1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <linux/export.h> 27 #include <sound/core.h> 28 #include <sound/control.h> 29 #include <sound/info.h> 30 #include <sound/pcm.h> 31 #include <sound/pcm_params.h> 32 #include <sound/timer.h> 33 34 /* 35 * fill ring buffer with silence 36 * runtime->silence_start: starting pointer to silence area 37 * runtime->silence_filled: size filled with silence 38 * runtime->silence_threshold: threshold from application 39 * runtime->silence_size: maximal size from application 40 * 41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 42 */ 43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 44 { 45 struct snd_pcm_runtime *runtime = substream->runtime; 46 snd_pcm_uframes_t frames, ofs, transfer; 47 48 if (runtime->silence_size < runtime->boundary) { 49 snd_pcm_sframes_t noise_dist, n; 50 if (runtime->silence_start != runtime->control->appl_ptr) { 51 n = runtime->control->appl_ptr - runtime->silence_start; 52 if (n < 0) 53 n += runtime->boundary; 54 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 55 runtime->silence_filled -= n; 56 else 57 runtime->silence_filled = 0; 58 runtime->silence_start = runtime->control->appl_ptr; 59 } 60 if (runtime->silence_filled >= runtime->buffer_size) 61 return; 62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 64 return; 65 frames = runtime->silence_threshold - noise_dist; 66 if (frames > runtime->silence_size) 67 frames = runtime->silence_size; 68 } else { 69 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 71 if (avail > runtime->buffer_size) 72 avail = runtime->buffer_size; 73 runtime->silence_filled = avail > 0 ? avail : 0; 74 runtime->silence_start = (runtime->status->hw_ptr + 75 runtime->silence_filled) % 76 runtime->boundary; 77 } else { 78 ofs = runtime->status->hw_ptr; 79 frames = new_hw_ptr - ofs; 80 if ((snd_pcm_sframes_t)frames < 0) 81 frames += runtime->boundary; 82 runtime->silence_filled -= frames; 83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 84 runtime->silence_filled = 0; 85 runtime->silence_start = new_hw_ptr; 86 } else { 87 runtime->silence_start = ofs; 88 } 89 } 90 frames = runtime->buffer_size - runtime->silence_filled; 91 } 92 if (snd_BUG_ON(frames > runtime->buffer_size)) 93 return; 94 if (frames == 0) 95 return; 96 ofs = runtime->silence_start % runtime->buffer_size; 97 while (frames > 0) { 98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 101 if (substream->ops->silence) { 102 int err; 103 err = substream->ops->silence(substream, -1, ofs, transfer); 104 snd_BUG_ON(err < 0); 105 } else { 106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 108 } 109 } else { 110 unsigned int c; 111 unsigned int channels = runtime->channels; 112 if (substream->ops->silence) { 113 for (c = 0; c < channels; ++c) { 114 int err; 115 err = substream->ops->silence(substream, c, ofs, transfer); 116 snd_BUG_ON(err < 0); 117 } 118 } else { 119 size_t dma_csize = runtime->dma_bytes / channels; 120 for (c = 0; c < channels; ++c) { 121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 123 } 124 } 125 } 126 runtime->silence_filled += transfer; 127 frames -= transfer; 128 ofs = 0; 129 } 130 } 131 132 #ifdef CONFIG_SND_DEBUG 133 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 134 char *name, size_t len) 135 { 136 snprintf(name, len, "pcmC%dD%d%c:%d", 137 substream->pcm->card->number, 138 substream->pcm->device, 139 substream->stream ? 'c' : 'p', 140 substream->number); 141 } 142 EXPORT_SYMBOL(snd_pcm_debug_name); 143 #endif 144 145 #define XRUN_DEBUG_BASIC (1<<0) 146 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 148 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */ 149 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */ 150 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */ 151 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */ 152 153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 154 155 #define xrun_debug(substream, mask) \ 156 ((substream)->pstr->xrun_debug & (mask)) 157 #else 158 #define xrun_debug(substream, mask) 0 159 #endif 160 161 #define dump_stack_on_xrun(substream) do { \ 162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 163 dump_stack(); \ 164 } while (0) 165 166 static void xrun(struct snd_pcm_substream *substream) 167 { 168 struct snd_pcm_runtime *runtime = substream->runtime; 169 170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 174 char name[16]; 175 snd_pcm_debug_name(substream, name, sizeof(name)); 176 snd_printd(KERN_DEBUG "XRUN: %s\n", name); 177 dump_stack_on_xrun(substream); 178 } 179 } 180 181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 182 #define hw_ptr_error(substream, fmt, args...) \ 183 do { \ 184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 185 xrun_log_show(substream); \ 186 if (printk_ratelimit()) { \ 187 snd_printd("PCM: " fmt, ##args); \ 188 } \ 189 dump_stack_on_xrun(substream); \ 190 } \ 191 } while (0) 192 193 #define XRUN_LOG_CNT 10 194 195 struct hwptr_log_entry { 196 unsigned int in_interrupt; 197 unsigned long jiffies; 198 snd_pcm_uframes_t pos; 199 snd_pcm_uframes_t period_size; 200 snd_pcm_uframes_t buffer_size; 201 snd_pcm_uframes_t old_hw_ptr; 202 snd_pcm_uframes_t hw_ptr_base; 203 }; 204 205 struct snd_pcm_hwptr_log { 206 unsigned int idx; 207 unsigned int hit: 1; 208 struct hwptr_log_entry entries[XRUN_LOG_CNT]; 209 }; 210 211 static void xrun_log(struct snd_pcm_substream *substream, 212 snd_pcm_uframes_t pos, int in_interrupt) 213 { 214 struct snd_pcm_runtime *runtime = substream->runtime; 215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log; 216 struct hwptr_log_entry *entry; 217 218 if (log == NULL) { 219 log = kzalloc(sizeof(*log), GFP_ATOMIC); 220 if (log == NULL) 221 return; 222 runtime->hwptr_log = log; 223 } else { 224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 225 return; 226 } 227 entry = &log->entries[log->idx]; 228 entry->in_interrupt = in_interrupt; 229 entry->jiffies = jiffies; 230 entry->pos = pos; 231 entry->period_size = runtime->period_size; 232 entry->buffer_size = runtime->buffer_size; 233 entry->old_hw_ptr = runtime->status->hw_ptr; 234 entry->hw_ptr_base = runtime->hw_ptr_base; 235 log->idx = (log->idx + 1) % XRUN_LOG_CNT; 236 } 237 238 static void xrun_log_show(struct snd_pcm_substream *substream) 239 { 240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log; 241 struct hwptr_log_entry *entry; 242 char name[16]; 243 unsigned int idx; 244 int cnt; 245 246 if (log == NULL) 247 return; 248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 249 return; 250 snd_pcm_debug_name(substream, name, sizeof(name)); 251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) { 252 entry = &log->entries[idx]; 253 if (entry->period_size == 0) 254 break; 255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, " 256 "hwptr=%ld/%ld\n", 257 name, entry->in_interrupt ? "[Q] " : "", 258 entry->jiffies, 259 (unsigned long)entry->pos, 260 (unsigned long)entry->period_size, 261 (unsigned long)entry->buffer_size, 262 (unsigned long)entry->old_hw_ptr, 263 (unsigned long)entry->hw_ptr_base); 264 idx++; 265 idx %= XRUN_LOG_CNT; 266 } 267 log->hit = 1; 268 } 269 270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 