xref: /openbmc/linux/sound/core/pcm_lib.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33 
34 /*
35  * fill ring buffer with silence
36  * runtime->silence_start: starting pointer to silence area
37  * runtime->silence_filled: size filled with silence
38  * runtime->silence_threshold: threshold from application
39  * runtime->silence_size: maximal size from application
40  *
41  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42  */
43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45 	struct snd_pcm_runtime *runtime = substream->runtime;
46 	snd_pcm_uframes_t frames, ofs, transfer;
47 
48 	if (runtime->silence_size < runtime->boundary) {
49 		snd_pcm_sframes_t noise_dist, n;
50 		if (runtime->silence_start != runtime->control->appl_ptr) {
51 			n = runtime->control->appl_ptr - runtime->silence_start;
52 			if (n < 0)
53 				n += runtime->boundary;
54 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 				runtime->silence_filled -= n;
56 			else
57 				runtime->silence_filled = 0;
58 			runtime->silence_start = runtime->control->appl_ptr;
59 		}
60 		if (runtime->silence_filled >= runtime->buffer_size)
61 			return;
62 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 			return;
65 		frames = runtime->silence_threshold - noise_dist;
66 		if (frames > runtime->silence_size)
67 			frames = runtime->silence_size;
68 	} else {
69 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
70 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 			if (avail > runtime->buffer_size)
72 				avail = runtime->buffer_size;
73 			runtime->silence_filled = avail > 0 ? avail : 0;
74 			runtime->silence_start = (runtime->status->hw_ptr +
75 						  runtime->silence_filled) %
76 						 runtime->boundary;
77 		} else {
78 			ofs = runtime->status->hw_ptr;
79 			frames = new_hw_ptr - ofs;
80 			if ((snd_pcm_sframes_t)frames < 0)
81 				frames += runtime->boundary;
82 			runtime->silence_filled -= frames;
83 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 				runtime->silence_filled = 0;
85 				runtime->silence_start = new_hw_ptr;
86 			} else {
87 				runtime->silence_start = ofs;
88 			}
89 		}
90 		frames = runtime->buffer_size - runtime->silence_filled;
91 	}
92 	if (snd_BUG_ON(frames > runtime->buffer_size))
93 		return;
94 	if (frames == 0)
95 		return;
96 	ofs = runtime->silence_start % runtime->buffer_size;
97 	while (frames > 0) {
98 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 			if (substream->ops->silence) {
102 				int err;
103 				err = substream->ops->silence(substream, -1, ofs, transfer);
104 				snd_BUG_ON(err < 0);
105 			} else {
106 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 			}
109 		} else {
110 			unsigned int c;
111 			unsigned int channels = runtime->channels;
112 			if (substream->ops->silence) {
113 				for (c = 0; c < channels; ++c) {
114 					int err;
115 					err = substream->ops->silence(substream, c, ofs, transfer);
116 					snd_BUG_ON(err < 0);
117 				}
118 			} else {
119 				size_t dma_csize = runtime->dma_bytes / channels;
120 				for (c = 0; c < channels; ++c) {
121 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 				}
124 			}
125 		}
126 		runtime->silence_filled += transfer;
127 		frames -= transfer;
128 		ofs = 0;
129 	}
130 }
131 
132 #ifdef CONFIG_SND_DEBUG
133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 			   char *name, size_t len)
135 {
136 	snprintf(name, len, "pcmC%dD%d%c:%d",
137 		 substream->pcm->card->number,
138 		 substream->pcm->device,
139 		 substream->stream ? 'c' : 'p',
140 		 substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144 
145 #define XRUN_DEBUG_BASIC	(1<<0)
146 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
150 #define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
152 
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154 
155 #define xrun_debug(substream, mask) \
156 			((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask)	0
159 #endif
160 
161 #define dump_stack_on_xrun(substream) do {			\
162 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
163 			dump_stack();				\
164 	} while (0)
165 
166 static void xrun(struct snd_pcm_substream *substream)
167 {
168 	struct snd_pcm_runtime *runtime = substream->runtime;
169 
170 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 		char name[16];
175 		snd_pcm_debug_name(substream, name, sizeof(name));
176 		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 		dump_stack_on_xrun(substream);
178 	}
179 }
180 
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...)				\
183 	do {								\
184 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
185 			xrun_log_show(substream);			\
186 			if (printk_ratelimit()) {			\
187 				snd_printd("PCM: " fmt, ##args);	\
188 			}						\
189 			dump_stack_on_xrun(substream);			\
190 		}							\
191 	} while (0)
192 
193 #define XRUN_LOG_CNT	10
194 
195 struct hwptr_log_entry {
196 	unsigned int in_interrupt;
197 	unsigned long jiffies;
198 	snd_pcm_uframes_t pos;
199 	snd_pcm_uframes_t period_size;
200 	snd_pcm_uframes_t buffer_size;
201 	snd_pcm_uframes_t old_hw_ptr;
202 	snd_pcm_uframes_t hw_ptr_base;
203 };
204 
205 struct snd_pcm_hwptr_log {
206 	unsigned int idx;
207 	unsigned int hit: 1;
208 	struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210 
211 static void xrun_log(struct snd_pcm_substream *substream,
212 		     snd_pcm_uframes_t pos, int in_interrupt)
213 {
214 	struct snd_pcm_runtime *runtime = substream->runtime;
215 	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 	struct hwptr_log_entry *entry;
217 
218 	if (log == NULL) {
219 		log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 		if (log == NULL)
221 			return;
222 		runtime->hwptr_log = log;
223 	} else {
224 		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 			return;
226 	}
227 	entry = &log->entries[log->idx];
228 	entry->in_interrupt = in_interrupt;
229 	entry->jiffies = jiffies;
230 	entry->pos = pos;
231 	entry->period_size = runtime->period_size;
232 	entry->buffer_size = runtime->buffer_size;
233 	entry->old_hw_ptr = runtime->status->hw_ptr;
234 	entry->hw_ptr_base = runtime->hw_ptr_base;
235 	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237 
238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240 	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 	struct hwptr_log_entry *entry;
242 	char name[16];
243 	unsigned int idx;
244 	int cnt;
245 
246 	if (log == NULL)
247 		return;
248 	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 		return;
250 	snd_pcm_debug_name(substream, name, sizeof(name));
251 	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 		entry = &log->entries[idx];
253 		if (entry->period_size == 0)
254 			break;
255 		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 			   "hwptr=%ld/%ld\n",
257 			   name, entry->in_interrupt ? "[Q] " : "",
258 			   entry->jiffies,
259 			   (unsigned long)entry->pos,
260 			   (unsigned long)entry->period_size,
261 			   (unsigned long)entry->buffer_size,
262 			   (unsigned long)entry->old_hw_ptr,
263 			   (unsigned long)entry->hw_ptr_base);
264 		idx++;
265 		idx %= XRUN_LOG_CNT;
266 	}
267 	log->hit = 1;
268 }
269 
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271 
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt)	do { } while (0)
274 #define xrun_log_show(substream)	do { } while (0)
275 
276 #endif
277 
278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 			 struct snd_pcm_runtime *runtime)
280 {
281 	snd_pcm_uframes_t avail;
282 
283 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 		avail = snd_pcm_playback_avail(runtime);
285 	else
286 		avail = snd_pcm_capture_avail(runtime);
287 	if (avail > runtime->avail_max)
288 		runtime->avail_max = avail;
289 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 		if (avail >= runtime->buffer_size) {
291 			snd_pcm_drain_done(substream);
292 			return -EPIPE;
293 		}
294 	} else {
295 		if (avail >= runtime->stop_threshold) {
296 			xrun(substream);
297 			return -EPIPE;
298 		}
299 	}
300 	if (runtime->twake) {
301 		if (avail >= runtime->twake)
302 			wake_up(&runtime->tsleep);
303 	} else if (avail >= runtime->control->avail_min)
304 		wake_up(&runtime->sleep);
305 	return 0;
306 }
307 
308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 				  unsigned int in_interrupt)
310 {
311 	struct snd_pcm_runtime *runtime = substream->runtime;
312 	snd_pcm_uframes_t pos;
313 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 	snd_pcm_sframes_t hdelta, delta;
315 	unsigned long jdelta;
316 
317 	old_hw_ptr = runtime->status->hw_ptr;
318 	pos = substream->ops->pointer(substream);
319 	if (pos == SNDRV_PCM_POS_XRUN) {
320 		xrun(substream);
321 		return -EPIPE;
322 	}
323 	if (pos >= runtime->buffer_size) {
324 		if (printk_ratelimit()) {
325 			char name[16];
326 			snd_pcm_debug_name(substream, name, sizeof(name));
327 			xrun_log_show(substream);
328 			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
329 				   "buffer size = %ld, period size = %ld\n",
330 				   name, pos, runtime->buffer_size,
331 				   runtime->period_size);
332 		}
333 		pos = 0;
334 	}
335 	pos -= pos % runtime->min_align;
336 	if (xrun_debug(substream, XRUN_DEBUG_LOG))
337 		xrun_log(substream, pos, in_interrupt);
338 	hw_base = runtime->hw_ptr_base;
339 	new_hw_ptr = hw_base + pos;
340 	if (in_interrupt) {
341 		/* we know that one period was processed */
342 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
343 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
344 		if (delta > new_hw_ptr) {
345 			/* check for double acknowledged interrupts */
346 			hdelta = jiffies - runtime->hw_ptr_jiffies;
347 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
348 				hw_base += runtime->buffer_size;
349 				if (hw_base >= runtime->boundary)
350 					hw_base = 0;
351 				new_hw_ptr = hw_base + pos;
352 				goto __delta;
353 			}
354 		}
355 	}
356 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
357 	/* pointer crosses the end of the ring buffer */
358 	if (new_hw_ptr < old_hw_ptr) {
359 		hw_base += runtime->buffer_size;
360 		if (hw_base >= runtime->boundary)
361 			hw_base = 0;
362 		new_hw_ptr = hw_base + pos;
363 	}
364       __delta:
365 	delta = new_hw_ptr - old_hw_ptr;
366 	if (delta < 0)
367 		delta += runtime->boundary;
368 	if (xrun_debug(substream, in_interrupt ?
