1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 #include <linux/time.h> 26 #include <linux/math64.h> 27 #include <linux/export.h> 28 #include <sound/core.h> 29 #include <sound/control.h> 30 #include <sound/tlv.h> 31 #include <sound/info.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/timer.h> 35 36 #include "pcm_local.h" 37 38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 39 #define CREATE_TRACE_POINTS 40 #include "pcm_trace.h" 41 #else 42 #define trace_hwptr(substream, pos, in_interrupt) 43 #define trace_xrun(substream) 44 #define trace_hw_ptr_error(substream, reason) 45 #define trace_applptr(substream, prev, curr) 46 #endif 47 48 static int fill_silence_frames(struct snd_pcm_substream *substream, 49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames); 50 51 /* 52 * fill ring buffer with silence 53 * runtime->silence_start: starting pointer to silence area 54 * runtime->silence_filled: size filled with silence 55 * runtime->silence_threshold: threshold from application 56 * runtime->silence_size: maximal size from application 57 * 58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 59 */ 60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 61 { 62 struct snd_pcm_runtime *runtime = substream->runtime; 63 snd_pcm_uframes_t frames, ofs, transfer; 64 int err; 65 66 if (runtime->silence_size < runtime->boundary) { 67 snd_pcm_sframes_t noise_dist, n; 68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr); 69 if (runtime->silence_start != appl_ptr) { 70 n = appl_ptr - runtime->silence_start; 71 if (n < 0) 72 n += runtime->boundary; 73 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 74 runtime->silence_filled -= n; 75 else 76 runtime->silence_filled = 0; 77 runtime->silence_start = appl_ptr; 78 } 79 if (runtime->silence_filled >= runtime->buffer_size) 80 return; 81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 83 return; 84 frames = runtime->silence_threshold - noise_dist; 85 if (frames > runtime->silence_size) 86 frames = runtime->silence_size; 87 } else { 88 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 90 if (avail > runtime->buffer_size) 91 avail = runtime->buffer_size; 92 runtime->silence_filled = avail > 0 ? avail : 0; 93 runtime->silence_start = (runtime->status->hw_ptr + 94 runtime->silence_filled) % 95 runtime->boundary; 96 } else { 97 ofs = runtime->status->hw_ptr; 98 frames = new_hw_ptr - ofs; 99 if ((snd_pcm_sframes_t)frames < 0) 100 frames += runtime->boundary; 101 runtime->silence_filled -= frames; 102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 103 runtime->silence_filled = 0; 104 runtime->silence_start = new_hw_ptr; 105 } else { 106 runtime->silence_start = ofs; 107 } 108 } 109 frames = runtime->buffer_size - runtime->silence_filled; 110 } 111 if (snd_BUG_ON(frames > runtime->buffer_size)) 112 return; 113 if (frames == 0) 114 return; 115 ofs = runtime->silence_start % runtime->buffer_size; 116 while (frames > 0) { 117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 118 err = fill_silence_frames(substream, ofs, transfer); 119 snd_BUG_ON(err < 0); 120 runtime->silence_filled += transfer; 121 frames -= transfer; 122 ofs = 0; 123 } 124 } 125 126 #ifdef CONFIG_SND_DEBUG 127 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 128 char *name, size_t len) 129 { 130 snprintf(name, len, "pcmC%dD%d%c:%d", 131 substream->pcm->card->number, 132 substream->pcm->device, 133 substream->stream ? 'c' : 'p', 134 substream->number); 135 } 136 EXPORT_SYMBOL(snd_pcm_debug_name); 137 #endif 138 139 #define XRUN_DEBUG_BASIC (1<<0) 140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 142 143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 144 145 #define xrun_debug(substream, mask) \ 146 ((substream)->pstr->xrun_debug & (mask)) 147 #else 148 #define xrun_debug(substream, mask) 0 149 #endif 150 151 #define dump_stack_on_xrun(substream) do { \ 152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 153 dump_stack(); \ 154 } while (0) 155 156 static void xrun(struct snd_pcm_substream *substream) 157 { 158 struct snd_pcm_runtime *runtime = substream->runtime; 159 160 trace_xrun(substream); 161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 165 char name[16]; 166 snd_pcm_debug_name(substream, name, sizeof(name)); 167 pcm_warn(substream->pcm, "XRUN: %s\n", name); 168 dump_stack_on_xrun(substream); 169 } 170 } 171 172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 174 do { \ 175 trace_hw_ptr_error(substream, reason); \ 176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 178 (in_interrupt) ? 'Q' : 'P', ##args); \ 179 dump_stack_on_xrun(substream); \ 180 } \ 181 } while (0) 182 183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 184 185 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 186 187 #endif 188 189 int snd_pcm_update_state(struct snd_pcm_substream *substream, 190 struct snd_pcm_runtime *runtime) 191 { 192 snd_pcm_uframes_t avail; 193 194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 195 avail = snd_pcm_playback_avail(runtime); 196 else 197 avail = snd_pcm_capture_avail(runtime); 198 if (avail > runtime->avail_max) 199 runtime->avail_max = avail; 200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 201 if (avail >= runtime->buffer_size) { 202 snd_pcm_drain_done(substream); 203 return -EPIPE; 204 } 205 } else { 206 if (avail >= runtime->stop_threshold) { 207 xrun(substream); 208 return -EPIPE; 209 } 210 } 211 if (runtime->twake) { 212 if (avail >= runtime->twake) 213 wake_up(&runtime->tsleep); 214 } else if (avail >= runtime->control->avail_min) 215 wake_up(&runtime->sleep); 216 return 0; 217 } 218 219 static void update_audio_tstamp(struct snd_pcm_substream *substream, 220 struct timespec *curr_tstamp, 221 struct timespec *audio_tstamp) 222 { 223 struct snd_pcm_runtime *runtime = substream->runtime; 224 u64 audio_frames, audio_nsecs; 225 struct timespec driver_tstamp; 226 227 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 228 return; 229 230 if (!(substream->ops->get_time_info) || 231 (runtime->audio_tstamp_report.actual_type == 232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 233 234 /* 235 * provide audio timestamp derived from pointer position 236 * add delay only if requested 237 */ 238 239 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 240 241 if (runtime->audio_tstamp_config.report_delay) { 242 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 243 audio_frames -= runtime->delay; 244 else 245 audio_frames += runtime->delay; 246 } 247 audio_nsecs = div_u64(audio_frames * 1000000000LL, 248 runtime->rate); 249 *audio_tstamp = ns_to_timespec(audio_nsecs); 250 } 251 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) { 252 runtime->status->audio_tstamp = *audio_tstamp; 253 runtime->status->tstamp = *curr_tstamp; 254 } 255 256 /* 257 * re-take a driver timestamp to let apps detect if the reference tstamp 258 * read by low-level hardware was provided with a delay 259 */ 260 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp); 261 runtime->driver_tstamp = driver_tstamp; 262 } 263 264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 265 unsigned int in_interrupt) 266 { 267 struct snd_pcm_runtime *runtime = substream->runtime; 268 snd_pcm_uframes_t pos; 269 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 270 snd_pcm_sframes_t hdelta, delta; 271 unsigned long jdelta; 272 unsigned long curr_jiffies; 273 struct timespec curr_tstamp; 274 struct timespec audio_tstamp; 275 int crossed_boundary = 0; 276 277 old_hw_ptr = runtime->status->hw_ptr; 278 279 /* 280 * group pointer, time and jiffies reads to allow for more 281 * accurate correlations/corrections. 282 * The values are stored at the end of this routine after 283 * corrections for hw_ptr position 284 */ 285 pos = substream->ops->pointer(substream); 286 curr_jiffies = jiffies; 287 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 288 if ((substream->ops->get_time_info) && 289 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 290 substream->ops->get_time_info(substream, &curr_tstamp, 291 &audio_tstamp, 292 &runtime->audio_tstamp_config, 293 &runtime->audio_tstamp_report); 294 295 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 296 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 298 } else 299 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 300 } 301 302 if (pos == SNDRV_PCM_POS_XRUN) { 303 xrun(substream); 304 return -EPIPE; 305 } 306 if (pos >= runtime->buffer_size) { 307 if (printk_ratelimit()) { 308 char name[16]; 309 snd_pcm_debug_name(substream, name, sizeof(name)); 310 pcm_err(substream->pcm, 311 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 312 name, pos, runtime->buffer_size, 313 runtime->period_size); 314 } 315 pos = 0; 316 } 317 pos -= pos % runtime->min_align; 318 trace_hwptr(substream, pos, in_interrupt); 319 hw_base = runtime->hw_ptr_base; 320 new_hw_ptr = hw_base + pos; 321 if (in_interrupt) { 322 /* we know that one period was processed */ 323 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 324 delta = runtime->hw_ptr_interrupt + runtime->period_size; 325 if (delta > new_hw_ptr) { 326 /* check for double acknowledged interrupts */ 327 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 328 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { 329 hw_base += runtime->buffer_size; 330 if (hw_base >= runtime->boundary) { 331 hw_base = 0; 332 crossed_boundary++; 333 } 334 new_hw_ptr = hw_base + pos; 335 goto __delta; 336 } 337 } 338 } 339 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 340 /* pointer crosses the end of the ring buffer */ 341 if (new_hw_ptr < old_hw_ptr) { 342 hw_base += runtime->buffer_size; 343 if (hw_base >= runtime->boundary) { 344 hw_base = 0; 345 crossed_boundary++; 346 } 347 new_hw_ptr = hw_base + pos; 348 } 349 __delta: 350 delta = new_hw_ptr - old_hw_ptr; 351 if (delta < 0) 352 delta += runtime->boundary; 353 354 if (runtime->no_period_wakeup) { 355 snd_pcm_sframes_t xrun_threshold; 356 /* 357 * Without regular period interrupts, we have to check 358 * the elapsed time to detect xruns. 