271 272 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 273 #define xrun_log(substream, pos, in_interrupt) do { } while (0) 274 #define xrun_log_show(substream) do { } while (0) 275 276 #endif 277 278 int snd_pcm_update_state(struct snd_pcm_substream *substream, 279 struct snd_pcm_runtime *runtime) 280 { 281 snd_pcm_uframes_t avail; 282 283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 284 avail = snd_pcm_playback_avail(runtime); 285 else 286 avail = snd_pcm_capture_avail(runtime); 287 if (avail > runtime->avail_max) 288 runtime->avail_max = avail; 289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 290 if (avail >= runtime->buffer_size) { 291 snd_pcm_drain_done(substream); 292 return -EPIPE; 293 } 294 } else { 295 if (avail >= runtime->stop_threshold) { 296 xrun(substream); 297 return -EPIPE; 298 } 299 } 300 if (runtime->twake) { 301 if (avail >= runtime->twake) 302 wake_up(&runtime->tsleep); 303 } else if (avail >= runtime->control->avail_min) 304 wake_up(&runtime->sleep); 305 return 0; 306 } 307 308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 309 unsigned int in_interrupt) 310 { 311 struct snd_pcm_runtime *runtime = substream->runtime; 312 snd_pcm_uframes_t pos; 313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 314 snd_pcm_sframes_t hdelta, delta; 315 unsigned long jdelta; 316 317 old_hw_ptr = runtime->status->hw_ptr; 318 pos = substream->ops->pointer(substream); 319 if (pos == SNDRV_PCM_POS_XRUN) { 320 xrun(substream); 321 return -EPIPE; 322 } 323 if (pos >= runtime->buffer_size) { 324 if (printk_ratelimit()) { 325 char name[16]; 326 snd_pcm_debug_name(substream, name, sizeof(name)); 327 xrun_log_show(substream); 328 snd_printd(KERN_ERR "BUG: %s, pos = %ld, " 329 "buffer size = %ld, period size = %ld\n", 330 name, pos, runtime->buffer_size, 331 runtime->period_size); 332 } 333 pos = 0; 334 } 335 pos -= pos % runtime->min_align; 336 if (xrun_debug(substream, XRUN_DEBUG_LOG)) 337 xrun_log(substream, pos, in_interrupt); 338 hw_base = runtime->hw_ptr_base; 339 new_hw_ptr = hw_base + pos; 340 if (in_interrupt) { 341 /* we know that one period was processed */ 342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 343 delta = runtime->hw_ptr_interrupt + runtime->period_size; 344 if (delta > new_hw_ptr) { 345 /* check for double acknowledged interrupts */ 346 hdelta = jiffies - runtime->hw_ptr_jiffies; 347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 348 hw_base += runtime->buffer_size; 349 if (hw_base >= runtime->boundary) 350 hw_base = 0; 351 new_hw_ptr = hw_base + pos; 352 goto __delta; 353 } 354 } 355 } 356 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 357 /* pointer crosses the end of the ring buffer */ 358 if (new_hw_ptr < old_hw_ptr) { 359 hw_base += runtime->buffer_size; 360 if (hw_base >= runtime->boundary) 361 hw_base = 0; 362 new_hw_ptr = hw_base + pos; 363 } 364 __delta: 365 delta = new_hw_ptr - old_hw_ptr; 366 if (delta < 0) 367 delta += runtime->boundary; 368 if (xrun_debug(substream, in_interrupt ? 369 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) { 370 char name[16]; 371 snd_pcm_debug_name(substream, name, sizeof(name)); 372 snd_printd("%s_update: %s: pos=%u/%u/%u, " 373 "hwptr=%ld/%ld/%ld/%ld\n", 374 in_interrupt ? "period" : "hwptr", 375 name, 376 (unsigned int)pos, 377 (unsigned int)runtime->period_size, 378 (unsigned int)runtime->buffer_size, 379 (unsigned long)delta, 380 (unsigned long)old_hw_ptr, 381 (unsigned long)new_hw_ptr, 382 (unsigned long)runtime->hw_ptr_base); 383 } 384 385 if (runtime->no_period_wakeup) { 386 snd_pcm_sframes_t xrun_threshold; 387 /* 388 * Without regular period interrupts, we have to check 389 * the elapsed time to detect xruns. 390 */ 391 jdelta = jiffies - runtime->hw_ptr_jiffies; 392 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 393 goto no_delta_check; 394 hdelta = jdelta - delta * HZ / runtime->rate; 395 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 396 while (hdelta > xrun_threshold) { 397 delta += runtime->buffer_size; 398 hw_base += runtime->buffer_size; 399 if (hw_base >= runtime->boundary) 400 hw_base = 0; 401 new_hw_ptr = hw_base + pos; 402 hdelta -= runtime->hw_ptr_buffer_jiffies; 403 } 404 goto no_delta_check; 405 } 406 407 /* something must be really wrong */ 408 if (delta >= runtime->buffer_size + runtime->period_size) { 409 hw_ptr_error(substream, 410 "Unexpected hw_pointer value %s" 411 "(stream=%i, pos=%ld, new_hw_ptr=%ld, " 412 "old_hw_ptr=%ld)\n", 413 in_interrupt ? "[Q] " : "[P]", 414 substream->stream, (long)pos, 415 (long)new_hw_ptr, (long)old_hw_ptr); 416 return 0; 417 } 418 419 /* Do jiffies check only in xrun_debug mode */ 420 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 421 goto no_jiffies_check; 422 423 /* Skip the jiffies check for hardwares with BATCH flag. 424 * Such hardware usually just increases the position at each IRQ, 425 * thus it can't give any strange position. 426 */ 427 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 428 goto no_jiffies_check; 429 hdelta = delta; 430 if (hdelta < runtime->delay) 431 goto no_jiffies_check; 432 hdelta -= runtime->delay; 433 jdelta = jiffies - runtime->hw_ptr_jiffies; 434 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 435 delta = jdelta / 436 (((runtime->period_size * HZ) / runtime->rate) 437 + HZ/100); 438 /* move new_hw_ptr according jiffies not pos variable */ 439 new_hw_ptr = old_hw_ptr; 440 hw_base = delta; 441 /* use loop to avoid checks for delta overflows */ 442 /* the delta value is small or zero in most cases */ 443 while (delta > 0) { 444 new_hw_ptr += runtime->period_size; 445 if (new_hw_ptr >= runtime->boundary) 446 new_hw_ptr -= runtime->boundary; 447 delta--; 448 } 449 /* align hw_base to buffer_size */ 450 hw_ptr_error(substream, 451 "hw_ptr skipping! %s" 452 "(pos=%ld, delta=%ld, period=%ld, " 453 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 454 in_interrupt ? "[Q] " : "", 455 (long)pos, (long)hdelta, 456 (long)runtime->period_size, jdelta, 457 ((hdelta * HZ) / runtime->rate), hw_base, 458 (unsigned long)old_hw_ptr, 459 (unsigned long)new_hw_ptr); 460 /* reset values to proper state */ 461 delta = 0; 462 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 463 } 464 no_jiffies_check: 465 if (delta > runtime->period_size + runtime->period_size / 2) { 466 hw_ptr_error(substream, 467 "Lost interrupts? %s" 468 "(stream=%i, delta=%ld, new_hw_ptr=%ld, " 469 "old_hw_ptr=%ld)\n", 470 in_interrupt ? "[Q] " : "", 471 substream->stream, (long)delta, 472 (long)new_hw_ptr, 473 (long)old_hw_ptr); 474 } 475 476 no_delta_check: 477 if (runtime->status->hw_ptr == new_hw_ptr) 478 return 0; 479 480 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 481 runtime->silence_size > 0) 482 snd_pcm_playback_silence(substream, new_hw_ptr); 483 484 if (in_interrupt) { 485 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 486 if (delta < 0) 487 delta += runtime->boundary; 488 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 489 runtime->hw_ptr_interrupt += delta; 490 if (runtime->hw_ptr_interrupt >= runtime->boundary) 491 runtime->hw_ptr_interrupt -= runtime->boundary; 492 } 493 runtime->hw_ptr_base = hw_base; 494 runtime->status->hw_ptr = new_hw_ptr; 495 runtime->hw_ptr_jiffies = jiffies; 496 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 497 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 498 499 return snd_pcm_update_state(substream, runtime); 500 } 501 502 /* CAUTION: call it with irq disabled */ 503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 504 { 505 return snd_pcm_update_hw_ptr0(substream, 0); 506 } 507 508 /** 509 * snd_pcm_set_ops - set the PCM operators 510 * @pcm: the pcm instance 511 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 512 * @ops: the operator table 513 * 514 * Sets the given PCM operators to the pcm instance. 