369 			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
370 		char name[16];
371 		snd_pcm_debug_name(substream, name, sizeof(name));
372 		snd_printd("%s_update: %s: pos=%u/%u/%u, "
373 			   "hwptr=%ld/%ld/%ld/%ld\n",
374 			   in_interrupt ? "period" : "hwptr",
375 			   name,
376 			   (unsigned int)pos,
377 			   (unsigned int)runtime->period_size,
378 			   (unsigned int)runtime->buffer_size,
379 			   (unsigned long)delta,
380 			   (unsigned long)old_hw_ptr,
381 			   (unsigned long)new_hw_ptr,
382 			   (unsigned long)runtime->hw_ptr_base);
383 	}
384 
385 	if (runtime->no_period_wakeup) {
386 		snd_pcm_sframes_t xrun_threshold;
387 		/*
388 		 * Without regular period interrupts, we have to check
389 		 * the elapsed time to detect xruns.
390 		 */
391 		jdelta = jiffies - runtime->hw_ptr_jiffies;
392 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
393 			goto no_delta_check;
394 		hdelta = jdelta - delta * HZ / runtime->rate;
395 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
396 		while (hdelta > xrun_threshold) {
397 			delta += runtime->buffer_size;
398 			hw_base += runtime->buffer_size;
399 			if (hw_base >= runtime->boundary)
400 				hw_base = 0;
401 			new_hw_ptr = hw_base + pos;
402 			hdelta -= runtime->hw_ptr_buffer_jiffies;
403 		}
404 		goto no_delta_check;
405 	}
406 
407 	/* something must be really wrong */
408 	if (delta >= runtime->buffer_size + runtime->period_size) {
409 		hw_ptr_error(substream,
410 			       "Unexpected hw_pointer value %s"
411 			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
412 			       "old_hw_ptr=%ld)\n",
413 				     in_interrupt ? "[Q] " : "[P]",
414 				     substream->stream, (long)pos,
415 				     (long)new_hw_ptr, (long)old_hw_ptr);
416 		return 0;
417 	}
418 
419 	/* Do jiffies check only in xrun_debug mode */
420 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
421 		goto no_jiffies_check;
422 
423 	/* Skip the jiffies check for hardwares with BATCH flag.
424 	 * Such hardware usually just increases the position at each IRQ,
425 	 * thus it can't give any strange position.
426 	 */
427 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
428 		goto no_jiffies_check;
429 	hdelta = delta;
430 	if (hdelta < runtime->delay)
431 		goto no_jiffies_check;
432 	hdelta -= runtime->delay;
433 	jdelta = jiffies - runtime->hw_ptr_jiffies;
434 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
435 		delta = jdelta /
436 			(((runtime->period_size * HZ) / runtime->rate)
437 								+ HZ/100);
438 		/* move new_hw_ptr according jiffies not pos variable */
439 		new_hw_ptr = old_hw_ptr;
440 		hw_base = delta;
441 		/* use loop to avoid checks for delta overflows */
442 		/* the delta value is small or zero in most cases */
443 		while (delta > 0) {
444 			new_hw_ptr += runtime->period_size;
445 			if (new_hw_ptr >= runtime->boundary)
446 				new_hw_ptr -= runtime->boundary;
447 			delta--;
448 		}
449 		/* align hw_base to buffer_size */
450 		hw_ptr_error(substream,
451 			     "hw_ptr skipping! %s"
452 			     "(pos=%ld, delta=%ld, period=%ld, "
453 			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
454 			     in_interrupt ? "[Q] " : "",
455 			     (long)pos, (long)hdelta,
456 			     (long)runtime->period_size, jdelta,
457 			     ((hdelta * HZ) / runtime->rate), hw_base,
458 			     (unsigned long)old_hw_ptr,
459 			     (unsigned long)new_hw_ptr);
460 		/* reset values to proper state */
461 		delta = 0;
462 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
463 	}
464  no_jiffies_check:
465 	if (delta > runtime->period_size + runtime->period_size / 2) {
466 		hw_ptr_error(substream,
467 			     "Lost interrupts? %s"
468 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
469 			     "old_hw_ptr=%ld)\n",
470 			     in_interrupt ? "[Q] " : "",
471 			     substream->stream, (long)delta,
472 			     (long)new_hw_ptr,
473 			     (long)old_hw_ptr);
474 	}
475 
476  no_delta_check:
477 	if (runtime->status->hw_ptr == new_hw_ptr)
478 		return 0;
479 
480 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
481 	    runtime->silence_size > 0)
482 		snd_pcm_playback_silence(substream, new_hw_ptr);
483 
484 	if (in_interrupt) {
485 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
486 		if (delta < 0)
487 			delta += runtime->boundary;
488 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
489 		runtime->hw_ptr_interrupt += delta;
490 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
491 			runtime->hw_ptr_interrupt -= runtime->boundary;
492 	}
493 	runtime->hw_ptr_base = hw_base;
494 	runtime->status->hw_ptr = new_hw_ptr;
495 	runtime->hw_ptr_jiffies = jiffies;
496 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
497 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
498 
499 	return snd_pcm_update_state(substream, runtime);
500 }
501 
502 /* CAUTION: call it with irq disabled */
503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
504 {
505 	return snd_pcm_update_hw_ptr0(substream, 0);
506 }
507 
508 /**
509  * snd_pcm_set_ops - set the PCM operators
510  * @pcm: the pcm instance
511  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
512  * @ops: the operator table
513  *
514  * Sets the given PCM operators to the pcm instance.
515  */
516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
517 {
518 	struct snd_pcm_str *stream = &pcm->streams[direction];
519 	struct snd_pcm_substream *substream;
520 
521 	for (substream = stream->substream; substream != NULL; substream = substream->next)
522 		substream->ops = ops;
523 }
524 
525 EXPORT_SYMBOL(snd_pcm_set_ops);
526 
527 /**
528  * snd_pcm_sync - set the PCM sync id
529  * @substream: the pcm substream
530  *
531  * Sets the PCM sync identifier for the card.
532  */
533 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
534 {
535 	struct snd_pcm_runtime *runtime = substream->runtime;
536 
537 	runtime->sync.id32[0] = substream->pcm->card->number;
538 	runtime->sync.id32[1] = -1;
539 	runtime->sync.id32[2] = -1;
540 	runtime->sync.id32[3] = -1;
541 }
542 
543 EXPORT_SYMBOL(snd_pcm_set_sync);
544 
545 /*
546  *  Standard ioctl routine
547  */
548 
549 static inline unsigned int div32(unsigned int a, unsigned int b,
550 				 unsigned int *r)
551 {
552 	if (b == 0) {
553 		*r = 0;
554 		return UINT_MAX;
555 	}
556 	*r = a % b;
557 	return a / b;
558 }
559 
560 static inline unsigned int div_down(unsigned int a, unsigned int b)
561 {
562 	if (b == 0)
563 		return UINT_MAX;
564 	return a / b;
565 }
566 
567 static inline unsigned int div_up(unsigned int a, unsigned int b)
568 {
569 	unsigned int r;
570 	unsigned int q;
571 	if (b == 0)
572 		return UINT_MAX;
573 	q = div32(a, b, &r);
574 	if (r)
575 		++q;
576 	return q;
577 }
578 
579 static inline unsigned int mul(unsigned int a, unsigned int b)
580 {
581 	if (a == 0)
582 		return 0;
583 	if (div_down(UINT_MAX, a) < b)
584 		return UINT_MAX;
585 	return a * b;
586 }
587 
588 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
589 				    unsigned int c, unsigned int *r)
590 {
591 	u_int64_t n = (u_int64_t) a * b;
592 	if (c == 0) {
593 		snd_BUG_ON(!n);
594 		*r = 0;
595 		return UINT_MAX;
596 	}
597 	n = div_u64_rem(n, c, r);
598 	if (n >= UINT_MAX) {
599 		*r = 0;
600 		return UINT_MAX;
601 	}
602 	return n;
603 }
604 
605 /**
606  * snd_interval_refine - refine the interval value of configurator
607  * @i: the interval value to refine
608  * @v: the interval value to refer to
609  *
610  * Refines the interval value with the reference value.
