1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 #include <linux/time.h> 26 #include <linux/math64.h> 27 #include <linux/export.h> 28 #include <sound/core.h> 29 #include <sound/control.h> 30 #include <sound/tlv.h> 31 #include <sound/info.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/timer.h> 35 36 #include "pcm_local.h" 37 38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 39 #define CREATE_TRACE_POINTS 40 #include "pcm_trace.h" 41 #else 42 #define trace_hwptr(substream, pos, in_interrupt) 43 #define trace_xrun(substream) 44 #define trace_hw_ptr_error(substream, reason) 45 #endif 46 47 static int fill_silence_frames(struct snd_pcm_substream *substream, 48 snd_pcm_uframes_t off, snd_pcm_uframes_t frames); 49 50 /* 51 * fill ring buffer with silence 52 * runtime->silence_start: starting pointer to silence area 53 * runtime->silence_filled: size filled with silence 54 * runtime->silence_threshold: threshold from application 55 * runtime->silence_size: maximal size from application 56 * 57 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 58 */ 59 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 60 { 61 struct snd_pcm_runtime *runtime = substream->runtime; 62 snd_pcm_uframes_t frames, ofs, transfer; 63 int err; 64 65 if (runtime->silence_size < runtime->boundary) { 66 snd_pcm_sframes_t noise_dist, n; 67 if (runtime->silence_start != runtime->control->appl_ptr) { 68 n = runtime->control->appl_ptr - runtime->silence_start; 69 if (n < 0) 70 n += runtime->boundary; 71 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 72 runtime->silence_filled -= n; 73 else 74 runtime->silence_filled = 0; 75 runtime->silence_start = runtime->control->appl_ptr; 76 } 77 if (runtime->silence_filled >= runtime->buffer_size) 78 return; 79 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 80 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 81 return; 82 frames = runtime->silence_threshold - noise_dist; 83 if (frames > runtime->silence_size) 84 frames = runtime->silence_size; 85 } else { 86 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 87 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 88 if (avail > runtime->buffer_size) 89 avail = runtime->buffer_size; 90 runtime->silence_filled = avail > 0 ? avail : 0; 91 runtime->silence_start = (runtime->status->hw_ptr + 92 runtime->silence_filled) % 93 runtime->boundary; 94 } else { 95 ofs = runtime->status->hw_ptr; 96 frames = new_hw_ptr - ofs; 97 if ((snd_pcm_sframes_t)frames < 0) 98 frames += runtime->boundary; 99 runtime->silence_filled -= frames; 100 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 101 runtime->silence_filled = 0; 102 runtime->silence_start = new_hw_ptr; 103 } else { 104 runtime->silence_start = ofs; 105 } 106 } 107 frames = runtime->buffer_size - runtime->silence_filled; 108 } 109 if (snd_BUG_ON(frames > runtime->buffer_size)) 110 return; 111 if (frames == 0) 112 return; 113 ofs = runtime->silence_start % runtime->buffer_size; 114 while (frames > 0) { 115 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 116 err = fill_silence_frames(substream, ofs, transfer); 117 snd_BUG_ON(err < 0); 118 runtime->silence_filled += transfer; 119 frames -= transfer; 120 ofs = 0; 121 } 122 } 123 124 #ifdef CONFIG_SND_DEBUG 125 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 126 char *name, size_t len) 127 { 128 snprintf(name, len, "pcmC%dD%d%c:%d", 129 substream->pcm->card->number, 130 substream->pcm->device, 131 substream->stream ? 'c' : 'p', 132 substream->number); 133 } 134 EXPORT_SYMBOL(snd_pcm_debug_name); 135 #endif 136 137 #define XRUN_DEBUG_BASIC (1<<0) 138 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 139 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 140 141 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 142 143 #define xrun_debug(substream, mask) \ 144 ((substream)->pstr->xrun_debug & (mask)) 145 #else 146 #define xrun_debug(substream, mask) 0 147 #endif 148 149 #define dump_stack_on_xrun(substream) do { \ 150 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 151 dump_stack(); \ 152 } while (0) 153 154 static void xrun(struct snd_pcm_substream *substream) 155 { 156 struct snd_pcm_runtime *runtime = substream->runtime; 157 158 trace_xrun(substream); 159 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 160 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 161 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 162 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 163 char name[16]; 164 snd_pcm_debug_name(substream, name, sizeof(name)); 165 pcm_warn(substream->pcm, "XRUN: %s\n", name); 166 dump_stack_on_xrun(substream); 167 } 168 } 169 170 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 171 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 172 do { \ 173 trace_hw_ptr_error(substream, reason); \ 174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 175 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 176 (in_interrupt) ? 'Q' : 'P', ##args); \ 177 dump_stack_on_xrun(substream); \ 178 } \ 179 } while (0) 180 181 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 182 183 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 184 185 #endif 186 187 int snd_pcm_update_state(struct snd_pcm_substream *substream, 188 struct snd_pcm_runtime *runtime) 189 { 190 snd_pcm_uframes_t avail; 191 192 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 193 avail = snd_pcm_playback_avail(runtime); 194 else 195 avail = snd_pcm_capture_avail(runtime); 196 if (avail > runtime->avail_max) 197 runtime->avail_max = avail; 198 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 199 if (avail >= runtime->buffer_size) { 200 snd_pcm_drain_done(substream); 201 return -EPIPE; 202 } 203 } else { 204 if (avail >= runtime->stop_threshold) { 205 xrun(substream); 206 return -EPIPE; 207 } 208 } 209 if (runtime->twake) { 210 if (avail >= runtime->twake) 211 wake_up(&runtime->tsleep); 212 } else if (avail >= runtime->control->avail_min) 213 wake_up(&runtime->sleep); 214 return 0; 215 } 216 217 static void update_audio_tstamp(struct snd_pcm_substream *substream, 218 struct timespec *curr_tstamp, 219 struct timespec *audio_tstamp) 220 { 221 struct snd_pcm_runtime *runtime = substream->runtime; 222 u64 audio_frames, audio_nsecs; 223 struct timespec driver_tstamp; 224 225 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 226 return; 227 228 if (!(substream->ops->get_time_info) || 229 (runtime->audio_tstamp_report.actual_type == 230 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 231 232 /* 233 * provide audio timestamp derived from pointer position 234 * add delay only if requested 235 */ 236 237 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 238 239 if (runtime->audio_tstamp_config.report_delay) { 240 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 241 audio_frames -= runtime->delay; 242 else 243 audio_frames += runtime->delay; 244 } 245 audio_nsecs = div_u64(audio_frames * 1000000000LL, 246 runtime->rate); 247 *audio_tstamp = ns_to_timespec(audio_nsecs); 248 } 249 runtime->status->audio_tstamp = *audio_tstamp; 250 runtime->status->tstamp = *curr_tstamp; 251 252 /* 253 * re-take a driver timestamp to let apps detect if the reference tstamp 254 * read by low-level hardware was provided with a delay 255 */ 256 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp); 257 runtime->driver_tstamp = driver_tstamp; 258 } 259 260 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 261 unsigned int in_interrupt) 262 { 263 struct snd_pcm_runtime *runtime = substream->runtime; 264 snd_pcm_uframes_t pos; 265 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 266 snd_pcm_sframes_t hdelta, delta; 267 unsigned long jdelta; 268 unsigned long curr_jiffies; 269 struct timespec curr_tstamp; 270 struct timespec audio_tstamp; 271 int crossed_boundary = 0; 272 273 old_hw_ptr = runtime->status->hw_ptr; 274 275 /* 276 * group pointer, time and jiffies reads to allow for more 277 * accurate correlations/corrections. 278 * The values are stored at the end of this routine after 279 * corrections for hw_ptr position 280 */ 281 pos = substream->ops->pointer(substream); 282 curr_jiffies = jiffies; 283 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 284 if ((substream->ops->get_time_info) && 285 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 286 substream->ops->get_time_info(substream, &curr_tstamp, 287 &audio_tstamp, 288 &runtime->audio_tstamp_config, 289 &runtime->audio_tstamp_report); 290 291 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 292 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 293 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 294 } else 295 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 296 } 297 298 if (pos == SNDRV_PCM_POS_XRUN) { 299 xrun(substream); 300 return -EPIPE; 301 } 302 if (pos >= runtime->buffer_size) { 303 if (printk_ratelimit()) { 304 char name[16]; 305 snd_pcm_debug_name(substream, name, sizeof(name)); 306 pcm_err(substream->pcm, 307 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 308 name, pos, runtime->buffer_size, 309 runtime->period_size); 310 } 311 pos = 0; 312 } 313 pos -= pos % runtime->min_align; 314 trace_hwptr(substream, pos, in_interrupt); 315 hw_base = runtime->hw_ptr_base; 316 new_hw_ptr = hw_base + pos; 317 if (in_interrupt) { 318 /* we know that one period was processed */ 319 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 320 delta = runtime->hw_ptr_interrupt + runtime->period_size; 321 if (delta > new_hw_ptr) { 322 /* check for double acknowledged interrupts */ 323 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 324 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { 325 hw_base += runtime->buffer_size; 326 if (hw_base >= runtime->boundary) { 327 hw_base = 0; 328 crossed_boundary++; 329 } 330 new_hw_ptr = hw_base + pos; 331 goto __delta; 332 } 333 } 334 } 335 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 336 /* pointer crosses the end of the ring buffer */ 337 if (new_hw_ptr < old_hw_ptr) { 338 hw_base += runtime->buffer_size; 339 if (hw_base >= runtime->boundary) { 340 hw_base = 0; 341 crossed_boundary++; 342 } 343 new_hw_ptr = hw_base + pos; 344 } 345 __delta: 346 delta = new_hw_ptr - old_hw_ptr; 347 if (delta < 0) 348 delta += runtime->boundary; 349 350 if (runtime->no_period_wakeup) { 351 snd_pcm_sframes_t xrun_threshold; 352 /* 353 * Without regular period interrupts, we have to check 354 * the elapsed time to detect xruns. 