515 */ 516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 517 { 518 struct snd_pcm_str *stream = &pcm->streams[direction]; 519 struct snd_pcm_substream *substream; 520 521 for (substream = stream->substream; substream != NULL; substream = substream->next) 522 substream->ops = ops; 523 } 524 525 EXPORT_SYMBOL(snd_pcm_set_ops); 526 527 /** 528 * snd_pcm_sync - set the PCM sync id 529 * @substream: the pcm substream 530 * 531 * Sets the PCM sync identifier for the card. 532 */ 533 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 534 { 535 struct snd_pcm_runtime *runtime = substream->runtime; 536 537 runtime->sync.id32[0] = substream->pcm->card->number; 538 runtime->sync.id32[1] = -1; 539 runtime->sync.id32[2] = -1; 540 runtime->sync.id32[3] = -1; 541 } 542 543 EXPORT_SYMBOL(snd_pcm_set_sync); 544 545 /* 546 * Standard ioctl routine 547 */ 548 549 static inline unsigned int div32(unsigned int a, unsigned int b, 550 unsigned int *r) 551 { 552 if (b == 0) { 553 *r = 0; 554 return UINT_MAX; 555 } 556 *r = a % b; 557 return a / b; 558 } 559 560 static inline unsigned int div_down(unsigned int a, unsigned int b) 561 { 562 if (b == 0) 563 return UINT_MAX; 564 return a / b; 565 } 566 567 static inline unsigned int div_up(unsigned int a, unsigned int b) 568 { 569 unsigned int r; 570 unsigned int q; 571 if (b == 0) 572 return UINT_MAX; 573 q = div32(a, b, &r); 574 if (r) 575 ++q; 576 return q; 577 } 578 579 static inline unsigned int mul(unsigned int a, unsigned int b) 580 { 581 if (a == 0) 582 return 0; 583 if (div_down(UINT_MAX, a) < b) 584 return UINT_MAX; 585 return a * b; 586 } 587 588 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 589 unsigned int c, unsigned int *r) 590 { 591 u_int64_t n = (u_int64_t) a * b; 592 if (c == 0) { 593 snd_BUG_ON(!n); 594 *r = 0; 595 return UINT_MAX; 596 } 597 n = div_u64_rem(n, c, r); 598 if (n >= UINT_MAX) { 599 *r = 0; 600 return UINT_MAX; 601 } 602 return n; 603 } 604 605 /** 606 * snd_interval_refine - refine the interval value of configurator 607 * @i: the interval value to refine 608 * @v: the interval value to refer to 609 * 610 * Refines the interval value with the reference value. 611 * The interval is changed to the range satisfying both intervals. 612 * The interval status (min, max, integer, etc.) are evaluated. 613 * 614 * Returns non-zero if the value is changed, zero if not changed. 615 */ 616 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 617 { 618 int changed = 0; 619 if (snd_BUG_ON(snd_interval_empty(i))) 620 return -EINVAL; 621 if (i->min < v->min) { 622 i->min = v->min; 623 i->openmin = v->openmin; 624 changed = 1; 625 } else if (i->min == v->min && !i->openmin && v->openmin) { 626 i->openmin = 1; 627 changed = 1; 628 } 629 if (i->max > v->max) { 630 i->max = v->max; 631 i->openmax = v->openmax; 632 changed = 1; 633 } else if (i->max == v->max && !i->openmax && v->openmax) { 634 i->openmax = 1; 635 changed = 1; 636 } 637 if (!i->integer && v->integer) { 638 i->integer = 1; 639 changed = 1; 640 } 641 if (i->integer) { 642 if (i->openmin) { 643 i->min++; 644 i->openmin = 0; 645 } 646 if (i->openmax) { 647 i->max--; 648 i->openmax = 0; 649 } 650 } else if (!i->openmin && !i->openmax && i->min == i->max) 651 i->integer = 1; 652 if (snd_interval_checkempty(i)) { 653 snd_interval_none(i); 654 return -EINVAL; 655 } 656 return changed; 657 } 658 659 EXPORT_SYMBOL(snd_interval_refine); 660 661 static int snd_interval_refine_first(struct snd_interval *i) 662 { 663 if (snd_BUG_ON(snd_interval_empty(i))) 664 return -EINVAL; 665 if (snd_interval_single(i)) 666 return 0; 667 i->max = i->min; 668 i->openmax = i->openmin; 669 if (i->openmax) 670 i->max++; 671 return 1; 672 } 673 674 static int snd_interval_refine_last(struct snd_interval *i) 675 { 676 if (snd_BUG_ON(snd_interval_empty(i))) 677 return -EINVAL; 678 if (snd_interval_single(i)) 679 return 0; 680 i->min = i->max; 681 i->openmin = i->openmax; 682 if (i->openmin) 683 i->min--; 684 return 1; 685 } 686 687 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 688 { 689 if (a->empty || b->empty) { 690 snd_interval_none(c); 691 return; 692 } 693 c->empty = 0; 694 c->min = mul(a->min, b->min); 695 c->openmin = (a->openmin || b->openmin); 696 c->max = mul(a->max, b->max); 697 c->openmax = (a->openmax || b->openmax); 698 c->integer = (a->integer && b->integer); 699 } 700 701 /** 702 * snd_interval_div - refine the interval value with division 703 * @a: dividend 704 * @b: divisor 705 * @c: quotient 706 * 707 * c = a / b 708 * 709 * Returns non-zero if the value is changed, zero if not changed. 710 */ 711 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 712 { 713 unsigned int r; 714 if (a->empty || b->empty) { 715 snd_interval_none(c); 716 return; 717 } 718 c->empty = 0; 719 c->min = div32(a->min, b->max, &r); 720 c->openmin = (r || a->openmin || b->openmax); 721 if (b->min > 0) { 722 c->max = div32(a->max, b->min, &r); 723 if (r) { 724 c->max++; 725 c->openmax = 1; 726 } else 727 c->openmax = (a->openmax || b->openmin); 728 } else { 729 c->max = UINT_MAX; 730 c->openmax = 0; 731 } 732 c->integer = 0; 733 } 734 735 /** 736 * snd_interval_muldivk - refine the interval value 737 * @a: dividend 1 738 * @b: dividend 2 739 * @k: divisor (as integer) 740 * @c: result 741 * 742 * c = a * b / k 743 * 744 * Returns non-zero if the value is changed, zero if not changed. 745 */ 746 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 747 unsigned int k, struct snd_interval *c) 748 { 749 unsigned int r; 750 if (a->empty || b->empty) { 751 snd_interval_none(c); 752 return; 753 } 754 c->empty = 0; 755 c->min = muldiv32(a->min, b->min, k, &r); 756 c->openmin = (r || a->openmin || b->openmin); 757 c->max = muldiv32(a->max, b->max, k, &r); 758 if (r) { 759 c->max++; 760 c->openmax = 1; 761 } else 762 c->openmax = (a->openmax || b->openmax); 763 c->integer = 0; 764 } 765 766 /** 767 * snd_interval_mulkdiv - refine the interval value 768 * @a: dividend 1 769 * @k: dividend 2 (as integer) 770 * @b: divisor 771 * @c: result 772 * 773 * c = a * k / b 774 * 775 * Returns non-zero if the value is changed, zero if not changed. 