1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <linux/export.h> 27 #include <sound/core.h> 28 #include <sound/control.h> 29 #include <sound/tlv.h> 30 #include <sound/info.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/timer.h> 34 35 /* 36 * fill ring buffer with silence 37 * runtime->silence_start: starting pointer to silence area 38 * runtime->silence_filled: size filled with silence 39 * runtime->silence_threshold: threshold from application 40 * runtime->silence_size: maximal size from application 41 * 42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 43 */ 44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 45 { 46 struct snd_pcm_runtime *runtime = substream->runtime; 47 snd_pcm_uframes_t frames, ofs, transfer; 48 49 if (runtime->silence_size < runtime->boundary) { 50 snd_pcm_sframes_t noise_dist, n; 51 if (runtime->silence_start != runtime->control->appl_ptr) { 52 n = runtime->control->appl_ptr - runtime->silence_start; 53 if (n < 0) 54 n += runtime->boundary; 55 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 56 runtime->silence_filled -= n; 57 else 58 runtime->silence_filled = 0; 59 runtime->silence_start = runtime->control->appl_ptr; 60 } 61 if (runtime->silence_filled >= runtime->buffer_size) 62 return; 63 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 64 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 65 return; 66 frames = runtime->silence_threshold - noise_dist; 67 if (frames > runtime->silence_size) 68 frames = runtime->silence_size; 69 } else { 70 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 71 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 72 if (avail > runtime->buffer_size) 73 avail = runtime->buffer_size; 74 runtime->silence_filled = avail > 0 ? avail : 0; 75 runtime->silence_start = (runtime->status->hw_ptr + 76 runtime->silence_filled) % 77 runtime->boundary; 78 } else { 79 ofs = runtime->status->hw_ptr; 80 frames = new_hw_ptr - ofs; 81 if ((snd_pcm_sframes_t)frames < 0) 82 frames += runtime->boundary; 83 runtime->silence_filled -= frames; 84 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 85 runtime->silence_filled = 0; 86 runtime->silence_start = new_hw_ptr; 87 } else { 88 runtime->silence_start = ofs; 89 } 90 } 91 frames = runtime->buffer_size - runtime->silence_filled; 92 } 93 if (snd_BUG_ON(frames > runtime->buffer_size)) 94 return; 95 if (frames == 0) 96 return; 97 ofs = runtime->silence_start % runtime->buffer_size; 98 while (frames > 0) { 99 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 100 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 101 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 102 if (substream->ops->silence) { 103 int err; 104 err = substream->ops->silence(substream, -1, ofs, transfer); 105 snd_BUG_ON(err < 0); 106 } else { 107 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 108 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 109 } 110 } else { 111 unsigned int c; 112 unsigned int channels = runtime->channels; 113 if (substream->ops->silence) { 114 for (c = 0; c < channels; ++c) { 115 int err; 116 err = substream->ops->silence(substream, c, ofs, transfer); 117 snd_BUG_ON(err < 0); 118 } 119 } else { 120 size_t dma_csize = runtime->dma_bytes / channels; 121 for (c = 0; c < channels; ++c) { 122 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 123 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 124 } 125 } 126 } 127 runtime->silence_filled += transfer; 128 frames -= transfer; 129 ofs = 0; 130 } 131 } 132 133 #ifdef CONFIG_SND_DEBUG 134 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 135 char *name, size_t len) 136 { 137 snprintf(name, len, "pcmC%dD%d%c:%d", 138 substream->pcm->card->number, 139 substream->pcm->device, 140 substream->stream ? 'c' : 'p', 141 substream->number); 142 } 143 EXPORT_SYMBOL(snd_pcm_debug_name); 144 #endif 145 146 #define XRUN_DEBUG_BASIC (1<<0) 147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */ 150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */ 151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */ 152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */ 153 154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 155 156 #define xrun_debug(substream, mask) \ 157 ((substream)->pstr->xrun_debug & (mask)) 158 #else 159 #define xrun_debug(substream, mask) 0 160 #endif 161 162 #define dump_stack_on_xrun(substream) do { \ 163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 164 dump_stack(); \ 165 } while (0) 166 167 static void xrun(struct snd_pcm_substream *substream) 168 { 169 struct snd_pcm_runtime *runtime = substream->runtime; 170 171 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 172 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 173 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 175 char name[16]; 176 snd_pcm_debug_name(substream, name, sizeof(name)); 177 snd_printd(KERN_DEBUG "XRUN: %s\n", name); 178 dump_stack_on_xrun(substream); 179 } 180 } 181 182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 183 #define hw_ptr_error(substream, fmt, args...) \ 184 do { \ 185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 186 xrun_log_show(substream); \ 187 if (printk_ratelimit()) { \ 188 snd_printd("PCM: " fmt, ##args); \ 189 } \ 190 dump_stack_on_xrun(substream); \ 191 } \ 192 } while (0) 193 194 #define XRUN_LOG_CNT 10 195 196 struct hwptr_log_entry { 197 unsigned int in_interrupt; 198 unsigned long jiffies; 199 snd_pcm_uframes_t pos; 200 snd_pcm_uframes_t period_size; 201 snd_pcm_uframes_t buffer_size; 202 snd_pcm_uframes_t old_hw_ptr; 203 snd_pcm_uframes_t hw_ptr_base; 204 }; 205 206 struct snd_pcm_hwptr_log { 207 unsigned int idx; 208 unsigned int hit: 1; 209 struct hwptr_log_entry entries[XRUN_LOG_CNT]; 210 }; 211 212 static void xrun_log(struct snd_pcm_substream *substream, 213 snd_pcm_uframes_t pos, int in_interrupt) 214 { 215 struct snd_pcm_runtime *runtime = substream->runtime; 216 struct snd_pcm_hwptr_log *log = runtime->hwptr_log; 217 struct hwptr_log_entry *entry; 218 219 if (log == NULL) { 220 log = kzalloc(sizeof(*log), GFP_ATOMIC); 221 if (log == NULL) 222 return; 223 runtime->hwptr_log = log; 224 } else { 225 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 226 return; 227 } 228 entry = &log->entries[log->idx]; 229 entry->in_interrupt = in_interrupt; 230 entry->jiffies = jiffies; 231 entry->pos = pos; 232 entry->period_size = runtime->period_size; 233 entry->buffer_size = runtime->buffer_size; 234 entry->old_hw_ptr = runtime->status->hw_ptr; 235 entry->hw_ptr_base = runtime->hw_ptr_base; 236 log->idx = (log->idx + 1) % XRUN_LOG_CNT; 237 } 238 239 static void xrun_log_show(struct snd_pcm_substream *substream) 240 { 241 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log; 242 struct hwptr_log_entry *entry; 243 char name[16]; 244 unsigned int idx; 245 int cnt; 246 247 if (log == NULL) 248 return; 249 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 250 return; 251 snd_pcm_debug_name(substream, name, sizeof(name)); 252 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) { 253 entry = &log->entries[idx]; 254 if (entry->period_size == 0) 255 break; 256 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, " 257 "hwptr=%ld/%ld\n", 258 name, entry->in_interrupt ? "[Q] " : "", 259 entry->jiffies, 260 (unsigned long)entry->pos, 261 (unsigned long)entry->period_size, 262 (unsigned long)entry->buffer_size, 263 (unsigned long)entry->old_hw_ptr, 264 (unsigned long)entry->hw_ptr_base); 265 idx++; 266 idx %= XRUN_LOG_CNT; 267 } 268 log->hit = 1; 269 } 270 271 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 272 273 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 274 #define xrun_log(substream, pos, in_interrupt) do { } while (0) 275 #define xrun_log_show(substream) do { } while (0) 276 277 #endif 278 279 int snd_pcm_update_state(struct snd_pcm_substream *substream, 280 struct snd_pcm_runtime *runtime) 281 { 282 snd_pcm_uframes_t avail; 283 284 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 285 avail = snd_pcm_playback_avail(runtime); 286 else 287 avail = snd_pcm_capture_avail(runtime); 288 if (avail > runtime->avail_max) 289 runtime->avail_max = avail; 290 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 291 if (avail >= runtime->buffer_size) { 292 snd_pcm_drain_done(substream); 293 return -EPIPE; 294 } 295 } else { 296 if (avail >= runtime->stop_threshold) { 297 xrun(substream); 298 return -EPIPE; 299 } 300 } 301 if (runtime->twake) { 302 if (avail >= runtime->twake) 303 wake_up(&runtime->tsleep); 304 } else if (avail >= runtime->control->avail_min) 305 wake_up(&runtime->sleep); 306 return 0; 307 } 308 309 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 310 unsigned int in_interrupt) 311 { 312 struct snd_pcm_runtime *runtime = substream->runtime; 313 snd_pcm_uframes_t pos; 314 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 315 snd_pcm_sframes_t hdelta, delta; 316 unsigned long jdelta; 317 unsigned long curr_jiffies; 318 struct timespec curr_tstamp; 319 struct timespec audio_tstamp; 320 int crossed_boundary = 0; 321 322 old_hw_ptr = runtime->status->hw_ptr; 323 324 /* 325 * group pointer, time and jiffies reads to allow for more 326 * accurate correlations/corrections. 