355 */ 356 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 357 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 358 goto no_delta_check; 359 hdelta = jdelta - delta * HZ / runtime->rate; 360 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 361 while (hdelta > xrun_threshold) { 362 delta += runtime->buffer_size; 363 hw_base += runtime->buffer_size; 364 if (hw_base >= runtime->boundary) { 365 hw_base = 0; 366 crossed_boundary++; 367 } 368 new_hw_ptr = hw_base + pos; 369 hdelta -= runtime->hw_ptr_buffer_jiffies; 370 } 371 goto no_delta_check; 372 } 373 374 /* something must be really wrong */ 375 if (delta >= runtime->buffer_size + runtime->period_size) { 376 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 377 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 378 substream->stream, (long)pos, 379 (long)new_hw_ptr, (long)old_hw_ptr); 380 return 0; 381 } 382 383 /* Do jiffies check only in xrun_debug mode */ 384 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 385 goto no_jiffies_check; 386 387 /* Skip the jiffies check for hardwares with BATCH flag. 388 * Such hardware usually just increases the position at each IRQ, 389 * thus it can't give any strange position. 390 */ 391 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 392 goto no_jiffies_check; 393 hdelta = delta; 394 if (hdelta < runtime->delay) 395 goto no_jiffies_check; 396 hdelta -= runtime->delay; 397 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 398 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 399 delta = jdelta / 400 (((runtime->period_size * HZ) / runtime->rate) 401 + HZ/100); 402 /* move new_hw_ptr according jiffies not pos variable */ 403 new_hw_ptr = old_hw_ptr; 404 hw_base = delta; 405 /* use loop to avoid checks for delta overflows */ 406 /* the delta value is small or zero in most cases */ 407 while (delta > 0) { 408 new_hw_ptr += runtime->period_size; 409 if (new_hw_ptr >= runtime->boundary) { 410 new_hw_ptr -= runtime->boundary; 411 crossed_boundary--; 412 } 413 delta--; 414 } 415 /* align hw_base to buffer_size */ 416 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 417 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 418 (long)pos, (long)hdelta, 419 (long)runtime->period_size, jdelta, 420 ((hdelta * HZ) / runtime->rate), hw_base, 421 (unsigned long)old_hw_ptr, 422 (unsigned long)new_hw_ptr); 423 /* reset values to proper state */ 424 delta = 0; 425 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 426 } 427 no_jiffies_check: 428 if (delta > runtime->period_size + runtime->period_size / 2) { 429 hw_ptr_error(substream, in_interrupt, 430 "Lost interrupts?", 431 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 432 substream->stream, (long)delta, 433 (long)new_hw_ptr, 434 (long)old_hw_ptr); 435 } 436 437 no_delta_check: 438 if (runtime->status->hw_ptr == new_hw_ptr) { 439 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 440 return 0; 441 } 442 443 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 444 runtime->silence_size > 0) 445 snd_pcm_playback_silence(substream, new_hw_ptr); 446 447 if (in_interrupt) { 448 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 449 if (delta < 0) 450 delta += runtime->boundary; 451 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 452 runtime->hw_ptr_interrupt += delta; 453 if (runtime->hw_ptr_interrupt >= runtime->boundary) 454 runtime->hw_ptr_interrupt -= runtime->boundary; 455 } 456 runtime->hw_ptr_base = hw_base; 457 runtime->status->hw_ptr = new_hw_ptr; 458 runtime->hw_ptr_jiffies = curr_jiffies; 459 if (crossed_boundary) { 460 snd_BUG_ON(crossed_boundary != 1); 461 runtime->hw_ptr_wrap += runtime->boundary; 462 } 463 464 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 465 466 return snd_pcm_update_state(substream, runtime); 467 } 468 469 /* CAUTION: call it with irq disabled */ 470 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 471 { 472 return snd_pcm_update_hw_ptr0(substream, 0); 473 } 474 475 /** 476 * snd_pcm_set_ops - set the PCM operators 477 * @pcm: the pcm instance 478 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 479 * @ops: the operator table 480 * 481 * Sets the given PCM operators to the pcm instance. 482 */ 483 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 484 const struct snd_pcm_ops *ops) 485 { 486 struct snd_pcm_str *stream = &pcm->streams[direction]; 487 struct snd_pcm_substream *substream; 488 489 for (substream = stream->substream; substream != NULL; substream = substream->next) 490 substream->ops = ops; 491 } 492 493 EXPORT_SYMBOL(snd_pcm_set_ops); 494 495 /** 496 * snd_pcm_sync - set the PCM sync id 497 * @substream: the pcm substream 498 * 499 * Sets the PCM sync identifier for the card. 500 */ 501 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 502 { 503 struct snd_pcm_runtime *runtime = substream->runtime; 504 505 runtime->sync.id32[0] = substream->pcm->card->number; 506 runtime->sync.id32[1] = -1; 507 runtime->sync.id32[2] = -1; 508 runtime->sync.id32[3] = -1; 509 } 510 511 EXPORT_SYMBOL(snd_pcm_set_sync); 512 513 /* 514 * Standard ioctl routine 515 */ 516 517 static inline unsigned int div32(unsigned int a, unsigned int b, 518 unsigned int *r) 519 { 520 if (b == 0) { 521 *r = 0; 522 return UINT_MAX; 523 } 524 *r = a % b; 525 return a / b; 526 } 527 528 static inline unsigned int div_down(unsigned int a, unsigned int b) 529 { 530 if (b == 0) 531 return UINT_MAX; 532 return a / b; 533 } 534 535 static inline unsigned int div_up(unsigned int a, unsigned int b) 536 { 537 unsigned int r; 538 unsigned int q; 539 if (b == 0) 540 return UINT_MAX; 541 q = div32(a, b, &r); 542 if (r) 543 ++q; 544 return q; 545 } 546 547 static inline unsigned int mul(unsigned int a, unsigned int b) 548 { 549 if (a == 0) 550 return 0; 551 if (div_down(UINT_MAX, a) < b) 552 return UINT_MAX; 553 return a * b; 554 } 555 556 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 557 unsigned int c, unsigned int *r) 558 { 559 u_int64_t n = (u_int64_t) a * b; 560 if (c == 0) { 561 snd_BUG_ON(!n); 562 *r = 0; 563 return UINT_MAX; 564 } 565 n = div_u64_rem(n, c, r); 566 if (n >= UINT_MAX) { 567 *r = 0; 568 return UINT_MAX; 569 } 570 return n; 571 } 572 573 /** 574 * snd_interval_refine - refine the interval value of configurator 575 * @i: the interval value to refine 576 * @v: the interval value to refer to 577 * 578 * Refines the interval value with the reference value. 579 * The interval is changed to the range satisfying both intervals. 580 * The interval status (min, max, integer, etc.) are evaluated. 581 * 582 * Return: Positive if the value is changed, zero if it's not changed, or a 583 * negative error code. 584 */ 585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 586 { 587 int changed = 0; 588 if (snd_BUG_ON(snd_interval_empty(i))) 589 return -EINVAL; 590 if (i->min < v->min) { 591 i->min = v->min; 592 i->openmin = v->openmin; 593 changed = 1; 594 } else if (i->min == v->min && !i->openmin && v->openmin) { 595 i->openmin = 1; 596 changed = 1; 597 } 598 if (i->max > v->max) { 599 i->max = v->max; 600 i->openmax = v->openmax; 601 changed = 1; 602 } else if (i->max == v->max && !i->openmax && v->openmax) { 603 i->openmax = 1; 604 changed = 1; 605 } 606 if (!i->integer && v->integer) { 607 i->integer = 1; 608 changed = 1; 609 } 610 if (i->integer) { 611 if (i->openmin) { 612 i->min++; 613 i->openmin = 0; 614 } 615 if (i->openmax) { 616 i->max--; 617 i->openmax = 0; 618 } 619 } else if (!i->openmin && !i->openmax && i->min == i->max) 620 i->integer = 1; 621 if (snd_interval_checkempty(i)) { 622 snd_interval_none(i); 623 return -EINVAL; 624 } 625 return changed; 626 } 627 628 EXPORT_SYMBOL(snd_interval_refine); 629 630 static int snd_interval_refine_first(struct snd_interval *i) 631 { 632 if (snd_BUG_ON(snd_interval_empty(i))) 633 return -EINVAL; 634 if (snd_interval_single(i)) 635 return 0; 636 i->max = i->min; 637 i->openmax = i->openmin; 638 if (i->openmax) 639 i->max++; 640 return 1; 641 } 642 643 static int snd_interval_refine_last(struct snd_interval *i) 644 { 645 if (snd_BUG_ON(snd_interval_empty(i))) 646 return -EINVAL; 647 if (snd_interval_single(i)) 648 return 0; 649 i->min = i->max; 650 i->openmin = i->openmax; 651 if (i->openmin) 652 i->min--; 653 return 1; 654 } 655 656 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 657 { 658 if (a->empty || b->empty) { 659 snd_interval_none(c); 660 return; 661 } 662 c->empty = 0; 663 c->min = mul(a->min, b->min); 664 c->openmin = (a->openmin || b->openmin); 665 c->max = mul(a->max, b->max); 666 c->openmax = (a->openmax || b->openmax); 667 c->integer = (a->integer && b->integer); 668 } 669 670 /** 671 * snd_interval_div - refine the interval value with division 672 * @a: dividend 673 * @b: divisor 674 * @c: quotient 675 * 676 * c = a / b 677 * 678 * Returns non-zero if the value is changed, zero if not changed. 