611  * The interval is changed to the range satisfying both intervals.
612  * The interval status (min, max, integer, etc.) are evaluated.
613  *
614  * Returns non-zero if the value is changed, zero if not changed.
615  */
616 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
617 {
618 	int changed = 0;
619 	if (snd_BUG_ON(snd_interval_empty(i)))
620 		return -EINVAL;
621 	if (i->min < v->min) {
622 		i->min = v->min;
623 		i->openmin = v->openmin;
624 		changed = 1;
625 	} else if (i->min == v->min && !i->openmin && v->openmin) {
626 		i->openmin = 1;
627 		changed = 1;
628 	}
629 	if (i->max > v->max) {
630 		i->max = v->max;
631 		i->openmax = v->openmax;
632 		changed = 1;
633 	} else if (i->max == v->max && !i->openmax && v->openmax) {
634 		i->openmax = 1;
635 		changed = 1;
636 	}
637 	if (!i->integer && v->integer) {
638 		i->integer = 1;
639 		changed = 1;
640 	}
641 	if (i->integer) {
642 		if (i->openmin) {
643 			i->min++;
644 			i->openmin = 0;
645 		}
646 		if (i->openmax) {
647 			i->max--;
648 			i->openmax = 0;
649 		}
650 	} else if (!i->openmin && !i->openmax && i->min == i->max)
651 		i->integer = 1;
652 	if (snd_interval_checkempty(i)) {
653 		snd_interval_none(i);
654 		return -EINVAL;
655 	}
656 	return changed;
657 }
658 
659 EXPORT_SYMBOL(snd_interval_refine);
660 
661 static int snd_interval_refine_first(struct snd_interval *i)
662 {
663 	if (snd_BUG_ON(snd_interval_empty(i)))
664 		return -EINVAL;
665 	if (snd_interval_single(i))
666 		return 0;
667 	i->max = i->min;
668 	i->openmax = i->openmin;
669 	if (i->openmax)
670 		i->max++;
671 	return 1;
672 }
673 
674 static int snd_interval_refine_last(struct snd_interval *i)
675 {
676 	if (snd_BUG_ON(snd_interval_empty(i)))
677 		return -EINVAL;
678 	if (snd_interval_single(i))
679 		return 0;
680 	i->min = i->max;
681 	i->openmin = i->openmax;
682 	if (i->openmin)
683 		i->min--;
684 	return 1;
685 }
686 
687 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
688 {
689 	if (a->empty || b->empty) {
690 		snd_interval_none(c);
691 		return;
692 	}
693 	c->empty = 0;
694 	c->min = mul(a->min, b->min);
695 	c->openmin = (a->openmin || b->openmin);
696 	c->max = mul(a->max,  b->max);
697 	c->openmax = (a->openmax || b->openmax);
698 	c->integer = (a->integer && b->integer);
699 }
700 
701 /**
702  * snd_interval_div - refine the interval value with division
703  * @a: dividend
704  * @b: divisor
705  * @c: quotient
706  *
707  * c = a / b
708  *
709  * Returns non-zero if the value is changed, zero if not changed.
710  */
711 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
712 {
713 	unsigned int r;
714 	if (a->empty || b->empty) {
715 		snd_interval_none(c);
716 		return;
717 	}
718 	c->empty = 0;
719 	c->min = div32(a->min, b->max, &r);
720 	c->openmin = (r || a->openmin || b->openmax);
721 	if (b->min > 0) {
722 		c->max = div32(a->max, b->min, &r);
723 		if (r) {
724 			c->max++;
725 			c->openmax = 1;
726 		} else
727 			c->openmax = (a->openmax || b->openmin);
728 	} else {
729 		c->max = UINT_MAX;
730 		c->openmax = 0;
731 	}
732 	c->integer = 0;
733 }
734 
735 /**
736  * snd_interval_muldivk - refine the interval value
737  * @a: dividend 1
738  * @b: dividend 2
739  * @k: divisor (as integer)
740  * @c: result
741   *
742  * c = a * b / k
743  *
744  * Returns non-zero if the value is changed, zero if not changed.
745  */
746 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
747 		      unsigned int k, struct snd_interval *c)
748 {
749 	unsigned int r;
750 	if (a->empty || b->empty) {
751 		snd_interval_none(c);
752 		return;
753 	}
754 	c->empty = 0;
755 	c->min = muldiv32(a->min, b->min, k, &r);
756 	c->openmin = (r || a->openmin || b->openmin);
757 	c->max = muldiv32(a->max, b->max, k, &r);
758 	if (r) {
759 		c->max++;
760 		c->openmax = 1;
761 	} else
762 		c->openmax = (a->openmax || b->openmax);
763 	c->integer = 0;
764 }
765 
766 /**
767  * snd_interval_mulkdiv - refine the interval value
768  * @a: dividend 1
769  * @k: dividend 2 (as integer)
770  * @b: divisor
771  * @c: result
772  *
773  * c = a * k / b
774  *
775  * Returns non-zero if the value is changed, zero if not changed.
776  */
777 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
778 		      const struct snd_interval *b, struct snd_interval *c)
779 {
780 	unsigned int r;
781 	if (a->empty || b->empty) {
782 		snd_interval_none(c);
783 		return;
784 	}
785 	c->empty = 0;
786 	c->min = muldiv32(a->min, k, b->max, &r);
787 	c->openmin = (r || a->openmin || b->openmax);
788 	if (b->min > 0) {
789 		c->max = muldiv32(a->max, k, b->min, &r);
790 		if (r) {
791 			c->max++;
792 			c->openmax = 1;
793 		} else
794 			c->openmax = (a->openmax || b->openmin);
795 	} else {
796 		c->max = UINT_MAX;
797 		c->openmax = 0;
798 	}
799 	c->integer = 0;
800 }
801 
802 /* ---- */
803 
804 
805 /**
806  * snd_interval_ratnum - refine the interval value
807  * @i: interval to refine
808  * @rats_count: number of ratnum_t
809  * @rats: ratnum_t array
810  * @nump: pointer to store the resultant numerator
811  * @denp: pointer to store the resultant denominator
812  *
813  * Returns non-zero if the value is changed, zero if not changed.
814  */
815 int snd_interval_ratnum(struct snd_interval *i,
816 			unsigned int rats_count, struct snd_ratnum *rats,
817 			unsigned int *nump, unsigned int *denp)
818 {
819 	unsigned int best_num, best_den;
820 	int best_diff;
821 	unsigned int k;
822 	struct snd_interval t;
823 	int err;
824 	unsigned int result_num, result_den;
825 	int result_diff;
826 
827 	best_num = best_den = best_diff = 0;
828 	for (k = 0; k < rats_count; ++k) {
829 		unsigned int num = rats[k].num;
830 		unsigned int den;
831 		unsigned int q = i->min;
832 		int diff;
833 		if (q == 0)
834 			q = 1;
835 		den = div_up(num, q);
836 		if (den < rats[k].den_min)
837 			continue;
838 		if (den > rats[k].den_max)
839 			den = rats[k].den_max;
840 		else {
841 			unsigned int r;
842 			r = (den - rats[k].den_min) % rats[k].den_step;
843 			if (r != 0)
844 				den -= r;
845 		}
846 		diff = num - q * den;
847 		if (diff < 0)
848 			diff = -diff;
849 		if (best_num == 0 ||
850 		    diff * best_den < best_diff * den) {
851 			best_diff = diff;
852 			best_den = den;
853 			best_num = num;
854 		}
855 	}
856 	if (best_den == 0) {
857 		i->empty = 1;
858 		return -EINVAL;
859 	}
860 	t.min = div_down(best_num, best_den);
861 	t.openmin = !!(best_num % best_den);
862 
863 	result_num = best_num;
864 	result_diff = best_diff;
865 	result_den = best_den;
866 	best_num = best_den = best_diff = 0;
867 	for (k = 0; k < rats_count; ++k) {
868 		unsigned int num = rats[k].num;
869 		unsigned int den;
870 		unsigned int q = i->max;
871 		int diff;
872 		if (q == 0) {
873 			i->empty = 1;
874 			return -EINVAL;
875 		}
876 		den = div_down(num, q);
877 		if (den > rats[k].den_max)
878 			continue;
879 		if (den < rats[k].den_min)
880 			den = rats[k].den_min;
881 		else {
882 			unsigned int r;
883 			r = (den - rats[k].den_min) % rats[k].den_step;
884 			if (r != 0)
885 				den += rats[k].den_step - r;
886 		}
887 		diff = q * den - num;
888 		if (diff < 0)
889 			diff = -diff;
890 		if (best_num == 0 ||
891 		    diff * best_den < best_diff * den) {
892 			best_diff = diff;
893 			best_den = den;
894 			best_num = num;
895 		}
896 	}
897 	if (best_den == 0) {
898 		i->empty = 1;
899 		return -EINVAL;
900 	}
901 	t.max = div_up(best_num, best_den);
902 	t.openmax = !!(best_num % best_den);
903 	t.integer = 0;
904 	err = snd_interval_refine(i, &t);
905 	if (err < 0)
906 		return err;
907 
908 	if (snd_interval_single(i)) {
909 		if (best_diff * result_den < result_diff * best_den) {
910 			result_num = best_num;
911 			result_den = best_den;
912 		}
913 		if (nump)
914 			*nump = result_num;
915 		if (denp)
916 			*denp = result_den;
917 	}
918 	return err;
919 }
920 
921 EXPORT_SYMBOL(snd_interval_ratnum);
922 
923 /**
924  * snd_interval_ratden - refine the interval value
925  * @i: interval to refine
926  * @rats_count: number of struct ratden
927  * @rats: struct ratden array
928  * @nump: pointer to store the resultant numerator
929  * @denp: pointer to store the resultant denominator
930  *
931  * Returns non-zero if the value is changed, zero if not changed.