327 * The values are stored at the end of this routine after 328 * corrections for hw_ptr position 329 */ 330 pos = substream->ops->pointer(substream); 331 curr_jiffies = jiffies; 332 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 333 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 334 335 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) && 336 (substream->ops->wall_clock)) 337 substream->ops->wall_clock(substream, &audio_tstamp); 338 } 339 340 if (pos == SNDRV_PCM_POS_XRUN) { 341 xrun(substream); 342 return -EPIPE; 343 } 344 if (pos >= runtime->buffer_size) { 345 if (printk_ratelimit()) { 346 char name[16]; 347 snd_pcm_debug_name(substream, name, sizeof(name)); 348 xrun_log_show(substream); 349 snd_printd(KERN_ERR "BUG: %s, pos = %ld, " 350 "buffer size = %ld, period size = %ld\n", 351 name, pos, runtime->buffer_size, 352 runtime->period_size); 353 } 354 pos = 0; 355 } 356 pos -= pos % runtime->min_align; 357 if (xrun_debug(substream, XRUN_DEBUG_LOG)) 358 xrun_log(substream, pos, in_interrupt); 359 hw_base = runtime->hw_ptr_base; 360 new_hw_ptr = hw_base + pos; 361 if (in_interrupt) { 362 /* we know that one period was processed */ 363 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 364 delta = runtime->hw_ptr_interrupt + runtime->period_size; 365 if (delta > new_hw_ptr) { 366 /* check for double acknowledged interrupts */ 367 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 368 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 369 hw_base += runtime->buffer_size; 370 if (hw_base >= runtime->boundary) { 371 hw_base = 0; 372 crossed_boundary++; 373 } 374 new_hw_ptr = hw_base + pos; 375 goto __delta; 376 } 377 } 378 } 379 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 380 /* pointer crosses the end of the ring buffer */ 381 if (new_hw_ptr < old_hw_ptr) { 382 hw_base += runtime->buffer_size; 383 if (hw_base >= runtime->boundary) { 384 hw_base = 0; 385 crossed_boundary++; 386 } 387 new_hw_ptr = hw_base + pos; 388 } 389 __delta: 390 delta = new_hw_ptr - old_hw_ptr; 391 if (delta < 0) 392 delta += runtime->boundary; 393 if (xrun_debug(substream, in_interrupt ? 394 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) { 395 char name[16]; 396 snd_pcm_debug_name(substream, name, sizeof(name)); 397 snd_printd("%s_update: %s: pos=%u/%u/%u, " 398 "hwptr=%ld/%ld/%ld/%ld\n", 399 in_interrupt ? "period" : "hwptr", 400 name, 401 (unsigned int)pos, 402 (unsigned int)runtime->period_size, 403 (unsigned int)runtime->buffer_size, 404 (unsigned long)delta, 405 (unsigned long)old_hw_ptr, 406 (unsigned long)new_hw_ptr, 407 (unsigned long)runtime->hw_ptr_base); 408 } 409 410 if (runtime->no_period_wakeup) { 411 snd_pcm_sframes_t xrun_threshold; 412 /* 413 * Without regular period interrupts, we have to check 414 * the elapsed time to detect xruns. 415 */ 416 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 417 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 418 goto no_delta_check; 419 hdelta = jdelta - delta * HZ / runtime->rate; 420 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 421 while (hdelta > xrun_threshold) { 422 delta += runtime->buffer_size; 423 hw_base += runtime->buffer_size; 424 if (hw_base >= runtime->boundary) { 425 hw_base = 0; 426 crossed_boundary++; 427 } 428 new_hw_ptr = hw_base + pos; 429 hdelta -= runtime->hw_ptr_buffer_jiffies; 430 } 431 goto no_delta_check; 432 } 433 434 /* something must be really wrong */ 435 if (delta >= runtime->buffer_size + runtime->period_size) { 436 hw_ptr_error(substream, 437 "Unexpected hw_pointer value %s" 438 "(stream=%i, pos=%ld, new_hw_ptr=%ld, " 439 "old_hw_ptr=%ld)\n", 440 in_interrupt ? "[Q] " : "[P]", 441 substream->stream, (long)pos, 442 (long)new_hw_ptr, (long)old_hw_ptr); 443 return 0; 444 } 445 446 /* Do jiffies check only in xrun_debug mode */ 447 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 448 goto no_jiffies_check; 449 450 /* Skip the jiffies check for hardwares with BATCH flag. 451 * Such hardware usually just increases the position at each IRQ, 452 * thus it can't give any strange position. 453 */ 454 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 455 goto no_jiffies_check; 456 hdelta = delta; 457 if (hdelta < runtime->delay) 458 goto no_jiffies_check; 459 hdelta -= runtime->delay; 460 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 461 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 462 delta = jdelta / 463 (((runtime->period_size * HZ) / runtime->rate) 464 + HZ/100); 465 /* move new_hw_ptr according jiffies not pos variable */ 466 new_hw_ptr = old_hw_ptr; 467 hw_base = delta; 468 /* use loop to avoid checks for delta overflows */ 469 /* the delta value is small or zero in most cases */ 470 while (delta > 0) { 471 new_hw_ptr += runtime->period_size; 472 if (new_hw_ptr >= runtime->boundary) { 473 new_hw_ptr -= runtime->boundary; 474 crossed_boundary--; 475 } 476 delta--; 477 } 478 /* align hw_base to buffer_size */ 479 hw_ptr_error(substream, 480 "hw_ptr skipping! %s" 481 "(pos=%ld, delta=%ld, period=%ld, " 482 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 483 in_interrupt ? "[Q] " : "", 484 (long)pos, (long)hdelta, 485 (long)runtime->period_size, jdelta, 486 ((hdelta * HZ) / runtime->rate), hw_base, 487 (unsigned long)old_hw_ptr, 488 (unsigned long)new_hw_ptr); 489 /* reset values to proper state */ 490 delta = 0; 491 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 492 } 493 no_jiffies_check: 494 if (delta > runtime->period_size + runtime->period_size / 2) { 495 hw_ptr_error(substream, 496 "Lost interrupts? %s" 497 "(stream=%i, delta=%ld, new_hw_ptr=%ld, " 498 "old_hw_ptr=%ld)\n", 499 in_interrupt ? "[Q] " : "", 500 substream->stream, (long)delta, 501 (long)new_hw_ptr, 502 (long)old_hw_ptr); 503 } 504 505 no_delta_check: 506 if (runtime->status->hw_ptr == new_hw_ptr) 507 return 0; 508 509 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 510 runtime->silence_size > 0) 511 snd_pcm_playback_silence(substream, new_hw_ptr); 512 513 if (in_interrupt) { 514 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 515 if (delta < 0) 516 delta += runtime->boundary; 517 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 518 runtime->hw_ptr_interrupt += delta; 519 if (runtime->hw_ptr_interrupt >= runtime->boundary) 520 runtime->hw_ptr_interrupt -= runtime->boundary; 521 } 522 runtime->hw_ptr_base = hw_base; 523 runtime->status->hw_ptr = new_hw_ptr; 524 runtime->hw_ptr_jiffies = curr_jiffies; 525 if (crossed_boundary) { 526 snd_BUG_ON(crossed_boundary != 1); 527 runtime->hw_ptr_wrap += runtime->boundary; 528 } 529 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 530 runtime->status->tstamp = curr_tstamp; 531 532 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) { 533 /* 534 * no wall clock available, provide audio timestamp 535 * derived from pointer position+delay 536 */ 537 u64 audio_frames, audio_nsecs; 538 539 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 540 audio_frames = runtime->hw_ptr_wrap 541 + runtime->status->hw_ptr 542 - runtime->delay; 543 else 544 audio_frames = runtime->hw_ptr_wrap 545 + runtime->status->hw_ptr 546 + runtime->delay; 547 audio_nsecs = div_u64(audio_frames * 1000000000LL, 548 runtime->rate); 549 audio_tstamp = ns_to_timespec(audio_nsecs); 550 } 551 runtime->status->audio_tstamp = audio_tstamp; 552 } 553 554 return snd_pcm_update_state(substream, runtime); 555 } 556 557 /* CAUTION: call it with irq disabled */ 558 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 559 { 560 return snd_pcm_update_hw_ptr0(substream, 0); 561 } 562 563 /** 564 * snd_pcm_set_ops - set the PCM operators 565 * @pcm: the pcm instance 566 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 567 * @ops: the operator table 568 * 569 * Sets the given PCM operators to the pcm instance. 570 */ 571 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 572 { 573 struct snd_pcm_str *stream = &pcm->streams[direction]; 574 struct snd_pcm_substream *substream; 575 576 for (substream = stream->substream; substream != NULL; substream = substream->next) 577 substream->ops = ops; 578 } 579 580 EXPORT_SYMBOL(snd_pcm_set_ops); 581 582 /** 583 * snd_pcm_sync - set the PCM sync id 584 * @substream: the pcm substream 585 * 586 * Sets the PCM sync identifier for the card. 587 */ 588 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 589 { 590 struct snd_pcm_runtime *runtime = substream->runtime; 591 592 runtime->sync.id32[0] = substream->pcm->card->number; 593 runtime->sync.id32[1] = -1; 594 runtime->sync.id32[2] = -1; 595 runtime->sync.id32[3] = -1; 596 } 597 598 EXPORT_SYMBOL(snd_pcm_set_sync); 599 600 /* 601 * Standard ioctl routine 602 */ 603 604 static inline unsigned int div32(unsigned int a, unsigned int b, 605 unsigned int *r) 606 { 607 if (b == 0) { 608 *r = 0; 609 return UINT_MAX; 610 } 611 *r = a % b; 612 return a / b; 613 } 614 615 static inline unsigned int div_down(unsigned int a, unsigned int b) 616 { 617 if (b == 0) 618 return UINT_MAX; 619 return a / b; 620 } 621 622 static inline unsigned int div_up(unsigned int a, unsigned int b) 623 { 624 unsigned int r; 625 unsigned int q; 626 if (b == 0) 627 return UINT_MAX; 628 q = div32(a, b, &r); 629 if (r) 630 ++q; 631 return q; 632 } 633 634 static inline unsigned int mul(unsigned int a, unsigned int b) 635 { 636 if (a == 0) 637 return 0; 638 if (div_down(UINT_MAX, a) < b) 639 return UINT_MAX; 640 return a * b; 641 } 642 643 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 644 unsigned int c, unsigned int *r) 645 { 646 u_int64_t n = (u_int64_t) a * b; 647 if (c == 0) { 648 snd_BUG_ON(!n); 649 *r = 0; 650 return UINT_MAX; 651 } 652 n = div_u64_rem(n, c, r); 653 if (n >= UINT_MAX) { 654 *r = 0; 655 return UINT_MAX; 656 } 657 return n; 658 } 659 660 /** 661 * snd_interval_refine - refine the interval value of configurator 662 * @i: the interval value to refine 663 * @v: the interval value to refer to 664 * 665 * Refines the interval value with the reference value. 