xref: /openbmc/linux/sound/core/pcm_lib.c (revision d236d361)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35 
36 #include "pcm_local.h"
37 
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #endif
46 
47 static int fill_silence_frames(struct snd_pcm_substream *substream,
48 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
49 
50 /*
51  * fill ring buffer with silence
52  * runtime->silence_start: starting pointer to silence area
53  * runtime->silence_filled: size filled with silence
54  * runtime->silence_threshold: threshold from application
55  * runtime->silence_size: maximal size from application
56  *
57  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
58  */
59 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
60 {
61 	struct snd_pcm_runtime *runtime = substream->runtime;
62 	snd_pcm_uframes_t frames, ofs, transfer;
63 	int err;
64 
65 	if (runtime->silence_size < runtime->boundary) {
66 		snd_pcm_sframes_t noise_dist, n;
67 		if (runtime->silence_start != runtime->control->appl_ptr) {
68 			n = runtime->control->appl_ptr - runtime->silence_start;
69 			if (n < 0)
70 				n += runtime->boundary;
71 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
72 				runtime->silence_filled -= n;
73 			else
74 				runtime->silence_filled = 0;
75 			runtime->silence_start = runtime->control->appl_ptr;
76 		}
77 		if (runtime->silence_filled >= runtime->buffer_size)
78 			return;
79 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
80 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
81 			return;
82 		frames = runtime->silence_threshold - noise_dist;
83 		if (frames > runtime->silence_size)
84 			frames = runtime->silence_size;
85 	} else {
86 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
87 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
88 			if (avail > runtime->buffer_size)
89 				avail = runtime->buffer_size;
90 			runtime->silence_filled = avail > 0 ? avail : 0;
91 			runtime->silence_start = (runtime->status->hw_ptr +
92 						  runtime->silence_filled) %
93 						 runtime->boundary;
94 		} else {
95 			ofs = runtime->status->hw_ptr;
96 			frames = new_hw_ptr - ofs;
97 			if ((snd_pcm_sframes_t)frames < 0)
98 				frames += runtime->boundary;
99 			runtime->silence_filled -= frames;
100 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
101 				runtime->silence_filled = 0;
102 				runtime->silence_start = new_hw_ptr;
103 			} else {
104 				runtime->silence_start = ofs;
105 			}
106 		}
107 		frames = runtime->buffer_size - runtime->silence_filled;
108 	}
109 	if (snd_BUG_ON(frames > runtime->buffer_size))
110 		return;
111 	if (frames == 0)
112 		return;
113 	ofs = runtime->silence_start % runtime->buffer_size;
114 	while (frames > 0) {
115 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
116 		err = fill_silence_frames(substream, ofs, transfer);
117 		snd_BUG_ON(err < 0);
118 		runtime->silence_filled += transfer;
119 		frames -= transfer;
120 		ofs = 0;
121 	}
122 }
123 
124 #ifdef CONFIG_SND_DEBUG
125 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
126 			   char *name, size_t len)
127 {
128 	snprintf(name, len, "pcmC%dD%d%c:%d",
129 		 substream->pcm->card->number,
130 		 substream->pcm->device,
131 		 substream->stream ? 'c' : 'p',
132 		 substream->number);
133 }
134 EXPORT_SYMBOL(snd_pcm_debug_name);
135 #endif
136 
137 #define XRUN_DEBUG_BASIC	(1<<0)
138 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
139 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
140 
141 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
142 
143 #define xrun_debug(substream, mask) \
144 			((substream)->pstr->xrun_debug & (mask))
145 #else
146 #define xrun_debug(substream, mask)	0
147 #endif
148 
149 #define dump_stack_on_xrun(substream) do {			\
150 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
151 			dump_stack();				\
152 	} while (0)
153 
154 static void xrun(struct snd_pcm_substream *substream)
155 {
156 	struct snd_pcm_runtime *runtime = substream->runtime;
157 
158 	trace_xrun(substream);
159 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
160 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
161 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
162 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
163 		char name[16];
164 		snd_pcm_debug_name(substream, name, sizeof(name));
165 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
166 		dump_stack_on_xrun(substream);
167 	}
168 }
169 
170 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
171 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
172 	do {								\
173 		trace_hw_ptr_error(substream, reason);	\
174 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
175 			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
176 					   (in_interrupt) ? 'Q' : 'P', ##args);	\
177 			dump_stack_on_xrun(substream);			\
178 		}							\
179 	} while (0)
180 
181 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
182 
183 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
184 
185 #endif
186 
187 int snd_pcm_update_state(struct snd_pcm_substream *substream,
188 			 struct snd_pcm_runtime *runtime)
189 {
190 	snd_pcm_uframes_t avail;
191 
192 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
193 		avail = snd_pcm_playback_avail(runtime);
194 	else
195 		avail = snd_pcm_capture_avail(runtime);
196 	if (avail > runtime->avail_max)
197 		runtime->avail_max = avail;
198 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
199 		if (avail >= runtime->buffer_size) {
200 			snd_pcm_drain_done(substream);
201 			return -EPIPE;
202 		}
203 	} else {
204 		if (avail >= runtime->stop_threshold) {
205 			xrun(substream);
206 			return -EPIPE;
207 		}
208 	}
209 	if (runtime->twake) {
210 		if (avail >= runtime->twake)
211 			wake_up(&runtime->tsleep);
212 	} else if (avail >= runtime->control->avail_min)
213 		wake_up(&runtime->sleep);
214 	return 0;
215 }
216 
217 static void update_audio_tstamp(struct snd_pcm_substream *substream,
218 				struct timespec *curr_tstamp,
219 				struct timespec *audio_tstamp)
220 {
221 	struct snd_pcm_runtime *runtime = substream->runtime;
222 	u64 audio_frames, audio_nsecs;
223 	struct timespec driver_tstamp;
224 
225 	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
226 		return;
227 
228 	if (!(substream->ops->get_time_info) ||
229 		(runtime->audio_tstamp_report.actual_type ==
230 			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
231 
232 		/*
233 		 * provide audio timestamp derived from pointer position
234 		 * add delay only if requested
235 		 */
236 
237 		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
238 
239 		if (runtime->audio_tstamp_config.report_delay) {
240 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
241 				audio_frames -=  runtime->delay;
242 			else
243 				audio_frames +=  runtime->delay;
244 		}
245 		audio_nsecs = div_u64(audio_frames * 1000000000LL,
246 				runtime->rate);
247 		*audio_tstamp = ns_to_timespec(audio_nsecs);
248 	}
249 	runtime->status->audio_tstamp = *audio_tstamp;
250 	runtime->status->tstamp = *curr_tstamp;
251 
252 	/*
253 	 * re-take a driver timestamp to let apps detect if the reference tstamp
254 	 * read by low-level hardware was provided with a delay
255 	 */
256 	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
257 	runtime->driver_tstamp = driver_tstamp;
258 }
259 
260 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
261 				  unsigned int in_interrupt)
262 {
263 	struct snd_pcm_runtime *runtime = substream->runtime;
264 	snd_pcm_uframes_t pos;
265 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
266 	snd_pcm_sframes_t hdelta, delta;
267 	unsigned long jdelta;
268 	unsigned long curr_jiffies;
269 	struct timespec curr_tstamp;
270 	struct timespec audio_tstamp;
271 	int crossed_boundary = 0;
272 
273 	old_hw_ptr = runtime->status->hw_ptr;
274 
275 	/*
276 	 * group pointer, time and jiffies reads to allow for more
277 	 * accurate correlations/corrections.
278 	 * The values are stored at the end of this routine after
279 	 * corrections for hw_ptr position
280 	 */
281 	pos = substream->ops->pointer(substream);
282 	curr_jiffies = jiffies;
283 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
284 		if ((substream->ops->get_time_info) &&
285 			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
286 			substream->ops->get_time_info(substream, &curr_tstamp,
287 						&audio_tstamp,
288 						&runtime->audio_tstamp_config,
289 						&runtime->audio_tstamp_report);
290 
291 			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
292 			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
293 				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
294 		} else
295 			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
296 	}
297 
298 	if (pos == SNDRV_PCM_POS_XRUN) {
299 		xrun(substream);
300 		return -EPIPE;
301 	}
302 	if (pos >= runtime->buffer_size) {
303 		if (printk_ratelimit()) {
304 			char name[16];
305 			snd_pcm_debug_name(substream, name, sizeof(name));
306 			pcm_err(substream->pcm,
307 				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
308 				name, pos, runtime->buffer_size,
309 				runtime->period_size);
310 		}
311 		pos = 0;
312 	}
313 	pos -= pos % runtime->min_align;
314 	trace_hwptr(substream, pos, in_interrupt);
315 	hw_base = runtime->hw_ptr_base;
316 	new_hw_ptr = hw_base + pos;
317 	if (in_interrupt) {
318 		/* we know that one period was processed */
319 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
320 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
321 		if (delta > new_hw_ptr) {
322 			/* check for double acknowledged interrupts */
323 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
324 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
325 				hw_base += runtime->buffer_size;
326 				if (hw_base >= runtime->boundary) {
327 					hw_base = 0;
328 					crossed_boundary++;
329 				}
330 				new_hw_ptr = hw_base + pos;
331 				goto __delta;
332 			}
333 		}
334 	}
335 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
336 	/* pointer crosses the end of the ring buffer */
337 	if (new_hw_ptr < old_hw_ptr) {
338 		hw_base += runtime->buffer_size;
339 		if (hw_base >= runtime->boundary) {
340 			hw_base = 0;
341 			crossed_boundary++;
342 		}
343 		new_hw_ptr = hw_base + pos;
344 	}
345       __delta:
346 	delta = new_hw_ptr - old_hw_ptr;
347 	if (delta < 0)
348 		delta += runtime->boundary;
349 
350 	if (runtime->no_period_wakeup) {
351 		snd_pcm_sframes_t xrun_threshold;
352 		/*
353 		 * Without regular period interrupts, we have to check
354 		 * the elapsed time to detect xruns.