679 */ 680 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 681 { 682 unsigned int r; 683 if (a->empty || b->empty) { 684 snd_interval_none(c); 685 return; 686 } 687 c->empty = 0; 688 c->min = div32(a->min, b->max, &r); 689 c->openmin = (r || a->openmin || b->openmax); 690 if (b->min > 0) { 691 c->max = div32(a->max, b->min, &r); 692 if (r) { 693 c->max++; 694 c->openmax = 1; 695 } else 696 c->openmax = (a->openmax || b->openmin); 697 } else { 698 c->max = UINT_MAX; 699 c->openmax = 0; 700 } 701 c->integer = 0; 702 } 703 704 /** 705 * snd_interval_muldivk - refine the interval value 706 * @a: dividend 1 707 * @b: dividend 2 708 * @k: divisor (as integer) 709 * @c: result 710 * 711 * c = a * b / k 712 * 713 * Returns non-zero if the value is changed, zero if not changed. 714 */ 715 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 716 unsigned int k, struct snd_interval *c) 717 { 718 unsigned int r; 719 if (a->empty || b->empty) { 720 snd_interval_none(c); 721 return; 722 } 723 c->empty = 0; 724 c->min = muldiv32(a->min, b->min, k, &r); 725 c->openmin = (r || a->openmin || b->openmin); 726 c->max = muldiv32(a->max, b->max, k, &r); 727 if (r) { 728 c->max++; 729 c->openmax = 1; 730 } else 731 c->openmax = (a->openmax || b->openmax); 732 c->integer = 0; 733 } 734 735 /** 736 * snd_interval_mulkdiv - refine the interval value 737 * @a: dividend 1 738 * @k: dividend 2 (as integer) 739 * @b: divisor 740 * @c: result 741 * 742 * c = a * k / b 743 * 744 * Returns non-zero if the value is changed, zero if not changed. 745 */ 746 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 747 const struct snd_interval *b, struct snd_interval *c) 748 { 749 unsigned int r; 750 if (a->empty || b->empty) { 751 snd_interval_none(c); 752 return; 753 } 754 c->empty = 0; 755 c->min = muldiv32(a->min, k, b->max, &r); 756 c->openmin = (r || a->openmin || b->openmax); 757 if (b->min > 0) { 758 c->max = muldiv32(a->max, k, b->min, &r); 759 if (r) { 760 c->max++; 761 c->openmax = 1; 762 } else 763 c->openmax = (a->openmax || b->openmin); 764 } else { 765 c->max = UINT_MAX; 766 c->openmax = 0; 767 } 768 c->integer = 0; 769 } 770 771 /* ---- */ 772 773 774 /** 775 * snd_interval_ratnum - refine the interval value 776 * @i: interval to refine 777 * @rats_count: number of ratnum_t 778 * @rats: ratnum_t array 779 * @nump: pointer to store the resultant numerator 780 * @denp: pointer to store the resultant denominator 781 * 782 * Return: Positive if the value is changed, zero if it's not changed, or a 783 * negative error code. 784 */ 785 int snd_interval_ratnum(struct snd_interval *i, 786 unsigned int rats_count, const struct snd_ratnum *rats, 787 unsigned int *nump, unsigned int *denp) 788 { 789 unsigned int best_num, best_den; 790 int best_diff; 791 unsigned int k; 792 struct snd_interval t; 793 int err; 794 unsigned int result_num, result_den; 795 int result_diff; 796 797 best_num = best_den = best_diff = 0; 798 for (k = 0; k < rats_count; ++k) { 799 unsigned int num = rats[k].num; 800 unsigned int den; 801 unsigned int q = i->min; 802 int diff; 803 if (q == 0) 804 q = 1; 805 den = div_up(num, q); 806 if (den < rats[k].den_min) 807 continue; 808 if (den > rats[k].den_max) 809 den = rats[k].den_max; 810 else { 811 unsigned int r; 812 r = (den - rats[k].den_min) % rats[k].den_step; 813 if (r != 0) 814 den -= r; 815 } 816 diff = num - q * den; 817 if (diff < 0) 818 diff = -diff; 819 if (best_num == 0 || 820 diff * best_den < best_diff * den) { 821 best_diff = diff; 822 best_den = den; 823 best_num = num; 824 } 825 } 826 if (best_den == 0) { 827 i->empty = 1; 828 return -EINVAL; 829 } 830 t.min = div_down(best_num, best_den); 831 t.openmin = !!(best_num % best_den); 832 833 result_num = best_num; 834 result_diff = best_diff; 835 result_den = best_den; 836 best_num = best_den = best_diff = 0; 837 for (k = 0; k < rats_count; ++k) { 838 unsigned int num = rats[k].num; 839 unsigned int den; 840 unsigned int q = i->max; 841 int diff; 842 if (q == 0) { 843 i->empty = 1; 844 return -EINVAL; 845 } 846 den = div_down(num, q); 847 if (den > rats[k].den_max) 848 continue; 849 if (den < rats[k].den_min) 850 den = rats[k].den_min; 851 else { 852 unsigned int r; 853 r = (den - rats[k].den_min) % rats[k].den_step; 854 if (r != 0) 855 den += rats[k].den_step - r; 856 } 857 diff = q * den - num; 858 if (diff < 0) 859 diff = -diff; 860 if (best_num == 0 || 861 diff * best_den < best_diff * den) { 862 best_diff = diff; 863 best_den = den; 864 best_num = num; 865 } 866 } 867 if (best_den == 0) { 868 i->empty = 1; 869 return -EINVAL; 870 } 871 t.max = div_up(best_num, best_den); 872 t.openmax = !!(best_num % best_den); 873 t.integer = 0; 874 err = snd_interval_refine(i, &t); 875 if (err < 0) 876 return err; 877 878 if (snd_interval_single(i)) { 879 if (best_diff * result_den < result_diff * best_den) { 880 result_num = best_num; 881 result_den = best_den; 882 } 883 if (nump) 884 *nump = result_num; 885 if (denp) 886 *denp = result_den; 887 } 888 return err; 889 } 890 891 EXPORT_SYMBOL(snd_interval_ratnum); 892 893 /** 894 * snd_interval_ratden - refine the interval value 895 * @i: interval to refine 896 * @rats_count: number of struct ratden 897 * @rats: struct ratden array 898 * @nump: pointer to store the resultant numerator 899 * @denp: pointer to store the resultant denominator 900 * 901 * Return: Positive if the value is changed, zero if it's not changed, or a 902 * negative error code. 903 */ 904 static int snd_interval_ratden(struct snd_interval *i, 905 unsigned int rats_count, 906 const struct snd_ratden *rats, 907 unsigned int *nump, unsigned int *denp) 908 { 909 unsigned int best_num, best_diff, best_den; 910 unsigned int k; 911 struct snd_interval t; 912 int err; 913 914 best_num = best_den = best_diff = 0; 915 for (k = 0; k < rats_count; ++k) { 916 unsigned int num; 917 unsigned int den = rats[k].den; 918 unsigned int q = i->min; 919 int diff; 920 num = mul(q, den); 921 if (num > rats[k].num_max) 922 continue; 923 if (num < rats[k].num_min) 924 num = rats[k].num_max; 925 else { 926 unsigned int r; 927 r = (num - rats[k].num_min) % rats[k].num_step; 928 if (r != 0) 929 num += rats[k].num_step - r; 930 } 931 diff = num - q * den; 932 if (best_num == 0 || 933 diff * best_den < best_diff * den) { 934 best_diff = diff; 935 best_den = den; 936 best_num = num; 937 } 938 } 939 if (best_den == 0) { 940 i->empty = 1; 941 return -EINVAL; 942 } 943 t.min = div_down(best_num, best_den); 944 t.openmin = !!(best_num % best_den); 945 946 best_num = best_den = best_diff = 0; 947 for (k = 0; k < rats_count; ++k) { 948 unsigned int num; 949 unsigned int den = rats[k].den; 950 unsigned int q = i->max; 951 int diff; 952 num = mul(q, den); 953 if (num < rats[k].num_min) 954 continue; 955 if (num > rats[k].num_max) 956 num = rats[k].num_max; 957 else { 958 unsigned int r; 959 r = (num - rats[k].num_min) % rats[k].num_step; 960 if (r != 0) 961 num -= r; 962 } 963 diff = q * den - num; 964 if (best_num == 0 || 965 diff * best_den < best_diff * den) { 966 best_diff = diff; 967 best_den = den; 968 best_num = num; 969 } 970 } 971 if (best_den == 0) { 972 i->empty = 1; 973 return -EINVAL; 974 } 975 t.max = div_up(best_num, best_den); 976 t.openmax = !!(best_num % best_den); 977 t.integer = 0; 978 err = snd_interval_refine(i, &t); 979 if (err < 0) 980 return err; 981 982 if (snd_interval_single(i)) { 983 if (nump) 984 *nump = best_num; 985 if (denp) 986 *denp = best_den; 987 } 988 return err; 989 } 990 991 /** 992 * snd_interval_list - refine the interval value from the list 993 * @i: the interval value to refine 994 * @count: the number of elements in the list 995 * @list: the value list 996 * @mask: the bit-mask to evaluate 997 * 998 * Refines the interval value from the list. 999 * When mask is non-zero, only the elements corresponding to bit 1 are 1000 * evaluated. 1001 * 1002 * Return: Positive if the value is changed, zero if it's not changed, or a 1003 * negative error code. 1004 */ 1005 int snd_interval_list(struct snd_interval *i, unsigned int count, 1006 const unsigned int *list, unsigned int mask) 1007 { 1008 unsigned int k; 1009 struct snd_interval list_range; 1010 1011 if (!count) { 1012 i->empty = 1; 1013 return -EINVAL; 1014 } 1015 snd_interval_any(&list_range); 1016 list_range.min = UINT_MAX; 1017 list_range.max = 0; 1018 for (k = 0; k < count; k++) { 1019 if (mask && !