776 */ 777 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 778 const struct snd_interval *b, struct snd_interval *c) 779 { 780 unsigned int r; 781 if (a->empty || b->empty) { 782 snd_interval_none(c); 783 return; 784 } 785 c->empty = 0; 786 c->min = muldiv32(a->min, k, b->max, &r); 787 c->openmin = (r || a->openmin || b->openmax); 788 if (b->min > 0) { 789 c->max = muldiv32(a->max, k, b->min, &r); 790 if (r) { 791 c->max++; 792 c->openmax = 1; 793 } else 794 c->openmax = (a->openmax || b->openmin); 795 } else { 796 c->max = UINT_MAX; 797 c->openmax = 0; 798 } 799 c->integer = 0; 800 } 801 802 /* ---- */ 803 804 805 /** 806 * snd_interval_ratnum - refine the interval value 807 * @i: interval to refine 808 * @rats_count: number of ratnum_t 809 * @rats: ratnum_t array 810 * @nump: pointer to store the resultant numerator 811 * @denp: pointer to store the resultant denominator 812 * 813 * Returns non-zero if the value is changed, zero if not changed. 814 */ 815 int snd_interval_ratnum(struct snd_interval *i, 816 unsigned int rats_count, struct snd_ratnum *rats, 817 unsigned int *nump, unsigned int *denp) 818 { 819 unsigned int best_num, best_den; 820 int best_diff; 821 unsigned int k; 822 struct snd_interval t; 823 int err; 824 unsigned int result_num, result_den; 825 int result_diff; 826 827 best_num = best_den = best_diff = 0; 828 for (k = 0; k < rats_count; ++k) { 829 unsigned int num = rats[k].num; 830 unsigned int den; 831 unsigned int q = i->min; 832 int diff; 833 if (q == 0) 834 q = 1; 835 den = div_up(num, q); 836 if (den < rats[k].den_min) 837 continue; 838 if (den > rats[k].den_max) 839 den = rats[k].den_max; 840 else { 841 unsigned int r; 842 r = (den - rats[k].den_min) % rats[k].den_step; 843 if (r != 0) 844 den -= r; 845 } 846 diff = num - q * den; 847 if (diff < 0) 848 diff = -diff; 849 if (best_num == 0 || 850 diff * best_den < best_diff * den) { 851 best_diff = diff; 852 best_den = den; 853 best_num = num; 854 } 855 } 856 if (best_den == 0) { 857 i->empty = 1; 858 return -EINVAL; 859 } 860 t.min = div_down(best_num, best_den); 861 t.openmin = !!(best_num % best_den); 862 863 result_num = best_num; 864 result_diff = best_diff; 865 result_den = best_den; 866 best_num = best_den = best_diff = 0; 867 for (k = 0; k < rats_count; ++k) { 868 unsigned int num = rats[k].num; 869 unsigned int den; 870 unsigned int q = i->max; 871 int diff; 872 if (q == 0) { 873 i->empty = 1; 874 return -EINVAL; 875 } 876 den = div_down(num, q); 877 if (den > rats[k].den_max) 878 continue; 879 if (den < rats[k].den_min) 880 den = rats[k].den_min; 881 else { 882 unsigned int r; 883 r = (den - rats[k].den_min) % rats[k].den_step; 884 if (r != 0) 885 den += rats[k].den_step - r; 886 } 887 diff = q * den - num; 888 if (diff < 0) 889 diff = -diff; 890 if (best_num == 0 || 891 diff * best_den < best_diff * den) { 892 best_diff = diff; 893 best_den = den; 894 best_num = num; 895 } 896 } 897 if (best_den == 0) { 898 i->empty = 1; 899 return -EINVAL; 900 } 901 t.max = div_up(best_num, best_den); 902 t.openmax = !!(best_num % best_den); 903 t.integer = 0; 904 err = snd_interval_refine(i, &t); 905 if (err < 0) 906 return err; 907 908 if (snd_interval_single(i)) { 909 if (best_diff * result_den < result_diff * best_den) { 910 result_num = best_num; 911 result_den = best_den; 912 } 913 if (nump) 914 *nump = result_num; 915 if (denp) 916 *denp = result_den; 917 } 918 return err; 919 } 920 921 EXPORT_SYMBOL(snd_interval_ratnum); 922 923 /** 924 * snd_interval_ratden - refine the interval value 925 * @i: interval to refine 926 * @rats_count: number of struct ratden 927 * @rats: struct ratden array 928 * @nump: pointer to store the resultant numerator 929 * @denp: pointer to store the resultant denominator 930 * 931 * Returns non-zero if the value is changed, zero if not changed. 932 */ 933 static int snd_interval_ratden(struct snd_interval *i, 934 unsigned int rats_count, struct snd_ratden *rats, 935 unsigned int *nump, unsigned int *denp) 936 { 937 unsigned int best_num, best_diff, best_den; 938 unsigned int k; 939 struct snd_interval t; 940 int err; 941 942 best_num = best_den = best_diff = 0; 943 for (k = 0; k < rats_count; ++k) { 944 unsigned int num; 945 unsigned int den = rats[k].den; 946 unsigned int q = i->min; 947 int diff; 948 num = mul(q, den); 949 if (num > rats[k].num_max) 950 continue; 951 if (num < rats[k].num_min) 952 num = rats[k].num_max; 953 else { 954 unsigned int r; 955 r = (num - rats[k].num_min) % rats[k].num_step; 956 if (r != 0) 957 num += rats[k].num_step - r; 958 } 959 diff = num - q * den; 960 if (best_num == 0 || 961 diff * best_den < best_diff * den) { 962 best_diff = diff; 963 best_den = den; 964 best_num = num; 965 } 966 } 967 if (best_den == 0) { 968 i->empty = 1; 969 return -EINVAL; 970 } 971 t.min = div_down(best_num, best_den); 972 t.openmin = !!(best_num % best_den); 973 974 best_num = best_den = best_diff = 0; 975 for (k = 0; k < rats_count; ++k) { 976 unsigned int num; 977 unsigned int den = rats[k].den; 978 unsigned int q = i->max; 979 int diff; 980 num = mul(q, den); 981 if (num < rats[k].num_min) 982 continue; 983 if (num > rats[k].num_max) 984 num = rats[k].num_max; 985 else { 986 unsigned int r; 987 r = (num - rats[k].num_min) % rats[k].num_step; 988 if (r != 0) 989 num -= r; 990 } 991 diff = q * den - num; 992 if (best_num == 0 || 993 diff * best_den < best_diff * den) { 994 best_diff = diff; 995 best_den = den; 996 best_num = num; 997 } 998 } 999 if (best_den == 0) { 1000 i->empty = 1; 1001 return -EINVAL; 1002 } 1003 t.max = div_up(best_num, best_den); 1004 t.openmax = !!(best_num % best_den); 1005 t.integer = 0; 1006 err = snd_interval_refine(i, &t); 1007 if (err < 0) 1008 return err; 1009 1010 if (snd_interval_single(i)) { 1011 if (nump) 1012 *nump = best_num; 1013 if (denp) 1014 *denp = best_den; 1015 } 1016 return err; 1017 } 1018 1019 /** 1020 * snd_interval_list - refine the interval value from the list 1021 * @i: the interval value to refine 1022 * @count: the number of elements in the list 1023 * @list: the value list 1024 * @mask: the bit-mask to evaluate 1025 * 1026 * Refines the interval value from the list. 1027 * When mask is non-zero, only the elements corresponding to bit 1 are 1028 * evaluated. 1029 * 1030 * Returns non-zero if the value is changed, zero if not changed. 1031 */ 1032 int snd_interval_list(struct snd_interval *i, unsigned int count, 1033 const unsigned int *list, unsigned int mask) 1034 { 1035 unsigned int k; 1036 struct snd_interval list_range; 1037 1038 if (!count) { 1039 i->empty = 1; 1040 return -EINVAL; 1041 } 1042 snd_interval_any(&list_range); 1043 list_range.min = UINT_MAX; 1044 list_range.max = 0; 1045 for (k = 0; k < count; k++) { 1046 if (mask && !(mask & (1 << k))) 1047 continue; 1048 if (!snd_interval_test(i, list[k])) 1049 continue; 1050 list_range.min = min(list_range.min, list[k]); 1051 list_range.max = max(list_range.max, list[k]); 1052 } 1053 return snd_interval_refine(i, &list_range); 1054 } 1055 1056 EXPORT_SYMBOL(snd_interval_list); 1057 1058 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 1059 { 1060 unsigned int n; 1061 int changed = 0; 1062 n = (i->min - min) % step; 1063 if (n != 0 || i->openmin) { 1064 i->min += step - n; 1065 changed = 1; 1066 } 1067 n = (i->max - min) % step; 1068 if (n != 0 || i->openmax) { 1069 i->max -= n; 1070 changed = 1; 1071 } 1072 if (snd_interval_checkempty(i)) { 1073 i->empty = 1; 1074 return -EINVAL; 1075 } 1076 return changed; 1077 } 1078 1079 /* Info constraints helpers */ 1080 1081 /** 1082 * snd_pcm_hw_rule_add - add the hw-constraint rule 1083 * @runtime: the pcm runtime instance 1084 * @cond: condition bits 1085 * @var: the variable to evaluate 1086 * @func: the evaluation function 1087 * @private: the private data pointer passed to function 1088 * @dep: the dependent variables 1089 * 1090 * Returns zero if successful, or a negative error code on failure. 