666 * The interval is changed to the range satisfying both intervals. 667 * The interval status (min, max, integer, etc.) are evaluated. 668 * 669 * Return: Positive if the value is changed, zero if it's not changed, or a 670 * negative error code. 671 */ 672 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 673 { 674 int changed = 0; 675 if (snd_BUG_ON(snd_interval_empty(i))) 676 return -EINVAL; 677 if (i->min < v->min) { 678 i->min = v->min; 679 i->openmin = v->openmin; 680 changed = 1; 681 } else if (i->min == v->min && !i->openmin && v->openmin) { 682 i->openmin = 1; 683 changed = 1; 684 } 685 if (i->max > v->max) { 686 i->max = v->max; 687 i->openmax = v->openmax; 688 changed = 1; 689 } else if (i->max == v->max && !i->openmax && v->openmax) { 690 i->openmax = 1; 691 changed = 1; 692 } 693 if (!i->integer && v->integer) { 694 i->integer = 1; 695 changed = 1; 696 } 697 if (i->integer) { 698 if (i->openmin) { 699 i->min++; 700 i->openmin = 0; 701 } 702 if (i->openmax) { 703 i->max--; 704 i->openmax = 0; 705 } 706 } else if (!i->openmin && !i->openmax && i->min == i->max) 707 i->integer = 1; 708 if (snd_interval_checkempty(i)) { 709 snd_interval_none(i); 710 return -EINVAL; 711 } 712 return changed; 713 } 714 715 EXPORT_SYMBOL(snd_interval_refine); 716 717 static int snd_interval_refine_first(struct snd_interval *i) 718 { 719 if (snd_BUG_ON(snd_interval_empty(i))) 720 return -EINVAL; 721 if (snd_interval_single(i)) 722 return 0; 723 i->max = i->min; 724 i->openmax = i->openmin; 725 if (i->openmax) 726 i->max++; 727 return 1; 728 } 729 730 static int snd_interval_refine_last(struct snd_interval *i) 731 { 732 if (snd_BUG_ON(snd_interval_empty(i))) 733 return -EINVAL; 734 if (snd_interval_single(i)) 735 return 0; 736 i->min = i->max; 737 i->openmin = i->openmax; 738 if (i->openmin) 739 i->min--; 740 return 1; 741 } 742 743 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 744 { 745 if (a->empty || b->empty) { 746 snd_interval_none(c); 747 return; 748 } 749 c->empty = 0; 750 c->min = mul(a->min, b->min); 751 c->openmin = (a->openmin || b->openmin); 752 c->max = mul(a->max, b->max); 753 c->openmax = (a->openmax || b->openmax); 754 c->integer = (a->integer && b->integer); 755 } 756 757 /** 758 * snd_interval_div - refine the interval value with division 759 * @a: dividend 760 * @b: divisor 761 * @c: quotient 762 * 763 * c = a / b 764 * 765 * Returns non-zero if the value is changed, zero if not changed. 766 */ 767 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 768 { 769 unsigned int r; 770 if (a->empty || b->empty) { 771 snd_interval_none(c); 772 return; 773 } 774 c->empty = 0; 775 c->min = div32(a->min, b->max, &r); 776 c->openmin = (r || a->openmin || b->openmax); 777 if (b->min > 0) { 778 c->max = div32(a->max, b->min, &r); 779 if (r) { 780 c->max++; 781 c->openmax = 1; 782 } else 783 c->openmax = (a->openmax || b->openmin); 784 } else { 785 c->max = UINT_MAX; 786 c->openmax = 0; 787 } 788 c->integer = 0; 789 } 790 791 /** 792 * snd_interval_muldivk - refine the interval value 793 * @a: dividend 1 794 * @b: dividend 2 795 * @k: divisor (as integer) 796 * @c: result 797 * 798 * c = a * b / k 799 * 800 * Returns non-zero if the value is changed, zero if not changed. 801 */ 802 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 803 unsigned int k, struct snd_interval *c) 804 { 805 unsigned int r; 806 if (a->empty || b->empty) { 807 snd_interval_none(c); 808 return; 809 } 810 c->empty = 0; 811 c->min = muldiv32(a->min, b->min, k, &r); 812 c->openmin = (r || a->openmin || b->openmin); 813 c->max = muldiv32(a->max, b->max, k, &r); 814 if (r) { 815 c->max++; 816 c->openmax = 1; 817 } else 818 c->openmax = (a->openmax || b->openmax); 819 c->integer = 0; 820 } 821 822 /** 823 * snd_interval_mulkdiv - refine the interval value 824 * @a: dividend 1 825 * @k: dividend 2 (as integer) 826 * @b: divisor 827 * @c: result 828 * 829 * c = a * k / b 830 * 831 * Returns non-zero if the value is changed, zero if not changed. 832 */ 833 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 834 const struct snd_interval *b, struct snd_interval *c) 835 { 836 unsigned int r; 837 if (a->empty || b->empty) { 838 snd_interval_none(c); 839 return; 840 } 841 c->empty = 0; 842 c->min = muldiv32(a->min, k, b->max, &r); 843 c->openmin = (r || a->openmin || b->openmax); 844 if (b->min > 0) { 845 c->max = muldiv32(a->max, k, b->min, &r); 846 if (r) { 847 c->max++; 848 c->openmax = 1; 849 } else 850 c->openmax = (a->openmax || b->openmin); 851 } else { 852 c->max = UINT_MAX; 853 c->openmax = 0; 854 } 855 c->integer = 0; 856 } 857 858 /* ---- */ 859 860 861 /** 862 * snd_interval_ratnum - refine the interval value 863 * @i: interval to refine 864 * @rats_count: number of ratnum_t 865 * @rats: ratnum_t array 866 * @nump: pointer to store the resultant numerator 867 * @denp: pointer to store the resultant denominator 868 * 869 * Return: Positive if the value is changed, zero if it's not changed, or a 870 * negative error code. 871 */ 872 int snd_interval_ratnum(struct snd_interval *i, 873 unsigned int rats_count, struct snd_ratnum *rats, 874 unsigned int *nump, unsigned int *denp) 875 { 876 unsigned int best_num, best_den; 877 int best_diff; 878 unsigned int k; 879 struct snd_interval t; 880 int err; 881 unsigned int result_num, result_den; 882 int result_diff; 883 884 best_num = best_den = best_diff = 0; 885 for (k = 0; k < rats_count; ++k) { 886 unsigned int num = rats[k].num; 887 unsigned int den; 888 unsigned int q = i->min; 889 int diff; 890 if (q == 0) 891 q = 1; 892 den = div_up(num, q); 893 if (den < rats[k].den_min) 894 continue; 895 if (den > rats[k].den_max) 896 den = rats[k].den_max; 897 else { 898 unsigned int r; 899 r = (den - rats[k].den_min) % rats[k].den_step; 900 if (r != 0) 901 den -= r; 902 } 903 diff = num - q * den; 904 if (diff < 0) 905 diff = -diff; 906 if (best_num == 0 || 907 diff * best_den < best_diff * den) { 908 best_diff = diff; 909 best_den = den; 910 best_num = num; 911 } 912 } 913 if (best_den == 0) { 914 i->empty = 1; 915 return -EINVAL; 916 } 917 t.min = div_down(best_num, best_den); 918 t.openmin = !!(best_num % best_den); 919 920 result_num = best_num; 921 result_diff = best_diff; 922 result_den = best_den; 923 best_num = best_den = best_diff = 0; 924 for (k = 0; k < rats_count; ++k) { 925 unsigned int num = rats[k].num; 926 unsigned int den; 927 unsigned int q = i->max; 928 int diff; 929 if (q == 0) { 930 i->empty = 1; 931 return -EINVAL; 932 } 933 den = div_down(num, q); 934 if (den > rats[k].den_max) 935 continue; 936 if (den < rats[k].den_min) 937 den = rats[k].den_min; 938 else { 939 unsigned int r; 940 r = (den - rats[k].den_min) % rats[k].den_step; 941 if (r != 0) 942 den += rats[k].den_step - r; 943 } 944 diff = q * den - num; 945 if (diff < 0) 946 diff = -diff; 947 if (best_num == 0 || 948 diff * best_den < best_diff * den) { 949 best_diff = diff; 950 best_den = den; 951 best_num = num; 952 } 953 } 954 if (best_den == 0) { 955 i->empty = 1; 956 return -EINVAL; 957 } 958 t.max = div_up(best_num, best_den); 959 t.openmax = !!(best_num % best_den); 960 t.integer = 0; 961 err = snd_interval_refine(i, &t); 962 if (err < 0) 963 return err; 964 965 if (snd_interval_single(i)) { 966 if (best_diff * result_den < result_diff * best_den) { 967 result_num = best_num; 968 result_den = best_den; 969 } 970 if (nump) 971 *nump = result_num; 972 if (denp) 973 *denp = result_den; 974 } 975 return err; 976 } 977 978 EXPORT_SYMBOL(snd_interval_ratnum); 979 980 /** 981 * snd_interval_ratden - refine the interval value 982 * @i: interval to refine 983 * @rats_count: number of struct ratden 984 * @rats: struct ratden array 985 * @nump: pointer to store the resultant numerator 986 * @denp: pointer to store the resultant denominator 987 * 988 * Return: Positive if the value is changed, zero if it's not changed, or a 989 * negative error code. 990 */ 991 static int snd_interval_ratden(struct snd_interval *i, 992 unsigned int rats_count, struct snd_ratden *rats, 993 unsigned int *nump, unsigned int *denp) 994 { 995 unsigned int best_num, best_diff, best_den; 996 unsigned int k; 997 struct snd_interval t; 998 int err; 999 1000 best_num = best_den = best_diff = 0; 1001 for (k = 0; k < rats_count; ++k) { 1002 unsigned int num; 1003 unsigned int den = rats[k].den; 1004 unsigned int q = i->min; 1005 int diff; 1006 num = mul(q, den); 1007 if (num > rats[k].num_max) 1008 continue; 1009 if (num < rats[k].num_min) 1010 num = rats[k].num_max; 1011 else { 1012 unsigned int r; 1013 r = (num - rats[k].num_min) % rats[k].num_step; 1014 if (r != 0) 1015 num += rats[k].num_step - r; 1016 } 1017 diff = num - q * den; 1018 if (best_num == 0 || 1019 diff * best_den < best_diff * den) { 1020 best_diff = diff; 1021 best_den = den; 1022 best_num = num; 1023 } 1024 } 1025 if (best_den == 0) { 1026 i->empty = 1; 1027 return -EINVAL; 1028 } 1029 t.min = div_down(best_num, best_den); 1030 t.openmin = !!