355 		 */
356 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
357 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
358 			goto no_delta_check;
359 		hdelta = jdelta - delta * HZ / runtime->rate;
360 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
361 		while (hdelta > xrun_threshold) {
362 			delta += runtime->buffer_size;
363 			hw_base += runtime->buffer_size;
364 			if (hw_base >= runtime->boundary) {
365 				hw_base = 0;
366 				crossed_boundary++;
367 			}
368 			new_hw_ptr = hw_base + pos;
369 			hdelta -= runtime->hw_ptr_buffer_jiffies;
370 		}
371 		goto no_delta_check;
372 	}
373 
374 	/* something must be really wrong */
375 	if (delta >= runtime->buffer_size + runtime->period_size) {
376 		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
377 			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
378 			     substream->stream, (long)pos,
379 			     (long)new_hw_ptr, (long)old_hw_ptr);
380 		return 0;
381 	}
382 
383 	/* Do jiffies check only in xrun_debug mode */
384 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
385 		goto no_jiffies_check;
386 
387 	/* Skip the jiffies check for hardwares with BATCH flag.
388 	 * Such hardware usually just increases the position at each IRQ,
389 	 * thus it can't give any strange position.
390 	 */
391 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
392 		goto no_jiffies_check;
393 	hdelta = delta;
394 	if (hdelta < runtime->delay)
395 		goto no_jiffies_check;
396 	hdelta -= runtime->delay;
397 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
398 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
399 		delta = jdelta /
400 			(((runtime->period_size * HZ) / runtime->rate)
401 								+ HZ/100);
402 		/* move new_hw_ptr according jiffies not pos variable */
403 		new_hw_ptr = old_hw_ptr;
404 		hw_base = delta;
405 		/* use loop to avoid checks for delta overflows */
406 		/* the delta value is small or zero in most cases */
407 		while (delta > 0) {
408 			new_hw_ptr += runtime->period_size;
409 			if (new_hw_ptr >= runtime->boundary) {
410 				new_hw_ptr -= runtime->boundary;
411 				crossed_boundary--;
412 			}
413 			delta--;
414 		}
415 		/* align hw_base to buffer_size */
416 		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
417 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
418 			     (long)pos, (long)hdelta,
419 			     (long)runtime->period_size, jdelta,
420 			     ((hdelta * HZ) / runtime->rate), hw_base,
421 			     (unsigned long)old_hw_ptr,
422 			     (unsigned long)new_hw_ptr);
423 		/* reset values to proper state */
424 		delta = 0;
425 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
426 	}
427  no_jiffies_check:
428 	if (delta > runtime->period_size + runtime->period_size / 2) {
429 		hw_ptr_error(substream, in_interrupt,
430 			     "Lost interrupts?",
431 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
432 			     substream->stream, (long)delta,
433 			     (long)new_hw_ptr,
434 			     (long)old_hw_ptr);
435 	}
436 
437  no_delta_check:
438 	if (runtime->status->hw_ptr == new_hw_ptr) {
439 		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
440 		return 0;
441 	}
442 
443 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
444 	    runtime->silence_size > 0)
445 		snd_pcm_playback_silence(substream, new_hw_ptr);
446 
447 	if (in_interrupt) {
448 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
449 		if (delta < 0)
450 			delta += runtime->boundary;
451 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
452 		runtime->hw_ptr_interrupt += delta;
453 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
454 			runtime->hw_ptr_interrupt -= runtime->boundary;
455 	}
456 	runtime->hw_ptr_base = hw_base;
457 	runtime->status->hw_ptr = new_hw_ptr;
458 	runtime->hw_ptr_jiffies = curr_jiffies;
459 	if (crossed_boundary) {
460 		snd_BUG_ON(crossed_boundary != 1);
461 		runtime->hw_ptr_wrap += runtime->boundary;
462 	}
463 
464 	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
465 
466 	return snd_pcm_update_state(substream, runtime);
467 }
468 
469 /* CAUTION: call it with irq disabled */
470 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
471 {
472 	return snd_pcm_update_hw_ptr0(substream, 0);
473 }
474 
475 /**
476  * snd_pcm_set_ops - set the PCM operators
477  * @pcm: the pcm instance
478  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
479  * @ops: the operator table
480  *
481  * Sets the given PCM operators to the pcm instance.
482  */
483 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
484 		     const struct snd_pcm_ops *ops)
485 {
486 	struct snd_pcm_str *stream = &pcm->streams[direction];
487 	struct snd_pcm_substream *substream;
488 
489 	for (substream = stream->substream; substream != NULL; substream = substream->next)
490 		substream->ops = ops;
491 }
492 
493 EXPORT_SYMBOL(snd_pcm_set_ops);
494 
495 /**
496  * snd_pcm_sync - set the PCM sync id
497  * @substream: the pcm substream
498  *
499  * Sets the PCM sync identifier for the card.
500  */
501 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
502 {
503 	struct snd_pcm_runtime *runtime = substream->runtime;
504 
505 	runtime->sync.id32[0] = substream->pcm->card->number;
506 	runtime->sync.id32[1] = -1;
507 	runtime->sync.id32[2] = -1;
508 	runtime->sync.id32[3] = -1;
509 }
510 
511 EXPORT_SYMBOL(snd_pcm_set_sync);
512 
513 /*
514  *  Standard ioctl routine
515  */
516 
517 static inline unsigned int div32(unsigned int a, unsigned int b,
518 				 unsigned int *r)
519 {
520 	if (b == 0) {
521 		*r = 0;
522 		return UINT_MAX;
523 	}
524 	*r = a % b;
525 	return a / b;
526 }
527 
528 static inline unsigned int div_down(unsigned int a, unsigned int b)
529 {
530 	if (b == 0)
531 		return UINT_MAX;
532 	return a / b;
533 }
534 
535 static inline unsigned int div_up(unsigned int a, unsigned int b)
536 {
537 	unsigned int r;
538 	unsigned int q;
539 	if (b == 0)
540 		return UINT_MAX;
541 	q = div32(a, b, &r);
542 	if (r)
543 		++q;
544 	return q;
545 }
546 
547 static inline unsigned int mul(unsigned int a, unsigned int b)
548 {
549 	if (a == 0)
550 		return 0;
551 	if (div_down(UINT_MAX, a) < b)
552 		return UINT_MAX;
553 	return a * b;
554 }
555 
556 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
557 				    unsigned int c, unsigned int *r)
558 {
559 	u_int64_t n = (u_int64_t) a * b;
560 	if (c == 0) {
561 		snd_BUG_ON(!n);
562 		*r = 0;
563 		return UINT_MAX;
564 	}
565 	n = div_u64_rem(n, c, r);
566 	if (n >= UINT_MAX) {
567 		*r = 0;
568 		return UINT_MAX;
569 	}
570 	return n;
571 }
572 
573 /**
574  * snd_interval_refine - refine the interval value of configurator
575  * @i: the interval value to refine
576  * @v: the interval value to refer to
577  *
578  * Refines the interval value with the reference value.
579  * The interval is changed to the range satisfying both intervals.
580  * The interval status (min, max, integer, etc.) are evaluated.
581  *
582  * Return: Positive if the value is changed, zero if it's not changed, or a
583  * negative error code.
584  */
585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
586 {
587 	int changed = 0;
588 	if (snd_BUG_ON(snd_interval_empty(i)))
589 		return -EINVAL;
590 	if (i->min < v->min) {
591 		i->min = v->min;
592 		i->openmin = v->openmin;
593 		changed = 1;
594 	} else if (i->min == v->min && !i->openmin && v->openmin) {
595 		i->openmin = 1;
596 		changed = 1;
597 	}
598 	if (i->max > v->max) {
599 		i->max = v->max;
600 		i->openmax = v->openmax;
601 		changed = 1;
602 	} else if (i->max == v->max && !i->openmax && v->openmax) {
603 		i->openmax = 1;
604 		changed = 1;
605 	}
606 	if (!i->integer && v->integer) {
607 		i->integer = 1;
608 		changed = 1;
609 	}
610 	if (i->integer) {
611 		if (i->openmin) {
612 			i->min++;
613 			i->openmin = 0;
614 		}
615 		if (i->openmax) {
616 			i->max--;
617 			i->openmax = 0;
618 		}
619 	} else if (!i->openmin && !i->openmax && i->min == i->max)
620 		i->integer = 1;
621 	if (snd_interval_checkempty(i)) {
622 		snd_interval_none(i);
623 		return -EINVAL;
624 	}
625 	return changed;
626 }
627 
628 EXPORT_SYMBOL(snd_interval_refine);
629 
630 static int snd_interval_refine_first(struct snd_interval *i)
631 {
632 	if (snd_BUG_ON(snd_interval_empty(i)))
633 		return -EINVAL;
634 	if (snd_interval_single(i))
635 		return 0;
636 	i->max = i->min;
637 	i->openmax = i->openmin;
638 	if (i->openmax)
639 		i->max++;
640 	return 1;
641 }
642 
643 static int snd_interval_refine_last(struct snd_interval *i)
644 {
645 	if (snd_BUG_ON(snd_interval_empty(i)))
646 		return -EINVAL;
647 	if (snd_interval_single(i))
648 		return 0;
649 	i->min = i->max;
650 	i->openmin = i->openmax;
651 	if (i->openmin)
652 		i->min--;
653 	return 1;
654 }
655 
656 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
657 {
658 	if (a->empty || b->empty) {
659 		snd_interval_none(c);
660 		return;
661 	}
662 	c->empty = 0;
663 	c->min = mul(a->min, b->min);
664 	c->openmin = (a->openmin || b->openmin);
665 	c->max = mul(a->max,  b->max);
666 	c->openmax = (a->openmax || b->openmax);
667 	c->integer = (a->integer && b->integer);
668 }
669 
670 /**
671  * snd_interval_div - refine the interval value with division
672  * @a: dividend
673  * @b: divisor
674  * @c: quotient
675  *
676  * c = a / b
677  *
678  * Returns non-zero if the value is changed, zero if not changed.
