hw_param_mask(params, var));
1514 		params->cmask |= 1 << var;
1515 		params->rmask |= 1 << var;
1516 		return;
1517 	}
1518 	if (hw_is_interval(var)) {
1519 		snd_interval_any(hw_param_interval(params, var));
1520 		params->cmask |= 1 << var;
1521 		params->rmask |= 1 << var;
1522 		return;
1523 	}
1524 	snd_BUG();
1525 }
1526 
1527 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1528 {
1529 	unsigned int k;
1530 	memset(params, 0, sizeof(*params));
1531 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1532 		_snd_pcm_hw_param_any(params, k);
1533 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1534 		_snd_pcm_hw_param_any(params, k);
1535 	params->info = ~0U;
1536 }
1537 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1538 
1539 /**
1540  * snd_pcm_hw_param_value - return @params field @var value
1541  * @params: the hw_params instance
1542  * @var: parameter to retrieve
1543  * @dir: pointer to the direction (-1,0,1) or %NULL
1544  *
1545  * Return: The value for field @var if it's fixed in configuration space
1546  * defined by @params. -%EINVAL otherwise.
1547  */
1548 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1549 			   snd_pcm_hw_param_t var, int *dir)
1550 {
1551 	if (hw_is_mask(var)) {
1552 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1553 		if (!snd_mask_single(mask))
1554 			return -EINVAL;
1555 		if (dir)
1556 			*dir = 0;
1557 		return snd_mask_value(mask);
1558 	}
1559 	if (hw_is_interval(var)) {
1560 		const struct snd_interval *i = hw_param_interval_c(params, var);
1561 		if (!snd_interval_single(i))
1562 			return -EINVAL;
1563 		if (dir)
1564 			*dir = i->openmin;
1565 		return snd_interval_value(i);
1566 	}
1567 	return -EINVAL;
1568 }
1569 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1570 
1571 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1572 				snd_pcm_hw_param_t var)
1573 {
1574 	if (hw_is_mask(var)) {
1575 		snd_mask_none(hw_param_mask(params, var));
1576 		params->cmask |= 1 << var;
1577 		params->rmask |= 1 << var;
1578 	} else if (hw_is_interval(var)) {
1579 		snd_interval_none(hw_param_interval(params, var));
1580 		params->cmask |= 1 << var;
1581 		params->rmask |= 1 << var;
1582 	} else {
1583 		snd_BUG();
1584 	}
1585 }
1586 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1587 
1588 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1589 				   snd_pcm_hw_param_t var)
1590 {
1591 	int changed;
1592 	if (hw_is_mask(var))
1593 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1594 	else if (hw_is_interval(var))
1595 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1596 	else
1597 		return -EINVAL;
1598 	if (changed > 0) {
1599 		params->cmask |= 1 << var;
1600 		params->rmask |= 1 << var;
1601 	}
1602 	return changed;
1603 }
1604 
1605 
1606 /**
1607  * snd_pcm_hw_param_first - refine config space and return minimum value
1608  * @pcm: PCM instance
1609  * @params: the hw_params instance
1610  * @var: parameter to retrieve
1611  * @dir: pointer to the direction (-1,0,1) or %NULL
1612  *
1613  * Inside configuration space defined by @params remove from @var all
1614  * values > minimum. Reduce configuration space accordingly.
1615  *
1616  * Return: The minimum, or a negative error code on failure.
1617  */
1618 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1619 			   struct snd_pcm_hw_params *params,
1620 			   snd_pcm_hw_param_t var, int *dir)
1621 {
1622 	int changed = _snd_pcm_hw_param_first(params, var);
1623 	if (changed < 0)
1624 		return changed;
1625 	if (params->rmask) {
1626 		int err = snd_pcm_hw_refine(pcm, params);
1627 		if (err < 0)
1628 			return err;
1629 	}
1630 	return snd_pcm_hw_param_value(params, var, dir);
1631 }
1632 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1633 
1634 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1635 				  snd_pcm_hw_param_t var)
1636 {
1637 	int changed;
1638 	if (hw_is_mask(var))
1639 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1640 	else if (hw_is_interval(var))
1641 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1642 	else
1643 		return -EINVAL;
1644 	if (changed > 0) {
1645 		params->cmask |= 1 << var;
1646 		params->rmask |= 1 << var;
1647 	}
1648 	return changed;
1649 }
1650 
1651 
1652 /**
1653  * snd_pcm_hw_param_last - refine config space and return maximum value
1654  * @pcm: PCM instance
1655  * @params: the hw_params instance
1656  * @var: parameter to retrieve
1657  * @dir: pointer to the direction (-1,0,1) or %NULL
1658  *
1659  * Inside configuration space defined by @params remove from @var all
1660  * values < maximum. Reduce configuration space accordingly.