932  */
933 static int snd_interval_ratden(struct snd_interval *i,
934 			       unsigned int rats_count, struct snd_ratden *rats,
935 			       unsigned int *nump, unsigned int *denp)
936 {
937 	unsigned int best_num, best_diff, best_den;
938 	unsigned int k;
939 	struct snd_interval t;
940 	int err;
941 
942 	best_num = best_den = best_diff = 0;
943 	for (k = 0; k < rats_count; ++k) {
944 		unsigned int num;
945 		unsigned int den = rats[k].den;
946 		unsigned int q = i->min;
947 		int diff;
948 		num = mul(q, den);
949 		if (num > rats[k].num_max)
950 			continue;
951 		if (num < rats[k].num_min)
952 			num = rats[k].num_max;
953 		else {
954 			unsigned int r;
955 			r = (num - rats[k].num_min) % rats[k].num_step;
956 			if (r != 0)
957 				num += rats[k].num_step - r;
958 		}
959 		diff = num - q * den;
960 		if (best_num == 0 ||
961 		    diff * best_den < best_diff * den) {
962 			best_diff = diff;
963 			best_den = den;
964 			best_num = num;
965 		}
966 	}
967 	if (best_den == 0) {
968 		i->empty = 1;
969 		return -EINVAL;
970 	}
971 	t.min = div_down(best_num, best_den);
972 	t.openmin = !!(best_num % best_den);
973 
974 	best_num = best_den = best_diff = 0;
975 	for (k = 0; k < rats_count; ++k) {
976 		unsigned int num;
977 		unsigned int den = rats[k].den;
978 		unsigned int q = i->max;
979 		int diff;
980 		num = mul(q, den);
981 		if (num < rats[k].num_min)
982 			continue;
983 		if (num > rats[k].num_max)
984 			num = rats[k].num_max;
985 		else {
986 			unsigned int r;
987 			r = (num - rats[k].num_min) % rats[k].num_step;
988 			if (r != 0)
989 				num -= r;
990 		}
991 		diff = q * den - num;
992 		if (best_num == 0 ||
993 		    diff * best_den < best_diff * den) {
994 			best_diff = diff;
995 			best_den = den;
996 			best_num = num;
997 		}
998 	}
999 	if (best_den == 0) {
1000 		i->empty = 1;
1001 		return -EINVAL;
1002 	}
1003 	t.max = div_up(best_num, best_den);
1004 	t.openmax = !!(best_num % best_den);
1005 	t.integer = 0;
1006 	err = snd_interval_refine(i, &t);
1007 	if (err < 0)
1008 		return err;
1009 
1010 	if (snd_interval_single(i)) {
1011 		if (nump)
1012 			*nump = best_num;
1013 		if (denp)
1014 			*denp = best_den;
1015 	}
1016 	return err;
1017 }
1018 
1019 /**
1020  * snd_interval_list - refine the interval value from the list
1021  * @i: the interval value to refine
1022  * @count: the number of elements in the list
1023  * @list: the value list
1024  * @mask: the bit-mask to evaluate
1025  *
1026  * Refines the interval value from the list.
1027  * When mask is non-zero, only the elements corresponding to bit 1 are
1028  * evaluated.
1029  *
1030  * Returns non-zero if the value is changed, zero if not changed.
1031  */
1032 int snd_interval_list(struct snd_interval *i, unsigned int count,
1033 		      const unsigned int *list, unsigned int mask)
1034 {
1035         unsigned int k;
1036 	struct snd_interval list_range;
1037 
1038 	if (!count) {
1039 		i->empty = 1;
1040 		return -EINVAL;
1041 	}
1042 	snd_interval_any(&list_range);
1043 	list_range.min = UINT_MAX;
1044 	list_range.max = 0;
1045         for (k = 0; k < count; k++) {
1046 		if (mask && !(mask & (1 << k)))
1047 			continue;
1048 		if (!snd_interval_test(i, list[k]))
1049 			continue;
1050 		list_range.min = min(list_range.min, list[k]);
1051 		list_range.max = max(list_range.max, list[k]);
1052         }
1053 	return snd_interval_refine(i, &list_range);
1054 }
1055 
1056 EXPORT_SYMBOL(snd_interval_list);
1057 
1058 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1059 {
1060 	unsigned int n;
1061 	int changed = 0;
1062 	n = (i->min - min) % step;
1063 	if (n != 0 || i->openmin) {
1064 		i->min += step - n;
1065 		changed = 1;
1066 	}
1067 	n = (i->max - min) % step;
1068 	if (n != 0 || i->openmax) {
1069 		i->max -= n;
1070 		changed = 1;
1071 	}
1072 	if (snd_interval_checkempty(i)) {
1073 		i->empty = 1;
1074 		return -EINVAL;
1075 	}
1076 	return changed;
1077 }
1078 
1079 /* Info constraints helpers */
1080 
1081 /**
1082  * snd_pcm_hw_rule_add - add the hw-constraint rule
1083  * @runtime: the pcm runtime instance
1084  * @cond: condition bits
1085  * @var: the variable to evaluate
1086  * @func: the evaluation function
1087  * @private: the private data pointer passed to function
1088  * @dep: the dependent variables
1089  *
1090  * Returns zero if successful, or a negative error code on failure.
1091  */
1092 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1093 			int var,
1094 			snd_pcm_hw_rule_func_t func, void *private,
1095 			int dep, ...)
1096 {
1097 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1098 	struct snd_pcm_hw_rule *c;
1099 	unsigned int k;
1100 	va_list args;
1101 	va_start(args, dep);
1102 	if (constrs->rules_num >= constrs->rules_all) {
1103 		struct snd_pcm_hw_rule *new;
1104 		unsigned int new_rules = constrs->rules_all + 16;
1105 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1106 		if (!new) {
1107 			va_end(args);
1108 			return -ENOMEM;
1109 		}
1110 		if (constrs->rules) {
1111 			memcpy(new, constrs->rules,
1112 			       constrs->rules_num * sizeof(*c));
1113 			kfree(constrs->rules);
1114 		}
1115 		constrs->rules = new;
1116 		constrs->rules_all = new_rules;
1117 	}
1118 	c = &constrs->rules[constrs->rules_num];
1119 	c->cond = cond;
1120 	c->func = func;
1121 	c->var = var;
1122 	c->private = private;
1123 	k = 0;
1124 	while (1) {
1125 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1126 			va_end(args);
1127 			return -EINVAL;
1128 		}
1129 		c->deps[k++] = dep;
1130 		if (dep < 0)
1131 			break;
1132 		dep = va_arg(args, int);
1133 	}
1134 	constrs->rules_num++;
1135 	va_end(args);
1136 	return 0;
1137 }
1138 
1139 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1140 
1141 /**
1142  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1143  * @runtime: PCM runtime instance
1144  * @var: hw_params variable to apply the mask
1145  * @mask: the bitmap mask
1146  *
1147  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1148  */
1149 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1150 			       u_int32_t mask)
1151 {
1152 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1153 	struct snd_mask *maskp = constrs_mask(constrs, var);
1154 	*maskp->bits &= mask;
1155 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1156 	if (*maskp->bits == 0)
1157 		return -EINVAL;
1158 	return 0;
1159 }
1160 
1161 /**
1162  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1163  * @runtime: PCM runtime instance
1164  * @var: hw_params variable to apply the mask
1165  * @mask: the 64bit bitmap mask
1166  *
1167  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1168  */
1169 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1170 				 u_int64_t mask)
1171 {
1172 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1173 	struct snd_mask *maskp = constrs_mask(constrs, var);
1174 	maskp->bits[0] &= (u_int32_t)mask;
1175 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1176 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1177 	if (! maskp->bits[0] && ! maskp->bits[1])
1178 		return -EINVAL;
1179 	return 0;
1180 }
1181 
1182 /**
1183  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1184  * @runtime: PCM runtime instance
1185  * @var: hw_params variable to apply the integer constraint
1186  *
1187  * Apply the constraint of integer to an interval parameter.