679  */
680 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
681 {
682 	unsigned int r;
683 	if (a->empty || b->empty) {
684 		snd_interval_none(c);
685 		return;
686 	}
687 	c->empty = 0;
688 	c->min = div32(a->min, b->max, &r);
689 	c->openmin = (r || a->openmin || b->openmax);
690 	if (b->min > 0) {
691 		c->max = div32(a->max, b->min, &r);
692 		if (r) {
693 			c->max++;
694 			c->openmax = 1;
695 		} else
696 			c->openmax = (a->openmax || b->openmin);
697 	} else {
698 		c->max = UINT_MAX;
699 		c->openmax = 0;
700 	}
701 	c->integer = 0;
702 }
703 
704 /**
705  * snd_interval_muldivk - refine the interval value
706  * @a: dividend 1
707  * @b: dividend 2
708  * @k: divisor (as integer)
709  * @c: result
710   *
711  * c = a * b / k
712  *
713  * Returns non-zero if the value is changed, zero if not changed.
714  */
715 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
716 		      unsigned int k, struct snd_interval *c)
717 {
718 	unsigned int r;
719 	if (a->empty || b->empty) {
720 		snd_interval_none(c);
721 		return;
722 	}
723 	c->empty = 0;
724 	c->min = muldiv32(a->min, b->min, k, &r);
725 	c->openmin = (r || a->openmin || b->openmin);
726 	c->max = muldiv32(a->max, b->max, k, &r);
727 	if (r) {
728 		c->max++;
729 		c->openmax = 1;
730 	} else
731 		c->openmax = (a->openmax || b->openmax);
732 	c->integer = 0;
733 }
734 
735 /**
736  * snd_interval_mulkdiv - refine the interval value
737  * @a: dividend 1
738  * @k: dividend 2 (as integer)
739  * @b: divisor
740  * @c: result
741  *
742  * c = a * k / b
743  *
744  * Returns non-zero if the value is changed, zero if not changed.
745  */
746 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
747 		      const struct snd_interval *b, struct snd_interval *c)
748 {
749 	unsigned int r;
750 	if (a->empty || b->empty) {
751 		snd_interval_none(c);
752 		return;
753 	}
754 	c->empty = 0;
755 	c->min = muldiv32(a->min, k, b->max, &r);
756 	c->openmin = (r || a->openmin || b->openmax);
757 	if (b->min > 0) {
758 		c->max = muldiv32(a->max, k, b->min, &r);
759 		if (r) {
760 			c->max++;
761 			c->openmax = 1;
762 		} else
763 			c->openmax = (a->openmax || b->openmin);
764 	} else {
765 		c->max = UINT_MAX;
766 		c->openmax = 0;
767 	}
768 	c->integer = 0;
769 }
770 
771 /* ---- */
772 
773 
774 /**
775  * snd_interval_ratnum - refine the interval value
776  * @i: interval to refine
777  * @rats_count: number of ratnum_t
778  * @rats: ratnum_t array
779  * @nump: pointer to store the resultant numerator
780  * @denp: pointer to store the resultant denominator
781  *
782  * Return: Positive if the value is changed, zero if it's not changed, or a
783  * negative error code.
784  */
785 int snd_interval_ratnum(struct snd_interval *i,
786 			unsigned int rats_count, const struct snd_ratnum *rats,
787 			unsigned int *nump, unsigned int *denp)
788 {
789 	unsigned int best_num, best_den;
790 	int best_diff;
791 	unsigned int k;
792 	struct snd_interval t;
793 	int err;
794 	unsigned int result_num, result_den;
795 	int result_diff;
796 
797 	best_num = best_den = best_diff = 0;
798 	for (k = 0; k < rats_count; ++k) {
799 		unsigned int num = rats[k].num;
800 		unsigned int den;
801 		unsigned int q = i->min;
802 		int diff;
803 		if (q == 0)
804 			q = 1;
805 		den = div_up(num, q);
806 		if (den < rats[k].den_min)
807 			continue;
808 		if (den > rats[k].den_max)
809 			den = rats[k].den_max;
810 		else {
811 			unsigned int r;
812 			r = (den - rats[k].den_min) % rats[k].den_step;
813 			if (r != 0)
814 				den -= r;
815 		}
816 		diff = num - q * den;
817 		if (diff < 0)
818 			diff = -diff;
819 		if (best_num == 0 ||
820 		    diff * best_den < best_diff * den) {
821 			best_diff = diff;
822 			best_den = den;
823 			best_num = num;
824 		}
825 	}
826 	if (best_den == 0) {
827 		i->empty = 1;
828 		return -EINVAL;
829 	}
830 	t.min = div_down(best_num, best_den);
831 	t.openmin = !!(best_num % best_den);
832 
833 	result_num = best_num;
834 	result_diff = best_diff;
835 	result_den = best_den;
836 	best_num = best_den = best_diff = 0;
837 	for (k = 0; k < rats_count; ++k) {
838 		unsigned int num = rats[k].num;
839 		unsigned int den;
840 		unsigned int q = i->max;
841 		int diff;
842 		if (q == 0) {
843 			i->empty = 1;
844 			return -EINVAL;
845 		}
846 		den = div_down(num, q);
847 		if (den > rats[k].den_max)
848 			continue;
849 		if (den < rats[k].den_min)
850 			den = rats[k].den_min;
851 		else {
852 			unsigned int r;
853 			r = (den - rats[k].den_min) % rats[k].den_step;
854 			if (r != 0)
855 				den += rats[k].den_step - r;
856 		}
857 		diff = q * den - num;
858 		if (diff < 0)
859 			diff = -diff;
860 		if (best_num == 0 ||
861 		    diff * best_den < best_diff * den) {
862 			best_diff = diff;
863 			best_den = den;
864 			best_num = num;
865 		}
866 	}
867 	if (best_den == 0) {
868 		i->empty = 1;
869 		return -EINVAL;
870 	}
871 	t.max = div_up(best_num, best_den);
872 	t.openmax = !!(best_num % best_den);
873 	t.integer = 0;
874 	err = snd_interval_refine(i, &t);
875 	if (err < 0)
876 		return err;
877 
878 	if (snd_interval_single(i)) {
879 		if (best_diff * result_den < result_diff * best_den) {
880 			result_num = best_num;
881 			result_den = best_den;
882 		}
883 		if (nump)
884 			*nump = result_num;
885 		if (denp)
886 			*denp = result_den;
887 	}
888 	return err;
889 }
890 
891 EXPORT_SYMBOL(snd_interval_ratnum);
892 
893 /**
894  * snd_interval_ratden - refine the interval value
895  * @i: interval to refine
896  * @rats_count: number of struct ratden
897  * @rats: struct ratden array
898  * @nump: pointer to store the resultant numerator
899  * @denp: pointer to store the resultant denominator
900  *
901  * Return: Positive if the value is changed, zero if it's not changed, or a
902  * negative error code.
903  */
904 static int snd_interval_ratden(struct snd_interval *i,
905 			       unsigned int rats_count,
906 			       const struct snd_ratden *rats,
907 			       unsigned int *nump, unsigned int *denp)
908 {
909 	unsigned int best_num, best_diff, best_den;
910 	unsigned int k;
911 	struct snd_interval t;
912 	int err;
913 
914 	best_num = best_den = best_diff = 0;
915 	for (k = 0; k < rats_count; ++k) {
916 		unsigned int num;
917 		unsigned int den = rats[k].den;
918 		unsigned int q = i->min;
919 		int diff;
920 		num = mul(q, den);
921 		if (num > rats[k].num_max)
922 			continue;
923 		if (num < rats[k].num_min)
924 			num = rats[k].num_max;
925 		else {
926 			unsigned int r;
927 			r = (num - rats[k].num_min) % rats[k].num_step;
928 			if (r != 0)
929 				num += rats[k].num_step - r;
930 		}
931 		diff = num - q * den;
932 		if (best_num == 0 ||
933 		    diff * best_den < best_diff * den) {
934 			best_diff = diff;
935 			best_den = den;
936 			best_num = num;
937 		}
938 	}
939 	if (best_den == 0) {
940 		i->empty = 1;
941 		return -EINVAL;
942 	}
943 	t.min = div_down(best_num, best_den);
944 	t.openmin = !!(best_num % best_den);
945 
946 	best_num = best_den = best_diff = 0;
947 	for (k = 0; k < rats_count; ++k) {
948 		unsigned int num;
949 		unsigned int den = rats[k].den;
950 		unsigned int q = i->max;
951 		int diff;
952 		num = mul(q, den);
953 		if (num < rats[k].num_min)
954 			continue;
955 		if (num > rats[k].num_max)
956 			num = rats[k].num_max;
957 		else {
958 			unsigned int r;
959 			r = (num - rats[k].num_min) % rats[k].num_step;
960 			if (r != 0)
961 				num -= r;
962 		}
963 		diff = q * den - num;
964 		if (best_num == 0 ||
965 		    diff * best_den < best_diff * den) {
966 			best_diff = diff;
967 			best_den = den;
968 			best_num = num;
969 		}
970 	}
971 	if (best_den == 0) {
972 		i->empty = 1;
973 		return -EINVAL;
974 	}
975 	t.max = div_up(best_num, best_den);
976 	t.openmax = !!(best_num % best_den);
977 	t.integer = 0;
978 	err = snd_interval_refine(i, &t);
979 	if (err < 0)
980 		return err;
981 
982 	if (snd_interval_single(i)) {
983 		if (nump)
984 			*nump = best_num;
985 		if (denp)
986 			*denp = best_den;
987 	}
988 	return err;
989 }
990 
991 /**
992  * snd_interval_list - refine the interval value from the list
993  * @i: the interval value to refine
994  * @count: the number of elements in the list
995  * @list: the value list
996  * @mask: the bit-mask to evaluate
997  *
998  * Refines the interval value from the list.