1091 */ 1092 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1093 int var, 1094 snd_pcm_hw_rule_func_t func, void *private, 1095 int dep, ...) 1096 { 1097 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1098 struct snd_pcm_hw_rule *c; 1099 unsigned int k; 1100 va_list args; 1101 va_start(args, dep); 1102 if (constrs->rules_num >= constrs->rules_all) { 1103 struct snd_pcm_hw_rule *new; 1104 unsigned int new_rules = constrs->rules_all + 16; 1105 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1106 if (!new) { 1107 va_end(args); 1108 return -ENOMEM; 1109 } 1110 if (constrs->rules) { 1111 memcpy(new, constrs->rules, 1112 constrs->rules_num * sizeof(*c)); 1113 kfree(constrs->rules); 1114 } 1115 constrs->rules = new; 1116 constrs->rules_all = new_rules; 1117 } 1118 c = &constrs->rules[constrs->rules_num]; 1119 c->cond = cond; 1120 c->func = func; 1121 c->var = var; 1122 c->private = private; 1123 k = 0; 1124 while (1) { 1125 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1126 va_end(args); 1127 return -EINVAL; 1128 } 1129 c->deps[k++] = dep; 1130 if (dep < 0) 1131 break; 1132 dep = va_arg(args, int); 1133 } 1134 constrs->rules_num++; 1135 va_end(args); 1136 return 0; 1137 } 1138 1139 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1140 1141 /** 1142 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1143 * @runtime: PCM runtime instance 1144 * @var: hw_params variable to apply the mask 1145 * @mask: the bitmap mask 1146 * 1147 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1148 */ 1149 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1150 u_int32_t mask) 1151 { 1152 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1153 struct snd_mask *maskp = constrs_mask(constrs, var); 1154 *maskp->bits &= mask; 1155 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1156 if (*maskp->bits == 0) 1157 return -EINVAL; 1158 return 0; 1159 } 1160 1161 /** 1162 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1163 * @runtime: PCM runtime instance 1164 * @var: hw_params variable to apply the mask 1165 * @mask: the 64bit bitmap mask 1166 * 1167 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1168 */ 1169 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1170 u_int64_t mask) 1171 { 1172 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1173 struct snd_mask *maskp = constrs_mask(constrs, var); 1174 maskp->bits[0] &= (u_int32_t)mask; 1175 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1176 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1177 if (! maskp->bits[0] && ! maskp->bits[1]) 1178 return -EINVAL; 1179 return 0; 1180 } 1181 1182 /** 1183 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1184 * @runtime: PCM runtime instance 1185 * @var: hw_params variable to apply the integer constraint 1186 * 1187 * Apply the constraint of integer to an interval parameter. 1188 */ 1189 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1190 { 1191 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1192 return snd_interval_setinteger(constrs_interval(constrs, var)); 1193 } 1194 1195 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1196 1197 /** 1198 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1199 * @runtime: PCM runtime instance 1200 * @var: hw_params variable to apply the range 1201 * @min: the minimal value 1202 * @max: the maximal value 1203 * 1204 * Apply the min/max range constraint to an interval parameter. 1205 */ 1206 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1207 unsigned int min, unsigned int max) 1208 { 1209 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1210 struct snd_interval t; 1211 t.min = min; 1212 t.max = max; 1213 t.openmin = t.openmax = 0; 1214 t.integer = 0; 1215 return snd_interval_refine(constrs_interval(constrs, var), &t); 1216 } 1217 1218 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1219 1220 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1221 struct snd_pcm_hw_rule *rule) 1222 { 1223 struct snd_pcm_hw_constraint_list *list = rule->private; 1224 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1225 } 1226 1227 1228 /** 1229 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1230 * @runtime: PCM runtime instance 1231 * @cond: condition bits 1232 * @var: hw_params variable to apply the list constraint 1233 * @l: list 1234 * 1235 * Apply the list of constraints to an interval parameter. 1236 */ 1237 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1238 unsigned int cond, 1239 snd_pcm_hw_param_t var, 1240 struct snd_pcm_hw_constraint_list *l) 1241 { 1242 return snd_pcm_hw_rule_add(runtime, cond, var, 1243 snd_pcm_hw_rule_list, l, 1244 var, -1); 1245 } 1246 1247 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1248 1249 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1250 struct snd_pcm_hw_rule *rule) 1251 { 1252 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1253 unsigned int num = 0, den = 0; 1254 int err; 1255 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1256 r->nrats, r->rats, &num, &den); 1257 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1258 params->rate_num = num; 1259 params->rate_den = den; 1260 } 1261 return err; 1262 } 1263 1264 /** 1265 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1266 * @runtime: PCM runtime instance 1267 * @cond: condition bits 1268 * @var: hw_params variable to apply the ratnums constraint 1269 * @r: struct snd_ratnums constriants 1270 */ 1271 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1272 unsigned int cond, 1273 snd_pcm_hw_param_t var, 1274 struct snd_pcm_hw_constraint_ratnums *r) 1275 { 1276 return snd_pcm_hw_rule_add(runtime, cond, var, 1277 snd_pcm_hw_rule_ratnums, r, 1278 var, -1); 1279 } 1280 1281 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1282 1283 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1284 struct snd_pcm_hw_rule *rule) 1285 { 1286 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1287 unsigned int num = 0, den = 0; 1288 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1289 r->nrats, r->rats, &num, &den); 1290 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1291 params->rate_num = num; 1292 params->rate_den = den; 1293 } 1294 return err; 1295 } 1296 1297 /** 1298 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1299 * @runtime: PCM runtime instance 1300 * @cond: condition bits 1301 * @var: hw_params variable to apply the ratdens constraint 1302 * @r: struct snd_ratdens constriants 1303 */ 1304 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1305 unsigned int cond, 1306 snd_pcm_hw_param_t var, 1307 struct snd_pcm_hw_constraint_ratdens *r) 1308 { 1309 return snd_pcm_hw_rule_add(runtime, cond, var, 1310 snd_pcm_hw_rule_ratdens, r, 1311 var, -1); 1312 } 1313 1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1315 