1661  *
1662  * Return: The maximum, or a negative error code on failure.
1663  */
1664 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1665 			  struct snd_pcm_hw_params *params,
1666 			  snd_pcm_hw_param_t var, int *dir)
1667 {
1668 	int changed = _snd_pcm_hw_param_last(params, var);
1669 	if (changed < 0)
1670 		return changed;
1671 	if (params->rmask) {
1672 		int err = snd_pcm_hw_refine(pcm, params);
1673 		if (err < 0)
1674 			return err;
1675 	}
1676 	return snd_pcm_hw_param_value(params, var, dir);
1677 }
1678 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1679 
1680 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1681 				   void *arg)
1682 {
1683 	struct snd_pcm_runtime *runtime = substream->runtime;
1684 	unsigned long flags;
1685 	snd_pcm_stream_lock_irqsave(substream, flags);
1686 	if (snd_pcm_running(substream) &&
1687 	    snd_pcm_update_hw_ptr(substream) >= 0)
1688 		runtime->status->hw_ptr %= runtime->buffer_size;
1689 	else {
1690 		runtime->status->hw_ptr = 0;
1691 		runtime->hw_ptr_wrap = 0;
1692 	}
1693 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1694 	return 0;
1695 }
1696 
1697 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1698 					  void *arg)
1699 {
1700 	struct snd_pcm_channel_info *info = arg;
1701 	struct snd_pcm_runtime *runtime = substream->runtime;
1702 	int width;
1703 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1704 		info->offset = -1;
1705 		return 0;
1706 	}
1707 	width = snd_pcm_format_physical_width(runtime->format);
1708 	if (width < 0)
1709 		return width;
1710 	info->offset = 0;
1711 	switch (runtime->access) {
1712 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1713 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1714 		info->first = info->channel * width;
1715 		info->step = runtime->channels * width;
1716 		break;
1717 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1718 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1719 	{
1720 		size_t size = runtime->dma_bytes / runtime->channels;
1721 		info->first = info->channel * size * 8;
1722 		info->step = width;
1723 		break;
1724 	}
1725 	default:
1726 		snd_BUG();
1727 		break;
1728 	}
1729 	return 0;
1730 }
1731 
1732 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1733 				       void *arg)
1734 {
1735 	struct snd_pcm_hw_params *params = arg;
1736 	snd_pcm_format_t format;
1737 	int channels;
1738 	ssize_t frame_size;
1739 
1740 	params->fifo_size = substream->runtime->hw.fifo_size;
1741 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1742 		format = params_format(params);
1743 		channels = params_channels(params);
1744 		frame_size = snd_pcm_format_size(format, channels);
1745 		if (frame_size > 0)
1746 			params->fifo_size /= (unsigned)frame_size;
1747 	}
1748 	return 0;
1749 }
1750 
1751 /**
1752  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1753  * @substream: the pcm substream instance
1754  * @cmd: ioctl command
1755  * @arg: ioctl argument
1756  *
1757  * Processes the generic ioctl commands for PCM.
1758  * Can be passed as the ioctl callback for PCM ops.
1759  *
1760  * Return: Zero if successful, or a negative error code on failure.
1761  */
1762 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1763 		      unsigned int cmd, void *arg)
1764 {
1765 	switch (cmd) {
1766 	case SNDRV_PCM_IOCTL1_RESET:
1767 		return snd_pcm_lib_ioctl_reset(substream, arg);
1768 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1769 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1770 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1771 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1772 	}
1773 	return -ENXIO;
1774 }
1775 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1776 
1777 /**
1778  * snd_pcm_period_elapsed - update the pcm status for the next period
1779  * @substream: the pcm substream instance
1780  *
1781  * This function is called from the interrupt handler when the
1782  * PCM has processed the period size.  It will update the current
1783  * pointer, wake up sleepers, etc.
1784  *
1785  * Even if more than one periods have elapsed since the last call, you
1786  * have to call this only once.