(mask & (1 << k))) 1020 continue; 1021 if (!snd_interval_test(i, list[k])) 1022 continue; 1023 list_range.min = min(list_range.min, list[k]); 1024 list_range.max = max(list_range.max, list[k]); 1025 } 1026 return snd_interval_refine(i, &list_range); 1027 } 1028 1029 EXPORT_SYMBOL(snd_interval_list); 1030 1031 /** 1032 * snd_interval_ranges - refine the interval value from the list of ranges 1033 * @i: the interval value to refine 1034 * @count: the number of elements in the list of ranges 1035 * @ranges: the ranges list 1036 * @mask: the bit-mask to evaluate 1037 * 1038 * Refines the interval value from the list of ranges. 1039 * When mask is non-zero, only the elements corresponding to bit 1 are 1040 * evaluated. 1041 * 1042 * Return: Positive if the value is changed, zero if it's not changed, or a 1043 * negative error code. 1044 */ 1045 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1046 const struct snd_interval *ranges, unsigned int mask) 1047 { 1048 unsigned int k; 1049 struct snd_interval range_union; 1050 struct snd_interval range; 1051 1052 if (!count) { 1053 snd_interval_none(i); 1054 return -EINVAL; 1055 } 1056 snd_interval_any(&range_union); 1057 range_union.min = UINT_MAX; 1058 range_union.max = 0; 1059 for (k = 0; k < count; k++) { 1060 if (mask && !(mask & (1 << k))) 1061 continue; 1062 snd_interval_copy(&range, &ranges[k]); 1063 if (snd_interval_refine(&range, i) < 0) 1064 continue; 1065 if (snd_interval_empty(&range)) 1066 continue; 1067 1068 if (range.min < range_union.min) { 1069 range_union.min = range.min; 1070 range_union.openmin = 1; 1071 } 1072 if (range.min == range_union.min && !range.openmin) 1073 range_union.openmin = 0; 1074 if (range.max > range_union.max) { 1075 range_union.max = range.max; 1076 range_union.openmax = 1; 1077 } 1078 if (range.max == range_union.max && !range.openmax) 1079 range_union.openmax = 0; 1080 } 1081 return snd_interval_refine(i, &range_union); 1082 } 1083 EXPORT_SYMBOL(snd_interval_ranges); 1084 1085 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1086 { 1087 unsigned int n; 1088 int changed = 0; 1089 n = i->min % step; 1090 if (n != 0 || i->openmin) { 1091 i->min += step - n; 1092 i->openmin = 0; 1093 changed = 1; 1094 } 1095 n = i->max % step; 1096 if (n != 0 || i->openmax) { 1097 i->max -= n; 1098 i->openmax = 0; 1099 changed = 1; 1100 } 1101 if (snd_interval_checkempty(i)) { 1102 i->empty = 1; 1103 return -EINVAL; 1104 } 1105 return changed; 1106 } 1107 1108 /* Info constraints helpers */ 1109 1110 /** 1111 * snd_pcm_hw_rule_add - add the hw-constraint rule 1112 * @runtime: the pcm runtime instance 1113 * @cond: condition bits 1114 * @var: the variable to evaluate 1115 * @func: the evaluation function 1116 * @private: the private data pointer passed to function 1117 * @dep: the dependent variables 1118 * 1119 * Return: Zero if successful, or a negative error code on failure. 1120 */ 1121 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1122 int var, 1123 snd_pcm_hw_rule_func_t func, void *private, 1124 int dep, ...) 1125 { 1126 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1127 struct snd_pcm_hw_rule *c; 1128 unsigned int k; 1129 va_list args; 1130 va_start(args, dep); 1131 if (constrs->rules_num >= constrs->rules_all) { 1132 struct snd_pcm_hw_rule *new; 1133 unsigned int new_rules = constrs->rules_all + 16; 1134 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1135 if (!new) { 1136 va_end(args); 1137 return -ENOMEM; 1138 } 1139 if (constrs->rules) { 1140 memcpy(new, constrs->rules, 1141 constrs->rules_num * sizeof(*c)); 1142 kfree(constrs->rules); 1143 } 1144 constrs->rules = new; 1145 constrs->rules_all = new_rules; 1146 } 1147 c = &constrs->rules[constrs->rules_num]; 1148 c->cond = cond; 1149 c->func = func; 1150 c->var = var; 1151 c->private = private; 1152 k = 0; 1153 while (1) { 1154 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1155 va_end(args); 1156 return -EINVAL; 1157 } 1158 c->deps[k++] = dep; 1159 if (dep < 0) 1160 break; 1161 dep = va_arg(args, int); 1162 } 1163 constrs->rules_num++; 1164 va_end(args); 1165 return 0; 1166 } 1167 1168 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1169 1170 /** 1171 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1172 * @runtime: PCM runtime instance 1173 * @var: hw_params variable to apply the mask 1174 * @mask: the bitmap mask 1175 * 1176 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1177 * 1178 * Return: Zero if successful, or a negative error code on failure. 1179 */ 1180 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1181 u_int32_t mask) 1182 { 1183 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1184 struct snd_mask *maskp = constrs_mask(constrs, var); 1185 *maskp->bits &= mask; 1186 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1187 if (*maskp->bits == 0) 1188 return -EINVAL; 1189 return 0; 1190 } 1191 1192 /** 1193 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1194 * @runtime: PCM runtime instance 1195 * @var: hw_params variable to apply the mask 1196 * @mask: the 64bit bitmap mask 1197 * 1198 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1199 * 1200 * Return: Zero if successful, or a negative error code on failure. 1201 */ 1202 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1203 u_int64_t mask) 1204 { 1205 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1206 struct snd_mask *maskp = constrs_mask(constrs, var); 1207 maskp->bits[0] &= (u_int32_t)mask; 1208 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1209 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1210 if (! maskp->bits[0] && ! maskp->bits[1]) 1211 return -EINVAL; 1212 return 0; 1213 } 1214 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1215 1216 /** 1217 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1218 * @runtime: PCM runtime instance 1219 * @var: hw_params variable to apply the integer constraint 1220 * 1221 * Apply the constraint of integer to an interval parameter. 1222 * 1223 * Return: Positive if the value is changed, zero if it's not changed, or a 1224 * negative error code. 1225 */ 1226 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1227 { 1228 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1229 return snd_interval_setinteger(constrs_interval(constrs, var)); 1230 } 1231 1232 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1233 1234 /** 1235 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1236 * @runtime: PCM runtime instance 1237 * @var: hw_params variable to apply the range 1238 * @min: the minimal value 1239 * @max: the maximal value 1240 * 1241 * Apply the min/max range constraint to an interval parameter. 1242 * 1243 * Return: Positive if the value is changed, zero if it's not changed, or a 1244 * negative error code. 1245 */ 1246 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1247 unsigned int min, unsigned int max) 1248 { 1249 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1250 struct snd_interval t; 1251 t.min = min; 1252 t.max = max; 1253 t.openmin = t.openmax = 0; 1254 t.integer = 0; 1255 return snd_interval_refine(constrs_interval(constrs, var), &t); 1256 } 1257 1258 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1259 1260 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1261 struct snd_pcm_hw_rule *rule) 1262 { 1263 struct snd_pcm_hw_constraint_list *list = rule->private; 1264 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1265 } 1266 1267 1268 /** 1269 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1270 * @runtime: PCM runtime instance 1271 * @cond: condition bits 1272 * @var: hw_params variable to apply the list constraint 1273 * @l: list 1274 * 1275 * Apply the list of constraints to an interval parameter. 1276 * 1277 * Return: Zero if successful, or a negative error code on failure. 1278 */ 1279 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1280 unsigned int cond, 1281 snd_pcm_hw_param_t var, 1282 const struct snd_pcm_hw_constraint_list *l) 1283 { 1284 return snd_pcm_hw_rule_add(runtime, cond, var, 1285 snd_pcm_hw_rule_list, (void *)l, 1286 var, -1); 1287 } 1288 1289 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1290 1291 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1292 struct snd_pcm_hw_rule *rule) 1293 { 1294 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1295 return snd_interval_ranges(hw_param_interval(params, rule->var), 1296 r->count, r->ranges, r->mask); 1297 } 1298 1299 1300 /** 1301 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1302 * @runtime: PCM runtime instance 1303 * @cond: condition bits 1304 * @var: hw_params variable to apply the list of range constraints 1305 * @r: ranges 1306 * 1307 * Apply the list of range constraints to an interval parameter. 1308 * 1309 * Return: Zero if successful, or a negative error code on failure. 1310 */ 1311 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1312 unsigned int cond, 1313 snd_pcm_hw_param_t var, 1314 const struct snd_pcm_hw_constraint_ranges *r) 1315 { 1316 return snd_pcm_hw_rule_add(runtime, cond, var, 1317 snd_pcm_hw_rule_ranges, (void *)r, 1318 var, -1); 1319 } 1320 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1321 1322 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1323 struct snd_pcm_hw_rule *rule) 1324 { 1325 const struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1326 unsigned int num = 0, den = 0; 1327 int err; 1328 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1329 r->nrats, r->rats, &num, &den); 1330 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1331 params->rate_num = num; 1332 params->rate_den = den; 1333 } 1334 return err; 1335 } 1336 1337 /** 1338 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1339 * @runtime: PCM runtime instance 1340 * @cond: condition bits 1341 * @var: hw_params variable to apply the ratnums constraint 1342 * @r: struct snd_ratnums constriants 1343 * 1344 * Return: Zero if successful, or a negative error code on failure. 