(best_num % best_den); 1031 1032 best_num = best_den = best_diff = 0; 1033 for (k = 0; k < rats_count; ++k) { 1034 unsigned int num; 1035 unsigned int den = rats[k].den; 1036 unsigned int q = i->max; 1037 int diff; 1038 num = mul(q, den); 1039 if (num < rats[k].num_min) 1040 continue; 1041 if (num > rats[k].num_max) 1042 num = rats[k].num_max; 1043 else { 1044 unsigned int r; 1045 r = (num - rats[k].num_min) % rats[k].num_step; 1046 if (r != 0) 1047 num -= r; 1048 } 1049 diff = q * den - num; 1050 if (best_num == 0 || 1051 diff * best_den < best_diff * den) { 1052 best_diff = diff; 1053 best_den = den; 1054 best_num = num; 1055 } 1056 } 1057 if (best_den == 0) { 1058 i->empty = 1; 1059 return -EINVAL; 1060 } 1061 t.max = div_up(best_num, best_den); 1062 t.openmax = !!(best_num % best_den); 1063 t.integer = 0; 1064 err = snd_interval_refine(i, &t); 1065 if (err < 0) 1066 return err; 1067 1068 if (snd_interval_single(i)) { 1069 if (nump) 1070 *nump = best_num; 1071 if (denp) 1072 *denp = best_den; 1073 } 1074 return err; 1075 } 1076 1077 /** 1078 * snd_interval_list - refine the interval value from the list 1079 * @i: the interval value to refine 1080 * @count: the number of elements in the list 1081 * @list: the value list 1082 * @mask: the bit-mask to evaluate 1083 * 1084 * Refines the interval value from the list. 1085 * When mask is non-zero, only the elements corresponding to bit 1 are 1086 * evaluated. 1087 * 1088 * Return: Positive if the value is changed, zero if it's not changed, or a 1089 * negative error code. 1090 */ 1091 int snd_interval_list(struct snd_interval *i, unsigned int count, 1092 const unsigned int *list, unsigned int mask) 1093 { 1094 unsigned int k; 1095 struct snd_interval list_range; 1096 1097 if (!count) { 1098 i->empty = 1; 1099 return -EINVAL; 1100 } 1101 snd_interval_any(&list_range); 1102 list_range.min = UINT_MAX; 1103 list_range.max = 0; 1104 for (k = 0; k < count; k++) { 1105 if (mask && !(mask & (1 << k))) 1106 continue; 1107 if (!snd_interval_test(i, list[k])) 1108 continue; 1109 list_range.min = min(list_range.min, list[k]); 1110 list_range.max = max(list_range.max, list[k]); 1111 } 1112 return snd_interval_refine(i, &list_range); 1113 } 1114 1115 EXPORT_SYMBOL(snd_interval_list); 1116 1117 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 1118 { 1119 unsigned int n; 1120 int changed = 0; 1121 n = (i->min - min) % step; 1122 if (n != 0 || i->openmin) { 1123 i->min += step - n; 1124 changed = 1; 1125 } 1126 n = (i->max - min) % step; 1127 if (n != 0 || i->openmax) { 1128 i->max -= n; 1129 changed = 1; 1130 } 1131 if (snd_interval_checkempty(i)) { 1132 i->empty = 1; 1133 return -EINVAL; 1134 } 1135 return changed; 1136 } 1137 1138 /* Info constraints helpers */ 1139 1140 /** 1141 * snd_pcm_hw_rule_add - add the hw-constraint rule 1142 * @runtime: the pcm runtime instance 1143 * @cond: condition bits 1144 * @var: the variable to evaluate 1145 * @func: the evaluation function 1146 * @private: the private data pointer passed to function 1147 * @dep: the dependent variables 1148 * 1149 * Return: Zero if successful, or a negative error code on failure. 1150 */ 1151 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1152 int var, 1153 snd_pcm_hw_rule_func_t func, void *private, 1154 int dep, ...) 1155 { 1156 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1157 struct snd_pcm_hw_rule *c; 1158 unsigned int k; 1159 va_list args; 1160 va_start(args, dep); 1161 if (constrs->rules_num >= constrs->rules_all) { 1162 struct snd_pcm_hw_rule *new; 1163 unsigned int new_rules = constrs->rules_all + 16; 1164 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1165 if (!new) { 1166 va_end(args); 1167 return -ENOMEM; 1168 } 1169 if (constrs->rules) { 1170 memcpy(new, constrs->rules, 1171 constrs->rules_num * sizeof(*c)); 1172 kfree(constrs->rules); 1173 } 1174 constrs->rules = new; 1175 constrs->rules_all = new_rules; 1176 } 1177 c = &constrs->rules[constrs->rules_num]; 1178 c->cond = cond; 1179 c->func = func; 1180 c->var = var; 1181 c->private = private; 1182 k = 0; 1183 while (1) { 1184 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1185 va_end(args); 1186 return -EINVAL; 1187 } 1188 c->deps[k++] = dep; 1189 if (dep < 0) 1190 break; 1191 dep = va_arg(args, int); 1192 } 1193 constrs->rules_num++; 1194 va_end(args); 1195 return 0; 1196 } 1197 1198 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1199 1200 /** 1201 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1202 * @runtime: PCM runtime instance 1203 * @var: hw_params variable to apply the mask 1204 * @mask: the bitmap mask 1205 * 1206 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1207 * 1208 * Return: Zero if successful, or a negative error code on failure. 1209 */ 1210 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1211 u_int32_t mask) 1212 { 1213 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1214 struct snd_mask *maskp = constrs_mask(constrs, var); 1215 *maskp->bits &= mask; 1216 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1217 if (*maskp->bits == 0) 1218 return -EINVAL; 1219 return 0; 1220 } 1221 1222 /** 1223 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1224 * @runtime: PCM runtime instance 1225 * @var: hw_params variable to apply the mask 1226 * @mask: the 64bit bitmap mask 1227 * 1228 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1229 * 1230 * Return: Zero if successful, or a negative error code on failure. 1231 */ 1232 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1233 u_int64_t mask) 1234 { 1235 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1236 struct snd_mask *maskp = constrs_mask(constrs, var); 1237 maskp->bits[0] &= (u_int32_t)mask; 1238 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1239 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1240 if (! maskp->bits[0] && ! maskp->bits[1]) 1241 return -EINVAL; 1242 return 0; 1243 } 1244 1245 /** 1246 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1247 * @runtime: PCM runtime instance 1248 * @var: hw_params variable to apply the integer constraint 1249 * 1250 * Apply the constraint of integer to an interval parameter. 1251 * 1252 * Return: Positive if the value is changed, zero if it's not changed, or a 1253 * negative error code. 1254 */ 1255 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1256 { 1257 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1258 return snd_interval_setinteger(constrs_interval(constrs, var)); 1259 } 1260 1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1262 1263 /** 1264 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1265 * @runtime: PCM runtime instance 1266 * @var: hw_params variable to apply the range 1267 * @min: the minimal value 1268 * @max: the maximal value 1269 * 1270 * Apply the min/max range constraint to an interval parameter. 1271 * 1272 * Return: Positive if the value is changed, zero if it's not changed, or a 1273 * negative error code. 1274 */ 1275 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1276 unsigned int min, unsigned int max) 1277 { 1278 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1279 struct snd_interval t; 1280 t.min = min; 1281 t.max = max; 1282 t.openmin = t.openmax = 0; 1283 t.integer = 0; 1284 return snd_interval_refine(constrs_interval(constrs, var), &t); 1285 } 1286 1287 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1288 1289 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1290 struct snd_pcm_hw_rule *rule) 1291 { 1292 struct snd_pcm_hw_constraint_list *list = rule->private; 1293 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1294 } 1295 1296 1297 /** 1298 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1299 * @runtime: PCM runtime instance 1300 * @cond: condition bits 1301 * @var: hw_params variable to apply the list constraint 1302 * @l: list 1303 * 1304 * Apply the list of constraints to an interval parameter. 1305 * 1306 * Return: Zero if successful, or a negative error code on failure. 1307 */ 1308 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1309 unsigned int cond, 1310 snd_pcm_hw_param_t var, 1311 const struct snd_pcm_hw_constraint_list *l) 1312 { 1313 return snd_pcm_hw_rule_add(runtime, cond, var, 1314 snd_pcm_hw_rule_list, (void *)l, 1315 var, -1); 1316 } 1317 1318 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1319 1320 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1321 struct snd_pcm_hw_rule *rule) 1322 { 1323 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1324 unsigned int num = 0, den = 0; 1325 int err; 1326 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1327 r->nrats, r->rats, &num, &den); 1328 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1329 params->rate_num = num; 1330 params->rate_den = den; 1331 } 1332 return err; 1333 } 1334 1335 /** 1336 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1337 * @runtime: PCM runtime instance 1338 * @cond: condition bits 1339 * @var: hw_params variable to apply the ratnums constraint 1340 * @r: struct snd_ratnums constriants 1341 * 1342 * Return: Zero if successful, or a negative error code on failure. 