999  * When mask is non-zero, only the elements corresponding to bit 1 are
1000  * evaluated.
1001  *
1002  * Return: Positive if the value is changed, zero if it's not changed, or a
1003  * negative error code.
1004  */
1005 int snd_interval_list(struct snd_interval *i, unsigned int count,
1006 		      const unsigned int *list, unsigned int mask)
1007 {
1008         unsigned int k;
1009 	struct snd_interval list_range;
1010 
1011 	if (!count) {
1012 		i->empty = 1;
1013 		return -EINVAL;
1014 	}
1015 	snd_interval_any(&list_range);
1016 	list_range.min = UINT_MAX;
1017 	list_range.max = 0;
1018         for (k = 0; k < count; k++) {
1019 		if (mask && !(mask & (1 << k)))
1020 			continue;
1021 		if (!snd_interval_test(i, list[k]))
1022 			continue;
1023 		list_range.min = min(list_range.min, list[k]);
1024 		list_range.max = max(list_range.max, list[k]);
1025         }
1026 	return snd_interval_refine(i, &list_range);
1027 }
1028 
1029 EXPORT_SYMBOL(snd_interval_list);
1030 
1031 /**
1032  * snd_interval_ranges - refine the interval value from the list of ranges
1033  * @i: the interval value to refine
1034  * @count: the number of elements in the list of ranges
1035  * @ranges: the ranges list
1036  * @mask: the bit-mask to evaluate
1037  *
1038  * Refines the interval value from the list of ranges.
1039  * When mask is non-zero, only the elements corresponding to bit 1 are
1040  * evaluated.
1041  *
1042  * Return: Positive if the value is changed, zero if it's not changed, or a
1043  * negative error code.
1044  */
1045 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1046 			const struct snd_interval *ranges, unsigned int mask)
1047 {
1048 	unsigned int k;
1049 	struct snd_interval range_union;
1050 	struct snd_interval range;
1051 
1052 	if (!count) {
1053 		snd_interval_none(i);
1054 		return -EINVAL;
1055 	}
1056 	snd_interval_any(&range_union);
1057 	range_union.min = UINT_MAX;
1058 	range_union.max = 0;
1059 	for (k = 0; k < count; k++) {
1060 		if (mask && !(mask & (1 << k)))
1061 			continue;
1062 		snd_interval_copy(&range, &ranges[k]);
1063 		if (snd_interval_refine(&range, i) < 0)
1064 			continue;
1065 		if (snd_interval_empty(&range))
1066 			continue;
1067 
1068 		if (range.min < range_union.min) {
1069 			range_union.min = range.min;
1070 			range_union.openmin = 1;
1071 		}
1072 		if (range.min == range_union.min && !range.openmin)
1073 			range_union.openmin = 0;
1074 		if (range.max > range_union.max) {
1075 			range_union.max = range.max;
1076 			range_union.openmax = 1;
1077 		}
1078 		if (range.max == range_union.max && !range.openmax)
1079 			range_union.openmax = 0;
1080 	}
1081 	return snd_interval_refine(i, &range_union);
1082 }
1083 EXPORT_SYMBOL(snd_interval_ranges);
1084 
1085 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1086 {
1087 	unsigned int n;
1088 	int changed = 0;
1089 	n = i->min % step;
1090 	if (n != 0 || i->openmin) {
1091 		i->min += step - n;
1092 		i->openmin = 0;
1093 		changed = 1;
1094 	}
1095 	n = i->max % step;
1096 	if (n != 0 || i->openmax) {
1097 		i->max -= n;
1098 		i->openmax = 0;
1099 		changed = 1;
1100 	}
1101 	if (snd_interval_checkempty(i)) {
1102 		i->empty = 1;
1103 		return -EINVAL;
1104 	}
1105 	return changed;
1106 }
1107 
1108 /* Info constraints helpers */
1109 
1110 /**
1111  * snd_pcm_hw_rule_add - add the hw-constraint rule
1112  * @runtime: the pcm runtime instance
1113  * @cond: condition bits
1114  * @var: the variable to evaluate
1115  * @func: the evaluation function
1116  * @private: the private data pointer passed to function
1117  * @dep: the dependent variables
1118  *
1119  * Return: Zero if successful, or a negative error code on failure.
1120  */
1121 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1122 			int var,
1123 			snd_pcm_hw_rule_func_t func, void *private,
1124 			int dep, ...)
1125 {
1126 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1127 	struct snd_pcm_hw_rule *c;
1128 	unsigned int k;
1129 	va_list args;
1130 	va_start(args, dep);
1131 	if (constrs->rules_num >= constrs->rules_all) {
1132 		struct snd_pcm_hw_rule *new;
1133 		unsigned int new_rules = constrs->rules_all + 16;
1134 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1135 		if (!new) {
1136 			va_end(args);
1137 			return -ENOMEM;
1138 		}
1139 		if (constrs->rules) {
1140 			memcpy(new, constrs->rules,
1141 			       constrs->rules_num * sizeof(*c));
1142 			kfree(constrs->rules);
1143 		}
1144 		constrs->rules = new;
1145 		constrs->rules_all = new_rules;
1146 	}
1147 	c = &constrs->rules[constrs->rules_num];
1148 	c->cond = cond;
1149 	c->func = func;
1150 	c->var = var;
1151 	c->private = private;
1152 	k = 0;
1153 	while (1) {
1154 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1155 			va_end(args);
1156 			return -EINVAL;
1157 		}
1158 		c->deps[k++] = dep;
1159 		if (dep < 0)
1160 			break;
1161 		dep = va_arg(args, int);
1162 	}
1163 	constrs->rules_num++;
1164 	va_end(args);
1165 	return 0;
1166 }
1167 
1168 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1169 
1170 /**
1171  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1172  * @runtime: PCM runtime instance
1173  * @var: hw_params variable to apply the mask
1174  * @mask: the bitmap mask
1175  *
1176  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1177  *
1178  * Return: Zero if successful, or a negative error code on failure.
1179  */
1180 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1181 			       u_int32_t mask)
1182 {
1183 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1184 	struct snd_mask *maskp = constrs_mask(constrs, var);
1185 	*maskp->bits &= mask;
1186 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1187 	if (*maskp->bits == 0)
1188 		return -EINVAL;
1189 	return 0;
1190 }
1191 
1192 /**
1193  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1194  * @runtime: PCM runtime instance
1195  * @var: hw_params variable to apply the mask
1196  * @mask: the 64bit bitmap mask
1197  *
1198  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1199  *
1200  * Return: Zero if successful, or a negative error code on failure.
1201  */
1202 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1203 				 u_int64_t mask)
1204 {
1205 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1206 	struct snd_mask *maskp = constrs_mask(constrs, var);
1207 	maskp->bits[0] &= (u_int32_t)mask;
1208 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1209 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1210 	if (! maskp->bits[0] && ! maskp->bits[1])
1211 		return -EINVAL;
1212 	return 0;
1213 }
1214 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1215 
1216 /**
1217  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1218  * @runtime: PCM runtime instance
1219  * @var: hw_params variable to apply the integer constraint
1220  *
1221  * Apply the constraint of integer to an interval parameter.
1222  *
1223  * Return: Positive if the value is changed, zero if it's not changed, or a
1224  * negative error code.
1225  */
1226 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1227 {
1228 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1229 	return snd_interval_setinteger(constrs_interval(constrs, var));
1230 }
1231 
1232 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1233 
1234 /**
1235  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1236  * @runtime: PCM runtime instance
1237  * @var: hw_params variable to apply the range
1238  * @min: the minimal value
1239  * @max: the maximal value
1240  *
1241  * Apply the min/max range constraint to an interval parameter.
1242  *
1243  * Return: Positive if the value is changed, zero if it's not changed, or a
1244  * negative error code.
1245  */
1246 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1247 				 unsigned int min, unsigned int max)
1248 {
1249 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1250 	struct snd_interval t;
1251 	t.min = min;
1252 	t.max = max;
1253 	t.openmin = t.openmax = 0;
1254 	t.integer = 0;
1255 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1256 }
1257 
1258 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1259 
1260 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1261 				struct snd_pcm_hw_rule *rule)
1262 {
1263 	struct snd_pcm_hw_constraint_list *list = rule->private;
1264 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1265 }
1266 
1267 
1268 /**
1269  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1270  * @runtime: PCM runtime instance
1271  * @cond: condition bits
1272  * @var: hw_params variable to apply the list constraint
1273  * @l: list
1274  *
1275  * Apply the list of constraints to an interval parameter.
1276  *
1277  * Return: Zero if successful, or a negative error code on failure.