359 */ 360 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 361 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 362 goto no_delta_check; 363 hdelta = jdelta - delta * HZ / runtime->rate; 364 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 365 while (hdelta > xrun_threshold) { 366 delta += runtime->buffer_size; 367 hw_base += runtime->buffer_size; 368 if (hw_base >= runtime->boundary) { 369 hw_base = 0; 370 crossed_boundary++; 371 } 372 new_hw_ptr = hw_base + pos; 373 hdelta -= runtime->hw_ptr_buffer_jiffies; 374 } 375 goto no_delta_check; 376 } 377 378 /* something must be really wrong */ 379 if (delta >= runtime->buffer_size + runtime->period_size) { 380 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 381 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 382 substream->stream, (long)pos, 383 (long)new_hw_ptr, (long)old_hw_ptr); 384 return 0; 385 } 386 387 /* Do jiffies check only in xrun_debug mode */ 388 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 389 goto no_jiffies_check; 390 391 /* Skip the jiffies check for hardwares with BATCH flag. 392 * Such hardware usually just increases the position at each IRQ, 393 * thus it can't give any strange position. 394 */ 395 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 396 goto no_jiffies_check; 397 hdelta = delta; 398 if (hdelta < runtime->delay) 399 goto no_jiffies_check; 400 hdelta -= runtime->delay; 401 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 402 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 403 delta = jdelta / 404 (((runtime->period_size * HZ) / runtime->rate) 405 + HZ/100); 406 /* move new_hw_ptr according jiffies not pos variable */ 407 new_hw_ptr = old_hw_ptr; 408 hw_base = delta; 409 /* use loop to avoid checks for delta overflows */ 410 /* the delta value is small or zero in most cases */ 411 while (delta > 0) { 412 new_hw_ptr += runtime->period_size; 413 if (new_hw_ptr >= runtime->boundary) { 414 new_hw_ptr -= runtime->boundary; 415 crossed_boundary--; 416 } 417 delta--; 418 } 419 /* align hw_base to buffer_size */ 420 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 421 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 422 (long)pos, (long)hdelta, 423 (long)runtime->period_size, jdelta, 424 ((hdelta * HZ) / runtime->rate), hw_base, 425 (unsigned long)old_hw_ptr, 426 (unsigned long)new_hw_ptr); 427 /* reset values to proper state */ 428 delta = 0; 429 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 430 } 431 no_jiffies_check: 432 if (delta > runtime->period_size + runtime->period_size / 2) { 433 hw_ptr_error(substream, in_interrupt, 434 "Lost interrupts?", 435 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 436 substream->stream, (long)delta, 437 (long)new_hw_ptr, 438 (long)old_hw_ptr); 439 } 440 441 no_delta_check: 442 if (runtime->status->hw_ptr == new_hw_ptr) { 443 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 444 return 0; 445 } 446 447 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 448 runtime->silence_size > 0) 449 snd_pcm_playback_silence(substream, new_hw_ptr); 450 451 if (in_interrupt) { 452 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 453 if (delta < 0) 454 delta += runtime->boundary; 455 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 456 runtime->hw_ptr_interrupt += delta; 457 if (runtime->hw_ptr_interrupt >= runtime->boundary) 458 runtime->hw_ptr_interrupt -= runtime->boundary; 459 } 460 runtime->hw_ptr_base = hw_base; 461 runtime->status->hw_ptr = new_hw_ptr; 462 runtime->hw_ptr_jiffies = curr_jiffies; 463 if (crossed_boundary) { 464 snd_BUG_ON(crossed_boundary != 1); 465 runtime->hw_ptr_wrap += runtime->boundary; 466 } 467 468 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 469 470 return snd_pcm_update_state(substream, runtime); 471 } 472 473 /* CAUTION: call it with irq disabled */ 474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 475 { 476 return snd_pcm_update_hw_ptr0(substream, 0); 477 } 478 479 /** 480 * snd_pcm_set_ops - set the PCM operators 481 * @pcm: the pcm instance 482 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 483 * @ops: the operator table 484 * 485 * Sets the given PCM operators to the pcm instance. 486 */ 487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 488 const struct snd_pcm_ops *ops) 489 { 490 struct snd_pcm_str *stream = &pcm->streams[direction]; 491 struct snd_pcm_substream *substream; 492 493 for (substream = stream->substream; substream != NULL; substream = substream->next) 494 substream->ops = ops; 495 } 496 EXPORT_SYMBOL(snd_pcm_set_ops); 497 498 /** 499 * snd_pcm_sync - set the PCM sync id 500 * @substream: the pcm substream 501 * 502 * Sets the PCM sync identifier for the card. 503 */ 504 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 505 { 506 struct snd_pcm_runtime *runtime = substream->runtime; 507 508 runtime->sync.id32[0] = substream->pcm->card->number; 509 runtime->sync.id32[1] = -1; 510 runtime->sync.id32[2] = -1; 511 runtime->sync.id32[3] = -1; 512 } 513 EXPORT_SYMBOL(snd_pcm_set_sync); 514 515 /* 516 * Standard ioctl routine 517 */ 518 519 static inline unsigned int div32(unsigned int a, unsigned int b, 520 unsigned int *r) 521 { 522 if (b == 0) { 523 *r = 0; 524 return UINT_MAX; 525 } 526 *r = a % b; 527 return a / b; 528 } 529 530 static inline unsigned int div_down(unsigned int a, unsigned int b) 531 { 532 if (b == 0) 533 return UINT_MAX; 534 return a / b; 535 } 536 537 static inline unsigned int div_up(unsigned int a, unsigned int b) 538 { 539 unsigned int r; 540 unsigned int q; 541 if (b == 0) 542 return UINT_MAX; 543 q = div32(a, b, &r); 544 if (r) 545 ++q; 546 return q; 547 } 548 549 static inline unsigned int mul(unsigned int a, unsigned int b) 550 { 551 if (a == 0) 552 return 0; 553 if (div_down(UINT_MAX, a) < b) 554 return UINT_MAX; 555 return a * b; 556 } 557 558 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 559 unsigned int c, unsigned int *r) 560 { 561 u_int64_t n = (u_int64_t) a * b; 562 if (c == 0) { 563 *r = 0; 564 return UINT_MAX; 565 } 566 n = div_u64_rem(n, c, r); 567 if (n >= UINT_MAX) { 568 *r = 0; 569 return UINT_MAX; 570 } 571 return n; 572 } 573 574 /** 575 * snd_interval_refine - refine the interval value of configurator 576 * @i: the interval value to refine 577 * @v: the interval value to refer to 578 * 579 * Refines the interval value with the reference value. 580 * The interval is changed to the range satisfying both intervals. 581 * The interval status (min, max, integer, etc.) are evaluated. 582 * 583 * Return: Positive if the value is changed, zero if it's not changed, or a 584 * negative error code. 585 */ 586 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 587 { 588 int changed = 0; 589 if (snd_BUG_ON(snd_interval_empty(i))) 590 return -EINVAL; 591 if (i->min < v->min) { 592 i->min = v->min; 593 i->openmin = v->openmin; 594 changed = 1; 595 } else if (i->min == v->min && !i->openmin && v->openmin) { 596 i->openmin = 1; 597 changed = 1; 598 } 599 if (i->max > v->max) { 600 i->max = v->max; 601 i->openmax = v->openmax; 602 changed = 1; 603 } else if (i->max == v->max && !i->openmax && v->openmax) { 604 i->openmax = 1; 605 changed = 1; 606 } 607 if (!i->integer && v->integer) { 608 i->integer = 1; 609 changed = 1; 610 } 611 if (i->integer) { 612 if (i->openmin) { 613 i->min++; 614 i->openmin = 0; 615 } 616 if (i->openmax) { 617 i->max--; 618 i->openmax = 0; 619 } 620 } else if (!i->openmin && !i->openmax && i->min == i->max) 621 i->integer = 1; 622 if (snd_interval_checkempty(i)) { 623 snd_interval_none(i); 624 return -EINVAL; 625 } 626 return changed; 627 } 628 EXPORT_SYMBOL(snd_interval_refine); 629 630 static int snd_interval_refine_first(struct snd_interval *i) 631 { 632 if (snd_BUG_ON(snd_interval_empty(i))) 633 return -EINVAL; 634 if (snd_interval_single(i)) 635 return 0; 636 i->max = i->min; 637 i->openmax = i->openmin; 638 if (i->openmax) 639 i->max++; 640 return 1; 641 } 642 643 static int snd_interval_refine_last(struct snd_interval *i) 644 { 645 if (snd_BUG_ON(snd_interval_empty(i))) 646 return -EINVAL; 647 if (snd_interval_single(i)) 648 return 0; 649 i->min = i->max; 650 i->openmin = i->openmax; 651 if (i->openmin) 652 i->min--; 653 return 1; 654 } 655 656 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 657 { 658 if (a->empty || b->empty) { 659 snd_interval_none(c); 660 return; 661 } 662 c->empty = 0; 663 c->min = mul(a->min, b->min); 664 c->openmin = (a->openmin || b->openmin); 665 c->max = mul(a->max, b->max); 666 c->openmax = (a->openmax || b->openmax); 667 c->integer = (a->integer && b->integer); 668 } 669 670 /** 671 * snd_interval_div - refine the interval value with division 672 * @a: dividend 673 * @b: divisor 674 * @c: quotient 675 * 676 * c = a / b 677 * 678 * Returns non-zero if the value is changed, zero if not changed. 