1345 */ 1346 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1347 unsigned int cond, 1348 snd_pcm_hw_param_t var, 1349 const struct snd_pcm_hw_constraint_ratnums *r) 1350 { 1351 return snd_pcm_hw_rule_add(runtime, cond, var, 1352 snd_pcm_hw_rule_ratnums, (void *)r, 1353 var, -1); 1354 } 1355 1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1357 1358 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1359 struct snd_pcm_hw_rule *rule) 1360 { 1361 const struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1362 unsigned int num = 0, den = 0; 1363 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1364 r->nrats, r->rats, &num, &den); 1365 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1366 params->rate_num = num; 1367 params->rate_den = den; 1368 } 1369 return err; 1370 } 1371 1372 /** 1373 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1374 * @runtime: PCM runtime instance 1375 * @cond: condition bits 1376 * @var: hw_params variable to apply the ratdens constraint 1377 * @r: struct snd_ratdens constriants 1378 * 1379 * Return: Zero if successful, or a negative error code on failure. 1380 */ 1381 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1382 unsigned int cond, 1383 snd_pcm_hw_param_t var, 1384 const struct snd_pcm_hw_constraint_ratdens *r) 1385 { 1386 return snd_pcm_hw_rule_add(runtime, cond, var, 1387 snd_pcm_hw_rule_ratdens, (void *)r, 1388 var, -1); 1389 } 1390 1391 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1392 1393 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1394 struct snd_pcm_hw_rule *rule) 1395 { 1396 unsigned int l = (unsigned long) rule->private; 1397 int width = l & 0xffff; 1398 unsigned int msbits = l >> 16; 1399 const struct snd_interval *i = 1400 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1401 1402 if (!snd_interval_single(i)) 1403 return 0; 1404 1405 if ((snd_interval_value(i) == width) || 1406 (width == 0 && snd_interval_value(i) > msbits)) 1407 params->msbits = min_not_zero(params->msbits, msbits); 1408 1409 return 0; 1410 } 1411 1412 /** 1413 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1414 * @runtime: PCM runtime instance 1415 * @cond: condition bits 1416 * @width: sample bits width 1417 * @msbits: msbits width 1418 * 1419 * This constraint will set the number of most significant bits (msbits) if a 1420 * sample format with the specified width has been select. If width is set to 0 1421 * the msbits will be set for any sample format with a width larger than the 1422 * specified msbits. 1423 * 1424 * Return: Zero if successful, or a negative error code on failure. 1425 */ 1426 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1427 unsigned int cond, 1428 unsigned int width, 1429 unsigned int msbits) 1430 { 1431 unsigned long l = (msbits << 16) | width; 1432 return snd_pcm_hw_rule_add(runtime, cond, -1, 1433 snd_pcm_hw_rule_msbits, 1434 (void*) l, 1435 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1436 } 1437 1438 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1439 1440 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1441 struct snd_pcm_hw_rule *rule) 1442 { 1443 unsigned long step = (unsigned long) rule->private; 1444 return snd_interval_step(hw_param_interval(params, rule->var), step); 1445 } 1446 1447 /** 1448 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1449 * @runtime: PCM runtime instance 1450 * @cond: condition bits 1451 * @var: hw_params variable to apply the step constraint 1452 * @step: step size 1453 * 1454 * Return: Zero if successful, or a negative error code on failure. 1455 */ 1456 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1457 unsigned int cond, 1458 snd_pcm_hw_param_t var, 1459 unsigned long step) 1460 { 1461 return snd_pcm_hw_rule_add(runtime, cond, var, 1462 snd_pcm_hw_rule_step, (void *) step, 1463 var, -1); 1464 } 1465 1466 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1467 1468 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1469 { 1470 static unsigned int pow2_sizes[] = { 1471 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1472 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1473 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1474 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1475 }; 1476 return snd_interval_list(hw_param_interval(params, rule->var), 1477 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1478 } 1479 1480 /** 1481 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1482 * @runtime: PCM runtime instance 1483 * @cond: condition bits 1484 * @var: hw_params variable to apply the power-of-2 constraint 1485 * 1486 * Return: Zero if successful, or a negative error code on failure. 1487 */ 1488 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1489 unsigned int cond, 1490 snd_pcm_hw_param_t var) 1491 { 1492 return snd_pcm_hw_rule_add(runtime, cond, var, 1493 snd_pcm_hw_rule_pow2, NULL, 1494 var, -1); 1495 } 1496 1497 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1498 1499 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1500 struct snd_pcm_hw_rule *rule) 1501 { 1502 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1503 struct snd_interval *rate; 1504 1505 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1506 return snd_interval_list(rate, 1, &base_rate, 0); 1507 } 1508 1509 /** 1510 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1511 * @runtime: PCM runtime instance 1512 * @base_rate: the rate at which the hardware does not resample 1513 * 1514 * Return: Zero if successful, or a negative error code on failure. 1515 */ 1516 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1517 unsigned int base_rate) 1518 { 1519 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1520 SNDRV_PCM_HW_PARAM_RATE, 1521 snd_pcm_hw_rule_noresample_func, 1522 (void *)(uintptr_t)base_rate, 1523 SNDRV_PCM_HW_PARAM_RATE, -1); 1524 } 1525 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1526 1527 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1528 snd_pcm_hw_param_t var) 1529 { 1530 if (hw_is_mask(var)) { 1531 snd_mask_any(hw_param_mask(params, var)); 1532 params->cmask |= 1 << var; 1533 params->rmask |= 1 << var; 1534 return; 1535 } 1536 if (hw_is_interval(var)) { 1537 snd_interval_any(hw_param_interval(params, var)); 1538 params->cmask |= 1 << var; 1539 params->rmask |= 1 << var; 1540 return; 1541 } 1542 snd_BUG(); 1543 } 1544 1545 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1546 { 1547 unsigned int k; 1548 memset(params, 0, sizeof(*params)); 1549 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1550 _snd_pcm_hw_param_any(params, k); 1551 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1552 _snd_pcm_hw_param_any(params, k); 1553 params->info = ~0U; 1554 } 1555 1556 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1557 1558 /** 1559 * snd_pcm_hw_param_value - return @params field @var value 1560 * @params: the hw_params instance 1561 * @var: parameter to retrieve 1562 * @dir: pointer to the direction (-1,0,1) or %NULL 1563 * 1564 * Return: The value for field @var if it's fixed in configuration space 1565 * defined by @params. -%EINVAL otherwise. 1566 */ 1567 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1568 snd_pcm_hw_param_t var, int *dir) 1569 { 1570 if (hw_is_mask(var)) { 1571 const struct snd_mask *mask = hw_param_mask_c(params, var); 1572 if (!snd_mask_single(mask)) 1573 return -EINVAL; 1574 if (dir) 1575 *dir = 0; 1576 return snd_mask_value(mask); 1577 } 1578 if (hw_is_interval(var)) { 1579 const struct snd_interval *i = hw_param_interval_c(params, var); 1580 if (!snd_interval_single(i)) 1581 return -EINVAL; 1582 if (dir) 1583 *dir = i->openmin; 1584 return snd_interval_value(i); 1585 } 1586 return -EINVAL; 1587 } 1588 1589 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1590 1591 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1592 snd_pcm_hw_param_t var) 1593 { 1594 if (hw_is_mask(var)) { 1595 snd_mask_none(hw_param_mask(params, var)); 1596 params->cmask |= 1 << var; 1597 params->rmask |= 1 << var; 1598 } else if (hw_is_interval(var)) { 1599 snd_interval_none(hw_param_interval(params, var)); 1600 params->cmask |= 1 << var; 1601 params->rmask |= 1 << var; 1602 } else { 1603 snd_BUG(); 1604 } 1605 } 1606 1607 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1608 1609 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1610 snd_pcm_hw_param_t var) 1611 { 1612 int changed; 1613 if (hw_is_mask(var)) 1614 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1615 else if (hw_is_interval(var)) 1616 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1617 else 1618 return -EINVAL; 1619 if (changed) { 1620 params->cmask |= 1 << var; 1621 params->rmask |= 1 << var; 1622 } 1623 return changed; 1624 } 1625 1626 1627 /** 1628 * snd_pcm_hw_param_first - refine config space and return minimum value 1629 * @pcm: PCM instance 1630 * @params: the hw_params instance 1631 * @var: parameter to retrieve 1632 * @dir: pointer to the direction (-1,0,1) or %NULL 1633 * 1634 * Inside configuration space defined by @params remove from @var all 1635 * values > minimum. Reduce configuration space accordingly. 