1316 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1317 struct snd_pcm_hw_rule *rule) 1318 { 1319 unsigned int l = (unsigned long) rule->private; 1320 int width = l & 0xffff; 1321 unsigned int msbits = l >> 16; 1322 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1323 if (snd_interval_single(i) && snd_interval_value(i) == width) 1324 params->msbits = msbits; 1325 return 0; 1326 } 1327 1328 /** 1329 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1330 * @runtime: PCM runtime instance 1331 * @cond: condition bits 1332 * @width: sample bits width 1333 * @msbits: msbits width 1334 */ 1335 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1336 unsigned int cond, 1337 unsigned int width, 1338 unsigned int msbits) 1339 { 1340 unsigned long l = (msbits << 16) | width; 1341 return snd_pcm_hw_rule_add(runtime, cond, -1, 1342 snd_pcm_hw_rule_msbits, 1343 (void*) l, 1344 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1345 } 1346 1347 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1348 1349 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1350 struct snd_pcm_hw_rule *rule) 1351 { 1352 unsigned long step = (unsigned long) rule->private; 1353 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1354 } 1355 1356 /** 1357 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1358 * @runtime: PCM runtime instance 1359 * @cond: condition bits 1360 * @var: hw_params variable to apply the step constraint 1361 * @step: step size 1362 */ 1363 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1364 unsigned int cond, 1365 snd_pcm_hw_param_t var, 1366 unsigned long step) 1367 { 1368 return snd_pcm_hw_rule_add(runtime, cond, var, 1369 snd_pcm_hw_rule_step, (void *) step, 1370 var, -1); 1371 } 1372 1373 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1374 1375 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1376 { 1377 static unsigned int pow2_sizes[] = { 1378 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1379 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1380 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1381 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1382 }; 1383 return snd_interval_list(hw_param_interval(params, rule->var), 1384 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1385 } 1386 1387 /** 1388 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1389 * @runtime: PCM runtime instance 1390 * @cond: condition bits 1391 * @var: hw_params variable to apply the power-of-2 constraint 1392 */ 1393 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1394 unsigned int cond, 1395 snd_pcm_hw_param_t var) 1396 { 1397 return snd_pcm_hw_rule_add(runtime, cond, var, 1398 snd_pcm_hw_rule_pow2, NULL, 1399 var, -1); 1400 } 1401 1402 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1403 1404 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1405 struct snd_pcm_hw_rule *rule) 1406 { 1407 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1408 struct snd_interval *rate; 1409 1410 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1411 return snd_interval_list(rate, 1, &base_rate, 0); 1412 } 1413 1414 /** 1415 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1416 * @runtime: PCM runtime instance 1417 * @base_rate: the rate at which the hardware does not resample 1418 */ 1419 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1420 unsigned int base_rate) 1421 { 1422 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1423 SNDRV_PCM_HW_PARAM_RATE, 1424 snd_pcm_hw_rule_noresample_func, 1425 (void *)(uintptr_t)base_rate, 1426 SNDRV_PCM_HW_PARAM_RATE, -1); 1427 } 1428 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1429 1430 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1431 snd_pcm_hw_param_t var) 1432 { 1433 if (hw_is_mask(var)) { 1434 snd_mask_any(hw_param_mask(params, var)); 1435 params->cmask |= 1 << var; 1436 params->rmask |= 1 << var; 1437 return; 1438 } 1439 if (hw_is_interval(var)) { 1440 snd_interval_any(hw_param_interval(params, var)); 1441 params->cmask |= 1 << var; 1442 params->rmask |= 1 << var; 1443 return; 1444 } 1445 snd_BUG(); 1446 } 1447 1448 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1449 { 1450 unsigned int k; 1451 memset(params, 0, sizeof(*params)); 1452 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1453 _snd_pcm_hw_param_any(params, k); 1454 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1455 _snd_pcm_hw_param_any(params, k); 1456 params->info = ~0U; 1457 } 1458 1459 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1460 1461 /** 1462 * snd_pcm_hw_param_value - return @params field @var value 1463 * @params: the hw_params instance 1464 * @var: parameter to retrieve 1465 * @dir: pointer to the direction (-1,0,1) or %NULL 1466 * 1467 * Return the value for field @var if it's fixed in configuration space 1468 * defined by @params. Return -%EINVAL otherwise. 1469 */ 1470 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1471 snd_pcm_hw_param_t var, int *dir) 1472 { 1473 if (hw_is_mask(var)) { 1474 const struct snd_mask *mask = hw_param_mask_c(params, var); 1475 if (!snd_mask_single(mask)) 1476 return -EINVAL; 1477 if (dir) 1478 *dir = 0; 1479 return snd_mask_value(mask); 1480 } 1481 if (hw_is_interval(var)) { 1482 const struct snd_interval *i = hw_param_interval_c(params, var); 1483 if (!snd_interval_single(i)) 1484 return -EINVAL; 1485 if (dir) 1486 *dir = i->openmin; 1487 return snd_interval_value(i); 1488 } 1489 return -EINVAL; 1490 } 1491 1492 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1493 1494 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1495 snd_pcm_hw_param_t var) 1496 { 1497 if (hw_is_mask(var)) { 1498 snd_mask_none(hw_param_mask(params, var)); 1499 params->cmask |= 1 << var; 1500 params->rmask |= 1 << var; 1501 } else if (hw_is_interval(var)) { 1502 snd_interval_none(hw_param_interval(params, var)); 1503 params->cmask |= 1 << var; 1504 params->rmask |= 1 << var; 1505 } else { 1506 snd_BUG(); 1507 } 1508 } 1509 1510 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1511 1512 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1513 snd_pcm_hw_param_t var) 1514 { 1515 int changed; 1516 if (hw_is_mask(var)) 1517 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1518 else if (hw_is_interval(var)) 1519 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1520 else 1521 return -EINVAL; 1522 if (changed) { 1523 params->cmask |= 1 << var; 1524 params->rmask |= 1 << var; 1525 } 1526 return changed; 1527 } 1528 1529 1530 /** 1531 * snd_pcm_hw_param_first - refine config space and return minimum value 1532 * @pcm: PCM instance 1533 * @params: the hw_params instance 1534 * @var: parameter to retrieve 1535 * @dir: pointer to the direction (-1,0,1) or %NULL 1536 * 1537 * Inside configuration space defined by @params remove from @var all 1538 * values > minimum. Reduce configuration space accordingly. 1539 * Return the minimum. 