679 */ 680 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 681 { 682 unsigned int r; 683 if (a->empty || b->empty) { 684 snd_interval_none(c); 685 return; 686 } 687 c->empty = 0; 688 c->min = div32(a->min, b->max, &r); 689 c->openmin = (r || a->openmin || b->openmax); 690 if (b->min > 0) { 691 c->max = div32(a->max, b->min, &r); 692 if (r) { 693 c->max++; 694 c->openmax = 1; 695 } else 696 c->openmax = (a->openmax || b->openmin); 697 } else { 698 c->max = UINT_MAX; 699 c->openmax = 0; 700 } 701 c->integer = 0; 702 } 703 704 /** 705 * snd_interval_muldivk - refine the interval value 706 * @a: dividend 1 707 * @b: dividend 2 708 * @k: divisor (as integer) 709 * @c: result 710 * 711 * c = a * b / k 712 * 713 * Returns non-zero if the value is changed, zero if not changed. 714 */ 715 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 716 unsigned int k, struct snd_interval *c) 717 { 718 unsigned int r; 719 if (a->empty || b->empty) { 720 snd_interval_none(c); 721 return; 722 } 723 c->empty = 0; 724 c->min = muldiv32(a->min, b->min, k, &r); 725 c->openmin = (r || a->openmin || b->openmin); 726 c->max = muldiv32(a->max, b->max, k, &r); 727 if (r) { 728 c->max++; 729 c->openmax = 1; 730 } else 731 c->openmax = (a->openmax || b->openmax); 732 c->integer = 0; 733 } 734 735 /** 736 * snd_interval_mulkdiv - refine the interval value 737 * @a: dividend 1 738 * @k: dividend 2 (as integer) 739 * @b: divisor 740 * @c: result 741 * 742 * c = a * k / b 743 * 744 * Returns non-zero if the value is changed, zero if not changed. 745 */ 746 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 747 const struct snd_interval *b, struct snd_interval *c) 748 { 749 unsigned int r; 750 if (a->empty || b->empty) { 751 snd_interval_none(c); 752 return; 753 } 754 c->empty = 0; 755 c->min = muldiv32(a->min, k, b->max, &r); 756 c->openmin = (r || a->openmin || b->openmax); 757 if (b->min > 0) { 758 c->max = muldiv32(a->max, k, b->min, &r); 759 if (r) { 760 c->max++; 761 c->openmax = 1; 762 } else 763 c->openmax = (a->openmax || b->openmin); 764 } else { 765 c->max = UINT_MAX; 766 c->openmax = 0; 767 } 768 c->integer = 0; 769 } 770 771 /* ---- */ 772 773 774 /** 775 * snd_interval_ratnum - refine the interval value 776 * @i: interval to refine 777 * @rats_count: number of ratnum_t 778 * @rats: ratnum_t array 779 * @nump: pointer to store the resultant numerator 780 * @denp: pointer to store the resultant denominator 781 * 782 * Return: Positive if the value is changed, zero if it's not changed, or a 783 * negative error code. 784 */ 785 int snd_interval_ratnum(struct snd_interval *i, 786 unsigned int rats_count, const struct snd_ratnum *rats, 787 unsigned int *nump, unsigned int *denp) 788 { 789 unsigned int best_num, best_den; 790 int best_diff; 791 unsigned int k; 792 struct snd_interval t; 793 int err; 794 unsigned int result_num, result_den; 795 int result_diff; 796 797 best_num = best_den = best_diff = 0; 798 for (k = 0; k < rats_count; ++k) { 799 unsigned int num = rats[k].num; 800 unsigned int den; 801 unsigned int q = i->min; 802 int diff; 803 if (q == 0) 804 q = 1; 805 den = div_up(num, q); 806 if (den < rats[k].den_min) 807 continue; 808 if (den > rats[k].den_max) 809 den = rats[k].den_max; 810 else { 811 unsigned int r; 812 r = (den - rats[k].den_min) % rats[k].den_step; 813 if (r != 0) 814 den -= r; 815 } 816 diff = num - q * den; 817 if (diff < 0) 818 diff = -diff; 819 if (best_num == 0 || 820 diff * best_den < best_diff * den) { 821 best_diff = diff; 822 best_den = den; 823 best_num = num; 824 } 825 } 826 if (best_den == 0) { 827 i->empty = 1; 828 return -EINVAL; 829 } 830 t.min = div_down(best_num, best_den); 831 t.openmin = !!(best_num % best_den); 832 833 result_num = best_num; 834 result_diff = best_diff; 835 result_den = best_den; 836 best_num = best_den = best_diff = 0; 837 for (k = 0; k < rats_count; ++k) { 838 unsigned int num = rats[k].num; 839 unsigned int den; 840 unsigned int q = i->max; 841 int diff; 842 if (q == 0) { 843 i->empty = 1; 844 return -EINVAL; 845 } 846 den = div_down(num, q); 847 if (den > rats[k].den_max) 848 continue; 849 if (den < rats[k].den_min) 850 den = rats[k].den_min; 851 else { 852 unsigned int r; 853 r = (den - rats[k].den_min) % rats[k].den_step; 854 if (r != 0) 855 den += rats[k].den_step - r; 856 } 857 diff = q * den - num; 858 if (diff < 0) 859 diff = -diff; 860 if (best_num == 0 || 861 diff * best_den < best_diff * den) { 862 best_diff = diff; 863 best_den = den; 864 best_num = num; 865 } 866 } 867 if (best_den == 0) { 868 i->empty = 1; 869 return -EINVAL; 870 } 871 t.max = div_up(best_num, best_den); 872 t.openmax = !!(best_num % best_den); 873 t.integer = 0; 874 err = snd_interval_refine(i, &t); 875 if (err < 0) 876 return err; 877 878 if (snd_interval_single(i)) { 879 if (best_diff * result_den < result_diff * best_den) { 880 result_num = best_num; 881 result_den = best_den; 882 } 883 if (nump) 884 *nump = result_num; 885 if (denp) 886 *denp = result_den; 887 } 888 return err; 889 } 890 EXPORT_SYMBOL(snd_interval_ratnum); 891 892 /** 893 * snd_interval_ratden - refine the interval value 894 * @i: interval to refine 895 * @rats_count: number of struct ratden 896 * @rats: struct ratden array 897 * @nump: pointer to store the resultant numerator 898 * @denp: pointer to store the resultant denominator 899 * 900 * Return: Positive if the value is changed, zero if it's not changed, or a 901 * negative error code. 902 */ 903 static int snd_interval_ratden(struct snd_interval *i, 904 unsigned int rats_count, 905 const struct snd_ratden *rats, 906 unsigned int *nump, unsigned int *denp) 907 { 908 unsigned int best_num, best_diff, best_den; 909 unsigned int k; 910 struct snd_interval t; 911 int err; 912 913 best_num = best_den = best_diff = 0; 914 for (k = 0; k < rats_count; ++k) { 915 unsigned int num; 916 unsigned int den = rats[k].den; 917 unsigned int q = i->min; 918 int diff; 919 num = mul(q, den); 920 if (num > rats[k].num_max) 921 continue; 922 if (num < rats[k].num_min) 923 num = rats[k].num_max; 924 else { 925 unsigned int r; 926 r = (num - rats[k].num_min) % rats[k].num_step; 927 if (r != 0) 928 num += rats[k].num_step - r; 929 } 930 diff = num - q * den; 931 if (best_num == 0 || 932 diff * best_den < best_diff * den) { 933 best_diff = diff; 934 best_den = den; 935 best_num = num; 936 } 937 } 938 if (best_den == 0) { 939 i->empty = 1; 940 return -EINVAL; 941 } 942 t.min = div_down(best_num, best_den); 943 t.openmin = !!(best_num % best_den); 944 945 best_num = best_den = best_diff = 0; 946 for (k = 0; k < rats_count; ++k) { 947 unsigned int num; 948 unsigned int den = rats[k].den; 949 unsigned int q = i->max; 950 int diff; 951 num = mul(q, den); 952 if (num < rats[k].num_min) 953 continue; 954 if (num > rats[k].num_max) 955 num = rats[k].num_max; 956 else { 957 unsigned int r; 958 r = (num - rats[k].num_min) % rats[k].num_step; 959 if (r != 0) 960 num -= r; 961 } 962 diff = q * den - num; 963 if (best_num == 0 || 964 diff * best_den < best_diff * den) { 965 best_diff = diff; 966 best_den = den; 967 best_num = num; 968 } 969 } 970 if (best_den == 0) { 971 i->empty = 1; 972 return -EINVAL; 973 } 974 t.max = div_up(best_num, best_den); 975 t.openmax = !!(best_num % best_den); 976 t.integer = 0; 977 err = snd_interval_refine(i, &t); 978 if (err < 0) 979 return err; 980 981 if (snd_interval_single(i)) { 982 if (nump) 983 *nump = best_num; 984 if (denp) 985 *denp = best_den; 986 } 987 return err; 988 } 989 990 /** 991 * snd_interval_list - refine the interval value from the list 992 * @i: the interval value to refine 993 * @count: the number of elements in the list 994 * @list: the value list 995 * @mask: the bit-mask to evaluate 996 * 997 * Refines the interval value from the list. 998 * When mask is non-zero, only the elements corresponding to bit 1 are 999 * evaluated. 1000 * 1001 * Return: Positive if the value is changed, zero if it's not changed, or a 1002 * negative error code. 1003 */ 1004 int snd_interval_list(struct snd_interval *i, unsigned int count, 1005 const unsigned int *list, unsigned int mask) 1006 { 1007 unsigned int k; 1008 struct snd_interval list_range; 1009 1010 if (!count) { 1011 i->empty = 1; 1012 return -EINVAL; 1013 } 1014 snd_interval_any(&list_range); 1015 list_range.min = UINT_MAX; 1016 list_range.max = 0; 1017 for (k = 0; k < count; k++) { 1018 if (mask && !