1636 * 1637 * Return: The minimum, or a negative error code on failure. 1638 */ 1639 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1640 struct snd_pcm_hw_params *params, 1641 snd_pcm_hw_param_t var, int *dir) 1642 { 1643 int changed = _snd_pcm_hw_param_first(params, var); 1644 if (changed < 0) 1645 return changed; 1646 if (params->rmask) { 1647 int err = snd_pcm_hw_refine(pcm, params); 1648 if (snd_BUG_ON(err < 0)) 1649 return err; 1650 } 1651 return snd_pcm_hw_param_value(params, var, dir); 1652 } 1653 1654 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1655 1656 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1657 snd_pcm_hw_param_t var) 1658 { 1659 int changed; 1660 if (hw_is_mask(var)) 1661 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1662 else if (hw_is_interval(var)) 1663 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1664 else 1665 return -EINVAL; 1666 if (changed) { 1667 params->cmask |= 1 << var; 1668 params->rmask |= 1 << var; 1669 } 1670 return changed; 1671 } 1672 1673 1674 /** 1675 * snd_pcm_hw_param_last - refine config space and return maximum value 1676 * @pcm: PCM instance 1677 * @params: the hw_params instance 1678 * @var: parameter to retrieve 1679 * @dir: pointer to the direction (-1,0,1) or %NULL 1680 * 1681 * Inside configuration space defined by @params remove from @var all 1682 * values < maximum. Reduce configuration space accordingly. 1683 * 1684 * Return: The maximum, or a negative error code on failure. 1685 */ 1686 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1687 struct snd_pcm_hw_params *params, 1688 snd_pcm_hw_param_t var, int *dir) 1689 { 1690 int changed = _snd_pcm_hw_param_last(params, var); 1691 if (changed < 0) 1692 return changed; 1693 if (params->rmask) { 1694 int err = snd_pcm_hw_refine(pcm, params); 1695 if (snd_BUG_ON(err < 0)) 1696 return err; 1697 } 1698 return snd_pcm_hw_param_value(params, var, dir); 1699 } 1700 1701 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1702 1703 /** 1704 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1705 * @pcm: PCM instance 1706 * @params: the hw_params instance 1707 * 1708 * Choose one configuration from configuration space defined by @params. 1709 * The configuration chosen is that obtained fixing in this order: 1710 * first access, first format, first subformat, min channels, 1711 * min rate, min period time, max buffer size, min tick time 1712 * 1713 * Return: Zero if successful, or a negative error code on failure. 1714 */ 1715 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1716 struct snd_pcm_hw_params *params) 1717 { 1718 static const int vars[] = { 1719 SNDRV_PCM_HW_PARAM_ACCESS, 1720 SNDRV_PCM_HW_PARAM_FORMAT, 1721 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1722 SNDRV_PCM_HW_PARAM_CHANNELS, 1723 SNDRV_PCM_HW_PARAM_RATE, 1724 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1725 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1726 SNDRV_PCM_HW_PARAM_TICK_TIME, 1727 -1 1728 }; 1729 const int *v; 1730 int err; 1731 1732 for (v = vars; *v != -1; v++) { 1733 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1734 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1735 else 1736 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1737 if (snd_BUG_ON(err < 0)) 1738 return err; 1739 } 1740 return 0; 1741 } 1742 1743 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1744 void *arg) 1745 { 1746 struct snd_pcm_runtime *runtime = substream->runtime; 1747 unsigned long flags; 1748 snd_pcm_stream_lock_irqsave(substream, flags); 1749 if (snd_pcm_running(substream) && 1750 snd_pcm_update_hw_ptr(substream) >= 0) 1751 runtime->status->hw_ptr %= runtime->buffer_size; 1752 else { 1753 runtime->status->hw_ptr = 0; 1754 runtime->hw_ptr_wrap = 0; 1755 } 1756 snd_pcm_stream_unlock_irqrestore(substream, flags); 1757 return 0; 1758 } 1759 1760 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1761 void *arg) 1762 { 1763 struct snd_pcm_channel_info *info = arg; 1764 struct snd_pcm_runtime *runtime = substream->runtime; 1765 int width; 1766 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1767 info->offset = -1; 1768 return 0; 1769 } 1770 width = snd_pcm_format_physical_width(runtime->format); 1771 if (width < 0) 1772 return width; 1773 info->offset = 0; 1774 switch (runtime->access) { 1775 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1776 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1777 info->first = info->channel * width; 1778 info->step = runtime->channels * width; 1779 break; 1780 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1781 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1782 { 1783 size_t size = runtime->dma_bytes / runtime->channels; 1784 info->first = info->channel * size * 8; 1785 info->step = width; 1786 break; 1787 } 1788 default: 1789 snd_BUG(); 1790 break; 1791 } 1792 return 0; 1793 } 1794 1795 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1796 void *arg) 1797 { 1798 struct snd_pcm_hw_params *params = arg; 1799 snd_pcm_format_t format; 1800 int channels; 1801 ssize_t frame_size; 1802 1803 params->fifo_size = substream->runtime->hw.fifo_size; 1804 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1805 format = params_format(params); 1806 channels = params_channels(params); 1807 frame_size = snd_pcm_format_size(format, channels); 1808 if (frame_size > 0) 1809 params->fifo_size /= (unsigned)frame_size; 1810 } 1811 return 0; 1812 } 1813 1814 /** 1815 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1816 * @substream: the pcm substream instance 1817 * @cmd: ioctl command 1818 * @arg: ioctl argument 1819 * 1820 * Processes the generic ioctl commands for PCM. 1821 * Can be passed as the ioctl callback for PCM ops. 1822 * 1823 * Return: Zero if successful, or a negative error code on failure. 1824 */ 1825 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1826 unsigned int cmd, void *arg) 1827 { 1828 switch (cmd) { 1829 case SNDRV_PCM_IOCTL1_INFO: 1830 return 0; 1831 case SNDRV_PCM_IOCTL1_RESET: 1832 return snd_pcm_lib_ioctl_reset(substream, arg); 1833 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1834 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1835 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1836 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1837 } 1838 return -ENXIO; 1839 } 1840 1841 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1842 1843 /** 1844 * snd_pcm_period_elapsed - update the pcm status for the next period 1845 * @substream: the pcm substream instance 1846 * 1847 * This function is called from the interrupt handler when the 1848 * PCM has processed the period size. It will update the current 1849 * pointer, wake up sleepers, etc. 1850 * 1851 * Even if more than one periods have elapsed since the last call, you 1852 * have to call this only once. 1853 */ 1854 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1855 { 1856 struct snd_pcm_runtime *runtime; 1857 unsigned long flags; 1858 1859 if (PCM_RUNTIME_CHECK(substream)) 1860 return; 1861 runtime = substream->runtime; 1862 1863 snd_pcm_stream_lock_irqsave(substream, flags); 1864 if (!snd_pcm_running(substream) || 1865 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1866 goto _end; 1867 1868 #ifdef CONFIG_SND_PCM_TIMER 1869 if (substream->timer_running) 1870 snd_timer_interrupt(substream->timer, 1); 1871 #endif 1872 _end: 1873 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1874 snd_pcm_stream_unlock_irqrestore(substream, flags); 1875 } 1876 1877 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1878 1879 /* 1880 * Wait until avail_min data becomes available 1881 * Returns a negative error code if any error occurs during operation. 1882 * The available space is stored on availp. When err = 0 and avail = 0 1883 * on the capture stream, it indicates the stream is in DRAINING state. 1884 */ 1885 static int wait_for_avail(struct snd_pcm_substream *substream, 1886 snd_pcm_uframes_t *availp) 1887 { 1888 struct snd_pcm_runtime *runtime = substream->runtime; 1889 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1890 wait_queue_t wait; 1891 int err = 0; 1892 snd_pcm_uframes_t avail = 0; 1893 long wait_time, tout; 1894 1895 init_waitqueue_entry(&wait, current); 1896 set_current_state(TASK_INTERRUPTIBLE); 1897 add_wait_queue(&runtime->tsleep, &wait); 1898 1899 if (runtime->no_period_wakeup) 1900 wait_time = MAX_SCHEDULE_TIMEOUT; 1901 else { 1902 wait_time = 10; 1903 if (runtime->rate) { 1904 long t = runtime->period_size * 2 / runtime->rate; 1905 wait_time = max(t, wait_time); 1906 } 1907 wait_time = msecs_to_jiffies(wait_time * 1000); 1908 } 1909 1910 for (;;) { 1911 if (signal_pending(current)) { 1912 err = -ERESTARTSYS; 1913 break; 1914 } 1915 1916 /* 1917 * We need to check if space became available already 1918 * (and thus the wakeup happened already) first to close 1919 * the race of space already having become available. 1920 * This check must happen after been added to the waitqueue 1921 * and having current state be INTERRUPTIBLE. 