1278  */
1279 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1280 			       unsigned int cond,
1281 			       snd_pcm_hw_param_t var,
1282 			       const struct snd_pcm_hw_constraint_list *l)
1283 {
1284 	return snd_pcm_hw_rule_add(runtime, cond, var,
1285 				   snd_pcm_hw_rule_list, (void *)l,
1286 				   var, -1);
1287 }
1288 
1289 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1290 
1291 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1292 				  struct snd_pcm_hw_rule *rule)
1293 {
1294 	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1295 	return snd_interval_ranges(hw_param_interval(params, rule->var),
1296 				   r->count, r->ranges, r->mask);
1297 }
1298 
1299 
1300 /**
1301  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1302  * @runtime: PCM runtime instance
1303  * @cond: condition bits
1304  * @var: hw_params variable to apply the list of range constraints
1305  * @r: ranges
1306  *
1307  * Apply the list of range constraints to an interval parameter.
1308  *
1309  * Return: Zero if successful, or a negative error code on failure.
1310  */
1311 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1312 				 unsigned int cond,
1313 				 snd_pcm_hw_param_t var,
1314 				 const struct snd_pcm_hw_constraint_ranges *r)
1315 {
1316 	return snd_pcm_hw_rule_add(runtime, cond, var,
1317 				   snd_pcm_hw_rule_ranges, (void *)r,
1318 				   var, -1);
1319 }
1320 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1321 
1322 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1323 				   struct snd_pcm_hw_rule *rule)
1324 {
1325 	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1326 	unsigned int num = 0, den = 0;
1327 	int err;
1328 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1329 				  r->nrats, r->rats, &num, &den);
1330 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1331 		params->rate_num = num;
1332 		params->rate_den = den;
1333 	}
1334 	return err;
1335 }
1336 
1337 /**
1338  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1339  * @runtime: PCM runtime instance
1340  * @cond: condition bits
1341  * @var: hw_params variable to apply the ratnums constraint
1342  * @r: struct snd_ratnums constriants
1343  *
1344  * Return: Zero if successful, or a negative error code on failure.
1345  */
1346 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1347 				  unsigned int cond,
1348 				  snd_pcm_hw_param_t var,
1349 				  const struct snd_pcm_hw_constraint_ratnums *r)
1350 {
1351 	return snd_pcm_hw_rule_add(runtime, cond, var,
1352 				   snd_pcm_hw_rule_ratnums, (void *)r,
1353 				   var, -1);
1354 }
1355 
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1357 
1358 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1359 				   struct snd_pcm_hw_rule *rule)
1360 {
1361 	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1362 	unsigned int num = 0, den = 0;
1363 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1364 				  r->nrats, r->rats, &num, &den);
1365 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1366 		params->rate_num = num;
1367 		params->rate_den = den;
1368 	}
1369 	return err;
1370 }
1371 
1372 /**
1373  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1374  * @runtime: PCM runtime instance
1375  * @cond: condition bits
1376  * @var: hw_params variable to apply the ratdens constraint
1377  * @r: struct snd_ratdens constriants
1378  *
1379  * Return: Zero if successful, or a negative error code on failure.
1380  */
1381 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1382 				  unsigned int cond,
1383 				  snd_pcm_hw_param_t var,
1384 				  const struct snd_pcm_hw_constraint_ratdens *r)
1385 {
1386 	return snd_pcm_hw_rule_add(runtime, cond, var,
1387 				   snd_pcm_hw_rule_ratdens, (void *)r,
1388 				   var, -1);
1389 }
1390 
1391 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1392 
1393 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1394 				  struct snd_pcm_hw_rule *rule)
1395 {
1396 	unsigned int l = (unsigned long) rule->private;
1397 	int width = l & 0xffff;
1398 	unsigned int msbits = l >> 16;
1399 	const struct snd_interval *i =
1400 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1401 
1402 	if (!snd_interval_single(i))
1403 		return 0;
1404 
1405 	if ((snd_interval_value(i) == width) ||
1406 	    (width == 0 && snd_interval_value(i) > msbits))
1407 		params->msbits = min_not_zero(params->msbits, msbits);
1408 
1409 	return 0;
1410 }
1411 
1412 /**
1413  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1414  * @runtime: PCM runtime instance
1415  * @cond: condition bits
1416  * @width: sample bits width
1417  * @msbits: msbits width
1418  *
1419  * This constraint will set the number of most significant bits (msbits) if a
1420  * sample format with the specified width has been select. If width is set to 0
1421  * the msbits will be set for any sample format with a width larger than the
1422  * specified msbits.
1423  *
1424  * Return: Zero if successful, or a negative error code on failure.
1425  */
1426 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1427 				 unsigned int cond,
1428 				 unsigned int width,
1429 				 unsigned int msbits)
1430 {
1431 	unsigned long l = (msbits << 16) | width;
1432 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1433 				    snd_pcm_hw_rule_msbits,
1434 				    (void*) l,
1435 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1436 }
1437 
1438 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1439 
1440 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1441 				struct snd_pcm_hw_rule *rule)
1442 {
1443 	unsigned long step = (unsigned long) rule->private;
1444 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1445 }
1446 
1447 /**
1448  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1449  * @runtime: PCM runtime instance
1450  * @cond: condition bits
1451  * @var: hw_params variable to apply the step constraint
1452  * @step: step size
1453  *
1454  * Return: Zero if successful, or a negative error code on failure.
1455  */
1456 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1457 			       unsigned int cond,
1458 			       snd_pcm_hw_param_t var,
1459 			       unsigned long step)
1460 {
1461 	return snd_pcm_hw_rule_add(runtime, cond, var,
1462 				   snd_pcm_hw_rule_step, (void *) step,
1463 				   var, -1);
1464 }
1465 
1466 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1467 
1468 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1469 {
1470 	static unsigned int pow2_sizes[] = {
1471 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1472 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1473 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1474 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1475 	};
1476 	return snd_interval_list(hw_param_interval(params, rule->var),
1477 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1478 }
1479 
1480 /**
1481  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1482  * @runtime: PCM runtime instance
1483  * @cond: condition bits
1484  * @var: hw_params variable to apply the power-of-2 constraint
1485  *
1486  * Return: Zero if successful, or a negative error code on failure.
1487  */
1488 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1489 			       unsigned int cond,
1490 			       snd_pcm_hw_param_t var)
1491 {
1492 	return snd_pcm_hw_rule_add(runtime, cond, var,
1493 				   snd_pcm_hw_rule_pow2, NULL,
1494 				   var, -1);
1495 }
1496 
1497 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1498 
1499 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1500 					   struct snd_pcm_hw_rule *rule)
1501 {
1502 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1503 	struct snd_interval *rate;
1504 
1505 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1506 	return snd_interval_list(rate, 1, &base_rate, 0);
1507 }
1508 
1509 /**
1510  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1511  * @runtime: PCM runtime instance
1512  * @base_rate: the rate at which the hardware does not resample
1513  *
1514  * Return: Zero if successful, or a negative error code on failure.
1515  */
1516 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1517 			       unsigned int base_rate)
1518 {
1519 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1520 				   SNDRV_PCM_HW_PARAM_RATE,
1521 				   snd_pcm_hw_rule_noresample_func,
1522 				   (void *)(uintptr_t)base_rate,
1523 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1524 }
1525 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1526 
1527 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1528 				  snd_pcm_hw_param_t var)
1529 {
1530 	if (hw_is_mask(var)) {
1531 		snd_mask_any(hw_param_mask(params, var));
1532 		params->cmask |= 1 << var;
1533 		params->rmask |= 1 << var;
1534 		return;
1535 	}
1536 	if (hw_is_interval(var)) {
1537 		snd_interval_any(hw_param_interval(params, var));
1538 		params->cmask |= 1 << var;
1539 		params->rmask |= 1 << var;
1540 		return;
1541 	}
1542 	snd_BUG();
1543 }
1544 
1545 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1546 {
1547 	unsigned int k;
1548 	memset(params, 0, sizeof(*params));
1549 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1550 		_snd_pcm_hw_param_any(params, k);
1551 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1552 		_snd_pcm_hw_param_any(params, k);
1553 	params->info = ~0U;
1554 }
1555 
1556 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1557 
1558 /**
1559  * snd_pcm_hw_param_value - return @params field @var value
1560  * @params: the hw_params instance
1561  * @var: parameter to retrieve
1562  * @dir: pointer to the direction (-1,0,1) or %NULL
1563  *
1564  * Return: The value for field @var if it's fixed in configuration space
1565  * defined by @params. -%EINVAL otherwise.
1566  */
1567 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1568 			   snd_pcm_hw_param_t var, int *dir)
1569 {
1570 	if (hw_is_mask(var)) {
1571 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1572 		if (!snd_mask_single(mask))
1573 			return -EINVAL;
1574 		if (dir)
1575 			*dir = 0;
1576 		return snd_mask_value(mask);
1577 	}
1578 	if (hw_is_interval(var)) {
1579 		const struct snd_interval *i = hw_param_interval_c(params, var);
1580 		if (!snd_interval_single(i))
1581 			return -EINVAL;
1582 		if (dir)
1583 			*dir = i->openmin;
1584 		return snd_interval_value(i);
1585 	}
1586 	return -EINVAL;
1587 }
1588 
1589 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1590 
1591 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1592 				snd_pcm_hw_param_t var)
1593 {
1594 	if (hw_is_mask(var)) {
1595 		snd_mask_none(hw_param_mask(params, var));
1596 		params->cmask |= 1 << var;
1597 		params->rmask |= 1 << var;
1598 	} else if (hw_is_interval(var)) {
1599 		snd_interval_none(hw_param_interval(params, var));
1600 		params->cmask |= 1 << var;
1601 		params->rmask |= 1 << var;
1602 	} else {
1603 		snd_BUG();
1604 	}
1605 }
1606 
1607 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1608 
1609 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1610 				   snd_pcm_hw_param_t var)
1611 {
1612 	int changed;
1613 	if (hw_is_mask(var))
1614 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1615 	else if (hw_is_interval(var))
1616 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1617 	else
1618 		return -EINVAL;
1619 	if (changed) {
1620 		params->cmask |= 1 << var;
1621 		params->rmask |= 1 << var;
1622 	}
1623 	return changed;
1624 }
1625 
1626 
1627 /**
1628  * snd_pcm_hw_param_first - refine config space and return minimum value
1629  * @pcm: PCM instance
1630  * @params: the hw_params instance
1631  * @var: parameter to retrieve
1632  * @dir: pointer to the direction (-1,0,1) or %NULL
1633  *
1634  * Inside configuration space defined by @params remove from @var all
1635  * values > minimum. Reduce configuration space accordingly.