(mask & (1 << k))) 1019 continue; 1020 if (!snd_interval_test(i, list[k])) 1021 continue; 1022 list_range.min = min(list_range.min, list[k]); 1023 list_range.max = max(list_range.max, list[k]); 1024 } 1025 return snd_interval_refine(i, &list_range); 1026 } 1027 EXPORT_SYMBOL(snd_interval_list); 1028 1029 /** 1030 * snd_interval_ranges - refine the interval value from the list of ranges 1031 * @i: the interval value to refine 1032 * @count: the number of elements in the list of ranges 1033 * @ranges: the ranges list 1034 * @mask: the bit-mask to evaluate 1035 * 1036 * Refines the interval value from the list of ranges. 1037 * When mask is non-zero, only the elements corresponding to bit 1 are 1038 * evaluated. 1039 * 1040 * Return: Positive if the value is changed, zero if it's not changed, or a 1041 * negative error code. 1042 */ 1043 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1044 const struct snd_interval *ranges, unsigned int mask) 1045 { 1046 unsigned int k; 1047 struct snd_interval range_union; 1048 struct snd_interval range; 1049 1050 if (!count) { 1051 snd_interval_none(i); 1052 return -EINVAL; 1053 } 1054 snd_interval_any(&range_union); 1055 range_union.min = UINT_MAX; 1056 range_union.max = 0; 1057 for (k = 0; k < count; k++) { 1058 if (mask && !(mask & (1 << k))) 1059 continue; 1060 snd_interval_copy(&range, &ranges[k]); 1061 if (snd_interval_refine(&range, i) < 0) 1062 continue; 1063 if (snd_interval_empty(&range)) 1064 continue; 1065 1066 if (range.min < range_union.min) { 1067 range_union.min = range.min; 1068 range_union.openmin = 1; 1069 } 1070 if (range.min == range_union.min && !range.openmin) 1071 range_union.openmin = 0; 1072 if (range.max > range_union.max) { 1073 range_union.max = range.max; 1074 range_union.openmax = 1; 1075 } 1076 if (range.max == range_union.max && !range.openmax) 1077 range_union.openmax = 0; 1078 } 1079 return snd_interval_refine(i, &range_union); 1080 } 1081 EXPORT_SYMBOL(snd_interval_ranges); 1082 1083 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1084 { 1085 unsigned int n; 1086 int changed = 0; 1087 n = i->min % step; 1088 if (n != 0 || i->openmin) { 1089 i->min += step - n; 1090 i->openmin = 0; 1091 changed = 1; 1092 } 1093 n = i->max % step; 1094 if (n != 0 || i->openmax) { 1095 i->max -= n; 1096 i->openmax = 0; 1097 changed = 1; 1098 } 1099 if (snd_interval_checkempty(i)) { 1100 i->empty = 1; 1101 return -EINVAL; 1102 } 1103 return changed; 1104 } 1105 1106 /* Info constraints helpers */ 1107 1108 /** 1109 * snd_pcm_hw_rule_add - add the hw-constraint rule 1110 * @runtime: the pcm runtime instance 1111 * @cond: condition bits 1112 * @var: the variable to evaluate 1113 * @func: the evaluation function 1114 * @private: the private data pointer passed to function 1115 * @dep: the dependent variables 1116 * 1117 * Return: Zero if successful, or a negative error code on failure. 1118 */ 1119 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1120 int var, 1121 snd_pcm_hw_rule_func_t func, void *private, 1122 int dep, ...) 1123 { 1124 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1125 struct snd_pcm_hw_rule *c; 1126 unsigned int k; 1127 va_list args; 1128 va_start(args, dep); 1129 if (constrs->rules_num >= constrs->rules_all) { 1130 struct snd_pcm_hw_rule *new; 1131 unsigned int new_rules = constrs->rules_all + 16; 1132 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1133 if (!new) { 1134 va_end(args); 1135 return -ENOMEM; 1136 } 1137 if (constrs->rules) { 1138 memcpy(new, constrs->rules, 1139 constrs->rules_num * sizeof(*c)); 1140 kfree(constrs->rules); 1141 } 1142 constrs->rules = new; 1143 constrs->rules_all = new_rules; 1144 } 1145 c = &constrs->rules[constrs->rules_num]; 1146 c->cond = cond; 1147 c->func = func; 1148 c->var = var; 1149 c->private = private; 1150 k = 0; 1151 while (1) { 1152 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1153 va_end(args); 1154 return -EINVAL; 1155 } 1156 c->deps[k++] = dep; 1157 if (dep < 0) 1158 break; 1159 dep = va_arg(args, int); 1160 } 1161 constrs->rules_num++; 1162 va_end(args); 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1166 1167 /** 1168 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1169 * @runtime: PCM runtime instance 1170 * @var: hw_params variable to apply the mask 1171 * @mask: the bitmap mask 1172 * 1173 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1174 * 1175 * Return: Zero if successful, or a negative error code on failure. 1176 */ 1177 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1178 u_int32_t mask) 1179 { 1180 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1181 struct snd_mask *maskp = constrs_mask(constrs, var); 1182 *maskp->bits &= mask; 1183 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1184 if (*maskp->bits == 0) 1185 return -EINVAL; 1186 return 0; 1187 } 1188 1189 /** 1190 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1191 * @runtime: PCM runtime instance 1192 * @var: hw_params variable to apply the mask 1193 * @mask: the 64bit bitmap mask 1194 * 1195 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1196 * 1197 * Return: Zero if successful, or a negative error code on failure. 1198 */ 1199 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1200 u_int64_t mask) 1201 { 1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1203 struct snd_mask *maskp = constrs_mask(constrs, var); 1204 maskp->bits[0] &= (u_int32_t)mask; 1205 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1206 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1207 if (! maskp->bits[0] && ! maskp->bits[1]) 1208 return -EINVAL; 1209 return 0; 1210 } 1211 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1212 1213 /** 1214 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1215 * @runtime: PCM runtime instance 1216 * @var: hw_params variable to apply the integer constraint 1217 * 1218 * Apply the constraint of integer to an interval parameter. 1219 * 1220 * Return: Positive if the value is changed, zero if it's not changed, or a 1221 * negative error code. 1222 */ 1223 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1224 { 1225 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1226 return snd_interval_setinteger(constrs_interval(constrs, var)); 1227 } 1228 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1229 1230 /** 1231 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1232 * @runtime: PCM runtime instance 1233 * @var: hw_params variable to apply the range 1234 * @min: the minimal value 1235 * @max: the maximal value 1236 * 1237 * Apply the min/max range constraint to an interval parameter. 1238 * 1239 * Return: Positive if the value is changed, zero if it's not changed, or a 1240 * negative error code. 1241 */ 1242 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1243 unsigned int min, unsigned int max) 1244 { 1245 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1246 struct snd_interval t; 1247 t.min = min; 1248 t.max = max; 1249 t.openmin = t.openmax = 0; 1250 t.integer = 0; 1251 return snd_interval_refine(constrs_interval(constrs, var), &t); 1252 } 1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1254 1255 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1256 struct snd_pcm_hw_rule *rule) 1257 { 1258 struct snd_pcm_hw_constraint_list *list = rule->private; 1259 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1260 } 1261 1262 1263 /** 1264 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1265 * @runtime: PCM runtime instance 1266 * @cond: condition bits 1267 * @var: hw_params variable to apply the list constraint 1268 * @l: list 1269 * 1270 * Apply the list of constraints to an interval parameter. 1271 * 1272 * Return: Zero if successful, or a negative error code on failure. 1273 */ 1274 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1275 unsigned int cond, 1276 snd_pcm_hw_param_t var, 1277 const struct snd_pcm_hw_constraint_list *l) 1278 { 1279 return snd_pcm_hw_rule_add(runtime, cond, var, 1280 snd_pcm_hw_rule_list, (void *)l, 1281 var, -1); 1282 } 1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1284 1285 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1286 struct snd_pcm_hw_rule *rule) 1287 { 1288 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1289 return snd_interval_ranges(hw_param_interval(params, rule->var), 1290 r->count, r->ranges, r->mask); 1291 } 1292 1293 1294 /** 1295 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1296 * @runtime: PCM runtime instance 1297 * @cond: condition bits 1298 * @var: hw_params variable to apply the list of range constraints 1299 * @r: ranges 1300 * 1301 * Apply the list of range constraints to an interval parameter. 1302 * 1303 * Return: Zero if successful, or a negative error code on failure. 