1787  */
1788 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1789 {
1790 	struct snd_pcm_runtime *runtime;
1791 	unsigned long flags;
1792 
1793 	if (PCM_RUNTIME_CHECK(substream))
1794 		return;
1795 	runtime = substream->runtime;
1796 
1797 	snd_pcm_stream_lock_irqsave(substream, flags);
1798 	if (!snd_pcm_running(substream) ||
1799 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1800 		goto _end;
1801 
1802 #ifdef CONFIG_SND_PCM_TIMER
1803 	if (substream->timer_running)
1804 		snd_timer_interrupt(substream->timer, 1);
1805 #endif
1806  _end:
1807 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1808 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1809 }
1810 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1811 
1812 /*
1813  * Wait until avail_min data becomes available
1814  * Returns a negative error code if any error occurs during operation.
1815  * The available space is stored on availp.  When err = 0 and avail = 0
1816  * on the capture stream, it indicates the stream is in DRAINING state.
1817  */
1818 static int wait_for_avail(struct snd_pcm_substream *substream,
1819 			      snd_pcm_uframes_t *availp)
1820 {
1821 	struct snd_pcm_runtime *runtime = substream->runtime;
1822 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1823 	wait_queue_entry_t wait;
1824 	int err = 0;
1825 	snd_pcm_uframes_t avail = 0;
1826 	long wait_time, tout;
1827 
1828 	init_waitqueue_entry(&wait, current);
1829 	set_current_state(TASK_INTERRUPTIBLE);
1830 	add_wait_queue(&runtime->tsleep, &wait);
1831 
1832 	if (runtime->no_period_wakeup)
1833 		wait_time = MAX_SCHEDULE_TIMEOUT;
1834 	else {
1835 		wait_time = 10;
1836 		if (runtime->rate) {
1837 			long t = runtime->period_size * 2 / runtime->rate;
1838 			wait_time = max(t, wait_time);
1839 		}
1840 		wait_time = msecs_to_jiffies(wait_time * 1000);
1841 	}
1842 
1843 	for (;;) {
1844 		if (signal_pending(current)) {
1845 			err = -ERESTARTSYS;
1846 			break;
1847 		}
1848 
1849 		/*
1850 		 * We need to check if space became available already
1851 		 * (and thus the wakeup happened already) first to close
1852 		 * the race of space already having become available.
1853 		 * This check must happen after been added to the waitqueue
1854 		 * and having current state be INTERRUPTIBLE.
1855 		 */
1856 		avail = snd_pcm_avail(substream);
1857 		if (avail >= runtime->twake)
1858 			break;
1859 		snd_pcm_stream_unlock_irq(substream);
1860 
1861 		tout = schedule_timeout(wait_time);
1862 
1863 		snd_pcm_stream_lock_irq(substream);
1864 		set_current_state(TASK_INTERRUPTIBLE);
1865 		switch (runtime->status->state) {
1866 		case SNDRV_PCM_STATE_SUSPENDED:
1867 			err = -ESTRPIPE;
1868 			goto _endloop;
1869 		case SNDRV_PCM_STATE_XRUN:
1870 			err = -EPIPE;
1871 			goto _endloop;
1872 		case SNDRV_PCM_STATE_DRAINING:
1873 			if (is_playback)
1874 				err = -EPIPE;
1875 			else
1876 				avail = 0; /* indicate draining */
1877 			goto _endloop;
1878 		case SNDRV_PCM_STATE_OPEN:
1879 		case SNDRV_PCM_STATE_SETUP:
1880 		case SNDRV_PCM_STATE_DISCONNECTED:
1881 			err = -EBADFD;
1882 			goto _endloop;
1883 		case SNDRV_PCM_STATE_PAUSED:
1884 			continue;
1885 		}
1886 		if (!tout) {
1887 			pcm_dbg(substream->pcm,
1888 				"%s write error (DMA or IRQ trouble?)\n",
1889 				is_playback ? "playback" : "capture");
1890 			err = -EIO;
1891 			break;
1892 		}
1893 	}
1894  _endloop:
1895 	set_current_state(TASK_RUNNING);
1896 	remove_wait_queue(&runtime->tsleep, &wait);
1897 	*availp = avail;
1898 	return err;
1899 }
1900 
1901 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1902 			      int channel, unsigned long hwoff,
1903 			      void *buf, unsigned long bytes);
1904 
1905 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1906 			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1907 
1908 /* calculate the target DMA-buffer position to be written/read */