1540 */ 1541 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1542 struct snd_pcm_hw_params *params, 1543 snd_pcm_hw_param_t var, int *dir) 1544 { 1545 int changed = _snd_pcm_hw_param_first(params, var); 1546 if (changed < 0) 1547 return changed; 1548 if (params->rmask) { 1549 int err = snd_pcm_hw_refine(pcm, params); 1550 if (snd_BUG_ON(err < 0)) 1551 return err; 1552 } 1553 return snd_pcm_hw_param_value(params, var, dir); 1554 } 1555 1556 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1557 1558 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1559 snd_pcm_hw_param_t var) 1560 { 1561 int changed; 1562 if (hw_is_mask(var)) 1563 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1564 else if (hw_is_interval(var)) 1565 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1566 else 1567 return -EINVAL; 1568 if (changed) { 1569 params->cmask |= 1 << var; 1570 params->rmask |= 1 << var; 1571 } 1572 return changed; 1573 } 1574 1575 1576 /** 1577 * snd_pcm_hw_param_last - refine config space and return maximum value 1578 * @pcm: PCM instance 1579 * @params: the hw_params instance 1580 * @var: parameter to retrieve 1581 * @dir: pointer to the direction (-1,0,1) or %NULL 1582 * 1583 * Inside configuration space defined by @params remove from @var all 1584 * values < maximum. Reduce configuration space accordingly. 1585 * Return the maximum. 1586 */ 1587 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1588 struct snd_pcm_hw_params *params, 1589 snd_pcm_hw_param_t var, int *dir) 1590 { 1591 int changed = _snd_pcm_hw_param_last(params, var); 1592 if (changed < 0) 1593 return changed; 1594 if (params->rmask) { 1595 int err = snd_pcm_hw_refine(pcm, params); 1596 if (snd_BUG_ON(err < 0)) 1597 return err; 1598 } 1599 return snd_pcm_hw_param_value(params, var, dir); 1600 } 1601 1602 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1603 1604 /** 1605 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1606 * @pcm: PCM instance 1607 * @params: the hw_params instance 1608 * 1609 * Choose one configuration from configuration space defined by @params. 1610 * The configuration chosen is that obtained fixing in this order: 1611 * first access, first format, first subformat, min channels, 1612 * min rate, min period time, max buffer size, min tick time 1613 */ 1614 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1615 struct snd_pcm_hw_params *params) 1616 { 1617 static int vars[] = { 1618 SNDRV_PCM_HW_PARAM_ACCESS, 1619 SNDRV_PCM_HW_PARAM_FORMAT, 1620 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1621 SNDRV_PCM_HW_PARAM_CHANNELS, 1622 SNDRV_PCM_HW_PARAM_RATE, 1623 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1624 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1625 SNDRV_PCM_HW_PARAM_TICK_TIME, 1626 -1 1627 }; 1628 int err, *v; 1629 1630 for (v = vars; *v != -1; v++) { 1631 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1632 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1633 else 1634 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1635 if (snd_BUG_ON(err < 0)) 1636 return err; 1637 } 1638 return 0; 1639 } 1640 1641 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1642 void *arg) 1643 { 1644 struct snd_pcm_runtime *runtime = substream->runtime; 1645 unsigned long flags; 1646 snd_pcm_stream_lock_irqsave(substream, flags); 1647 if (snd_pcm_running(substream) && 1648 snd_pcm_update_hw_ptr(substream) >= 0) 1649 runtime->status->hw_ptr %= runtime->buffer_size; 1650 else 1651 runtime->status->hw_ptr = 0; 1652 snd_pcm_stream_unlock_irqrestore(substream, flags); 1653 return 0; 1654 } 1655 1656 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1657 void *arg) 1658 { 1659 struct snd_pcm_channel_info *info = arg; 1660 struct snd_pcm_runtime *runtime = substream->runtime; 1661 int width; 1662 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1663 info->offset = -1; 1664 return 0; 1665 } 1666 width = snd_pcm_format_physical_width(runtime->format); 1667 if (width < 0) 1668 return width; 1669 info->offset = 0; 1670 switch (runtime->access) { 1671 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1672 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1673 info->first = info->channel * width; 1674 info->step = runtime->channels * width; 1675 break; 1676 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1677 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1678 { 1679 size_t size = runtime->dma_bytes / runtime->channels; 1680 info->first = info->channel * size * 8; 1681 info->step = width; 1682 break; 1683 } 1684 default: 1685 snd_BUG(); 1686 break; 1687 } 1688 return 0; 1689 } 1690 1691 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1692 void *arg) 1693 { 1694 struct snd_pcm_hw_params *params = arg; 1695 snd_pcm_format_t format; 1696 int channels, width; 1697 1698 params->fifo_size = substream->runtime->hw.fifo_size; 1699 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1700 format = params_format(params); 1701 channels = params_channels(params); 1702 width = snd_pcm_format_physical_width(format); 1703 params->fifo_size /= width * channels; 1704 } 1705 return 0; 1706 } 1707 1708 /** 1709 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1710 * @substream: the pcm substream instance 1711 * @cmd: ioctl command 1712 * @arg: ioctl argument 1713 * 1714 * Processes the generic ioctl commands for PCM. 1715 * Can be passed as the ioctl callback for PCM ops. 1716 * 1717 * Returns zero if successful, or a negative error code on failure. 1718 */ 1719 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1720 unsigned int cmd, void *arg) 1721 { 1722 switch (cmd) { 1723 case SNDRV_PCM_IOCTL1_INFO: 1724 return 0; 1725 case SNDRV_PCM_IOCTL1_RESET: 1726 return snd_pcm_lib_ioctl_reset(substream, arg); 1727 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1728 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1729 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1730 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1731 } 1732 return -ENXIO; 1733 } 1734 1735 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1736 1737 /** 1738 * snd_pcm_period_elapsed - update the pcm status for the next period 1739 * @substream: the pcm substream instance 1740 * 1741 * This function is called from the interrupt handler when the 1742 * PCM has processed the period size. It will update the current 1743 * pointer, wake up sleepers, etc. 1744 * 1745 * Even if more than one periods have elapsed since the last call, you 1746 * have to call this only once. 1747 */ 1748 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1749 { 1750 struct snd_pcm_runtime *runtime; 1751 unsigned long flags; 1752 1753 if (PCM_RUNTIME_CHECK(substream)) 1754 return; 1755 runtime = substream->runtime; 1756 1757 if (runtime->transfer_ack_begin) 1758 runtime->transfer_ack_begin(substream); 1759 1760 snd_pcm_stream_lock_irqsave(substream, flags); 1761 if (!snd_pcm_running(substream) || 1762 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1763 goto _end; 1764 1765 if (substream->timer_running) 1766 snd_timer_interrupt(substream->timer, 1); 1767 _end: 1768 snd_pcm_stream_unlock_irqrestore(substream, flags); 1769 if (runtime->transfer_ack_end) 1770 runtime->transfer_ack_end(substream); 1771 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1772 } 1773 1774 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1775 1776 /* 1777 * Wait until avail_min data becomes available 1778 * Returns a negative error code if any error occurs during operation. 