1304 */ 1305 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1306 unsigned int cond, 1307 snd_pcm_hw_param_t var, 1308 const struct snd_pcm_hw_constraint_ranges *r) 1309 { 1310 return snd_pcm_hw_rule_add(runtime, cond, var, 1311 snd_pcm_hw_rule_ranges, (void *)r, 1312 var, -1); 1313 } 1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1315 1316 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1317 struct snd_pcm_hw_rule *rule) 1318 { 1319 const struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1320 unsigned int num = 0, den = 0; 1321 int err; 1322 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1323 r->nrats, r->rats, &num, &den); 1324 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1325 params->rate_num = num; 1326 params->rate_den = den; 1327 } 1328 return err; 1329 } 1330 1331 /** 1332 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1333 * @runtime: PCM runtime instance 1334 * @cond: condition bits 1335 * @var: hw_params variable to apply the ratnums constraint 1336 * @r: struct snd_ratnums constriants 1337 * 1338 * Return: Zero if successful, or a negative error code on failure. 1339 */ 1340 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1341 unsigned int cond, 1342 snd_pcm_hw_param_t var, 1343 const struct snd_pcm_hw_constraint_ratnums *r) 1344 { 1345 return snd_pcm_hw_rule_add(runtime, cond, var, 1346 snd_pcm_hw_rule_ratnums, (void *)r, 1347 var, -1); 1348 } 1349 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1350 1351 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1352 struct snd_pcm_hw_rule *rule) 1353 { 1354 const struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1355 unsigned int num = 0, den = 0; 1356 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1357 r->nrats, r->rats, &num, &den); 1358 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1359 params->rate_num = num; 1360 params->rate_den = den; 1361 } 1362 return err; 1363 } 1364 1365 /** 1366 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1367 * @runtime: PCM runtime instance 1368 * @cond: condition bits 1369 * @var: hw_params variable to apply the ratdens constraint 1370 * @r: struct snd_ratdens constriants 1371 * 1372 * Return: Zero if successful, or a negative error code on failure. 1373 */ 1374 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1375 unsigned int cond, 1376 snd_pcm_hw_param_t var, 1377 const struct snd_pcm_hw_constraint_ratdens *r) 1378 { 1379 return snd_pcm_hw_rule_add(runtime, cond, var, 1380 snd_pcm_hw_rule_ratdens, (void *)r, 1381 var, -1); 1382 } 1383 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1384 1385 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1386 struct snd_pcm_hw_rule *rule) 1387 { 1388 unsigned int l = (unsigned long) rule->private; 1389 int width = l & 0xffff; 1390 unsigned int msbits = l >> 16; 1391 const struct snd_interval *i = 1392 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1393 1394 if (!snd_interval_single(i)) 1395 return 0; 1396 1397 if ((snd_interval_value(i) == width) || 1398 (width == 0 && snd_interval_value(i) > msbits)) 1399 params->msbits = min_not_zero(params->msbits, msbits); 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1406 * @runtime: PCM runtime instance 1407 * @cond: condition bits 1408 * @width: sample bits width 1409 * @msbits: msbits width 1410 * 1411 * This constraint will set the number of most significant bits (msbits) if a 1412 * sample format with the specified width has been select. If width is set to 0 1413 * the msbits will be set for any sample format with a width larger than the 1414 * specified msbits. 1415 * 1416 * Return: Zero if successful, or a negative error code on failure. 1417 */ 1418 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1419 unsigned int cond, 1420 unsigned int width, 1421 unsigned int msbits) 1422 { 1423 unsigned long l = (msbits << 16) | width; 1424 return snd_pcm_hw_rule_add(runtime, cond, -1, 1425 snd_pcm_hw_rule_msbits, 1426 (void*) l, 1427 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1428 } 1429 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1430 1431 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1432 struct snd_pcm_hw_rule *rule) 1433 { 1434 unsigned long step = (unsigned long) rule->private; 1435 return snd_interval_step(hw_param_interval(params, rule->var), step); 1436 } 1437 1438 /** 1439 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1440 * @runtime: PCM runtime instance 1441 * @cond: condition bits 1442 * @var: hw_params variable to apply the step constraint 1443 * @step: step size 1444 * 1445 * Return: Zero if successful, or a negative error code on failure. 1446 */ 1447 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1448 unsigned int cond, 1449 snd_pcm_hw_param_t var, 1450 unsigned long step) 1451 { 1452 return snd_pcm_hw_rule_add(runtime, cond, var, 1453 snd_pcm_hw_rule_step, (void *) step, 1454 var, -1); 1455 } 1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1457 1458 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1459 { 1460 static unsigned int pow2_sizes[] = { 1461 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1462 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1463 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1464 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1465 }; 1466 return snd_interval_list(hw_param_interval(params, rule->var), 1467 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1468 } 1469 1470 /** 1471 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1472 * @runtime: PCM runtime instance 1473 * @cond: condition bits 1474 * @var: hw_params variable to apply the power-of-2 constraint 1475 * 1476 * Return: Zero if successful, or a negative error code on failure. 1477 */ 1478 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1479 unsigned int cond, 1480 snd_pcm_hw_param_t var) 1481 { 1482 return snd_pcm_hw_rule_add(runtime, cond, var, 1483 snd_pcm_hw_rule_pow2, NULL, 1484 var, -1); 1485 } 1486 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1487 1488 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1489 struct snd_pcm_hw_rule *rule) 1490 { 1491 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1492 struct snd_interval *rate; 1493 1494 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1495 return snd_interval_list(rate, 1, &base_rate, 0); 1496 } 1497 1498 /** 1499 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1500 * @runtime: PCM runtime instance 1501 * @base_rate: the rate at which the hardware does not resample 1502 * 1503 * Return: Zero if successful, or a negative error code on failure. 1504 */ 1505 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1506 unsigned int base_rate) 1507 { 1508 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1509 SNDRV_PCM_HW_PARAM_RATE, 1510 snd_pcm_hw_rule_noresample_func, 1511 (void *)(uintptr_t)base_rate, 1512 SNDRV_PCM_HW_PARAM_RATE, -1); 1513 } 1514 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1515 1516 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1517 snd_pcm_hw_param_t var) 1518 { 1519 if (hw_is_mask(var)) { 1520 snd_mask_any(hw_param_mask(params, var)); 1521 params->cmask |= 1 << var; 1522 params->rmask |= 1 << var; 1523 return; 1524 } 1525 if (hw_is_interval(var)) { 1526 snd_interval_any(hw_param_interval(params, var)); 1527 params->cmask |= 1 << var; 1528 params->rmask |= 1 << var; 1529 return; 1530 } 1531 snd_BUG(); 1532 } 1533 1534 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1535 { 1536 unsigned int k; 1537 memset(params, 0, sizeof(*params)); 1538 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1539 _snd_pcm_hw_param_any(params, k); 1540 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1541 _snd_pcm_hw_param_any(params, k); 1542 params->info = ~0U; 1543 } 1544 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1545 1546 /** 1547 * snd_pcm_hw_param_value - return @params field @var value 1548 * @params: the hw_params instance 1549 * @var: parameter to retrieve 1550 * @dir: pointer to the direction (-1,0,1) or %NULL 1551 * 1552 * Return: The value for field @var if it's fixed in configuration space 1553 * defined by @params. -%EINVAL otherwise. 1554 */ 1555 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1556 snd_pcm_hw_param_t var, int *dir) 1557 { 1558 if (hw_is_mask(var)) { 1559 const struct snd_mask *mask = hw_param_mask_c(params, var); 1560 if (!snd_mask_single(mask)) 1561 return -EINVAL; 1562 if (dir) 1563 *dir = 0; 1564 return snd_mask_value(mask); 1565 } 1566 if (hw_is_interval(var)) { 1567 const struct snd_interval *i = hw_param_interval_c(params, var); 1568 if (!snd_interval_single(i)) 1569 return -EINVAL; 1570 if (dir) 1571 *dir = i->openmin; 1572 return snd_interval_value(i); 1573 } 1574 return -EINVAL; 1575 } 1576 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1577 1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1579 snd_pcm_hw_param_t var) 1580 { 1581 if (hw_is_mask(var)) { 1582 snd_mask_none(hw_param_mask(params, var)); 1583 params->cmask |= 1 << var; 1584 params->rmask |= 1 << var; 1585 } else if (hw_is_interval(var)) { 1586 snd_interval_none(hw_param_interval(params, var)); 1587 params->cmask |= 1 << var; 1588 params->rmask |= 1 << var; 1589 } else { 1590 snd_BUG(); 1591 } 1592 } 1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1594 1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1596 snd_pcm_hw_param_t var) 1597 { 1598 int changed; 1599 if (hw_is_mask(var)) 1600 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1601 else if (hw_is_interval(var)) 1602 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1603 else 1604 return -EINVAL; 1605 if (changed > 0) { 1606 params->cmask |= 1 << var; 1607 params->rmask |= 1 << var; 1608 } 1609 return changed; 1610 } 1611 1612 1613 /** 1614 * snd_pcm_hw_param_first - refine config space and return minimum value 1615 * @pcm: PCM instance 1616 * @params: the hw_params instance 1617 * @var: parameter to retrieve 1618 * @dir: pointer to the direction (-1,0,1) or %NULL 1619 * 1620 * Inside configuration space defined by @params remove from @var all 1621 * values > minimum. Reduce configuration space accordingly. 