1188  */
1189 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1190 {
1191 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1192 	return snd_interval_setinteger(constrs_interval(constrs, var));
1193 }
1194 
1195 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1196 
1197 /**
1198  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1199  * @runtime: PCM runtime instance
1200  * @var: hw_params variable to apply the range
1201  * @min: the minimal value
1202  * @max: the maximal value
1203  *
1204  * Apply the min/max range constraint to an interval parameter.
1205  */
1206 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1207 				 unsigned int min, unsigned int max)
1208 {
1209 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1210 	struct snd_interval t;
1211 	t.min = min;
1212 	t.max = max;
1213 	t.openmin = t.openmax = 0;
1214 	t.integer = 0;
1215 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1216 }
1217 
1218 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1219 
1220 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1221 				struct snd_pcm_hw_rule *rule)
1222 {
1223 	struct snd_pcm_hw_constraint_list *list = rule->private;
1224 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1225 }
1226 
1227 
1228 /**
1229  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1230  * @runtime: PCM runtime instance
1231  * @cond: condition bits
1232  * @var: hw_params variable to apply the list constraint
1233  * @l: list
1234  *
1235  * Apply the list of constraints to an interval parameter.
1236  */
1237 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1238 			       unsigned int cond,
1239 			       snd_pcm_hw_param_t var,
1240 			       struct snd_pcm_hw_constraint_list *l)
1241 {
1242 	return snd_pcm_hw_rule_add(runtime, cond, var,
1243 				   snd_pcm_hw_rule_list, l,
1244 				   var, -1);
1245 }
1246 
1247 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1248 
1249 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1250 				   struct snd_pcm_hw_rule *rule)
1251 {
1252 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1253 	unsigned int num = 0, den = 0;
1254 	int err;
1255 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1256 				  r->nrats, r->rats, &num, &den);
1257 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1258 		params->rate_num = num;
1259 		params->rate_den = den;
1260 	}
1261 	return err;
1262 }
1263 
1264 /**
1265  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1266  * @runtime: PCM runtime instance
1267  * @cond: condition bits
1268  * @var: hw_params variable to apply the ratnums constraint
1269  * @r: struct snd_ratnums constriants
1270  */
1271 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1272 				  unsigned int cond,
1273 				  snd_pcm_hw_param_t var,
1274 				  struct snd_pcm_hw_constraint_ratnums *r)
1275 {
1276 	return snd_pcm_hw_rule_add(runtime, cond, var,
1277 				   snd_pcm_hw_rule_ratnums, r,
1278 				   var, -1);
1279 }
1280 
1281 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1282 
1283 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1284 				   struct snd_pcm_hw_rule *rule)
1285 {
1286 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1287 	unsigned int num = 0, den = 0;
1288 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1289 				  r->nrats, r->rats, &num, &den);
1290 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1291 		params->rate_num = num;
1292 		params->rate_den = den;
1293 	}
1294 	return err;
1295 }
1296 
1297 /**
1298  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1299  * @runtime: PCM runtime instance
1300  * @cond: condition bits
1301  * @var: hw_params variable to apply the ratdens constraint
1302  * @r: struct snd_ratdens constriants
1303  */
1304 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1305 				  unsigned int cond,
1306 				  snd_pcm_hw_param_t var,
1307 				  struct snd_pcm_hw_constraint_ratdens *r)
1308 {
1309 	return snd_pcm_hw_rule_add(runtime, cond, var,
1310 				   snd_pcm_hw_rule_ratdens, r,
1311 				   var, -1);
1312 }
1313 
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1315 
1316 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1317 				  struct snd_pcm_hw_rule *rule)
1318 {
1319 	unsigned int l = (unsigned long) rule->private;
1320 	int width = l & 0xffff;
1321 	unsigned int msbits = l >> 16;
1322 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1323 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1324 		params->msbits = msbits;
1325 	return 0;
1326 }
1327 
1328 /**
1329  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1330  * @runtime: PCM runtime instance
1331  * @cond: condition bits
1332  * @width: sample bits width
1333  * @msbits: msbits width
1334  */
1335 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1336 				 unsigned int cond,
1337 				 unsigned int width,
1338 				 unsigned int msbits)
1339 {
1340 	unsigned long l = (msbits << 16) | width;
1341 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1342 				    snd_pcm_hw_rule_msbits,
1343 				    (void*) l,
1344 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1345 }
1346 
1347 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1348 
1349 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1350 				struct snd_pcm_hw_rule *rule)
1351 {
1352 	unsigned long step = (unsigned long) rule->private;
1353 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1354 }
1355 
1356 /**
1357  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1358  * @runtime: PCM runtime instance
1359  * @cond: condition bits
1360  * @var: hw_params variable to apply the step constraint
1361  * @step: step size
1362  */
1363 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1364 			       unsigned int cond,
1365 			       snd_pcm_hw_param_t var,
1366 			       unsigned long step)
1367 {
1368 	return snd_pcm_hw_rule_add(runtime, cond, var,
1369 				   snd_pcm_hw_rule_step, (void *) step,
1370 				   var, -1);
1371 }
1372 
1373 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1374 
1375 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1376 {
1377 	static unsigned int pow2_sizes[] = {
1378 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1379 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1380 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1381 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1382 	};
1383 	return snd_interval_list(hw_param_interval(params, rule->var),
1384 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1385 }
1386 
1387 /**
1388  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1389  * @runtime: PCM runtime instance
1390  * @cond: condition bits
1391  * @var: hw_params variable to apply the power-of-2 constraint
1392  */
1393 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1394 			       unsigned int cond,
1395 			       snd_pcm_hw_param_t var)
1396 {
1397 	return snd_pcm_hw_rule_add(runtime, cond, var,
1398 				   snd_pcm_hw_rule_pow2, NULL,
1399 				   var, -1);
1400 }
1401 
1402 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1403 
1404 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1405 					   struct snd_pcm_hw_rule *rule)
1406 {
1407 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1408 	struct snd_interval *rate;
1409 
1410 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1411 	return snd_interval_list(rate, 1, &base_rate, 0);
1412 }
1413 
1414 /**
1415  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1416  * @runtime: PCM runtime instance
1417  * @base_rate: the rate at which the hardware does not resample
1418  */
1419 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1420 			       unsigned int base_rate)
1421 {
1422 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1423 				   SNDRV_PCM_HW_PARAM_RATE,
1424 				   snd_pcm_hw_rule_noresample_func,
1425 				   (void *)(uintptr_t)base_rate,
1426 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1427 }
1428 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1429 
1430 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1431 				  snd_pcm_hw_param_t var)
1432 {
1433 	if (hw_is_mask(var)) {
1434 		snd_mask_any(hw_param_mask(params, var));
1435 		params->cmask |= 1 << var;
1436 		params->rmask |= 1 << var;
1437 		return;
1438 	}
1439 	if (hw_is_interval(var)) {
1440 		snd_interval_any(hw_param_interval(params, var));
1441 		params->cmask |= 1 << var;
1442 		params->rmask |= 1 << var;
1443 		return;
1444 	}
1445 	snd_BUG();
1446 }
1447 
1448 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1449 {
1450 	unsigned int k;
1451 	memset(params, 0, sizeof(*params));
1452 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1453 		_snd_pcm_hw_param_any(params, k);
1454 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1455 		_snd_pcm_hw_param_any(params, k);
1456 	params->info = ~0U;
1457 }
1458 
1459 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1460 
1461 /**
1462  * snd_pcm_hw_param_value - return @params field @var value
1463  * @params: the hw_params instance
1464  * @var: parameter to retrieve
1465  * @dir: pointer to the direction (-1,0,1) or %NULL
1466  *
1467  * Return the value for field @var if it's fixed in configuration space
1468  * defined by @params. Return -%EINVAL otherwise.