1343 */ 1344 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1345 unsigned int cond, 1346 snd_pcm_hw_param_t var, 1347 struct snd_pcm_hw_constraint_ratnums *r) 1348 { 1349 return snd_pcm_hw_rule_add(runtime, cond, var, 1350 snd_pcm_hw_rule_ratnums, r, 1351 var, -1); 1352 } 1353 1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1355 1356 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1357 struct snd_pcm_hw_rule *rule) 1358 { 1359 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1360 unsigned int num = 0, den = 0; 1361 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1362 r->nrats, r->rats, &num, &den); 1363 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1364 params->rate_num = num; 1365 params->rate_den = den; 1366 } 1367 return err; 1368 } 1369 1370 /** 1371 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1372 * @runtime: PCM runtime instance 1373 * @cond: condition bits 1374 * @var: hw_params variable to apply the ratdens constraint 1375 * @r: struct snd_ratdens constriants 1376 * 1377 * Return: Zero if successful, or a negative error code on failure. 1378 */ 1379 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1380 unsigned int cond, 1381 snd_pcm_hw_param_t var, 1382 struct snd_pcm_hw_constraint_ratdens *r) 1383 { 1384 return snd_pcm_hw_rule_add(runtime, cond, var, 1385 snd_pcm_hw_rule_ratdens, r, 1386 var, -1); 1387 } 1388 1389 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1390 1391 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1392 struct snd_pcm_hw_rule *rule) 1393 { 1394 unsigned int l = (unsigned long) rule->private; 1395 int width = l & 0xffff; 1396 unsigned int msbits = l >> 16; 1397 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1398 if (snd_interval_single(i) && snd_interval_value(i) == width) 1399 params->msbits = msbits; 1400 return 0; 1401 } 1402 1403 /** 1404 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1405 * @runtime: PCM runtime instance 1406 * @cond: condition bits 1407 * @width: sample bits width 1408 * @msbits: msbits width 1409 * 1410 * Return: Zero if successful, or a negative error code on failure. 1411 */ 1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1413 unsigned int cond, 1414 unsigned int width, 1415 unsigned int msbits) 1416 { 1417 unsigned long l = (msbits << 16) | width; 1418 return snd_pcm_hw_rule_add(runtime, cond, -1, 1419 snd_pcm_hw_rule_msbits, 1420 (void*) l, 1421 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1422 } 1423 1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1425 1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1427 struct snd_pcm_hw_rule *rule) 1428 { 1429 unsigned long step = (unsigned long) rule->private; 1430 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1431 } 1432 1433 /** 1434 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1435 * @runtime: PCM runtime instance 1436 * @cond: condition bits 1437 * @var: hw_params variable to apply the step constraint 1438 * @step: step size 1439 * 1440 * Return: Zero if successful, or a negative error code on failure. 1441 */ 1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1443 unsigned int cond, 1444 snd_pcm_hw_param_t var, 1445 unsigned long step) 1446 { 1447 return snd_pcm_hw_rule_add(runtime, cond, var, 1448 snd_pcm_hw_rule_step, (void *) step, 1449 var, -1); 1450 } 1451 1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1453 1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1455 { 1456 static unsigned int pow2_sizes[] = { 1457 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1458 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1459 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1460 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1461 }; 1462 return snd_interval_list(hw_param_interval(params, rule->var), 1463 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1464 } 1465 1466 /** 1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1468 * @runtime: PCM runtime instance 1469 * @cond: condition bits 1470 * @var: hw_params variable to apply the power-of-2 constraint 1471 * 1472 * Return: Zero if successful, or a negative error code on failure. 1473 */ 1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1475 unsigned int cond, 1476 snd_pcm_hw_param_t var) 1477 { 1478 return snd_pcm_hw_rule_add(runtime, cond, var, 1479 snd_pcm_hw_rule_pow2, NULL, 1480 var, -1); 1481 } 1482 1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1484 1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1486 struct snd_pcm_hw_rule *rule) 1487 { 1488 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1489 struct snd_interval *rate; 1490 1491 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1492 return snd_interval_list(rate, 1, &base_rate, 0); 1493 } 1494 1495 /** 1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1497 * @runtime: PCM runtime instance 1498 * @base_rate: the rate at which the hardware does not resample 1499 * 1500 * Return: Zero if successful, or a negative error code on failure. 1501 */ 1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1503 unsigned int base_rate) 1504 { 1505 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1506 SNDRV_PCM_HW_PARAM_RATE, 1507 snd_pcm_hw_rule_noresample_func, 1508 (void *)(uintptr_t)base_rate, 1509 SNDRV_PCM_HW_PARAM_RATE, -1); 1510 } 1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1512 1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1514 snd_pcm_hw_param_t var) 1515 { 1516 if (hw_is_mask(var)) { 1517 snd_mask_any(hw_param_mask(params, var)); 1518 params->cmask |= 1 << var; 1519 params->rmask |= 1 << var; 1520 return; 1521 } 1522 if (hw_is_interval(var)) { 1523 snd_interval_any(hw_param_interval(params, var)); 1524 params->cmask |= 1 << var; 1525 params->rmask |= 1 << var; 1526 return; 1527 } 1528 snd_BUG(); 1529 } 1530 1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1532 { 1533 unsigned int k; 1534 memset(params, 0, sizeof(*params)); 1535 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1536 _snd_pcm_hw_param_any(params, k); 1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1538 _snd_pcm_hw_param_any(params, k); 1539 params->info = ~0U; 1540 } 1541 1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1543 1544 /** 1545 * snd_pcm_hw_param_value - return @params field @var value 1546 * @params: the hw_params instance 1547 * @var: parameter to retrieve 1548 * @dir: pointer to the direction (-1,0,1) or %NULL 1549 * 1550 * Return: The value for field @var if it's fixed in configuration space 1551 * defined by @params. -%EINVAL otherwise. 1552 */ 1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1554 snd_pcm_hw_param_t var, int *dir) 1555 { 1556 if (hw_is_mask(var)) { 1557 const struct snd_mask *mask = hw_param_mask_c(params, var); 1558 if (!snd_mask_single(mask)) 1559 return -EINVAL; 1560 if (dir) 1561 *dir = 0; 1562 return snd_mask_value(mask); 1563 } 1564 if (hw_is_interval(var)) { 1565 const struct snd_interval *i = hw_param_interval_c(params, var); 1566 if (!snd_interval_single(i)) 1567 return -EINVAL; 1568 if (dir) 1569 *dir = i->openmin; 1570 return snd_interval_value(i); 1571 } 1572 return -EINVAL; 1573 } 1574 1575 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1576 1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1578 snd_pcm_hw_param_t var) 1579 { 1580 if (hw_is_mask(var)) { 1581 snd_mask_none(hw_param_mask(params, var)); 1582 params->cmask |= 1 << var; 1583 params->rmask |= 1 << var; 1584 } else if (hw_is_interval(var)) { 1585 snd_interval_none(hw_param_interval(params, var)); 1586 params->cmask |= 1 << var; 1587 params->rmask |= 1 << var; 1588 } else { 1589 snd_BUG(); 1590 } 1591 } 1592 1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1594 1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1596 snd_pcm_hw_param_t var) 1597 { 1598 int changed; 1599 if (hw_is_mask(var)) 1600 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1601 else if (hw_is_interval(var)) 1602 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1603 else 1604 return -EINVAL; 1605 if (changed) { 1606 params->cmask |= 1 << var; 1607 params->rmask |= 1 << var; 1608 } 1609 return changed; 1610 } 1611 1612 1613 /** 1614 * snd_pcm_hw_param_first - refine config space and return minimum value 1615 * @pcm: PCM instance 1616 * @params: the hw_params instance 1617 * @var: parameter to retrieve 1618 * @dir: pointer to the direction (-1,0,1) or %NULL 1619 * 1620 * Inside configuration space defined by @params remove from @var all 1621 * values > minimum. Reduce configuration space accordingly. 1622 * 1623 * Return: The minimum, or a negative error code on failure. 1624 */ 1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1626 struct snd_pcm_hw_params *params, 1627 snd_pcm_hw_param_t var, int *dir) 1628 { 1629 int changed = _snd_pcm_hw_param_first(params, var); 1630 if (changed < 0) 1631 return changed; 1632 if (params->rmask) { 1633 int err = snd_pcm_hw_refine(pcm, params); 1634 if (snd_BUG_ON(err < 0)) 1635 return err; 1636 } 1637 return snd_pcm_hw_param_value(params, var, dir); 1638 } 1639 1640 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1641 1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1643 snd_pcm_hw_param_t var) 1644 { 1645 int changed; 1646 if (hw_is_mask(var)) 1647 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1648 else if (hw_is_interval(var)) 1649 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1650 else 1651 return -EINVAL; 1652 if (changed) { 1653 params->cmask |= 1 << var; 1654 params->rmask |= 1 << var; 1655 } 1656 return changed; 1657 } 1658 1659 1660 /** 1661 * snd_pcm_hw_param_last - refine config space and return maximum value 1662 * @pcm: PCM instance 1663 * @params: the hw_params instance 1664 * @var: parameter to retrieve 1665 * @dir: pointer to the direction (-1,0,1) or %NULL 1666 * 1667 * Inside configuration space defined by @params remove from @var all 1668 * values < maximum. Reduce configuration space accordingly. 