1622 * 1623 * Return: The minimum, or a negative error code on failure. 1624 */ 1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1626 struct snd_pcm_hw_params *params, 1627 snd_pcm_hw_param_t var, int *dir) 1628 { 1629 int changed = _snd_pcm_hw_param_first(params, var); 1630 if (changed < 0) 1631 return changed; 1632 if (params->rmask) { 1633 int err = snd_pcm_hw_refine(pcm, params); 1634 if (err < 0) 1635 return err; 1636 } 1637 return snd_pcm_hw_param_value(params, var, dir); 1638 } 1639 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1640 1641 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1642 snd_pcm_hw_param_t var) 1643 { 1644 int changed; 1645 if (hw_is_mask(var)) 1646 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1647 else if (hw_is_interval(var)) 1648 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1649 else 1650 return -EINVAL; 1651 if (changed > 0) { 1652 params->cmask |= 1 << var; 1653 params->rmask |= 1 << var; 1654 } 1655 return changed; 1656 } 1657 1658 1659 /** 1660 * snd_pcm_hw_param_last - refine config space and return maximum value 1661 * @pcm: PCM instance 1662 * @params: the hw_params instance 1663 * @var: parameter to retrieve 1664 * @dir: pointer to the direction (-1,0,1) or %NULL 1665 * 1666 * Inside configuration space defined by @params remove from @var all 1667 * values < maximum. Reduce configuration space accordingly. 1668 * 1669 * Return: The maximum, or a negative error code on failure. 1670 */ 1671 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1672 struct snd_pcm_hw_params *params, 1673 snd_pcm_hw_param_t var, int *dir) 1674 { 1675 int changed = _snd_pcm_hw_param_last(params, var); 1676 if (changed < 0) 1677 return changed; 1678 if (params->rmask) { 1679 int err = snd_pcm_hw_refine(pcm, params); 1680 if (err < 0) 1681 return err; 1682 } 1683 return snd_pcm_hw_param_value(params, var, dir); 1684 } 1685 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1686 1687 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1688 void *arg) 1689 { 1690 struct snd_pcm_runtime *runtime = substream->runtime; 1691 unsigned long flags; 1692 snd_pcm_stream_lock_irqsave(substream, flags); 1693 if (snd_pcm_running(substream) && 1694 snd_pcm_update_hw_ptr(substream) >= 0) 1695 runtime->status->hw_ptr %= runtime->buffer_size; 1696 else { 1697 runtime->status->hw_ptr = 0; 1698 runtime->hw_ptr_wrap = 0; 1699 } 1700 snd_pcm_stream_unlock_irqrestore(substream, flags); 1701 return 0; 1702 } 1703 1704 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1705 void *arg) 1706 { 1707 struct snd_pcm_channel_info *info = arg; 1708 struct snd_pcm_runtime *runtime = substream->runtime; 1709 int width; 1710 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1711 info->offset = -1; 1712 return 0; 1713 } 1714 width = snd_pcm_format_physical_width(runtime->format); 1715 if (width < 0) 1716 return width; 1717 info->offset = 0; 1718 switch (runtime->access) { 1719 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1720 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1721 info->first = info->channel * width; 1722 info->step = runtime->channels * width; 1723 break; 1724 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1725 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1726 { 1727 size_t size = runtime->dma_bytes / runtime->channels; 1728 info->first = info->channel * size * 8; 1729 info->step = width; 1730 break; 1731 } 1732 default: 1733 snd_BUG(); 1734 break; 1735 } 1736 return 0; 1737 } 1738 1739 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1740 void *arg) 1741 { 1742 struct snd_pcm_hw_params *params = arg; 1743 snd_pcm_format_t format; 1744 int channels; 1745 ssize_t frame_size; 1746 1747 params->fifo_size = substream->runtime->hw.fifo_size; 1748 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1749 format = params_format(params); 1750 channels = params_channels(params); 1751 frame_size = snd_pcm_format_size(format, channels); 1752 if (frame_size > 0) 1753 params->fifo_size /= (unsigned)frame_size; 1754 } 1755 return 0; 1756 } 1757 1758 /** 1759 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1760 * @substream: the pcm substream instance 1761 * @cmd: ioctl command 1762 * @arg: ioctl argument 1763 * 1764 * Processes the generic ioctl commands for PCM. 1765 * Can be passed as the ioctl callback for PCM ops. 1766 * 1767 * Return: Zero if successful, or a negative error code on failure. 1768 */ 1769 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1770 unsigned int cmd, void *arg) 1771 { 1772 switch (cmd) { 1773 case SNDRV_PCM_IOCTL1_RESET: 1774 return snd_pcm_lib_ioctl_reset(substream, arg); 1775 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1776 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1777 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1778 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1779 } 1780 return -ENXIO; 1781 } 1782 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1783 1784 /** 1785 * snd_pcm_period_elapsed - update the pcm status for the next period 1786 * @substream: the pcm substream instance 1787 * 1788 * This function is called from the interrupt handler when the 1789 * PCM has processed the period size. It will update the current 1790 * pointer, wake up sleepers, etc. 1791 * 1792 * Even if more than one periods have elapsed since the last call, you 1793 * have to call this only once. 1794 */ 1795 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1796 { 1797 struct snd_pcm_runtime *runtime; 1798 unsigned long flags; 1799 1800 if (PCM_RUNTIME_CHECK(substream)) 1801 return; 1802 runtime = substream->runtime; 1803 1804 snd_pcm_stream_lock_irqsave(substream, flags); 1805 if (!snd_pcm_running(substream) || 1806 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1807 goto _end; 1808 1809 #ifdef CONFIG_SND_PCM_TIMER 1810 if (substream->timer_running) 1811 snd_timer_interrupt(substream->timer, 1); 1812 #endif 1813 _end: 1814 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1815 snd_pcm_stream_unlock_irqrestore(substream, flags); 1816 } 1817 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1818 1819 /* 1820 * Wait until avail_min data becomes available 1821 * Returns a negative error code if any error occurs during operation. 1822 * The available space is stored on availp. When err = 0 and avail = 0 1823 * on the capture stream, it indicates the stream is in DRAINING state. 1824 */ 1825 static int wait_for_avail(struct snd_pcm_substream *substream, 1826 snd_pcm_uframes_t *availp) 1827 { 1828 struct snd_pcm_runtime *runtime = substream->runtime; 1829 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1830 wait_queue_entry_t wait; 1831 int err = 0; 1832 snd_pcm_uframes_t avail = 0; 1833 long wait_time, tout; 1834 1835 init_waitqueue_entry(&wait, current); 1836 set_current_state(TASK_INTERRUPTIBLE); 1837 add_wait_queue(&runtime->tsleep, &wait); 1838 1839 if (runtime->no_period_wakeup) 1840 wait_time = MAX_SCHEDULE_TIMEOUT; 1841 else { 1842 wait_time = 10; 1843 if (runtime->rate) { 1844 long t = runtime->period_size * 2 / runtime->rate; 1845 wait_time = max(t, wait_time); 1846 } 1847 wait_time = msecs_to_jiffies(wait_time * 1000); 1848 } 1849 1850 for (;;) { 1851 if (signal_pending(current)) { 1852 err = -ERESTARTSYS; 1853 break; 1854 } 1855 1856 /* 1857 * We need to check if space became available already 1858 * (and thus the wakeup happened already) first to close 1859 * the race of space already having become available. 1860 * This check must happen after been added to the waitqueue 1861 * and having current state be INTERRUPTIBLE. 1862 */ 1863 if (is_playback) 1864 avail = snd_pcm_playback_avail(runtime); 1865 else 1866 avail = snd_pcm_capture_avail(runtime); 1867 if (avail >= runtime->twake) 1868 break; 1869 snd_pcm_stream_unlock_irq(substream); 1870 1871 tout = schedule_timeout(wait_time); 1872 1873 snd_pcm_stream_lock_irq(substream); 1874 set_current_state(TASK_INTERRUPTIBLE); 1875 switch (runtime->status->state) { 1876 case SNDRV_PCM_STATE_SUSPENDED: 1877 err = -ESTRPIPE; 1878 goto _endloop; 1879 case SNDRV_PCM_STATE_XRUN: 1880 err = -EPIPE; 1881 goto _endloop; 1882 case SNDRV_PCM_STATE_DRAINING: 1883 if (is_playback) 1884 err = -EPIPE; 1885 else 1886 avail = 0; /* indicate draining */ 1887 goto _endloop; 1888 case SNDRV_PCM_STATE_OPEN: 1889 case SNDRV_PCM_STATE_SETUP: 1890 case SNDRV_PCM_STATE_DISCONNECTED: 1891 err = -EBADFD; 1892 goto _endloop; 1893 case SNDRV_PCM_STATE_PAUSED: 1894 continue; 1895 } 1896 if (!tout) { 1897 pcm_dbg(substream->pcm, 1898 "%s write error (DMA or IRQ trouble?)