1922 */ 1923 if (is_playback) 1924 avail = snd_pcm_playback_avail(runtime); 1925 else 1926 avail = snd_pcm_capture_avail(runtime); 1927 if (avail >= runtime->twake) 1928 break; 1929 snd_pcm_stream_unlock_irq(substream); 1930 1931 tout = schedule_timeout(wait_time); 1932 1933 snd_pcm_stream_lock_irq(substream); 1934 set_current_state(TASK_INTERRUPTIBLE); 1935 switch (runtime->status->state) { 1936 case SNDRV_PCM_STATE_SUSPENDED: 1937 err = -ESTRPIPE; 1938 goto _endloop; 1939 case SNDRV_PCM_STATE_XRUN: 1940 err = -EPIPE; 1941 goto _endloop; 1942 case SNDRV_PCM_STATE_DRAINING: 1943 if (is_playback) 1944 err = -EPIPE; 1945 else 1946 avail = 0; /* indicate draining */ 1947 goto _endloop; 1948 case SNDRV_PCM_STATE_OPEN: 1949 case SNDRV_PCM_STATE_SETUP: 1950 case SNDRV_PCM_STATE_DISCONNECTED: 1951 err = -EBADFD; 1952 goto _endloop; 1953 case SNDRV_PCM_STATE_PAUSED: 1954 continue; 1955 } 1956 if (!tout) { 1957 pcm_dbg(substream->pcm, 1958 "%s write error (DMA or IRQ trouble?)\n", 1959 is_playback ? "playback" : "capture"); 1960 err = -EIO; 1961 break; 1962 } 1963 } 1964 _endloop: 1965 set_current_state(TASK_RUNNING); 1966 remove_wait_queue(&runtime->tsleep, &wait); 1967 *availp = avail; 1968 return err; 1969 } 1970 1971 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, 1972 int channel, unsigned long hwoff, 1973 void *buf, unsigned long bytes); 1974 1975 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, 1976 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f); 1977 1978 /* calculate the target DMA-buffer position to be written/read */ 1979 static void *get_dma_ptr(struct snd_pcm_runtime *runtime, 1980 int channel, unsigned long hwoff) 1981 { 1982 return runtime->dma_area + hwoff + 1983 channel * (runtime->dma_bytes / runtime->channels); 1984 } 1985 1986 /* default copy_user ops for write; used for both interleaved and non- modes */ 1987 static int default_write_copy(struct snd_pcm_substream *substream, 1988 int channel, unsigned long hwoff, 1989 void *buf, unsigned long bytes) 1990 { 1991 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff), 1992 (void __user *)buf, bytes)) 1993 return -EFAULT; 1994 return 0; 1995 } 1996 1997 /* default copy_kernel ops for write */ 1998 static int default_write_copy_kernel(struct snd_pcm_substream *substream, 1999 int channel, unsigned long hwoff, 2000 void *buf, unsigned long bytes) 2001 { 2002 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes); 2003 return 0; 2004 } 2005 2006 /* fill silence instead of copy data; called as a transfer helper 2007 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when 2008 * a NULL buffer is passed 2009 */ 2010 static int fill_silence(struct snd_pcm_substream *substream, int channel, 2011 unsigned long hwoff, void *buf, unsigned long bytes) 2012 { 2013 struct snd_pcm_runtime *runtime = substream->runtime; 2014 2015 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 2016 return 0; 2017 if (substream->ops->fill_silence) 2018 return substream->ops->fill_silence(substream, channel, 2019 hwoff, bytes); 2020 2021 snd_pcm_format_set_silence(runtime->format, 2022 get_dma_ptr(runtime, channel, hwoff), 2023 bytes_to_samples(runtime, bytes)); 2024 return 0; 2025 } 2026 2027 /* default copy_user ops for read; used for both interleaved and non- modes */ 2028 static int default_read_copy(struct snd_pcm_substream *substream, 2029 int channel, unsigned long hwoff, 2030 void *buf, unsigned long bytes) 2031 { 2032 if (copy_to_user((void __user *)buf, 2033 get_dma_ptr(substream->runtime, channel, hwoff), 2034 bytes)) 2035 return -EFAULT; 2036 return 0; 2037 } 2038 2039 /* default copy_kernel ops for read */ 2040 static int default_read_copy_kernel(struct snd_pcm_substream *substream, 2041 int channel, unsigned long hwoff, 2042 void *buf, unsigned long bytes) 2043 { 2044 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes); 2045 return 0; 2046 } 2047 2048 /* call transfer function with the converted pointers and sizes; 2049 * for interleaved mode, it's one shot for all samples 2050 */ 2051 static int interleaved_copy(struct snd_pcm_substream *substream, 2052 snd_pcm_uframes_t hwoff, void *data, 2053 snd_pcm_uframes_t off, 2054 snd_pcm_uframes_t frames, 2055 pcm_transfer_f transfer) 2056 { 2057 struct snd_pcm_runtime *runtime = substream->runtime; 2058 2059 /* convert to bytes */ 2060 hwoff = frames_to_bytes(runtime, hwoff); 2061 off = frames_to_bytes(runtime, off); 2062 frames = frames_to_bytes(runtime, frames); 2063 return transfer(substream, 0, hwoff, data + off, frames); 2064 } 2065 2066 /* call transfer function with the converted pointers and sizes for each 2067 * non-interleaved channel; when buffer is NULL, silencing instead of copying 2068 */ 2069 static int noninterleaved_copy(struct snd_pcm_substream *substream, 2070 snd_pcm_uframes_t hwoff, void *data, 2071 snd_pcm_uframes_t off, 2072 snd_pcm_uframes_t frames, 2073 pcm_transfer_f transfer) 2074 { 2075 struct snd_pcm_runtime *runtime = substream->runtime; 2076 int channels = runtime->channels; 2077 void **bufs = data; 2078 int c, err; 2079 2080 /* convert to bytes; note that it's not frames_to_bytes() here. 2081 * in non-interleaved mode, we copy for each channel, thus 2082 * each copy is n_samples bytes x channels = whole frames. 2083 */ 2084 off = samples_to_bytes(runtime, off); 2085 frames = samples_to_bytes(runtime, frames); 2086 hwoff = samples_to_bytes(runtime, hwoff); 2087 for (c = 0; c < channels; ++c, ++bufs) { 2088 if (!data || !*bufs) 2089 err = fill_silence(substream, c, hwoff, NULL, frames); 2090 else 2091 err = transfer(substream, c, hwoff, *bufs + off, 2092 frames); 2093 if (err < 0) 2094 return err; 2095 } 2096 return 0; 2097 } 2098 2099 /* fill silence on the given buffer position; 2100 * called from snd_pcm_playback_silence() 2101 */ 2102 static int fill_silence_frames(struct snd_pcm_substream *substream, 2103 snd_pcm_uframes_t off, snd_pcm_uframes_t frames) 2104 { 2105 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 2106 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) 2107 return interleaved_copy(substream, off, NULL, 0, frames, 2108 fill_silence); 2109 else 2110 return noninterleaved_copy(substream, off, NULL, 0, frames, 2111 fill_silence); 2112 } 2113 2114 /* sanity-check for read/write methods */ 2115 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2116 { 2117 struct snd_pcm_runtime *runtime; 2118 if (PCM_RUNTIME_CHECK(substream)) 2119 return -ENXIO; 2120 runtime = substream->runtime; 2121 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area)) 2122 return -EINVAL; 2123 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2124 return -EBADFD; 2125 return 0; 2126 } 2127 2128 static int pcm_accessible_state(struct snd_pcm_runtime *runtime) 2129 { 2130 switch (runtime->status->state) { 2131 case SNDRV_PCM_STATE_PREPARED: 2132 case SNDRV_PCM_STATE_RUNNING: 2133 case SNDRV_PCM_STATE_PAUSED: 2134 return 0; 2135 case SNDRV_PCM_STATE_XRUN: 2136 return -EPIPE; 2137 case SNDRV_PCM_STATE_SUSPENDED: 2138 return -ESTRPIPE; 2139 default: 2140 return -EBADFD; 2141 } 2142 } 2143 2144 /* the common loop for read/write data */ 2145 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, 2146 void *data, bool interleaved, 2147 snd_pcm_uframes_t size, bool in_kernel) 2148 { 2149 struct snd_pcm_runtime *runtime = substream->runtime; 2150 snd_pcm_uframes_t xfer = 0; 2151 snd_pcm_uframes_t offset = 0; 2152 snd_pcm_uframes_t avail; 2153 pcm_copy_f writer; 2154 pcm_transfer_f transfer; 2155 bool nonblock; 2156 bool is_playback; 2157 int err; 2158 2159 err = pcm_sanity_check(substream); 2160 if (err < 0) 2161 return err; 2162 2163 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 2164 if (interleaved) { 2165 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2166 runtime->channels > 1) 2167 return -EINVAL; 2168 writer = interleaved_copy; 2169 } else { 2170 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2171 return -EINVAL; 2172 writer = noninterleaved_copy; 2173 } 2174 2175 if (!data) { 2176 if (is_playback) 2177 transfer = fill_silence; 2178 else 2179 return -EINVAL; 2180 } else if (in_kernel) { 2181 if (substream->ops->copy_kernel) 2182 transfer = substream->ops->copy_kernel; 2183 else 2184 transfer = is_playback ? 2185 default_write_copy_kernel : default_read_copy_kernel; 2186 } else { 2187 if (substream->ops->copy_user) 2188 transfer = (pcm_transfer_f)substream->ops->copy_user; 2189 else 2190 transfer = is_playback ? 2191 default_write_copy : default_read_copy; 2192 } 2193 2194 if (size == 0) 2195 return 0; 2196 2197 nonblock = !!