1909 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1910 			   int channel, unsigned long hwoff)
1911 {
1912 	return runtime->dma_area + hwoff +
1913 		channel * (runtime->dma_bytes / runtime->channels);
1914 }
1915 
1916 /* default copy_user ops for write; used for both interleaved and non- modes */
1917 static int default_write_copy(struct snd_pcm_substream *substream,
1918 			      int channel, unsigned long hwoff,
1919 			      void *buf, unsigned long bytes)
1920 {
1921 	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1922 			   (void __user *)buf, bytes))
1923 		return -EFAULT;
1924 	return 0;
1925 }
1926 
1927 /* default copy_kernel ops for write */
1928 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1929 				     int channel, unsigned long hwoff,
1930 				     void *buf, unsigned long bytes)
1931 {
1932 	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1933 	return 0;
1934 }
1935 
1936 /* fill silence instead of copy data; called as a transfer helper
1937  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1938  * a NULL buffer is passed
1939  */
1940 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1941 			unsigned long hwoff, void *buf, unsigned long bytes)
1942 {
1943 	struct snd_pcm_runtime *runtime = substream->runtime;
1944 
1945 	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1946 		return 0;
1947 	if (substream->ops->fill_silence)
1948 		return substream->ops->fill_silence(substream, channel,
1949 						    hwoff, bytes);
1950 
1951 	snd_pcm_format_set_silence(runtime->format,
1952 				   get_dma_ptr(runtime, channel, hwoff),
1953 				   bytes_to_samples(runtime, bytes));
1954 	return 0;
1955 }
1956 
1957 /* default copy_user ops for read; used for both interleaved and non- modes */
1958 static int default_read_copy(struct snd_pcm_substream *substream,
1959 			     int channel, unsigned long hwoff,
1960 			     void *buf, unsigned long bytes)
1961 {
1962 	if (copy_to_user((void __user *)buf,
1963 			 get_dma_ptr(substream->runtime, channel, hwoff),
1964 			 bytes))
1965 		return -EFAULT;
1966 	return 0;
1967 }
1968 
1969 /* default copy_kernel ops for read */
1970 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1971 				    int channel, unsigned long hwoff,
1972 				    void *buf, unsigned long bytes)
1973 {
1974 	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1975 	return 0;
1976 }
1977 
1978 /* call transfer function with the converted pointers and sizes;
1979  * for interleaved mode, it's one shot for all samples
1980  */
1981 static int interleaved_copy(struct snd_pcm_substream *substream,
1982 			    snd_pcm_uframes_t hwoff, void *data,
1983 			    snd_pcm_uframes_t off,
1984 			    snd_pcm_uframes_t frames,
1985 			    pcm_transfer_f transfer)
1986 {
1987 	struct snd_pcm_runtime *runtime = substream->runtime;
1988 
1989 	/* convert to bytes */
1990 	hwoff = frames_to_bytes(runtime, hwoff);
1991 	off = frames_to_bytes(runtime, off);
1992 	frames = frames_to_bytes(runtime, frames);
1993 	return transfer(substream, 0, hwoff, data + off, frames);
1994 }
1995 
1996 /* call transfer function with the converted pointers and sizes for each
1997  * non-interleaved channel; when buffer is NULL, silencing instead of copying
1998  */
1999 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2000 			       snd_pcm_uframes_t hwoff, void *data,
2001 			       snd_pcm_uframes_t off,
2002 			       snd_pcm_uframes_t frames,
2003 			       pcm_transfer_f transfer)
2004 {
2005 	struct snd_pcm_runtime *runtime = substream->runtime;
2006 	int channels = runtime->channels;
2007 	void **bufs = data;
2008 	int c, err;
2009 
2010 	/* convert to bytes; note that it's not frames_to_bytes() here.
2011 	 * in non-interleaved mode, we copy for each channel, thus
2012 	 * each copy is n_samples bytes x channels = whole frames.