1636  *
1637  * Return: The minimum, or a negative error code on failure.
1638  */
1639 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1640 			   struct snd_pcm_hw_params *params,
1641 			   snd_pcm_hw_param_t var, int *dir)
1642 {
1643 	int changed = _snd_pcm_hw_param_first(params, var);
1644 	if (changed < 0)
1645 		return changed;
1646 	if (params->rmask) {
1647 		int err = snd_pcm_hw_refine(pcm, params);
1648 		if (snd_BUG_ON(err < 0))
1649 			return err;
1650 	}
1651 	return snd_pcm_hw_param_value(params, var, dir);
1652 }
1653 
1654 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1655 
1656 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1657 				  snd_pcm_hw_param_t var)
1658 {
1659 	int changed;
1660 	if (hw_is_mask(var))
1661 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1662 	else if (hw_is_interval(var))
1663 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1664 	else
1665 		return -EINVAL;
1666 	if (changed) {
1667 		params->cmask |= 1 << var;
1668 		params->rmask |= 1 << var;
1669 	}
1670 	return changed;
1671 }
1672 
1673 
1674 /**
1675  * snd_pcm_hw_param_last - refine config space and return maximum value
1676  * @pcm: PCM instance
1677  * @params: the hw_params instance
1678  * @var: parameter to retrieve
1679  * @dir: pointer to the direction (-1,0,1) or %NULL
1680  *
1681  * Inside configuration space defined by @params remove from @var all
1682  * values < maximum. Reduce configuration space accordingly.
1683  *
1684  * Return: The maximum, or a negative error code on failure.
1685  */
1686 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1687 			  struct snd_pcm_hw_params *params,
1688 			  snd_pcm_hw_param_t var, int *dir)
1689 {
1690 	int changed = _snd_pcm_hw_param_last(params, var);
1691 	if (changed < 0)
1692 		return changed;
1693 	if (params->rmask) {
1694 		int err = snd_pcm_hw_refine(pcm, params);
1695 		if (snd_BUG_ON(err < 0))
1696 			return err;
1697 	}
1698 	return snd_pcm_hw_param_value(params, var, dir);
1699 }
1700 
1701 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1702 
1703 /**
1704  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1705  * @pcm: PCM instance
1706  * @params: the hw_params instance
1707  *
1708  * Choose one configuration from configuration space defined by @params.
1709  * The configuration chosen is that obtained fixing in this order:
1710  * first access, first format, first subformat, min channels,
1711  * min rate, min period time, max buffer size, min tick time
1712  *
1713  * Return: Zero if successful, or a negative error code on failure.
1714  */
1715 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1716 			     struct snd_pcm_hw_params *params)
1717 {
1718 	static const int vars[] = {
1719 		SNDRV_PCM_HW_PARAM_ACCESS,
1720 		SNDRV_PCM_HW_PARAM_FORMAT,
1721 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1722 		SNDRV_PCM_HW_PARAM_CHANNELS,
1723 		SNDRV_PCM_HW_PARAM_RATE,
1724 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1725 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1726 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1727 		-1
1728 	};
1729 	const int *v;
1730 	int err;
1731 
1732 	for (v = vars; *v != -1; v++) {
1733 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1734 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1735 		else
1736 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1737 		if (snd_BUG_ON(err < 0))
1738 			return err;
1739 	}
1740 	return 0;
1741 }
1742 
1743 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1744 				   void *arg)
1745 {
1746 	struct snd_pcm_runtime *runtime = substream->runtime;
1747 	unsigned long flags;
1748 	snd_pcm_stream_lock_irqsave(substream, flags);
1749 	if (snd_pcm_running(substream) &&
1750 	    snd_pcm_update_hw_ptr(substream) >= 0)
1751 		runtime->status->hw_ptr %= runtime->buffer_size;
1752 	else {
1753 		runtime->status->hw_ptr = 0;
1754 		runtime->hw_ptr_wrap = 0;
1755 	}
1756 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1757 	return 0;
1758 }
1759 
1760 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1761 					  void *arg)
1762 {
1763 	struct snd_pcm_channel_info *info = arg;
1764 	struct snd_pcm_runtime *runtime = substream->runtime;
1765 	int width;
1766 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1767 		info->offset = -1;
1768 		return 0;
1769 	}
1770 	width = snd_pcm_format_physical_width(runtime->format);
1771 	if (width < 0)
1772 		return width;
1773 	info->offset = 0;
1774 	switch (runtime->access) {
1775 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1776 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1777 		info->first = info->channel * width;
1778 		info->step = runtime->channels * width;
1779 		break;
1780 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1781 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1782 	{
1783 		size_t size = runtime->dma_bytes / runtime->channels;
1784 		info->first = info->channel * size * 8;
1785 		info->step = width;
1786 		break;
1787 	}
1788 	default:
1789 		snd_BUG();
1790 		break;
1791 	}
1792 	return 0;
1793 }
1794 
1795 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1796 				       void *arg)
1797 {
1798 	struct snd_pcm_hw_params *params = arg;
1799 	snd_pcm_format_t format;
1800 	int channels;
1801 	ssize_t frame_size;
1802 
1803 	params->fifo_size = substream->runtime->hw.fifo_size;
1804 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1805 		format = params_format(params);
1806 		channels = params_channels(params);
1807 		frame_size = snd_pcm_format_size(format, channels);
1808 		if (frame_size > 0)
1809 			params->fifo_size /= (unsigned)frame_size;
1810 	}
1811 	return 0;
1812 }
1813 
1814 /**
1815  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1816  * @substream: the pcm substream instance
1817  * @cmd: ioctl command
1818  * @arg: ioctl argument
1819  *
1820  * Processes the generic ioctl commands for PCM.
1821  * Can be passed as the ioctl callback for PCM ops.
1822  *
1823  * Return: Zero if successful, or a negative error code on failure.
1824  */
1825 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1826 		      unsigned int cmd, void *arg)
1827 {
1828 	switch (cmd) {
1829 	case SNDRV_PCM_IOCTL1_INFO:
1830 		return 0;
1831 	case SNDRV_PCM_IOCTL1_RESET:
1832 		return snd_pcm_lib_ioctl_reset(substream, arg);
1833 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1834 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1835 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1836 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1837 	}
1838 	return -ENXIO;
1839 }
1840 
1841 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1842 
1843 /**
1844  * snd_pcm_period_elapsed - update the pcm status for the next period
1845  * @substream: the pcm substream instance
1846  *
1847  * This function is called from the interrupt handler when the
1848  * PCM has processed the period size.  It will update the current
1849  * pointer, wake up sleepers, etc.
1850  *
1851  * Even if more than one periods have elapsed since the last call, you
1852  * have to call this only once.
1853  */
1854 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1855 {
1856 	struct snd_pcm_runtime *runtime;
1857 	unsigned long flags;
1858 
1859 	if (PCM_RUNTIME_CHECK(substream))
1860 		return;
1861 	runtime = substream->runtime;
1862 
1863 	snd_pcm_stream_lock_irqsave(substream, flags);
1864 	if (!snd_pcm_running(substream) ||
1865 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1866 		goto _end;
1867 
1868 #ifdef CONFIG_SND_PCM_TIMER
1869 	if (substream->timer_running)
1870 		snd_timer_interrupt(substream->timer, 1);
1871 #endif
1872  _end:
1873 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1874 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1875 }
1876 
1877 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1878 
1879 /*
1880  * Wait until avail_min data becomes available
1881  * Returns a negative error code if any error occurs during operation.
1882  * The available space is stored on availp.  When err = 0 and avail = 0
1883  * on the capture stream, it indicates the stream is in DRAINING state.
1884  */
1885 static int wait_for_avail(struct snd_pcm_substream *substream,
1886 			      snd_pcm_uframes_t *availp)
1887 {
1888 	struct snd_pcm_runtime *runtime = substream->runtime;
1889 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1890 	wait_queue_t wait;
1891 	int err = 0;
1892 	snd_pcm_uframes_t avail = 0;
1893 	long wait_time, tout;
1894 
1895 	init_waitqueue_entry(&wait, current);
1896 	set_current_state(TASK_INTERRUPTIBLE);
1897 	add_wait_queue(&runtime->tsleep, &wait);
1898 
1899 	if (runtime->no_period_wakeup)
1900 		wait_time = MAX_SCHEDULE_TIMEOUT;
1901 	else {
1902 		wait_time = 10;
1903 		if (runtime->rate) {
1904 			long t = runtime->period_size * 2 / runtime->rate;
1905 			wait_time = max(t, wait_time);
1906 		}
1907 		wait_time = msecs_to_jiffies(wait_time * 1000);
1908 	}
1909 
1910 	for (;;) {
1911 		if (signal_pending(current)) {
1912 			err = -ERESTARTSYS;
1913 			break;
1914 		}
1915 
1916 		/*
1917 		 * We need to check if space became available already
1918 		 * (and thus the wakeup happened already) first to close
1919 		 * the race of space already having become available.