1469  */
1470 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1471 			   snd_pcm_hw_param_t var, int *dir)
1472 {
1473 	if (hw_is_mask(var)) {
1474 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1475 		if (!snd_mask_single(mask))
1476 			return -EINVAL;
1477 		if (dir)
1478 			*dir = 0;
1479 		return snd_mask_value(mask);
1480 	}
1481 	if (hw_is_interval(var)) {
1482 		const struct snd_interval *i = hw_param_interval_c(params, var);
1483 		if (!snd_interval_single(i))
1484 			return -EINVAL;
1485 		if (dir)
1486 			*dir = i->openmin;
1487 		return snd_interval_value(i);
1488 	}
1489 	return -EINVAL;
1490 }
1491 
1492 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1493 
1494 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1495 				snd_pcm_hw_param_t var)
1496 {
1497 	if (hw_is_mask(var)) {
1498 		snd_mask_none(hw_param_mask(params, var));
1499 		params->cmask |= 1 << var;
1500 		params->rmask |= 1 << var;
1501 	} else if (hw_is_interval(var)) {
1502 		snd_interval_none(hw_param_interval(params, var));
1503 		params->cmask |= 1 << var;
1504 		params->rmask |= 1 << var;
1505 	} else {
1506 		snd_BUG();
1507 	}
1508 }
1509 
1510 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1511 
1512 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1513 				   snd_pcm_hw_param_t var)
1514 {
1515 	int changed;
1516 	if (hw_is_mask(var))
1517 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1518 	else if (hw_is_interval(var))
1519 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1520 	else
1521 		return -EINVAL;
1522 	if (changed) {
1523 		params->cmask |= 1 << var;
1524 		params->rmask |= 1 << var;
1525 	}
1526 	return changed;
1527 }
1528 
1529 
1530 /**
1531  * snd_pcm_hw_param_first - refine config space and return minimum value
1532  * @pcm: PCM instance
1533  * @params: the hw_params instance
1534  * @var: parameter to retrieve
1535  * @dir: pointer to the direction (-1,0,1) or %NULL
1536  *
1537  * Inside configuration space defined by @params remove from @var all
1538  * values > minimum. Reduce configuration space accordingly.
1539  * Return the minimum.
1540  */
1541 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1542 			   struct snd_pcm_hw_params *params,
1543 			   snd_pcm_hw_param_t var, int *dir)
1544 {
1545 	int changed = _snd_pcm_hw_param_first(params, var);
1546 	if (changed < 0)
1547 		return changed;
1548 	if (params->rmask) {
1549 		int err = snd_pcm_hw_refine(pcm, params);
1550 		if (snd_BUG_ON(err < 0))
1551 			return err;
1552 	}
1553 	return snd_pcm_hw_param_value(params, var, dir);
1554 }
1555 
1556 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1557 
1558 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1559 				  snd_pcm_hw_param_t var)
1560 {
1561 	int changed;
1562 	if (hw_is_mask(var))
1563 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1564 	else if (hw_is_interval(var))
1565 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1566 	else
1567 		return -EINVAL;
1568 	if (changed) {
1569 		params->cmask |= 1 << var;
1570 		params->rmask |= 1 << var;
1571 	}
1572 	return changed;
1573 }
1574 
1575 
1576 /**
1577  * snd_pcm_hw_param_last - refine config space and return maximum value
1578  * @pcm: PCM instance
1579  * @params: the hw_params instance
1580  * @var: parameter to retrieve
1581  * @dir: pointer to the direction (-1,0,1) or %NULL
1582  *
1583  * Inside configuration space defined by @params remove from @var all
1584  * values < maximum. Reduce configuration space accordingly.
1585  * Return the maximum.
1586  */
1587 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1588 			  struct snd_pcm_hw_params *params,
1589 			  snd_pcm_hw_param_t var, int *dir)
1590 {
1591 	int changed = _snd_pcm_hw_param_last(params, var);
1592 	if (changed < 0)
1593 		return changed;
1594 	if (params->rmask) {
1595 		int err = snd_pcm_hw_refine(pcm, params);
1596 		if (snd_BUG_ON(err < 0))
1597 			return err;
1598 	}
1599 	return snd_pcm_hw_param_value(params, var, dir);
1600 }
1601 
1602 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1603 
1604 /**
1605  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1606  * @pcm: PCM instance
1607  * @params: the hw_params instance
1608  *
1609  * Choose one configuration from configuration space defined by @params.
1610  * The configuration chosen is that obtained fixing in this order:
1611  * first access, first format, first subformat, min channels,
1612  * min rate, min period time, max buffer size, min tick time
1613  */
1614 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1615 			     struct snd_pcm_hw_params *params)
1616 {
1617 	static int vars[] = {
1618 		SNDRV_PCM_HW_PARAM_ACCESS,
1619 		SNDRV_PCM_HW_PARAM_FORMAT,
1620 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1621 		SNDRV_PCM_HW_PARAM_CHANNELS,
1622 		SNDRV_PCM_HW_PARAM_RATE,
1623 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1624 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1625 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1626 		-1
1627 	};
1628 	int err, *v;
1629 
1630 	for (v = vars; *v != -1; v++) {
1631 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1632 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1633 		else
1634 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1635 		if (snd_BUG_ON(err < 0))
1636 			return err;
1637 	}
1638 	return 0;
1639 }
1640 
1641 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1642 				   void *arg)
1643 {
1644 	struct snd_pcm_runtime *runtime = substream->runtime;
1645 	unsigned long flags;
1646 	snd_pcm_stream_lock_irqsave(substream, flags);
1647 	if (snd_pcm_running(substream) &&
1648 	    snd_pcm_update_hw_ptr(substream) >= 0)
1649 		runtime->status->hw_ptr %= runtime->buffer_size;
1650 	else
1651 		runtime->status->hw_ptr = 0;
1652 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1653 	return 0;
1654 }
1655 
1656 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1657 					  void *arg)
1658 {
1659 	struct snd_pcm_channel_info *info = arg;
1660 	struct snd_pcm_runtime *runtime = substream->runtime;
1661 	int width;
1662 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1663 		info->offset = -1;
1664 		return 0;
1665 	}
1666 	width = snd_pcm_format_physical_width(runtime->format);
1667 	if (width < 0)
1668 		return width;
1669 	info->offset = 0;
1670 	switch (runtime->access) {
1671 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1672 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1673 		info->first = info->channel * width;
1674 		info->step = runtime->channels * width;
1675 		break;
1676 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1677 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1678 	{
1679 		size_t size = runtime->dma_bytes / runtime->channels;
1680 		info->first = info->channel * size * 8;
1681 		info->step = width;
1682 		break;
1683 	}
1684 	default:
1685 		snd_BUG();
1686 		break;
1687 	}
1688 	return 0;
1689 }
1690 
1691 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1692 				       void *arg)
1693 {
1694 	struct snd_pcm_hw_params *params = arg;
1695 	snd_pcm_format_t format;
1696 	int channels, width;
1697 
1698 	params->fifo_size = substream->runtime->hw.fifo_size;
1699 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1700 		format = params_format(params);
1701 		channels = params_channels(params);
1702 		width = snd_pcm_format_physical_width(format);
1703 		params->fifo_size /= width * channels;
1704 	}
1705 	return 0;
1706 }
1707 
1708 /**
1709  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1710  * @substream: the pcm substream instance
1711  * @cmd: ioctl command
1712  * @arg: ioctl argument
1713  *
1714  * Processes the generic ioctl commands for PCM.
1715  * Can be passed as the ioctl callback for PCM ops.
1716  *
1717  * Returns zero if successful, or a negative error code on failure.
1718  */
1719 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1720 		      unsigned int cmd, void *arg)
1721 {
1722 	switch (cmd) {
1723 	case SNDRV_PCM_IOCTL1_INFO:
1724 		return 0;
1725 	case SNDRV_PCM_IOCTL1_RESET:
1726 		return snd_pcm_lib_ioctl_reset(substream, arg);
1727 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1728 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1729 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1730 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1731 	}
1732 	return -ENXIO;
1733 }
1734 
1735 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1736 
1737 /**
1738  * snd_pcm_period_elapsed - update the pcm status for the next period
1739  * @substream: the pcm substream instance
1740  *
1741  * This function is called from the interrupt handler when the
1742  * PCM has processed the period size.  It will update the current
1743  * pointer, wake up sleepers, etc.
1744  *
1745  * Even if more than one periods have elapsed since the last call, you
1746  * have to call this only once.