2013 	 */
2014 	off = samples_to_bytes(runtime, off);
2015 	frames = samples_to_bytes(runtime, frames);
2016 	hwoff = samples_to_bytes(runtime, hwoff);
2017 	for (c = 0; c < channels; ++c, ++bufs) {
2018 		if (!data || !*bufs)
2019 			err = fill_silence(substream, c, hwoff, NULL, frames);
2020 		else
2021 			err = transfer(substream, c, hwoff, *bufs + off,
2022 				       frames);
2023 		if (err < 0)
2024 			return err;
2025 	}
2026 	return 0;
2027 }
2028 
2029 /* fill silence on the given buffer position;
2030  * called from snd_pcm_playback_silence()
2031  */
2032 static int fill_silence_frames(struct snd_pcm_substream *substream,
2033 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2034 {
2035 	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2036 	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2037 		return interleaved_copy(substream, off, NULL, 0, frames,
2038 					fill_silence);
2039 	else
2040 		return noninterleaved_copy(substream, off, NULL, 0, frames,
2041 					   fill_silence);
2042 }
2043 
2044 /* sanity-check for read/write methods */
2045 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2046 {
2047 	struct snd_pcm_runtime *runtime;
2048 	if (PCM_RUNTIME_CHECK(substream))
2049 		return -ENXIO;
2050 	runtime = substream->runtime;
2051 	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2052 		return -EINVAL;
2053 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2054 		return -EBADFD;
2055 	return 0;
2056 }
2057 
2058 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2059 {
2060 	switch (runtime->status->state) {
2061 	case SNDRV_PCM_STATE_PREPARED:
2062 	case SNDRV_PCM_STATE_RUNNING:
2063 	case SNDRV_PCM_STATE_PAUSED:
2064 		return 0;
2065 	case SNDRV_PCM_STATE_XRUN:
2066 		return -EPIPE;
2067 	case SNDRV_PCM_STATE_SUSPENDED:
2068 		return -ESTRPIPE;
2069 	default:
2070 		return -EBADFD;
2071 	}
2072 }
2073 
2074 /* update to the given appl_ptr and call ack callback if needed;
2075  * when an error is returned, take back to the original value
2076  */
2077 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2078 			   snd_pcm_uframes_t appl_ptr)
2079 {
2080 	struct snd_pcm_runtime *runtime = substream->runtime;
2081 	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2082 	int ret;
2083 
2084 	if (old_appl_ptr == appl_ptr)
2085 		return 0;
2086 
2087 	runtime->control->appl_ptr = appl_ptr;
2088 	if (substream->ops->ack) {
2089 		ret = substream->ops->ack(substream);
2090 		if (ret < 0) {
2091 			runtime->control->appl_ptr = old_appl_ptr;
2092 			return ret;
2093 		}
2094 	}
2095 
2096 	trace_applptr(substream, old_appl_ptr, appl_ptr);
2097 
2098 	return 0;
2099 }
2100 
2101 /* the common loop for read/write data */
2102 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2103 				     void *data, bool interleaved,
2104 				     snd_pcm_uframes_t size, bool in_kernel)
2105 {
2106 	struct snd_pcm_runtime *runtime = substream->runtime;
2107 	snd_pcm_uframes_t xfer = 0;
2108 	snd_pcm_uframes_t offset = 0;
2109 	snd_pcm_uframes_t avail;
2110 	pcm_copy_f writer;
2111 	pcm_transfer_f transfer;
2112 	bool nonblock;
2113 	bool is_playback;
2114 	int err;
2115 
2116 	err = pcm_sanity_check(substream);
2117 	if (err < 0)
2118 		return err;
2119 
2120 	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2121 	if (interleaved) {
2122 		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2123 		    runtime->channels > 1)
2124 			return -EINVAL;
2125 		writer = interleaved_copy;
2126 	} else {
2127 		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2128 			return -EINVAL;
2129 		writer = noninterleaved_copy;
2130 	}
2131 
2132 	if (!data) {
2133 		if (is_playback)
2134 			transfer = fill_silence;
2135 		else
2136 			return -EINVAL;
2137 	} else if (in_kernel) {
2138 		if (substream->ops->copy_kernel)
2139 			transfer = substream->ops->copy_kernel;
2140 		else
2141 			transfer = is_playback ?
2142 				default_write_copy_kernel : default_read_copy_kernel;
2143 	} else {
2144 		if (substream->ops->copy_user)
2145 			transfer = (pcm_transfer_f)substream->ops->copy_user;
2146 		else
2147 			transfer = is_playback ?