\n", 1899 is_playback ? "playback" : "capture"); 1900 err = -EIO; 1901 break; 1902 } 1903 } 1904 _endloop: 1905 set_current_state(TASK_RUNNING); 1906 remove_wait_queue(&runtime->tsleep, &wait); 1907 *availp = avail; 1908 return err; 1909 } 1910 1911 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, 1912 int channel, unsigned long hwoff, 1913 void *buf, unsigned long bytes); 1914 1915 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, 1916 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f); 1917 1918 /* calculate the target DMA-buffer position to be written/read */ 1919 static void *get_dma_ptr(struct snd_pcm_runtime *runtime, 1920 int channel, unsigned long hwoff) 1921 { 1922 return runtime->dma_area + hwoff + 1923 channel * (runtime->dma_bytes / runtime->channels); 1924 } 1925 1926 /* default copy_user ops for write; used for both interleaved and non- modes */ 1927 static int default_write_copy(struct snd_pcm_substream *substream, 1928 int channel, unsigned long hwoff, 1929 void *buf, unsigned long bytes) 1930 { 1931 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff), 1932 (void __user *)buf, bytes)) 1933 return -EFAULT; 1934 return 0; 1935 } 1936 1937 /* default copy_kernel ops for write */ 1938 static int default_write_copy_kernel(struct snd_pcm_substream *substream, 1939 int channel, unsigned long hwoff, 1940 void *buf, unsigned long bytes) 1941 { 1942 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes); 1943 return 0; 1944 } 1945 1946 /* fill silence instead of copy data; called as a transfer helper 1947 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when 1948 * a NULL buffer is passed 1949 */ 1950 static int fill_silence(struct snd_pcm_substream *substream, int channel, 1951 unsigned long hwoff, void *buf, unsigned long bytes) 1952 { 1953 struct snd_pcm_runtime *runtime = substream->runtime; 1954 1955 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 1956 return 0; 1957 if (substream->ops->fill_silence) 1958 return substream->ops->fill_silence(substream, channel, 1959 hwoff, bytes); 1960 1961 snd_pcm_format_set_silence(runtime->format, 1962 get_dma_ptr(runtime, channel, hwoff), 1963 bytes_to_samples(runtime, bytes)); 1964 return 0; 1965 } 1966 1967 /* default copy_user ops for read; used for both interleaved and non- modes */ 1968 static int default_read_copy(struct snd_pcm_substream *substream, 1969 int channel, unsigned long hwoff, 1970 void *buf, unsigned long bytes) 1971 { 1972 if (copy_to_user((void __user *)buf, 1973 get_dma_ptr(substream->runtime, channel, hwoff), 1974 bytes)) 1975 return -EFAULT; 1976 return 0; 1977 } 1978 1979 /* default copy_kernel ops for read */ 1980 static int default_read_copy_kernel(struct snd_pcm_substream *substream, 1981 int channel, unsigned long hwoff, 1982 void *buf, unsigned long bytes) 1983 { 1984 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes); 1985 return 0; 1986 } 1987 1988 /* call transfer function with the converted pointers and sizes; 1989 * for interleaved mode, it's one shot for all samples 1990 */ 1991 static int interleaved_copy(struct snd_pcm_substream *substream, 1992 snd_pcm_uframes_t hwoff, void *data, 1993 snd_pcm_uframes_t off, 1994 snd_pcm_uframes_t frames, 1995 pcm_transfer_f transfer) 1996 { 1997 struct snd_pcm_runtime *runtime = substream->runtime; 1998 1999 /* convert to bytes */ 2000 hwoff = frames_to_bytes(runtime, hwoff); 2001 off = frames_to_bytes(runtime, off); 2002 frames = frames_to_bytes(runtime, frames); 2003 return transfer(substream, 0, hwoff, data + off, frames); 2004 } 2005 2006 /* call transfer function with the converted pointers and sizes for each 2007 * non-interleaved channel; when buffer is NULL, silencing instead of copying 2008 */ 2009 static int noninterleaved_copy(struct snd_pcm_substream *substream, 2010 snd_pcm_uframes_t hwoff, void *data, 2011 snd_pcm_uframes_t off, 2012 snd_pcm_uframes_t frames, 2013 pcm_transfer_f transfer) 2014 { 2015 struct snd_pcm_runtime *runtime = substream->runtime; 2016 int channels = runtime->channels; 2017 void **bufs = data; 2018 int c, err; 2019 2020 /* convert to bytes; note that it's not frames_to_bytes() here. 2021 * in non-interleaved mode, we copy for each channel, thus 2022 * each copy is n_samples bytes x channels = whole frames. 2023 */ 2024 off = samples_to_bytes(runtime, off); 2025 frames = samples_to_bytes(runtime, frames); 2026 hwoff = samples_to_bytes(runtime, hwoff); 2027 for (c = 0; c < channels; ++c, ++bufs) { 2028 if (!data || !*bufs) 2029 err = fill_silence(substream, c, hwoff, NULL, frames); 2030 else 2031 err = transfer(substream, c, hwoff, *bufs + off, 2032 frames); 2033 if (err < 0) 2034 return err; 2035 } 2036 return 0; 2037 } 2038 2039 /* fill silence on the given buffer position; 2040 * called from snd_pcm_playback_silence() 2041 */ 2042 static int fill_silence_frames(struct snd_pcm_substream *substream, 2043 snd_pcm_uframes_t off, snd_pcm_uframes_t frames) 2044 { 2045 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 2046 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) 2047 return interleaved_copy(substream, off, NULL, 0, frames, 2048 fill_silence); 2049 else 2050 return noninterleaved_copy(substream, off, NULL, 0, frames, 2051 fill_silence); 2052 } 2053 2054 /* sanity-check for read/write methods */ 2055 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2056 { 2057 struct snd_pcm_runtime *runtime; 2058 if (PCM_RUNTIME_CHECK(substream)) 2059 return -ENXIO; 2060 runtime = substream->runtime; 2061 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area)) 2062 return -EINVAL; 2063 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2064 return -EBADFD; 2065 return 0; 2066 } 2067 2068 static int pcm_accessible_state(struct snd_pcm_runtime *runtime) 2069 { 2070 switch (runtime->status->state) { 2071 case SNDRV_PCM_STATE_PREPARED: 2072 case SNDRV_PCM_STATE_RUNNING: 2073 case SNDRV_PCM_STATE_PAUSED: 2074 return 0; 2075 case SNDRV_PCM_STATE_XRUN: 2076 return -EPIPE; 2077 case SNDRV_PCM_STATE_SUSPENDED: 2078 return -ESTRPIPE; 2079 default: 2080 return -EBADFD; 2081 } 2082 } 2083 2084 /* update to the given appl_ptr and call ack callback if needed; 2085 * when an error is returned, take back to the original value 2086 */ 2087 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream, 2088 snd_pcm_uframes_t appl_ptr) 2089 { 2090 struct snd_pcm_runtime *runtime = substream->runtime; 2091 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr; 2092 int ret; 2093 2094 if (old_appl_ptr == appl_ptr) 2095 return 0; 2096 2097 runtime->control->appl_ptr = appl_ptr; 2098 if (substream->ops->ack) { 2099 ret = substream->ops->ack(substream); 2100 if (ret < 0) { 2101 runtime->control->appl_ptr = old_appl_ptr; 2102 return ret; 2103 } 2104 } 2105 2106 trace_applptr(substream, old_appl_ptr, appl_ptr); 2107 2108 return 0; 2109 } 2110 2111 /* the common loop for read/write data */ 2112 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, 2113 void *data, bool interleaved, 2114 snd_pcm_uframes_t size, bool in_kernel) 2115 { 2116 struct snd_pcm_runtime *runtime = substream->runtime; 2117 snd_pcm_uframes_t xfer = 0; 2118 snd_pcm_uframes_t offset = 0; 2119 snd_pcm_uframes_t avail; 2120 pcm_copy_f writer; 2121 pcm_transfer_f transfer; 2122 bool nonblock; 2123 bool is_playback; 2124 int err; 2125 2126 err = pcm_sanity_check(substream); 2127 if (err < 0) 2128 return err; 2129 2130 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 2131 if (interleaved) { 2132 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2133 runtime->channels > 1) 2134 return -EINVAL; 2135 writer = interleaved_copy; 2136 } else { 2137 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2138 return -EINVAL; 2139 writer = noninterleaved_copy; 2140 } 2141 2142 if (!data) { 2143 if (is_playback) 2144 transfer = fill_silence; 2145 else 2146 return -EINVAL; 2147 } else if (in_kernel) { 2148 if (substream->ops->copy_kernel) 2149 transfer = substream->ops->copy_kernel; 2150 else 2151 transfer = is_playback ? 2152 default_write_copy_kernel : default_read_copy_kernel; 2153 } else { 2154 if (substream->ops->copy_user) 2155 transfer = (pcm_transfer_f)substream->ops->copy_user; 2156 else 2157 transfer = is_playback ? 2158 default_write_copy : default_read_copy; 2159 } 2160 2161 if (size == 0) 2162 return 0; 2163 2164 nonblock = !!