1747  */
1748 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1749 {
1750 	struct snd_pcm_runtime *runtime;
1751 	unsigned long flags;
1752 
1753 	if (PCM_RUNTIME_CHECK(substream))
1754 		return;
1755 	runtime = substream->runtime;
1756 
1757 	if (runtime->transfer_ack_begin)
1758 		runtime->transfer_ack_begin(substream);
1759 
1760 	snd_pcm_stream_lock_irqsave(substream, flags);
1761 	if (!snd_pcm_running(substream) ||
1762 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1763 		goto _end;
1764 
1765 	if (substream->timer_running)
1766 		snd_timer_interrupt(substream->timer, 1);
1767  _end:
1768 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1769 	if (runtime->transfer_ack_end)
1770 		runtime->transfer_ack_end(substream);
1771 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1772 }
1773 
1774 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1775 
1776 /*
1777  * Wait until avail_min data becomes available
1778  * Returns a negative error code if any error occurs during operation.
1779  * The available space is stored on availp.  When err = 0 and avail = 0
1780  * on the capture stream, it indicates the stream is in DRAINING state.
1781  */
1782 static int wait_for_avail(struct snd_pcm_substream *substream,
1783 			      snd_pcm_uframes_t *availp)
1784 {
1785 	struct snd_pcm_runtime *runtime = substream->runtime;
1786 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1787 	wait_queue_t wait;
1788 	int err = 0;
1789 	snd_pcm_uframes_t avail = 0;
1790 	long wait_time, tout;
1791 
1792 	init_waitqueue_entry(&wait, current);
1793 	set_current_state(TASK_INTERRUPTIBLE);
1794 	add_wait_queue(&runtime->tsleep, &wait);
1795 
1796 	if (runtime->no_period_wakeup)
1797 		wait_time = MAX_SCHEDULE_TIMEOUT;
1798 	else {
1799 		wait_time = 10;
1800 		if (runtime->rate) {
1801 			long t = runtime->period_size * 2 / runtime->rate;
1802 			wait_time = max(t, wait_time);
1803 		}
1804 		wait_time = msecs_to_jiffies(wait_time * 1000);
1805 	}
1806 
1807 	for (;;) {
1808 		if (signal_pending(current)) {
1809 			err = -ERESTARTSYS;
1810 			break;
1811 		}
1812 
1813 		/*
1814 		 * We need to check if space became available already
1815 		 * (and thus the wakeup happened already) first to close
1816 		 * the race of space already having become available.
1817 		 * This check must happen after been added to the waitqueue
1818 		 * and having current state be INTERRUPTIBLE.
1819 		 */
1820 		if (is_playback)
1821 			avail = snd_pcm_playback_avail(runtime);
1822 		else
1823 			avail = snd_pcm_capture_avail(runtime);
1824 		if (avail >= runtime->twake)
1825 			break;
1826 		snd_pcm_stream_unlock_irq(substream);
1827 
1828 		tout = schedule_timeout(wait_time);
1829 
1830 		snd_pcm_stream_lock_irq(substream);
1831 		set_current_state(TASK_INTERRUPTIBLE);
1832 		switch (runtime->status->state) {
1833 		case SNDRV_PCM_STATE_SUSPENDED:
1834 			err = -ESTRPIPE;
1835 			goto _endloop;
1836 		case SNDRV_PCM_STATE_XRUN:
1837 			err = -EPIPE;
1838 			goto _endloop;
1839 		case SNDRV_PCM_STATE_DRAINING:
1840 			if (is_playback)
1841 				err = -EPIPE;
1842 			else
1843 				avail = 0; /* indicate draining */
1844 			goto _endloop;
1845 		case SNDRV_PCM_STATE_OPEN:
1846 		case SNDRV_PCM_STATE_SETUP:
1847 		case SNDRV_PCM_STATE_DISCONNECTED:
1848 			err = -EBADFD;
1849 			goto _endloop;
1850 		}
1851 		if (!tout) {
1852 			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1853 				   is_playback ? "playback" : "capture");
1854 			err = -EIO;
1855 			break;
1856 		}
1857 	}
1858  _endloop:
1859 	set_current_state(TASK_RUNNING);
1860 	remove_wait_queue(&runtime->tsleep, &wait);
1861 	*availp = avail;
1862 	return err;
1863 }
1864 
1865 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1866 				      unsigned int hwoff,
1867 				      unsigned long data, unsigned int off,
1868 				      snd_pcm_uframes_t frames)
1869 {
1870 	struct snd_pcm_runtime *runtime = substream->runtime;
1871 	int err;
1872 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1873 	if (substream->ops->copy) {
1874 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1875 			return err;
1876 	} else {
1877 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1878 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1879 			return -EFAULT;
1880 	}
1881 	return 0;
1882 }
1883 
1884 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1885 			  unsigned long data, unsigned int off,
1886 			  snd_pcm_uframes_t size);
1887 
1888 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1889 					    unsigned long data,
1890 					    snd_pcm_uframes_t size,
1891 					    int nonblock,
1892 					    transfer_f transfer)
1893 {
1894 	struct snd_pcm_runtime *runtime = substream->runtime;
1895 	snd_pcm_uframes_t xfer = 0;
1896 	snd_pcm_uframes_t offset = 0;
1897 	int err = 0;
1898 
1899 	if (size == 0)
1900 		return 0;
1901 
1902 	snd_pcm_stream_lock_irq(substream);
1903 	switch (runtime->status->state) {
1904 	case SNDRV_PCM_STATE_PREPARED:
1905 	case SNDRV_PCM_STATE_RUNNING:
1906 	case SNDRV_PCM_STATE_PAUSED:
1907 		break;
1908 	case SNDRV_PCM_STATE_XRUN:
1909 		err = -EPIPE;
1910 		goto _end_unlock;
1911 	case SNDRV_PCM_STATE_SUSPENDED:
1912 		err = -ESTRPIPE;
1913 		goto _end_unlock;
1914 	default:
1915 		err = -EBADFD;
1916 		goto _end_unlock;
1917 	}
1918 
1919 	runtime->twake = runtime->control->avail_min ? : 1;
1920 	while (size > 0) {
1921 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1922 		snd_pcm_uframes_t avail;
1923 		snd_pcm_uframes_t cont;
1924 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1925 			snd_pcm_update_hw_ptr(substream);
1926 		avail = snd_pcm_playback_avail(runtime);
1927 		if (!avail) {
1928 			if (nonblock) {
1929 				err = -EAGAIN;
1930 				goto _end_unlock;
1931 			}
1932 			runtime->twake = min_t(snd_pcm_uframes_t, size,
1933 					runtime->control->avail_min ? : 1);
1934 			err = wait_for_avail(substream, &avail);
1935 			if (err < 0)
1936 				goto _end_unlock;
1937 		}
1938 		frames = size > avail ? avail : size;
1939 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1940 		if (frames > cont)
1941 			frames = cont;
1942 		if (snd_BUG_ON(!frames)) {
1943 			runtime->twake = 0;
1944 			snd_pcm_stream_unlock_irq(substream);
1945 			return -EINVAL;
1946 		}
1947 		appl_ptr = runtime->control->appl_ptr;
1948 		appl_ofs = appl_ptr % runtime->buffer_size;
1949 		snd_pcm_stream_unlock_irq(substream);
1950 		err = transfer(substream, appl_ofs, data, offset, frames);
1951 		snd_pcm_stream_lock_irq(substream);
1952 		if (err < 0)
1953 			goto _end_unlock;
1954 		switch (runtime->status->state) {
1955 		case SNDRV_PCM_STATE_XRUN:
1956 			err = -EPIPE;
1957 			goto _end_unlock;
1958 		case SNDRV_PCM_STATE_SUSPENDED:
1959 			err = -ESTRPIPE;
1960 			goto _end_unlock;
1961 		default:
1962 			break;
1963 		}
1964 		appl_ptr += frames;
1965 		if (appl_ptr >= runtime->boundary)
1966 			appl_ptr -= runtime->boundary;
1967 		runtime->control->appl_ptr = appl_ptr;
1968 		if (substream->ops->ack)
1969 			substream->ops->ack(substream);
1970 
1971 		offset += frames;
1972 		size -= frames;
1973 		xfer += frames;
1974 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1975 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1976 			err = snd_pcm_start(substream);
1977 			if (err < 0)
1978 				goto _end_unlock;
1979 		}
1980 	}
1981  _end_unlock:
1982 	runtime->twake = 0;
1983 	if (xfer > 0 && err >= 0)
1984 		snd_pcm_update_state(substream, runtime);
1985 	snd_pcm_stream_unlock_irq(substream);
1986 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1987 }
1988 
1989 /* sanity-check for read/write methods */
1990 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1991 {
1992 	struct snd_pcm_runtime *runtime;
1993 	if (PCM_RUNTIME_CHECK(substream))
1994 		return -ENXIO;
1995 	runtime = substream->runtime;
1996 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1997 		return -EINVAL;
1998 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1999 		return -EBADFD;
2000 	return 0;
2001 }
2002 
2003 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2004 {
2005 	struct snd_pcm_runtime *runtime;
2006 	int nonblock;
2007 	int err;
2008 
2009 	err = pcm_sanity_check(substream);
2010 	if (err < 0)
2011 		return err;
2012 	runtime = substream->runtime;
2013 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2014 
2015 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2016 	    runtime->channels > 1)