2148 				default_write_copy : default_read_copy;
2149 	}
2150 
2151 	if (size == 0)
2152 		return 0;
2153 
2154 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2155 
2156 	snd_pcm_stream_lock_irq(substream);
2157 	err = pcm_accessible_state(runtime);
2158 	if (err < 0)
2159 		goto _end_unlock;
2160 
2161 	if (!is_playback &&
2162 	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2163 	    size >= runtime->start_threshold) {
2164 		err = snd_pcm_start(substream);
2165 		if (err < 0)
2166 			goto _end_unlock;
2167 	}
2168 
2169 	runtime->twake = runtime->control->avail_min ? : 1;
2170 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2171 		snd_pcm_update_hw_ptr(substream);
2172 	avail = snd_pcm_avail(substream);
2173 	while (size > 0) {
2174 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2175 		snd_pcm_uframes_t cont;
2176 		if (!avail) {
2177 			if (!is_playback &&
2178 			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2179 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2180 				goto _end_unlock;
2181 			}
2182 			if (nonblock) {
2183 				err = -EAGAIN;
2184 				goto _end_unlock;
2185 			}
2186 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2187 					runtime->control->avail_min ? : 1);
2188 			err = wait_for_avail(substream, &avail);
2189 			if (err < 0)
2190 				goto _end_unlock;
2191 			if (!avail)
2192 				continue; /* draining */
2193 		}
2194 		frames = size > avail ? avail : size;
2195 		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2196 		appl_ofs = appl_ptr % runtime->buffer_size;
2197 		cont = runtime->buffer_size - appl_ofs;
2198 		if (frames > cont)
2199 			frames = cont;
2200 		if (snd_BUG_ON(!frames)) {
2201 			runtime->twake = 0;
2202 			snd_pcm_stream_unlock_irq(substream);
2203 			return -EINVAL;
2204 		}
2205 		snd_pcm_stream_unlock_irq(substream);
2206 		err = writer(substream, appl_ofs, data, offset, frames,
2207 			     transfer);
2208 		snd_pcm_stream_lock_irq(substream);
2209 		if (err < 0)
2210 			goto _end_unlock;
2211 		err = pcm_accessible_state(runtime);
2212 		if (err < 0)
2213 			goto _end_unlock;
2214 		appl_ptr += frames;
2215 		if (appl_ptr >= runtime->boundary)
2216 			appl_ptr -= runtime->boundary;
2217 		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2218 		if (err < 0)
2219 			goto _end_unlock;
2220 
2221 		offset += frames;
2222 		size -= frames;
2223 		xfer += frames;
2224 		avail -= frames;
2225 		if (is_playback &&
2226 		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2227 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2228 			err = snd_pcm_start(substream);
2229 			if (err < 0)
2230 				goto _end_unlock;
2231 		}
2232 	}
2233  _end_unlock:
2234 	runtime->twake = 0;
2235 	if (xfer > 0 && err >= 0)
2236 		snd_pcm_update_state(substream, runtime);
2237 	snd_pcm_stream_unlock_irq(substream);
2238 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2239 }
2240 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2241 
2242 /*
2243  * standard channel mapping helpers
2244  */
2245 
2246 /* default channel maps for multi-channel playbacks, up to 8 channels */
2247 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2248 	{ .channels = 1,
2249 	  .map = { SNDRV_CHMAP_MONO } },
2250 	{ .channels = 2,
2251 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2252 	{ .channels = 4,
2253 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2254 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2255 	{ .channels = 6,
2256 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2257 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2258 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2259 	{ .channels = 8,
2260 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2261 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2262 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2263 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2264 	{ }
2265 };
2266 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2267 
2268 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2269 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2270 	{ .channels = 1,
2271 	  .map = { SNDRV_CHMAP_MONO } },
2272 	{ .channels = 2,
2273 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2274 	{ .channels = 4,
2275 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2276 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2277 	{ .channels = 6,
2278 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2279 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2280 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2281 	{ .channels = 8,
2282 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2283 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2284 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2285 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2286 	{ }
2287 };
2288 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2289 
2290 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2291 {
2292 	if (ch > info->max_channels)
2293 		return false;
2294 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2295 }
2296 
2297 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2298 			      struct snd_ctl_elem_info *uinfo)
2299 {