1669 * 1670 * Return: The maximum, or a negative error code on failure. 1671 */ 1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1673 struct snd_pcm_hw_params *params, 1674 snd_pcm_hw_param_t var, int *dir) 1675 { 1676 int changed = _snd_pcm_hw_param_last(params, var); 1677 if (changed < 0) 1678 return changed; 1679 if (params->rmask) { 1680 int err = snd_pcm_hw_refine(pcm, params); 1681 if (snd_BUG_ON(err < 0)) 1682 return err; 1683 } 1684 return snd_pcm_hw_param_value(params, var, dir); 1685 } 1686 1687 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1688 1689 /** 1690 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1691 * @pcm: PCM instance 1692 * @params: the hw_params instance 1693 * 1694 * Choose one configuration from configuration space defined by @params. 1695 * The configuration chosen is that obtained fixing in this order: 1696 * first access, first format, first subformat, min channels, 1697 * min rate, min period time, max buffer size, min tick time 1698 * 1699 * Return: Zero if successful, or a negative error code on failure. 1700 */ 1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1702 struct snd_pcm_hw_params *params) 1703 { 1704 static int vars[] = { 1705 SNDRV_PCM_HW_PARAM_ACCESS, 1706 SNDRV_PCM_HW_PARAM_FORMAT, 1707 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1708 SNDRV_PCM_HW_PARAM_CHANNELS, 1709 SNDRV_PCM_HW_PARAM_RATE, 1710 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1711 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1712 SNDRV_PCM_HW_PARAM_TICK_TIME, 1713 -1 1714 }; 1715 int err, *v; 1716 1717 for (v = vars; *v != -1; v++) { 1718 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1719 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1720 else 1721 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1722 if (snd_BUG_ON(err < 0)) 1723 return err; 1724 } 1725 return 0; 1726 } 1727 1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1729 void *arg) 1730 { 1731 struct snd_pcm_runtime *runtime = substream->runtime; 1732 unsigned long flags; 1733 snd_pcm_stream_lock_irqsave(substream, flags); 1734 if (snd_pcm_running(substream) && 1735 snd_pcm_update_hw_ptr(substream) >= 0) 1736 runtime->status->hw_ptr %= runtime->buffer_size; 1737 else { 1738 runtime->status->hw_ptr = 0; 1739 runtime->hw_ptr_wrap = 0; 1740 } 1741 snd_pcm_stream_unlock_irqrestore(substream, flags); 1742 return 0; 1743 } 1744 1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1746 void *arg) 1747 { 1748 struct snd_pcm_channel_info *info = arg; 1749 struct snd_pcm_runtime *runtime = substream->runtime; 1750 int width; 1751 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1752 info->offset = -1; 1753 return 0; 1754 } 1755 width = snd_pcm_format_physical_width(runtime->format); 1756 if (width < 0) 1757 return width; 1758 info->offset = 0; 1759 switch (runtime->access) { 1760 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1761 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1762 info->first = info->channel * width; 1763 info->step = runtime->channels * width; 1764 break; 1765 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1766 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1767 { 1768 size_t size = runtime->dma_bytes / runtime->channels; 1769 info->first = info->channel * size * 8; 1770 info->step = width; 1771 break; 1772 } 1773 default: 1774 snd_BUG(); 1775 break; 1776 } 1777 return 0; 1778 } 1779 1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1781 void *arg) 1782 { 1783 struct snd_pcm_hw_params *params = arg; 1784 snd_pcm_format_t format; 1785 int channels, width; 1786 1787 params->fifo_size = substream->runtime->hw.fifo_size; 1788 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1789 format = params_format(params); 1790 channels = params_channels(params); 1791 width = snd_pcm_format_physical_width(format); 1792 params->fifo_size /= width * channels; 1793 } 1794 return 0; 1795 } 1796 1797 /** 1798 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1799 * @substream: the pcm substream instance 1800 * @cmd: ioctl command 1801 * @arg: ioctl argument 1802 * 1803 * Processes the generic ioctl commands for PCM. 1804 * Can be passed as the ioctl callback for PCM ops. 1805 * 1806 * Return: Zero if successful, or a negative error code on failure. 1807 */ 1808 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1809 unsigned int cmd, void *arg) 1810 { 1811 switch (cmd) { 1812 case SNDRV_PCM_IOCTL1_INFO: 1813 return 0; 1814 case SNDRV_PCM_IOCTL1_RESET: 1815 return snd_pcm_lib_ioctl_reset(substream, arg); 1816 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1817 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1818 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1819 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1820 } 1821 return -ENXIO; 1822 } 1823 1824 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1825 1826 /** 1827 * snd_pcm_period_elapsed - update the pcm status for the next period 1828 * @substream: the pcm substream instance 1829 * 1830 * This function is called from the interrupt handler when the 1831 * PCM has processed the period size. It will update the current 1832 * pointer, wake up sleepers, etc. 1833 * 1834 * Even if more than one periods have elapsed since the last call, you 1835 * have to call this only once. 1836 */ 1837 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1838 { 1839 struct snd_pcm_runtime *runtime; 1840 unsigned long flags; 1841 1842 if (PCM_RUNTIME_CHECK(substream)) 1843 return; 1844 runtime = substream->runtime; 1845 1846 if (runtime->transfer_ack_begin) 1847 runtime->transfer_ack_begin(substream); 1848 1849 snd_pcm_stream_lock_irqsave(substream, flags); 1850 if (!snd_pcm_running(substream) || 1851 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1852 goto _end; 1853 1854 if (substream->timer_running) 1855 snd_timer_interrupt(substream->timer, 1); 1856 _end: 1857 snd_pcm_stream_unlock_irqrestore(substream, flags); 1858 if (runtime->transfer_ack_end) 1859 runtime->transfer_ack_end(substream); 1860 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1861 } 1862 1863 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1864 1865 /* 1866 * Wait until avail_min data becomes available 1867 * Returns a negative error code if any error occurs during operation. 1868 * The available space is stored on availp. When err = 0 and avail = 0 1869 * on the capture stream, it indicates the stream is in DRAINING state. 1870 */ 1871 static int wait_for_avail(struct snd_pcm_substream *substream, 1872 snd_pcm_uframes_t *availp) 1873 { 1874 struct snd_pcm_runtime *runtime = substream->runtime; 1875 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1876 wait_queue_t wait; 1877 int err = 0; 1878 snd_pcm_uframes_t avail = 0; 1879 long wait_time, tout; 1880 1881 init_waitqueue_entry(&wait, current); 1882 set_current_state(TASK_INTERRUPTIBLE); 1883 add_wait_queue(&runtime->tsleep, &wait); 1884 1885 if (runtime->no_period_wakeup) 1886 wait_time = MAX_SCHEDULE_TIMEOUT; 1887 else { 1888 wait_time = 10; 1889 if (runtime->rate) { 1890 long t = runtime->period_size * 2 / runtime->rate; 1891 wait_time = max(t, wait_time); 1892 } 1893 wait_time = msecs_to_jiffies(wait_time * 1000); 1894 } 1895 1896 for (;;) { 1897 if (signal_pending(current)) { 1898 err = -ERESTARTSYS; 1899 break; 1900 } 1901 1902 /* 1903 * We need to check if space became available already 1904 * (and thus the wakeup happened already) first to close 1905 * the race of space already having become available. 1906 * This check must happen after been added to the waitqueue 1907 * and having current state be INTERRUPTIBLE. 1908 */ 1909 if (is_playback) 1910 avail = snd_pcm_playback_avail(runtime); 1911 else 1912 avail = snd_pcm_capture_avail(runtime); 1913 if (avail >= runtime->twake) 1914 break; 1915 snd_pcm_stream_unlock_irq(substream); 1916 1917 tout = schedule_timeout(wait_time); 1918 1919 snd_pcm_stream_lock_irq(substream); 1920 set_current_state(TASK_INTERRUPTIBLE); 1921 switch (runtime->status->state) { 1922 case SNDRV_PCM_STATE_SUSPENDED: 1923 err = -ESTRPIPE; 1924 goto _endloop; 1925 case SNDRV_PCM_STATE_XRUN: 1926 err = -EPIPE; 1927 goto _endloop; 1928 case SNDRV_PCM_STATE_DRAINING: 1929 if (is_playback) 1930 err = -EPIPE; 1931 else 1932 avail = 0; /* indicate draining */ 1933 goto _endloop; 1934 case SNDRV_PCM_STATE_OPEN: 1935 case SNDRV_PCM_STATE_SETUP: 1936 case SNDRV_PCM_STATE_DISCONNECTED: 1937 err = -EBADFD; 1938 goto _endloop; 1939 } 1940 if (!tout) { 1941 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1942 is_playback ? "playback" : "capture"); 1943 err = -EIO; 1944 break; 1945 } 1946 } 1947 _endloop: 1948 set_current_state(TASK_RUNNING); 1949 remove_wait_queue(&runtime->tsleep, &wait); 1950 *availp = avail; 1951 return err; 1952 } 1953 1954 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1955 unsigned int hwoff, 1956 unsigned long data, unsigned int off, 1957 snd_pcm_uframes_t frames) 1958 { 1959 struct snd_pcm_runtime *runtime = substream->runtime; 1960 int err; 1961 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1962 if (substream->ops->copy) { 1963 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1964 return err; 1965 } else { 1966 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1967 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1968 return -EFAULT; 1969 } 1970 return 0; 1971 } 1972 1973 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1974 