(substream->f_flags & O_NONBLOCK); 2198 2199 snd_pcm_stream_lock_irq(substream); 2200 err = pcm_accessible_state(runtime); 2201 if (err < 0) 2202 goto _end_unlock; 2203 2204 if (!is_playback && 2205 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2206 size >= runtime->start_threshold) { 2207 err = snd_pcm_start(substream); 2208 if (err < 0) 2209 goto _end_unlock; 2210 } 2211 2212 runtime->twake = runtime->control->avail_min ? : 1; 2213 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2214 snd_pcm_update_hw_ptr(substream); 2215 if (is_playback) 2216 avail = snd_pcm_playback_avail(runtime); 2217 else 2218 avail = snd_pcm_capture_avail(runtime); 2219 while (size > 0) { 2220 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2221 snd_pcm_uframes_t cont; 2222 if (!avail) { 2223 if (!is_playback && 2224 runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 2225 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2226 goto _end_unlock; 2227 } 2228 if (nonblock) { 2229 err = -EAGAIN; 2230 goto _end_unlock; 2231 } 2232 runtime->twake = min_t(snd_pcm_uframes_t, size, 2233 runtime->control->avail_min ? : 1); 2234 err = wait_for_avail(substream, &avail); 2235 if (err < 0) 2236 goto _end_unlock; 2237 if (!avail) 2238 continue; /* draining */ 2239 } 2240 frames = size > avail ? avail : size; 2241 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2242 if (frames > cont) 2243 frames = cont; 2244 if (snd_BUG_ON(!frames)) { 2245 runtime->twake = 0; 2246 snd_pcm_stream_unlock_irq(substream); 2247 return -EINVAL; 2248 } 2249 appl_ptr = runtime->control->appl_ptr; 2250 appl_ofs = appl_ptr % runtime->buffer_size; 2251 snd_pcm_stream_unlock_irq(substream); 2252 err = writer(substream, appl_ofs, data, offset, frames, 2253 transfer); 2254 snd_pcm_stream_lock_irq(substream); 2255 if (err < 0) 2256 goto _end_unlock; 2257 err = pcm_accessible_state(runtime); 2258 if (err < 0) 2259 goto _end_unlock; 2260 appl_ptr += frames; 2261 if (appl_ptr >= runtime->boundary) 2262 appl_ptr -= runtime->boundary; 2263 runtime->control->appl_ptr = appl_ptr; 2264 if (substream->ops->ack) 2265 substream->ops->ack(substream); 2266 2267 offset += frames; 2268 size -= frames; 2269 xfer += frames; 2270 avail -= frames; 2271 if (is_playback && 2272 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2273 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2274 err = snd_pcm_start(substream); 2275 if (err < 0) 2276 goto _end_unlock; 2277 } 2278 } 2279 _end_unlock: 2280 runtime->twake = 0; 2281 if (xfer > 0 && err >= 0) 2282 snd_pcm_update_state(substream, runtime); 2283 snd_pcm_stream_unlock_irq(substream); 2284 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2285 } 2286 EXPORT_SYMBOL(__snd_pcm_lib_xfer); 2287 2288 /* 2289 * standard channel mapping helpers 2290 */ 2291 2292 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2293 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2294 { .channels = 1, 2295 .map = { SNDRV_CHMAP_MONO } }, 2296 { .channels = 2, 2297 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2298 { .channels = 4, 2299 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2300 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2301 { .channels = 6, 2302 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2303 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2304 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2305 { .channels = 8, 2306 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2307 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2308 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2309 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2310 { } 2311 }; 2312 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2313 2314 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2315 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2316 { .channels = 1, 2317 .map = { SNDRV_CHMAP_MONO } }, 2318 { .channels = 2, 2319 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2320 { .channels = 4, 2321 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2322 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2323 { .channels = 6, 2324 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2325 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2326 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2327 { .channels = 8, 2328 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2329 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2330 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2331 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2332 { } 2333 }; 2334 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2335 2336 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2337 { 2338 if (ch > info->max_channels) 2339 return false; 2340 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2341 } 2342 2343 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2344 struct snd_ctl_elem_info *uinfo) 2345 { 2346 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2347 2348 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2349 uinfo->count = 0; 2350 uinfo->count = info->max_channels; 2351 uinfo->value.integer.min = 0; 2352 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2353 return 0; 2354 } 2355 2356 /* get callback for channel map ctl element 2357 * stores the channel position firstly matching with the current channels 2358 */ 2359 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2360 struct snd_ctl_elem_value *ucontrol) 2361 { 2362 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2363 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2364 struct snd_pcm_substream *substream; 2365 const struct snd_pcm_chmap_elem *map; 2366 2367 if (snd_BUG_ON(!info->chmap)) 2368 return -EINVAL; 2369 substream = snd_pcm_chmap_substream(info, idx); 2370 if (!substream) 2371 return -ENODEV; 2372 memset(ucontrol->value.integer.value, 0, 2373 sizeof(ucontrol->value.integer.value)); 2374 if (!substream->runtime) 2375 return 0; /* no channels set */ 2376 for (map = info->chmap; map->channels; map++) { 2377 int i; 2378 if (map->channels == substream->runtime->channels && 2379 valid_chmap_channels(info, map->channels)) { 2380 for (i = 0; i < map->channels; i++) 2381 ucontrol->value.integer.value[i] = map->map[i]; 2382 return 0; 2383 } 2384 } 2385 return -EINVAL; 2386 } 2387 2388 /* tlv callback for channel map ctl element 2389 * expands the pre-defined channel maps in a form of TLV 2390 */ 2391 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2392 unsigned int size, unsigned int __user *tlv) 2393 { 2394 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2395 const struct snd_pcm_chmap_elem *map; 2396 unsigned int __user *dst; 2397 int c, count = 0; 2398 2399 if (snd_BUG_ON(!info->chmap)) 2400 return -EINVAL; 2401 if (size < 8) 2402 return -ENOMEM; 2403 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2404 return -EFAULT; 2405 size -= 8; 2406 dst = tlv + 2; 2407 for (map = info->chmap; map->channels; map++) { 2408 int chs_bytes = map->channels * 4; 2409 if (!valid_chmap_channels(info, map->channels)) 2410 continue; 2411 if (size < 8) 2412 return -ENOMEM; 2413 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2414 put_user(chs_bytes, dst + 1)) 2415 return -EFAULT; 2416 dst += 2; 2417 size -= 8; 2418 count += 8; 2419 if (size < chs_bytes) 2420 return -ENOMEM; 2421 size -= chs_bytes; 2422 count += chs_bytes; 2423 for (c = 0; c < map->channels; c++) { 2424 if (put_user(map->map[c], dst)) 2425 return -EFAULT; 2426 dst++; 2427 } 2428 } 2429 if (put_user(count, tlv + 1)) 2430 return -EFAULT; 2431 return 0; 2432 } 2433 2434 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2435 { 2436 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2437 info->pcm->streams[info->stream].chmap_kctl = NULL; 2438 kfree(info); 2439 } 2440 2441 /** 2442 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2443 * @pcm: the assigned PCM instance 2444 * @stream: stream direction 2445 * @chmap: channel map elements (for query) 2446 * @max_channels: the max number of channels for the stream 2447 * @private_value: the value passed to each kcontrol's private_value field 2448 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2449 * 2450 * Create channel-mapping control elements assigned to the given PCM stream(s). 2451 * Return: Zero if successful, or a negative error value. 2452 */ 2453 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2454 const struct snd_pcm_chmap_elem *chmap, 2455 int max_channels, 2456 unsigned long private_value, 2457 struct snd_pcm_chmap **info_ret) 2458 { 2459 struct snd_pcm_chmap *info; 2460 struct snd_kcontrol_new knew = { 2461 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2462 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2463 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2464 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2465 .info = pcm_chmap_ctl_info, 2466 .get = pcm_chmap_ctl_get, 2467 .tlv.c = pcm_chmap_ctl_tlv, 2468 }; 2469 int err; 2470 2471 if (WARN_ON(pcm->streams[stream].chmap_kctl)) 2472 return -EBUSY; 2473 info = kzalloc(sizeof(*info), GFP_KERNEL); 2474 if (!info) 2475 return -ENOMEM; 2476 info->pcm = pcm; 2477 info->stream = stream; 2478 info->chmap = chmap; 2479 info->max_channels = max_channels; 2480 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2481 knew.name = "Playback Channel Map"; 2482 else 2483 knew.name = "Capture Channel Map"; 2484 knew.device = pcm->device; 2485 knew.count = pcm->streams[stream].substream_count; 2486 knew.private_value = private_value; 2487 info->kctl = snd_ctl_new1(&knew, info); 2488 if (!info->kctl) { 2489 kfree(info); 2490 return -ENOMEM; 2491 } 2492 info->kctl->private_free = pcm_chmap_ctl_private_free; 2493 err = snd_ctl_add(pcm->card, info->kctl); 2494 if (err < 0) 2495 return err; 2496 pcm->streams[stream].chmap_kctl = info->kctl; 2497 if (info_ret) 2498 *info_ret = info; 2499 return 0; 2500 } 2501 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2502