1920 		 * This check must happen after been added to the waitqueue
1921 		 * and having current state be INTERRUPTIBLE.
1922 		 */
1923 		if (is_playback)
1924 			avail = snd_pcm_playback_avail(runtime);
1925 		else
1926 			avail = snd_pcm_capture_avail(runtime);
1927 		if (avail >= runtime->twake)
1928 			break;
1929 		snd_pcm_stream_unlock_irq(substream);
1930 
1931 		tout = schedule_timeout(wait_time);
1932 
1933 		snd_pcm_stream_lock_irq(substream);
1934 		set_current_state(TASK_INTERRUPTIBLE);
1935 		switch (runtime->status->state) {
1936 		case SNDRV_PCM_STATE_SUSPENDED:
1937 			err = -ESTRPIPE;
1938 			goto _endloop;
1939 		case SNDRV_PCM_STATE_XRUN:
1940 			err = -EPIPE;
1941 			goto _endloop;
1942 		case SNDRV_PCM_STATE_DRAINING:
1943 			if (is_playback)
1944 				err = -EPIPE;
1945 			else
1946 				avail = 0; /* indicate draining */
1947 			goto _endloop;
1948 		case SNDRV_PCM_STATE_OPEN:
1949 		case SNDRV_PCM_STATE_SETUP:
1950 		case SNDRV_PCM_STATE_DISCONNECTED:
1951 			err = -EBADFD;
1952 			goto _endloop;
1953 		case SNDRV_PCM_STATE_PAUSED:
1954 			continue;
1955 		}
1956 		if (!tout) {
1957 			pcm_dbg(substream->pcm,
1958 				"%s write error (DMA or IRQ trouble?)\n",
1959 				is_playback ? "playback" : "capture");
1960 			err = -EIO;
1961 			break;
1962 		}
1963 	}
1964  _endloop:
1965 	set_current_state(TASK_RUNNING);
1966 	remove_wait_queue(&runtime->tsleep, &wait);
1967 	*availp = avail;
1968 	return err;
1969 }
1970 
1971 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1972 			      int channel, unsigned long hwoff,
1973 			      void *buf, unsigned long bytes);
1974 
1975 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1976 			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1977 
1978 /* calculate the target DMA-buffer position to be written/read */
1979 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1980 			   int channel, unsigned long hwoff)
1981 {
1982 	return runtime->dma_area + hwoff +
1983 		channel * (runtime->dma_bytes / runtime->channels);
1984 }
1985 
1986 /* default copy_user ops for write; used for both interleaved and non- modes */
1987 static int default_write_copy(struct snd_pcm_substream *substream,
1988 			      int channel, unsigned long hwoff,
1989 			      void *buf, unsigned long bytes)
1990 {
1991 	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1992 			   (void __user *)buf, bytes))
1993 		return -EFAULT;
1994 	return 0;
1995 }
1996 
1997 /* default copy_kernel ops for write */
1998 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1999 				     int channel, unsigned long hwoff,
2000 				     void *buf, unsigned long bytes)
2001 {
2002 	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
2003 	return 0;
2004 }
2005 
2006 /* fill silence instead of copy data; called as a transfer helper
2007  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2008  * a NULL buffer is passed
2009  */
2010 static int fill_silence(struct snd_pcm_substream *substream, int channel,
2011 			unsigned long hwoff, void *buf, unsigned long bytes)
2012 {
2013 	struct snd_pcm_runtime *runtime = substream->runtime;
2014 
2015 	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2016 		return 0;
2017 	if (substream->ops->fill_silence)
2018 		return substream->ops->fill_silence(substream, channel,
2019 						    hwoff, bytes);
2020 
2021 	snd_pcm_format_set_silence(runtime->format,
2022 				   get_dma_ptr(runtime, channel, hwoff),
2023 				   bytes_to_samples(runtime, bytes));
2024 	return 0;
2025 }
2026 
2027 /* default copy_user ops for read; used for both interleaved and non- modes */
2028 static int default_read_copy(struct snd_pcm_substream *substream,
2029 			     int channel, unsigned long hwoff,
2030 			     void *buf, unsigned long bytes)
2031 {
2032 	if (copy_to_user((void __user *)buf,
2033 			 get_dma_ptr(substream->runtime, channel, hwoff),
2034 			 bytes))
2035 		return -EFAULT;
2036 	return 0;
2037 }
2038 
2039 /* default copy_kernel ops for read */
2040 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2041 				    int channel, unsigned long hwoff,
2042 				    void *buf, unsigned long bytes)
2043 {
2044 	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2045 	return 0;
2046 }
2047 
2048 /* call transfer function with the converted pointers and sizes;
2049  * for interleaved mode, it's one shot for all samples
2050  */
2051 static int interleaved_copy(struct snd_pcm_substream *substream,
2052 			    snd_pcm_uframes_t hwoff, void *data,
2053 			    snd_pcm_uframes_t off,
2054 			    snd_pcm_uframes_t frames,
2055 			    pcm_transfer_f transfer)
2056 {
2057 	struct snd_pcm_runtime *runtime = substream->runtime;
2058 
2059 	/* convert to bytes */
2060 	hwoff = frames_to_bytes(runtime, hwoff);
2061 	off = frames_to_bytes(runtime, off);
2062 	frames = frames_to_bytes(runtime, frames);
2063 	return transfer(substream, 0, hwoff, data + off, frames);
2064 }
2065 
2066 /* call transfer function with the converted pointers and sizes for each
2067  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2068  */
2069 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2070 			       snd_pcm_uframes_t hwoff, void *data,
2071 			       snd_pcm_uframes_t off,
2072 			       snd_pcm_uframes_t frames,
2073 			       pcm_transfer_f transfer)
2074 {
2075 	struct snd_pcm_runtime *runtime = substream->runtime;
2076 	int channels = runtime->channels;
2077 	void **bufs = data;
2078 	int c, err;
2079 
2080 	/* convert to bytes; note that it's not frames_to_bytes() here.
2081 	 * in non-interleaved mode, we copy for each channel, thus
2082 	 * each copy is n_samples bytes x channels = whole frames.
2083 	 */
2084 	off = samples_to_bytes(runtime, off);
2085 	frames = samples_to_bytes(runtime, frames);
2086 	hwoff = samples_to_bytes(runtime, hwoff);
2087 	for (c = 0; c < channels; ++c, ++bufs) {
2088 		if (!data || !*bufs)
2089 			err = fill_silence(substream, c, hwoff, NULL, frames);
2090 		else
2091 			err = transfer(substream, c, hwoff, *bufs + off,
2092 				       frames);
2093 		if (err < 0)
2094 			return err;
2095 	}
2096 	return 0;
2097 }
2098 
2099 /* fill silence on the given buffer position;
2100  * called from snd_pcm_playback_silence()
2101  */
2102 static int fill_silence_frames(struct snd_pcm_substream *substream,
2103 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2104 {
2105 	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2106 	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2107 		return interleaved_copy(substream, off, NULL, 0, frames,
2108 					fill_silence);
2109 	else
2110 		return noninterleaved_copy(substream, off, NULL, 0, frames,
2111 					   fill_silence);
2112 }
2113 
2114 /* sanity-check for read/write methods */
2115 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2116 {
2117 	struct snd_pcm_runtime *runtime;
2118 	if (PCM_RUNTIME_CHECK(substream))
2119 		return -ENXIO;
2120 	runtime = substream->runtime;
2121 	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2122 		return -EINVAL;
2123 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2124 		return -EBADFD;
2125 	return 0;
2126 }
2127 
2128 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2129 {
2130 	switch (runtime->status->state) {
2131 	case SNDRV_PCM_STATE_PREPARED:
2132 	case SNDRV_PCM_STATE_RUNNING:
2133 	case SNDRV_PCM_STATE_PAUSED:
2134 		return 0;
2135 	case SNDRV_PCM_STATE_XRUN:
2136 		return -EPIPE;
2137 	case SNDRV_PCM_STATE_SUSPENDED:
2138 		return -ESTRPIPE;
2139 	default:
2140 		return -EBADFD;
2141 	}
2142 }
2143 
2144 /* the common loop for read/write data */
2145 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2146 				     void *data, bool interleaved,
2147 				     snd_pcm_uframes_t size, bool in_kernel)
2148 {
2149 	struct snd_pcm_runtime *runtime = substream->runtime;
2150 	snd_pcm_uframes_t xfer = 0;
2151 	snd_pcm_uframes_t offset = 0;
2152 	snd_pcm_uframes_t avail;
2153 	pcm_copy_f writer;
2154 	pcm_transfer_f transfer;
2155 	bool nonblock;
2156 	bool is_playback;
2157 	int err;
2158 
2159 	err = pcm_sanity_check(substream);
2160 	if (err < 0)
2161 		return err;
2162 
2163 	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2164 	if (interleaved) {
2165 		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2166 		    runtime->channels > 1)
2167 			return -EINVAL;
2168 		writer = interleaved_copy;
2169 	} else {
2170 		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2171 			return -EINVAL;
2172 		writer = noninterleaved_copy;
2173 	}
2174 
2175 	if (!data) {
2176 		if (is_playback)
2177 			transfer = fill_silence;
2178 		else
2179 			return -EINVAL;
2180 	} else if (in_kernel) {
2181 		if (substream->ops->copy_kernel)
2182 			transfer = substream->ops->copy_kernel;
2183 		else
2184 			transfer = is_playback ?