2300 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2301 
2302 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2303 	uinfo->count = 0;
2304 	uinfo->count = info->max_channels;
2305 	uinfo->value.integer.min = 0;
2306 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2307 	return 0;
2308 }
2309 
2310 /* get callback for channel map ctl element
2311  * stores the channel position firstly matching with the current channels
2312  */
2313 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2314 			     struct snd_ctl_elem_value *ucontrol)
2315 {
2316 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2317 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2318 	struct snd_pcm_substream *substream;
2319 	const struct snd_pcm_chmap_elem *map;
2320 
2321 	if (!info->chmap)
2322 		return -EINVAL;
2323 	substream = snd_pcm_chmap_substream(info, idx);
2324 	if (!substream)
2325 		return -ENODEV;
2326 	memset(ucontrol->value.integer.value, 0,
2327 	       sizeof(ucontrol->value.integer.value));
2328 	if (!substream->runtime)
2329 		return 0; /* no channels set */
2330 	for (map = info->chmap; map->channels; map++) {
2331 		int i;
2332 		if (map->channels == substream->runtime->channels &&
2333 		    valid_chmap_channels(info, map->channels)) {
2334 			for (i = 0; i < map->channels; i++)
2335 				ucontrol->value.integer.value[i] = map->map[i];
2336 			return 0;
2337 		}
2338 	}
2339 	return -EINVAL;
2340 }
2341 
2342 /* tlv callback for channel map ctl element
2343  * expands the pre-defined channel maps in a form of TLV
2344  */
2345 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2346 			     unsigned int size, unsigned int __user *tlv)
2347 {
2348 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2349 	const struct snd_pcm_chmap_elem *map;
2350 	unsigned int __user *dst;
2351 	int c, count = 0;
2352 
2353 	if (!info->chmap)
2354 		return -EINVAL;
2355 	if (size < 8)
2356 		return -ENOMEM;
2357 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2358 		return -EFAULT;
2359 	size -= 8;
2360 	dst = tlv + 2;
2361 	for (map = info->chmap; map->channels; map++) {
2362 		int chs_bytes = map->channels * 4;
2363 		if (!valid_chmap_channels(info, map->channels))
2364 			continue;
2365 		if (size < 8)
2366 			return -ENOMEM;
2367 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2368 		    put_user(chs_bytes, dst + 1))
2369 			return -EFAULT;
2370 		dst += 2;
2371 		size -= 8;
2372 		count += 8;
2373 		if (size < chs_bytes)
2374 			return -ENOMEM;
2375 		size -= chs_bytes;
2376 		count += chs_bytes;
2377 		for (c = 0; c < map->channels; c++) {
2378 			if (put_user(map->map[c], dst))
2379 				return -EFAULT;
2380 			dst++;
2381 		}
2382 	}
2383 	if (put_user(count, tlv + 1))
2384 		return -EFAULT;
2385 	return 0;
2386 }
2387 
2388 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2389 {
2390 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2391 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2392 	kfree(info);
2393 }
2394 
2395 /**
2396  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2397  * @pcm: the assigned PCM instance
2398  * @stream: stream direction
2399  * @chmap: channel map elements (for query)
2400  * @max_channels: the max number of channels for the stream
2401  * @private_value: the value passed to each kcontrol's private_value field
2402  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2403  *
2404  * Create channel-mapping control elements assigned to the given PCM stream(s).
2405  * Return: Zero if successful, or a negative error value.
2406  */
2407 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2408 			   const struct snd_pcm_chmap_elem *chmap,
2409 			   int max_channels,
2410 			   unsigned long private_value,
2411 			   struct snd_pcm_chmap **info_ret)
2412 {
2413 	struct snd_pcm_chmap *info;
2414 	struct snd_kcontrol_new knew = {
2415 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2416 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2417 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2418 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2419 		.info = pcm_chmap_ctl_info,
2420 		.get = pcm_chmap_ctl_get,
2421 		.tlv.c = pcm_chmap_ctl_tlv,
2422 	};
2423 	int err;
2424 
2425 	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2426 		return -EBUSY;
2427 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2428 	if (!info)
2429 		return -ENOMEM;
2430 	info->pcm = pcm;
2431 	info->stream = stream;
2432 	info->chmap = chmap;
2433 	info->max_channels = max_channels;
2434 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2435 		knew.name = "Playback Channel Map";
2436 	else
2437 		knew.name = "Capture Channel Map";
2438 	knew.device = pcm->device;
2439 	knew.count = pcm->streams[stream].substream_count;
2440 	knew.private_value = private_value;
2441 	info->kctl = snd_ctl_new1(&knew, info);
2442 	if (!info->kctl) {
2443 		kfree(info);
2444 		return -ENOMEM;
2445 	}
2446 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2447 	err = snd_ctl_add(pcm->card, info->kctl);
2448 	if (err < 0)
2449 		return err;
2450 	pcm->streams[stream].chmap_kctl = info->kctl;
2451 	if (info_ret)
2452 		*info_ret = info;
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2456