unsigned long data, unsigned int off, 1975 snd_pcm_uframes_t size); 1976 1977 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1978 unsigned long data, 1979 snd_pcm_uframes_t size, 1980 int nonblock, 1981 transfer_f transfer) 1982 { 1983 struct snd_pcm_runtime *runtime = substream->runtime; 1984 snd_pcm_uframes_t xfer = 0; 1985 snd_pcm_uframes_t offset = 0; 1986 snd_pcm_uframes_t avail; 1987 int err = 0; 1988 1989 if (size == 0) 1990 return 0; 1991 1992 snd_pcm_stream_lock_irq(substream); 1993 switch (runtime->status->state) { 1994 case SNDRV_PCM_STATE_PREPARED: 1995 case SNDRV_PCM_STATE_RUNNING: 1996 case SNDRV_PCM_STATE_PAUSED: 1997 break; 1998 case SNDRV_PCM_STATE_XRUN: 1999 err = -EPIPE; 2000 goto _end_unlock; 2001 case SNDRV_PCM_STATE_SUSPENDED: 2002 err = -ESTRPIPE; 2003 goto _end_unlock; 2004 default: 2005 err = -EBADFD; 2006 goto _end_unlock; 2007 } 2008 2009 runtime->twake = runtime->control->avail_min ? : 1; 2010 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2011 snd_pcm_update_hw_ptr(substream); 2012 avail = snd_pcm_playback_avail(runtime); 2013 while (size > 0) { 2014 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2015 snd_pcm_uframes_t cont; 2016 if (!avail) { 2017 if (nonblock) { 2018 err = -EAGAIN; 2019 goto _end_unlock; 2020 } 2021 runtime->twake = min_t(snd_pcm_uframes_t, size, 2022 runtime->control->avail_min ? : 1); 2023 err = wait_for_avail(substream, &avail); 2024 if (err < 0) 2025 goto _end_unlock; 2026 } 2027 frames = size > avail ? avail : size; 2028 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2029 if (frames > cont) 2030 frames = cont; 2031 if (snd_BUG_ON(!frames)) { 2032 runtime->twake = 0; 2033 snd_pcm_stream_unlock_irq(substream); 2034 return -EINVAL; 2035 } 2036 appl_ptr = runtime->control->appl_ptr; 2037 appl_ofs = appl_ptr % runtime->buffer_size; 2038 snd_pcm_stream_unlock_irq(substream); 2039 err = transfer(substream, appl_ofs, data, offset, frames); 2040 snd_pcm_stream_lock_irq(substream); 2041 if (err < 0) 2042 goto _end_unlock; 2043 switch (runtime->status->state) { 2044 case SNDRV_PCM_STATE_XRUN: 2045 err = -EPIPE; 2046 goto _end_unlock; 2047 case SNDRV_PCM_STATE_SUSPENDED: 2048 err = -ESTRPIPE; 2049 goto _end_unlock; 2050 default: 2051 break; 2052 } 2053 appl_ptr += frames; 2054 if (appl_ptr >= runtime->boundary) 2055 appl_ptr -= runtime->boundary; 2056 runtime->control->appl_ptr = appl_ptr; 2057 if (substream->ops->ack) 2058 substream->ops->ack(substream); 2059 2060 offset += frames; 2061 size -= frames; 2062 xfer += frames; 2063 avail -= frames; 2064 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2065 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2066 err = snd_pcm_start(substream); 2067 if (err < 0) 2068 goto _end_unlock; 2069 } 2070 } 2071 _end_unlock: 2072 runtime->twake = 0; 2073 if (xfer > 0 && err >= 0) 2074 snd_pcm_update_state(substream, runtime); 2075 snd_pcm_stream_unlock_irq(substream); 2076 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2077 } 2078 2079 /* sanity-check for read/write methods */ 2080 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2081 { 2082 struct snd_pcm_runtime *runtime; 2083 if (PCM_RUNTIME_CHECK(substream)) 2084 return -ENXIO; 2085 runtime = substream->runtime; 2086 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 2087 return -EINVAL; 2088 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2089 return -EBADFD; 2090 return 0; 2091 } 2092 2093 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 2094 { 2095 struct snd_pcm_runtime *runtime; 2096 int nonblock; 2097 int err; 2098 2099 err = pcm_sanity_check(substream); 2100 if (err < 0) 2101 return err; 2102 runtime = substream->runtime; 2103 nonblock = !!(substream->f_flags & O_NONBLOCK); 2104 2105 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2106 runtime->channels > 1) 2107 return -EINVAL; 2108 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 2109 snd_pcm_lib_write_transfer); 2110 } 2111 2112 EXPORT_SYMBOL(snd_pcm_lib_write); 2113 2114 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 2115 unsigned int hwoff, 2116 unsigned long data, unsigned int off, 2117 snd_pcm_uframes_t frames) 2118 { 2119 struct snd_pcm_runtime *runtime = substream->runtime; 2120 int err; 2121 void __user **bufs = (void __user **)data; 2122 int channels = runtime->channels; 2123 int c; 2124 if (substream->ops->copy) { 2125 if (snd_BUG_ON(!substream->ops->silence)) 2126 return -EINVAL; 2127 for (c = 0; c < channels; ++c, ++bufs) { 2128 if (*bufs == NULL) { 2129 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 2130 return err; 2131 } else { 2132 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2133 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2134 return err; 2135 } 2136 } 2137 } else { 2138 /* default transfer behaviour */ 2139 size_t dma_csize = runtime->dma_bytes / channels; 2140 for (c = 0; c < channels; ++c, ++bufs) { 2141 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2142 if (*bufs == NULL) { 2143 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 2144 } else { 2145 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2146 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2147 return -EFAULT; 2148 } 2149 } 2150 } 2151 return 0; 2152 } 2153 2154 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2155 void __user **bufs, 2156 snd_pcm_uframes_t frames) 2157 { 2158 struct snd_pcm_runtime *runtime; 2159 int nonblock; 2160 int err; 2161 2162 err = pcm_sanity_check(substream); 2163 if (err < 0) 2164 return err; 2165 runtime = substream->runtime; 2166 nonblock = !!(substream->f_flags & O_NONBLOCK); 2167 2168 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2169 return -EINVAL; 2170 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2171 nonblock, snd_pcm_lib_writev_transfer); 2172 } 2173 2174 EXPORT_SYMBOL(snd_pcm_lib_writev); 2175 2176 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2177 unsigned int hwoff, 2178 unsigned long data, unsigned int off, 2179 snd_pcm_uframes_t frames) 2180 { 2181 struct snd_pcm_runtime *runtime = substream->runtime; 2182 int err; 2183 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2184 if (substream->ops->copy) { 2185 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2186 return err; 2187 } else { 2188 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2189 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2190 return -EFAULT; 2191 } 2192 return 0; 2193 } 2194 2195 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2196 unsigned long data, 2197 snd_pcm_uframes_t size, 2198 int nonblock, 2199 transfer_f transfer) 2200 { 2201 struct snd_pcm_runtime *runtime = substream->runtime; 2202 snd_pcm_uframes_t xfer = 0; 2203 snd_pcm_uframes_t offset = 0; 2204 snd_pcm_uframes_t avail; 2205 int err = 0; 2206 2207 if (size == 0) 2208 return 0; 2209 2210 snd_pcm_stream_lock_irq(substream); 2211 switch (runtime->status->state) { 2212 case SNDRV_PCM_STATE_PREPARED: 2213 if (size >= runtime->start_threshold) { 2214 err = snd_pcm_start(substream); 2215 if (err < 0) 2216 goto _end_unlock; 2217 } 2218 break; 2219 case SNDRV_PCM_STATE_DRAINING: 2220 case SNDRV_PCM_STATE_RUNNING: 2221 case SNDRV_PCM_STATE_PAUSED: 2222 break; 2223 case SNDRV_PCM_STATE_XRUN: 2224 err = -EPIPE; 2225 goto _end_unlock; 2226 case SNDRV_PCM_STATE_SUSPENDED: 2227 err = -ESTRPIPE; 2228 goto _end_unlock; 2229 default: 2230 err = -EBADFD; 2231 goto _end_unlock; 2232 } 2233 2234 runtime->twake = runtime->control->avail_min ? : 1; 2235 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2236 snd_pcm_update_hw_ptr(substream); 2237 avail = snd_pcm_capture_avail(runtime); 2238 while (size > 0) { 2239 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2240 snd_pcm_uframes_t cont; 2241 if (!avail) { 2242 if (runtime->status->state == 2243 SNDRV_PCM_STATE_DRAINING) { 2244 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2245 goto _end_unlock; 2246 } 2247 if (nonblock) { 2248 err = -EAGAIN; 2249 goto _end_unlock; 2250 } 2251 runtime->twake = min_t(snd_pcm_uframes_t, size, 2252 runtime->control->avail_min ? : 1); 2253 err = wait_for_avail(substream, &avail); 2254 if (err < 0) 2255 goto _end_unlock; 2256 if (!avail) 2257 continue; /* draining */ 2258 } 2259 frames = size > avail ? avail : size; 2260 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2261 if (frames > cont) 2262 frames = cont; 2263 if (snd_BUG_ON(!frames)) { 2264 runtime->twake = 0; 2265 snd_pcm_stream_unlock_irq(substream); 2266 return -EINVAL; 2267 } 2268 appl_ptr = runtime->control->appl_ptr; 2269 appl_ofs = appl_ptr % runtime->buffer_size; 2270 snd_pcm_stream_unlock_irq(substream); 2271 err = transfer(substream, appl_ofs, data, offset, frames); 2272 snd_pcm_stream_lock_irq(substream); 2273 if (err < 0) 2274 goto _end_unlock; 2275 switch (runtime->status->state) { 2276 case SNDRV_PCM_STATE_XRUN: 2277 err = -EPIPE; 2278 goto _end_unlock; 2279 case SNDRV_PCM_STATE_SUSPENDED: 2280 err = -ESTRPIPE; 2281 goto _end_unlock; 2282 default: 2283 break; 2284 } 2285 appl_ptr += frames; 2286 if (appl_ptr >= runtime->boundary) 2287 appl_ptr -= runtime->boundary; 2288 runtime->control->appl_ptr = appl_ptr; 2289 if (substream->ops->ack) 2290 substream->ops->ack(substream); 2291 2292 offset += frames; 2293 size -= frames; 2294 xfer += frames; 2295 avail -= frames; 2296 } 2297 _end_unlock: 2298 runtime->twake = 0; 2299 if (xfer > 0 && err >= 0) 2300 snd_pcm_update_state(substream, runtime); 2301 snd_pcm_stream_unlock_irq(substream); 2302 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2303 } 2304 2305 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2306 { 2307 struct snd_pcm_runtime *runtime; 2308 int nonblock; 2309 int err; 2310 2311 err = pcm_sanity_check(substream); 2312 if (err < 0) 2313 return err; 2314 runtime = substream->runtime; 2315 nonblock = !!