2185 				default_write_copy_kernel : default_read_copy_kernel;
2186 	} else {
2187 		if (substream->ops->copy_user)
2188 			transfer = (pcm_transfer_f)substream->ops->copy_user;
2189 		else
2190 			transfer = is_playback ?
2191 				default_write_copy : default_read_copy;
2192 	}
2193 
2194 	if (size == 0)
2195 		return 0;
2196 
2197 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2198 
2199 	snd_pcm_stream_lock_irq(substream);
2200 	err = pcm_accessible_state(runtime);
2201 	if (err < 0)
2202 		goto _end_unlock;
2203 
2204 	if (!is_playback &&
2205 	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2206 	    size >= runtime->start_threshold) {
2207 		err = snd_pcm_start(substream);
2208 		if (err < 0)
2209 			goto _end_unlock;
2210 	}
2211 
2212 	runtime->twake = runtime->control->avail_min ? : 1;
2213 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2214 		snd_pcm_update_hw_ptr(substream);
2215 	if (is_playback)
2216 		avail = snd_pcm_playback_avail(runtime);
2217 	else
2218 		avail = snd_pcm_capture_avail(runtime);
2219 	while (size > 0) {
2220 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2221 		snd_pcm_uframes_t cont;
2222 		if (!avail) {
2223 			if (!is_playback &&
2224 			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2225 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2226 				goto _end_unlock;
2227 			}
2228 			if (nonblock) {
2229 				err = -EAGAIN;
2230 				goto _end_unlock;
2231 			}
2232 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2233 					runtime->control->avail_min ? : 1);
2234 			err = wait_for_avail(substream, &avail);
2235 			if (err < 0)
2236 				goto _end_unlock;
2237 			if (!avail)
2238 				continue; /* draining */
2239 		}
2240 		frames = size > avail ? avail : size;
2241 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2242 		if (frames > cont)
2243 			frames = cont;
2244 		if (snd_BUG_ON(!frames)) {
2245 			runtime->twake = 0;
2246 			snd_pcm_stream_unlock_irq(substream);
2247 			return -EINVAL;
2248 		}
2249 		appl_ptr = runtime->control->appl_ptr;
2250 		appl_ofs = appl_ptr % runtime->buffer_size;
2251 		snd_pcm_stream_unlock_irq(substream);
2252 		err = writer(substream, appl_ofs, data, offset, frames,
2253 			     transfer);
2254 		snd_pcm_stream_lock_irq(substream);
2255 		if (err < 0)
2256 			goto _end_unlock;
2257 		err = pcm_accessible_state(runtime);
2258 		if (err < 0)
2259 			goto _end_unlock;
2260 		appl_ptr += frames;
2261 		if (appl_ptr >= runtime->boundary)
2262 			appl_ptr -= runtime->boundary;
2263 		runtime->control->appl_ptr = appl_ptr;
2264 		if (substream->ops->ack)
2265 			substream->ops->ack(substream);
2266 
2267 		offset += frames;
2268 		size -= frames;
2269 		xfer += frames;
2270 		avail -= frames;
2271 		if (is_playback &&
2272 		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2273 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2274 			err = snd_pcm_start(substream);
2275 			if (err < 0)
2276 				goto _end_unlock;
2277 		}
2278 	}
2279  _end_unlock:
2280 	runtime->twake = 0;
2281 	if (xfer > 0 && err >= 0)
2282 		snd_pcm_update_state(substream, runtime);
2283 	snd_pcm_stream_unlock_irq(substream);
2284 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2285 }
2286 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2287 
2288 /*
2289  * standard channel mapping helpers
2290  */
2291 
2292 /* default channel maps for multi-channel playbacks, up to 8 channels */
2293 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2294 	{ .channels = 1,
2295 	  .map = { SNDRV_CHMAP_MONO } },
2296 	{ .channels = 2,
2297 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2298 	{ .channels = 4,
2299 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2300 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2301 	{ .channels = 6,
2302 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2303 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2304 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2305 	{ .channels = 8,
2306 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2307 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2308 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2309 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2310 	{ }
2311 };
2312 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2313 
2314 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2315 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2316 	{ .channels = 1,
2317 	  .map = { SNDRV_CHMAP_MONO } },
2318 	{ .channels = 2,
2319 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2320 	{ .channels = 4,
2321 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2322 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2323 	{ .channels = 6,
2324 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2325 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2326 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2327 	{ .channels = 8,
2328 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2329 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2330 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2331 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2332 	{ }
2333 };
2334 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2335 
2336 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2337 {
2338 	if (ch > info->max_channels)
2339 		return false;
2340 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2341 }
2342 
2343 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2344 			      struct snd_ctl_elem_info *uinfo)
2345 {
2346 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2347 
2348 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2349 	uinfo->count = 0;
2350 	uinfo->count = info->max_channels;
2351 	uinfo->value.integer.min = 0;
2352 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2353 	return 0;
2354 }
2355 
2356 /* get callback for channel map ctl element
2357  * stores the channel position firstly matching with the current channels
2358  */
2359 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2360 			     struct snd_ctl_elem_value *ucontrol)
2361 {
2362 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2363 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2364 	struct snd_pcm_substream *substream;
2365 	const struct snd_pcm_chmap_elem *map;
2366 
2367 	if (snd_BUG_ON(!info->chmap))
2368 		return -EINVAL;
2369 	substream = snd_pcm_chmap_substream(info, idx);
2370 	if (!substream)
2371 		return -ENODEV;
2372 	memset(ucontrol->value.integer.value, 0,
2373 	       sizeof(ucontrol->value.integer.value));
2374 	if (!substream->runtime)
2375 		return 0; /* no channels set */
2376 	for (map = info->chmap; map->channels; map++) {
2377 		int i;
2378 		if (map->channels == substream->runtime->channels &&
2379 		    valid_chmap_channels(info, map->channels)) {
2380 			for (i = 0; i < map->channels; i++)
2381 				ucontrol->value.integer.value[i] = map->map[i];
2382 			return 0;
2383 		}
2384 	}
2385 	return -EINVAL;
2386 }
2387 
2388 /* tlv callback for channel map ctl element
2389  * expands the pre-defined channel maps in a form of TLV
2390  */
2391 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2392 			     unsigned int size, unsigned int __user *tlv)
2393 {
2394 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2395 	const struct snd_pcm_chmap_elem *map;
2396 	unsigned int __user *dst;
2397 	int c, count = 0;
2398 
2399 	if (snd_BUG_ON(!info->chmap))
2400 		return -EINVAL;
2401 	if (size < 8)
2402 		return -ENOMEM;
2403 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2404 		return -EFAULT;
2405 	size -= 8;
2406 	dst = tlv + 2;
2407 	for (map = info->chmap; map->channels; map++) {
2408 		int chs_bytes = map->channels * 4;
2409 		if (!valid_chmap_channels(info, map->channels))
2410 			continue;
2411 		if (size < 8)
2412 			return -ENOMEM;
2413 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2414 		    put_user(chs_bytes, dst + 1))
2415 			return -EFAULT;
2416 		dst += 2;
2417 		size -= 8;
2418 		count += 8;
2419 		if (size < chs_bytes)
2420 			return -ENOMEM;
2421 		size -= chs_bytes;
2422 		count += chs_bytes;
2423 		for (c = 0; c < map->channels; c++) {
2424 			if (put_user(map->map[c], dst))
2425 				return -EFAULT;
2426 			dst++;
2427 		}
2428 	}
2429 	if (put_user(count, tlv + 1))
2430 		return -EFAULT;
2431 	return 0;
2432 }
2433 
2434 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2435 {
2436 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2437 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2438 	kfree(info);
2439 }
2440 
2441 /**
2442  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2443  * @pcm: the assigned PCM instance
2444  * @stream: stream direction
2445  * @chmap: channel map elements (for query)
2446  * @max_channels: the max number of channels for the stream
2447  * @private_value: the value passed to each kcontrol's private_value field
2448  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2449  *
2450  * Create channel-mapping control elements assigned to the given PCM stream(s).
2451  * Return: Zero if successful, or a negative error value.
2452  */
2453 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2454 			   const struct snd_pcm_chmap_elem *chmap,
2455 			   int max_channels,
2456 			   unsigned long private_value,
2457 			   struct snd_pcm_chmap **info_ret)
2458 {
2459 	struct snd_pcm_chmap *info;
2460 	struct snd_kcontrol_new knew = {
2461 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2462 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2463 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2464 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2465 		.info = pcm_chmap_ctl_info,
2466 		.get = pcm_chmap_ctl_get,
2467 		.tlv.c = pcm_chmap_ctl_tlv,
2468 	};
2469 	int err;
2470 
2471 	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2472 		return -EBUSY;
2473 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2474 	if (!info)
2475 		return -ENOMEM;
2476 	info->pcm = pcm;
2477 	info->stream = stream;
2478 	info->chmap = chmap;
2479 	info->max_channels = max_channels;
2480 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2481 		knew.name = "Playback Channel Map";
2482 	else
2483 		knew.name = "Capture Channel Map";
2484 	knew.device = pcm->device;
2485 	knew.count = pcm->streams[stream].substream_count;
2486 	knew.private_value = private_value;
2487 	info->kctl = snd_ctl_new1(&knew, info);
2488 	if (!info->kctl) {
2489 		kfree(info);
2490 		return -ENOMEM;
2491 	}
2492 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2493 	err = snd_ctl_add(pcm->card, info->kctl);
2494 	if (err < 0)
2495 		return err;
2496 	pcm->streams[stream].chmap_kctl = info->kctl;
2497 	if (info_ret)
2498 		*info_ret = info;
2499 	return 0;
2500 }
2501 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2502