2017 		return -EINVAL;
2018 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2019 				  snd_pcm_lib_write_transfer);
2020 }
2021 
2022 EXPORT_SYMBOL(snd_pcm_lib_write);
2023 
2024 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2025 				       unsigned int hwoff,
2026 				       unsigned long data, unsigned int off,
2027 				       snd_pcm_uframes_t frames)
2028 {
2029 	struct snd_pcm_runtime *runtime = substream->runtime;
2030 	int err;
2031 	void __user **bufs = (void __user **)data;
2032 	int channels = runtime->channels;
2033 	int c;
2034 	if (substream->ops->copy) {
2035 		if (snd_BUG_ON(!substream->ops->silence))
2036 			return -EINVAL;
2037 		for (c = 0; c < channels; ++c, ++bufs) {
2038 			if (*bufs == NULL) {
2039 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2040 					return err;
2041 			} else {
2042 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2043 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2044 					return err;
2045 			}
2046 		}
2047 	} else {
2048 		/* default transfer behaviour */
2049 		size_t dma_csize = runtime->dma_bytes / channels;
2050 		for (c = 0; c < channels; ++c, ++bufs) {
2051 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2052 			if (*bufs == NULL) {
2053 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2054 			} else {
2055 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2056 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2057 					return -EFAULT;
2058 			}
2059 		}
2060 	}
2061 	return 0;
2062 }
2063 
2064 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2065 				     void __user **bufs,
2066 				     snd_pcm_uframes_t frames)
2067 {
2068 	struct snd_pcm_runtime *runtime;
2069 	int nonblock;
2070 	int err;
2071 
2072 	err = pcm_sanity_check(substream);
2073 	if (err < 0)
2074 		return err;
2075 	runtime = substream->runtime;
2076 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2077 
2078 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2079 		return -EINVAL;
2080 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2081 				  nonblock, snd_pcm_lib_writev_transfer);
2082 }
2083 
2084 EXPORT_SYMBOL(snd_pcm_lib_writev);
2085 
2086 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2087 				     unsigned int hwoff,
2088 				     unsigned long data, unsigned int off,
2089 				     snd_pcm_uframes_t frames)
2090 {
2091 	struct snd_pcm_runtime *runtime = substream->runtime;
2092 	int err;
2093 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2094 	if (substream->ops->copy) {
2095 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2096 			return err;
2097 	} else {
2098 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2099 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2100 			return -EFAULT;
2101 	}
2102 	return 0;
2103 }
2104 
2105 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2106 					   unsigned long data,
2107 					   snd_pcm_uframes_t size,
2108 					   int nonblock,
2109 					   transfer_f transfer)
2110 {
2111 	struct snd_pcm_runtime *runtime = substream->runtime;
2112 	snd_pcm_uframes_t xfer = 0;
2113 	snd_pcm_uframes_t offset = 0;
2114 	int err = 0;
2115 
2116 	if (size == 0)
2117 		return 0;
2118 
2119 	snd_pcm_stream_lock_irq(substream);
2120 	switch (runtime->status->state) {
2121 	case SNDRV_PCM_STATE_PREPARED:
2122 		if (size >= runtime->start_threshold) {
2123 			err = snd_pcm_start(substream);
2124 			if (err < 0)
2125 				goto _end_unlock;
2126 		}
2127 		break;
2128 	case SNDRV_PCM_STATE_DRAINING:
2129 	case SNDRV_PCM_STATE_RUNNING:
2130 	case SNDRV_PCM_STATE_PAUSED:
2131 		break;
2132 	case SNDRV_PCM_STATE_XRUN:
2133 		err = -EPIPE;
2134 		goto _end_unlock;
2135 	case SNDRV_PCM_STATE_SUSPENDED:
2136 		err = -ESTRPIPE;
2137 		goto _end_unlock;
2138 	default:
2139 		err = -EBADFD;
2140 		goto _end_unlock;
2141 	}
2142 
2143 	runtime->twake = runtime->control->avail_min ? : 1;
2144 	while (size > 0) {
2145 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2146 		snd_pcm_uframes_t avail;
2147 		snd_pcm_uframes_t cont;
2148 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2149 			snd_pcm_update_hw_ptr(substream);
2150 		avail = snd_pcm_capture_avail(runtime);
2151 		if (!avail) {
2152 			if (runtime->status->state ==
2153 			    SNDRV_PCM_STATE_DRAINING) {
2154 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2155 				goto _end_unlock;
2156 			}
2157 			if (nonblock) {
2158 				err = -EAGAIN;
2159 				goto _end_unlock;
2160 			}
2161 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2162 					runtime->control->avail_min ? : 1);
2163 			err = wait_for_avail(substream, &avail);
2164 			if (err < 0)
2165 				goto _end_unlock;
2166 			if (!avail)
2167 				continue; /* draining */
2168 		}
2169 		frames = size > avail ? avail : size;
2170 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2171 		if (frames > cont)
2172 			frames = cont;
2173 		if (snd_BUG_ON(!frames)) {
2174 			runtime->twake = 0;
2175 			snd_pcm_stream_unlock_irq(substream);
2176 			return -EINVAL;
2177 		}
2178 		appl_ptr = runtime->control->appl_ptr;
2179 		appl_ofs = appl_ptr % runtime->buffer_size;
2180 		snd_pcm_stream_unlock_irq(substream);
2181 		err = transfer(substream, appl_ofs, data, offset, frames);
2182 		snd_pcm_stream_lock_irq(substream);
2183 		if (err < 0)
2184 			goto _end_unlock;
2185 		switch (runtime->status->state) {
2186 		case SNDRV_PCM_STATE_XRUN:
2187 			err = -EPIPE;
2188 			goto _end_unlock;
2189 		case SNDRV_PCM_STATE_SUSPENDED:
2190 			err = -ESTRPIPE;
2191 			goto _end_unlock;
2192 		default:
2193 			break;
2194 		}
2195 		appl_ptr += frames;
2196 		if (appl_ptr >= runtime->boundary)
2197 			appl_ptr -= runtime->boundary;
2198 		runtime->control->appl_ptr = appl_ptr;
2199 		if (substream->ops->ack)
2200 			substream->ops->ack(substream);
2201 
2202 		offset += frames;
2203 		size -= frames;
2204 		xfer += frames;
2205 	}
2206  _end_unlock:
2207 	runtime->twake = 0;
2208 	if (xfer > 0 && err >= 0)
2209 		snd_pcm_update_state(substream, runtime);
2210 	snd_pcm_stream_unlock_irq(substream);
2211 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2212 }
2213 
2214 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2215 {
2216 	struct snd_pcm_runtime *runtime;
2217 	int nonblock;
2218 	int err;
2219 
2220 	err = pcm_sanity_check(substream);
2221 	if (err < 0)
2222 		return err;
2223 	runtime = substream->runtime;
2224 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2225 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2226 		return -EINVAL;
2227 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2228 }
2229 
2230 EXPORT_SYMBOL(snd_pcm_lib_read);
2231 
2232 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2233 				      unsigned int hwoff,
2234 				      unsigned long data, unsigned int off,
2235 				      snd_pcm_uframes_t frames)
2236 {
2237 	struct snd_pcm_runtime *runtime = substream->runtime;
2238 	int err;
2239 	void __user **bufs = (void __user **)data;
2240 	int channels = runtime->channels;
2241 	int c;
2242 	if (substream->ops->copy) {
2243 		for (c = 0; c < channels; ++c, ++bufs) {
2244 			char __user *buf;
2245 			if (*bufs == NULL)
2246 				continue;
2247 			buf = *bufs + samples_to_bytes(runtime, off);
2248 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2249 				return err;
2250 		}
2251 	} else {
2252 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2253 		for (c = 0; c < channels; ++c, ++bufs) {
2254 			char *hwbuf;
2255 			char __user *buf;
2256 			if (*bufs == NULL)
2257 				continue;
2258 
2259 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2260 			buf = *bufs + samples_to_bytes(runtime, off);
2261 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2262 				return -EFAULT;
2263 		}
2264 	}
2265 	return 0;
2266 }
2267 
2268 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2269 				    void __user **bufs,
2270 				    snd_pcm_uframes_t frames)
2271 {
2272 	struct snd_pcm_runtime *runtime;
2273 	int nonblock;
2274 	int err;
2275 
2276 	err = pcm_sanity_check(substream);
2277 	if (err < 0)
2278 		return err;
2279 	runtime = substream->runtime;
2280 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2281 		return -EBADFD;
2282 
2283 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2284 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2285 		return -EINVAL;
2286 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2287 }
2288 
2289 EXPORT_SYMBOL(snd_pcm_lib_readv);
2290