(substream->f_flags & O_NONBLOCK); 2316 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2317 return -EINVAL; 2318 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2319 } 2320 2321 EXPORT_SYMBOL(snd_pcm_lib_read); 2322 2323 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2324 unsigned int hwoff, 2325 unsigned long data, unsigned int off, 2326 snd_pcm_uframes_t frames) 2327 { 2328 struct snd_pcm_runtime *runtime = substream->runtime; 2329 int err; 2330 void __user **bufs = (void __user **)data; 2331 int channels = runtime->channels; 2332 int c; 2333 if (substream->ops->copy) { 2334 for (c = 0; c < channels; ++c, ++bufs) { 2335 char __user *buf; 2336 if (*bufs == NULL) 2337 continue; 2338 buf = *bufs + samples_to_bytes(runtime, off); 2339 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2340 return err; 2341 } 2342 } else { 2343 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2344 for (c = 0; c < channels; ++c, ++bufs) { 2345 char *hwbuf; 2346 char __user *buf; 2347 if (*bufs == NULL) 2348 continue; 2349 2350 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2351 buf = *bufs + samples_to_bytes(runtime, off); 2352 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2353 return -EFAULT; 2354 } 2355 } 2356 return 0; 2357 } 2358 2359 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2360 void __user **bufs, 2361 snd_pcm_uframes_t frames) 2362 { 2363 struct snd_pcm_runtime *runtime; 2364 int nonblock; 2365 int err; 2366 2367 err = pcm_sanity_check(substream); 2368 if (err < 0) 2369 return err; 2370 runtime = substream->runtime; 2371 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2372 return -EBADFD; 2373 2374 nonblock = !!(substream->f_flags & O_NONBLOCK); 2375 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2376 return -EINVAL; 2377 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2378 } 2379 2380 EXPORT_SYMBOL(snd_pcm_lib_readv); 2381 2382 /* 2383 * standard channel mapping helpers 2384 */ 2385 2386 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2387 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2388 { .channels = 1, 2389 .map = { SNDRV_CHMAP_MONO } }, 2390 { .channels = 2, 2391 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2392 { .channels = 4, 2393 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2394 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2395 { .channels = 6, 2396 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2397 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2398 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2399 { .channels = 8, 2400 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2401 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2402 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2403 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2404 { } 2405 }; 2406 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2407 2408 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2409 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2410 { .channels = 1, 2411 .map = { SNDRV_CHMAP_MONO } }, 2412 { .channels = 2, 2413 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2414 { .channels = 4, 2415 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2416 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2417 { .channels = 6, 2418 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2419 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2420 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2421 { .channels = 8, 2422 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2423 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2424 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2425 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2426 { } 2427 }; 2428 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2429 2430 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2431 { 2432 if (ch > info->max_channels) 2433 return false; 2434 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2435 } 2436 2437 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2438 struct snd_ctl_elem_info *uinfo) 2439 { 2440 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2441 2442 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2443 uinfo->count = 0; 2444 uinfo->count = info->max_channels; 2445 uinfo->value.integer.min = 0; 2446 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2447 return 0; 2448 } 2449 2450 /* get callback for channel map ctl element 2451 * stores the channel position firstly matching with the current channels 2452 */ 2453 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2454 struct snd_ctl_elem_value *ucontrol) 2455 { 2456 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2457 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2458 struct snd_pcm_substream *substream; 2459 const struct snd_pcm_chmap_elem *map; 2460 2461 if (snd_BUG_ON(!info->chmap)) 2462 return -EINVAL; 2463 substream = snd_pcm_chmap_substream(info, idx); 2464 if (!substream) 2465 return -ENODEV; 2466 memset(ucontrol->value.integer.value, 0, 2467 sizeof(ucontrol->value.integer.value)); 2468 if (!substream->runtime) 2469 return 0; /* no channels set */ 2470 for (map = info->chmap; map->channels; map++) { 2471 int i; 2472 if (map->channels == substream->runtime->channels && 2473 valid_chmap_channels(info, map->channels)) { 2474 for (i = 0; i < map->channels; i++) 2475 ucontrol->value.integer.value[i] = map->map[i]; 2476 return 0; 2477 } 2478 } 2479 return -EINVAL; 2480 } 2481 2482 /* tlv callback for channel map ctl element 2483 * expands the pre-defined channel maps in a form of TLV 2484 */ 2485 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2486 unsigned int size, unsigned int __user *tlv) 2487 { 2488 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2489 const struct snd_pcm_chmap_elem *map; 2490 unsigned int __user *dst; 2491 int c, count = 0; 2492 2493 if (snd_BUG_ON(!info->chmap)) 2494 return -EINVAL; 2495 if (size < 8) 2496 return -ENOMEM; 2497 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2498 return -EFAULT; 2499 size -= 8; 2500 dst = tlv + 2; 2501 for (map = info->chmap; map->channels; map++) { 2502 int chs_bytes = map->channels * 4; 2503 if (!valid_chmap_channels(info, map->channels)) 2504 continue; 2505 if (size < 8) 2506 return -ENOMEM; 2507 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2508 put_user(chs_bytes, dst + 1)) 2509 return -EFAULT; 2510 dst += 2; 2511 size -= 8; 2512 count += 8; 2513 if (size < chs_bytes) 2514 return -ENOMEM; 2515 size -= chs_bytes; 2516 count += chs_bytes; 2517 for (c = 0; c < map->channels; c++) { 2518 if (put_user(map->map[c], dst)) 2519 return -EFAULT; 2520 dst++; 2521 } 2522 } 2523 if (put_user(count, tlv + 1)) 2524 return -EFAULT; 2525 return 0; 2526 } 2527 2528 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2529 { 2530 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2531 info->pcm->streams[info->stream].chmap_kctl = NULL; 2532 kfree(info); 2533 } 2534 2535 /** 2536 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2537 * @pcm: the assigned PCM instance 2538 * @stream: stream direction 2539 * @chmap: channel map elements (for query) 2540 * @max_channels: the max number of channels for the stream 2541 * @private_value: the value passed to each kcontrol's private_value field 2542 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2543 * 2544 * Create channel-mapping control elements assigned to the given PCM stream(s). 2545 * Return: Zero if successful, or a negative error value. 2546 */ 2547 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2548 const struct snd_pcm_chmap_elem *chmap, 2549 int max_channels, 2550 unsigned long private_value, 2551 struct snd_pcm_chmap **info_ret) 2552 { 2553 struct snd_pcm_chmap *info; 2554 struct snd_kcontrol_new knew = { 2555 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2556 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2557 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2558 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2559 .info = pcm_chmap_ctl_info, 2560 .get = pcm_chmap_ctl_get, 2561 .tlv.c = pcm_chmap_ctl_tlv, 2562 }; 2563 int err; 2564 2565 info = kzalloc(sizeof(*info), GFP_KERNEL); 2566 if (!info) 2567 return -ENOMEM; 2568 info->pcm = pcm; 2569 info->stream = stream; 2570 info->chmap = chmap; 2571 info->max_channels = max_channels; 2572 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2573 knew.name = "Playback Channel Map"; 2574 else 2575 knew.name = "Capture Channel Map"; 2576 knew.device = pcm->device; 2577 knew.count = pcm->streams[stream].substream_count; 2578 knew.private_value = private_value; 2579 info->kctl = snd_ctl_new1(&knew, info); 2580 if (!info->kctl) { 2581 kfree(info); 2582 return -ENOMEM; 2583 } 2584 info->kctl->private_free = pcm_chmap_ctl_private_free; 2585 err = snd_ctl_add(pcm->card, info->kctl); 2586 if (err < 0) 2587 return err; 2588 pcm->streams[stream].chmap_kctl = info->kctl; 2589 if (info_ret) 2590 *info_ret = info; 2591 return 0; 2592 } 2593 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2594