(substream->f_flags & O_NONBLOCK); 2165 2166 snd_pcm_stream_lock_irq(substream); 2167 err = pcm_accessible_state(runtime); 2168 if (err < 0) 2169 goto _end_unlock; 2170 2171 if (!is_playback && 2172 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2173 size >= runtime->start_threshold) { 2174 err = snd_pcm_start(substream); 2175 if (err < 0) 2176 goto _end_unlock; 2177 } 2178 2179 runtime->twake = runtime->control->avail_min ? : 1; 2180 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2181 snd_pcm_update_hw_ptr(substream); 2182 if (is_playback) 2183 avail = snd_pcm_playback_avail(runtime); 2184 else 2185 avail = snd_pcm_capture_avail(runtime); 2186 while (size > 0) { 2187 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2188 snd_pcm_uframes_t cont; 2189 if (!avail) { 2190 if (!is_playback && 2191 runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 2192 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2193 goto _end_unlock; 2194 } 2195 if (nonblock) { 2196 err = -EAGAIN; 2197 goto _end_unlock; 2198 } 2199 runtime->twake = min_t(snd_pcm_uframes_t, size, 2200 runtime->control->avail_min ? : 1); 2201 err = wait_for_avail(substream, &avail); 2202 if (err < 0) 2203 goto _end_unlock; 2204 if (!avail) 2205 continue; /* draining */ 2206 } 2207 frames = size > avail ? avail : size; 2208 appl_ptr = READ_ONCE(runtime->control->appl_ptr); 2209 appl_ofs = appl_ptr % runtime->buffer_size; 2210 cont = runtime->buffer_size - appl_ofs; 2211 if (frames > cont) 2212 frames = cont; 2213 if (snd_BUG_ON(!frames)) { 2214 runtime->twake = 0; 2215 snd_pcm_stream_unlock_irq(substream); 2216 return -EINVAL; 2217 } 2218 snd_pcm_stream_unlock_irq(substream); 2219 err = writer(substream, appl_ofs, data, offset, frames, 2220 transfer); 2221 snd_pcm_stream_lock_irq(substream); 2222 if (err < 0) 2223 goto _end_unlock; 2224 err = pcm_accessible_state(runtime); 2225 if (err < 0) 2226 goto _end_unlock; 2227 appl_ptr += frames; 2228 if (appl_ptr >= runtime->boundary) 2229 appl_ptr -= runtime->boundary; 2230 err = pcm_lib_apply_appl_ptr(substream, appl_ptr); 2231 if (err < 0) 2232 goto _end_unlock; 2233 2234 offset += frames; 2235 size -= frames; 2236 xfer += frames; 2237 avail -= frames; 2238 if (is_playback && 2239 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2240 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2241 err = snd_pcm_start(substream); 2242 if (err < 0) 2243 goto _end_unlock; 2244 } 2245 } 2246 _end_unlock: 2247 runtime->twake = 0; 2248 if (xfer > 0 && err >= 0) 2249 snd_pcm_update_state(substream, runtime); 2250 snd_pcm_stream_unlock_irq(substream); 2251 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2252 } 2253 EXPORT_SYMBOL(__snd_pcm_lib_xfer); 2254 2255 /* 2256 * standard channel mapping helpers 2257 */ 2258 2259 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2260 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2261 { .channels = 1, 2262 .map = { SNDRV_CHMAP_MONO } }, 2263 { .channels = 2, 2264 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2265 { .channels = 4, 2266 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2267 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2268 { .channels = 6, 2269 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2270 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2271 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2272 { .channels = 8, 2273 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2274 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2275 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2276 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2277 { } 2278 }; 2279 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2280 2281 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2282 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2283 { .channels = 1, 2284 .map = { SNDRV_CHMAP_MONO } }, 2285 { .channels = 2, 2286 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2287 { .channels = 4, 2288 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2289 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2290 { .channels = 6, 2291 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2292 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2293 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2294 { .channels = 8, 2295 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2296 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2297 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2298 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2299 { } 2300 }; 2301 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2302 2303 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2304 { 2305 if (ch > info->max_channels) 2306 return false; 2307 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2308 } 2309 2310 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2311 struct snd_ctl_elem_info *uinfo) 2312 { 2313 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2314 2315 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2316 uinfo->count = 0; 2317 uinfo->count = info->max_channels; 2318 uinfo->value.integer.min = 0; 2319 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2320 return 0; 2321 } 2322 2323 /* get callback for channel map ctl element 2324 * stores the channel position firstly matching with the current channels 2325 */ 2326 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2327 struct snd_ctl_elem_value *ucontrol) 2328 { 2329 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2330 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2331 struct snd_pcm_substream *substream; 2332 const struct snd_pcm_chmap_elem *map; 2333 2334 if (!info->chmap) 2335 return -EINVAL; 2336 substream = snd_pcm_chmap_substream(info, idx); 2337 if (!substream) 2338 return -ENODEV; 2339 memset(ucontrol->value.integer.value, 0, 2340 sizeof(ucontrol->value.integer.value)); 2341 if (!substream->runtime) 2342 return 0; /* no channels set */ 2343 for (map = info->chmap; map->channels; map++) { 2344 int i; 2345 if (map->channels == substream->runtime->channels && 2346 valid_chmap_channels(info, map->channels)) { 2347 for (i = 0; i < map->channels; i++) 2348 ucontrol->value.integer.value[i] = map->map[i]; 2349 return 0; 2350 } 2351 } 2352 return -EINVAL; 2353 } 2354 2355 /* tlv callback for channel map ctl element 2356 * expands the pre-defined channel maps in a form of TLV 2357 */ 2358 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2359 unsigned int size, unsigned int __user *tlv) 2360 { 2361 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2362 const struct snd_pcm_chmap_elem *map; 2363 unsigned int __user *dst; 2364 int c, count = 0; 2365 2366 if (!info->chmap) 2367 return -EINVAL; 2368 if (size < 8) 2369 return -ENOMEM; 2370 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2371 return -EFAULT; 2372 size -= 8; 2373 dst = tlv + 2; 2374 for (map = info->chmap; map->channels; map++) { 2375 int chs_bytes = map->channels * 4; 2376 if (!valid_chmap_channels(info, map->channels)) 2377 continue; 2378 if (size < 8) 2379 return -ENOMEM; 2380 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2381 put_user(chs_bytes, dst + 1)) 2382 return -EFAULT; 2383 dst += 2; 2384 size -= 8; 2385 count += 8; 2386 if (size < chs_bytes) 2387 return -ENOMEM; 2388 size -= chs_bytes; 2389 count += chs_bytes; 2390 for (c = 0; c < map->channels; c++) { 2391 if (put_user(map->map[c], dst)) 2392 return -EFAULT; 2393 dst++; 2394 } 2395 } 2396 if (put_user(count, tlv + 1)) 2397 return -EFAULT; 2398 return 0; 2399 } 2400 2401 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2402 { 2403 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2404 info->pcm->streams[info->stream].chmap_kctl = NULL; 2405 kfree(info); 2406 } 2407 2408 /** 2409 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2410 * @pcm: the assigned PCM instance 2411 * @stream: stream direction 2412 * @chmap: channel map elements (for query) 2413 * @max_channels: the max number of channels for the stream 2414 * @private_value: the value passed to each kcontrol's private_value field 2415 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2416 * 2417 * Create channel-mapping control elements assigned to the given PCM stream(s). 2418 * Return: Zero if successful, or a negative error value. 2419 */ 2420 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2421 const struct snd_pcm_chmap_elem *chmap, 2422 int max_channels, 2423 unsigned long private_value, 2424 struct snd_pcm_chmap **info_ret) 2425 { 2426 struct snd_pcm_chmap *info; 2427 struct snd_kcontrol_new knew = { 2428 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2429 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2430 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2431 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2432 .info = pcm_chmap_ctl_info, 2433 .get = pcm_chmap_ctl_get, 2434 .tlv.c = pcm_chmap_ctl_tlv, 2435 }; 2436 int err; 2437 2438 if (WARN_ON(pcm->streams[stream].chmap_kctl)) 2439 return -EBUSY; 2440 info = kzalloc(sizeof(*info), GFP_KERNEL); 2441 if (!info) 2442 return -ENOMEM; 2443 info->pcm = pcm; 2444 info->stream = stream; 2445 info->chmap = chmap; 2446 info->max_channels = max_channels; 2447 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2448 knew.name = "Playback Channel Map"; 2449 else 2450 knew.name = "Capture Channel Map"; 2451 knew.device = pcm->device; 2452 knew.count = pcm->streams[stream].substream_count; 2453 knew.private_value = private_value; 2454 info->kctl = snd_ctl_new1(&knew, info); 2455 if (!info->kctl) { 2456 kfree(info); 2457 return -ENOMEM; 2458 } 2459 info->kctl->private_free = pcm_chmap_ctl_private_free; 2460 err = snd_ctl_add(pcm->card, info->kctl); 2461 if (err < 0) 2462 return err; 2463 pcm->streams[stream].chmap_kctl = info->kctl; 2464 if (info_ret) 2465 *info_ret = info; 2466 return 0; 2467 } 2468 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2469