1779 * The available space is stored on availp. When err = 0 and avail = 0 1780 * on the capture stream, it indicates the stream is in DRAINING state. 1781 */ 1782 static int wait_for_avail(struct snd_pcm_substream *substream, 1783 snd_pcm_uframes_t *availp) 1784 { 1785 struct snd_pcm_runtime *runtime = substream->runtime; 1786 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1787 wait_queue_t wait; 1788 int err = 0; 1789 snd_pcm_uframes_t avail = 0; 1790 long wait_time, tout; 1791 1792 init_waitqueue_entry(&wait, current); 1793 set_current_state(TASK_INTERRUPTIBLE); 1794 add_wait_queue(&runtime->tsleep, &wait); 1795 1796 if (runtime->no_period_wakeup) 1797 wait_time = MAX_SCHEDULE_TIMEOUT; 1798 else { 1799 wait_time = 10; 1800 if (runtime->rate) { 1801 long t = runtime->period_size * 2 / runtime->rate; 1802 wait_time = max(t, wait_time); 1803 } 1804 wait_time = msecs_to_jiffies(wait_time * 1000); 1805 } 1806 1807 for (;;) { 1808 if (signal_pending(current)) { 1809 err = -ERESTARTSYS; 1810 break; 1811 } 1812 1813 /* 1814 * We need to check if space became available already 1815 * (and thus the wakeup happened already) first to close 1816 * the race of space already having become available. 1817 * This check must happen after been added to the waitqueue 1818 * and having current state be INTERRUPTIBLE. 1819 */ 1820 if (is_playback) 1821 avail = snd_pcm_playback_avail(runtime); 1822 else 1823 avail = snd_pcm_capture_avail(runtime); 1824 if (avail >= runtime->twake) 1825 break; 1826 snd_pcm_stream_unlock_irq(substream); 1827 1828 tout = schedule_timeout(wait_time); 1829 1830 snd_pcm_stream_lock_irq(substream); 1831 set_current_state(TASK_INTERRUPTIBLE); 1832 switch (runtime->status->state) { 1833 case SNDRV_PCM_STATE_SUSPENDED: 1834 err = -ESTRPIPE; 1835 goto _endloop; 1836 case SNDRV_PCM_STATE_XRUN: 1837 err = -EPIPE; 1838 goto _endloop; 1839 case SNDRV_PCM_STATE_DRAINING: 1840 if (is_playback) 1841 err = -EPIPE; 1842 else 1843 avail = 0; /* indicate draining */ 1844 goto _endloop; 1845 case SNDRV_PCM_STATE_OPEN: 1846 case SNDRV_PCM_STATE_SETUP: 1847 case SNDRV_PCM_STATE_DISCONNECTED: 1848 err = -EBADFD; 1849 goto _endloop; 1850 } 1851 if (!tout) { 1852 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1853 is_playback ? "playback" : "capture"); 1854 err = -EIO; 1855 break; 1856 } 1857 } 1858 _endloop: 1859 set_current_state(TASK_RUNNING); 1860 remove_wait_queue(&runtime->tsleep, &wait); 1861 *availp = avail; 1862 return err; 1863 } 1864 1865 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1866 unsigned int hwoff, 1867 unsigned long data, unsigned int off, 1868 snd_pcm_uframes_t frames) 1869 { 1870 struct snd_pcm_runtime *runtime = substream->runtime; 1871 int err; 1872 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1873 if (substream->ops->copy) { 1874 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1875 return err; 1876 } else { 1877 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1878 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1879 return -EFAULT; 1880 } 1881 return 0; 1882 } 1883 1884 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1885 unsigned long data, unsigned int off, 1886 snd_pcm_uframes_t size); 1887 1888 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1889 unsigned long data, 1890 snd_pcm_uframes_t size, 1891 int nonblock, 1892 transfer_f transfer) 1893 { 1894 struct snd_pcm_runtime *runtime = substream->runtime; 1895 snd_pcm_uframes_t xfer = 0; 1896 snd_pcm_uframes_t offset = 0; 1897 int err = 0; 1898 1899 if (size == 0) 1900 return 0; 1901 1902 snd_pcm_stream_lock_irq(substream); 1903 switch (runtime->status->state) { 1904 case SNDRV_PCM_STATE_PREPARED: 1905 case SNDRV_PCM_STATE_RUNNING: 1906 case SNDRV_PCM_STATE_PAUSED: 1907 break; 1908 case SNDRV_PCM_STATE_XRUN: 1909 err = -EPIPE; 1910 goto _end_unlock; 1911 case SNDRV_PCM_STATE_SUSPENDED: 1912 err = -ESTRPIPE; 1913 goto _end_unlock; 1914 default: 1915 err = -EBADFD; 1916 goto _end_unlock; 1917 } 1918 1919 runtime->twake = runtime->control->avail_min ? : 1; 1920 while (size > 0) { 1921 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1922 snd_pcm_uframes_t avail; 1923 snd_pcm_uframes_t cont; 1924 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1925 snd_pcm_update_hw_ptr(substream); 1926 avail = snd_pcm_playback_avail(runtime); 1927 if (!avail) { 1928 if (nonblock) { 1929 err = -EAGAIN; 1930 goto _end_unlock; 1931 } 1932 runtime->twake = min_t(snd_pcm_uframes_t, size, 1933 runtime->control->avail_min ? : 1); 1934 err = wait_for_avail(substream, &avail); 1935 if (err < 0) 1936 goto _end_unlock; 1937 } 1938 frames = size > avail ? avail : size; 1939 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1940 if (frames > cont) 1941 frames = cont; 1942 if (snd_BUG_ON(!frames)) { 1943 runtime->twake = 0; 1944 snd_pcm_stream_unlock_irq(substream); 1945 return -EINVAL; 1946 } 1947 appl_ptr = runtime->control->appl_ptr; 1948 appl_ofs = appl_ptr % runtime->buffer_size; 1949 snd_pcm_stream_unlock_irq(substream); 1950 err = transfer(substream, appl_ofs, data, offset, frames); 1951 snd_pcm_stream_lock_irq(substream); 1952 if (err < 0) 1953 goto _end_unlock; 1954 switch (runtime->status->state) { 1955 case SNDRV_PCM_STATE_XRUN: 1956 err = -EPIPE; 1957 goto _end_unlock; 1958 case SNDRV_PCM_STATE_SUSPENDED: 1959 err = -ESTRPIPE; 1960 goto _end_unlock; 1961 default: 1962 break; 1963 } 1964 appl_ptr += frames; 1965 if (appl_ptr >= runtime->boundary) 1966 appl_ptr -= runtime->boundary; 1967 runtime->control->appl_ptr = appl_ptr; 1968 if (substream->ops->ack) 1969 substream->ops->ack(substream); 1970 1971 offset += frames; 1972 size -= frames; 1973 xfer += frames; 1974 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1975 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1976 err = snd_pcm_start(substream); 1977 if (err < 0) 1978 goto _end_unlock; 1979 } 1980 } 1981 _end_unlock: 1982 runtime->twake = 0; 1983 if (xfer > 0 && err >= 0) 1984 snd_pcm_update_state(substream, runtime); 1985 snd_pcm_stream_unlock_irq(substream); 1986 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1987 } 1988 1989 /* sanity-check for read/write methods */ 1990 static int pcm_sanity_check(struct snd_pcm_substream *substream) 1991 { 1992 struct snd_pcm_runtime *runtime; 1993 if (PCM_RUNTIME_CHECK(substream)) 1994 return -ENXIO; 1995 runtime = substream->runtime; 1996 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 1997 return -EINVAL; 1998 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1999 return -EBADFD; 2000 return 0; 2001 } 2002 2003 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 2004 { 2005 struct snd_pcm_runtime *runtime; 2006 int nonblock; 2007 int err; 2008 2009 err = pcm_sanity_check(substream); 2010 if (err < 0) 2011 return err; 2012 runtime = substream->runtime; 2013 nonblock = !!(substream->f_flags & O_NONBLOCK); 2014 2015 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2016 runtime->channels > 1) 2017 return -EINVAL; 2018 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 2019 snd_pcm_lib_write_transfer); 2020 } 2021 2022 EXPORT_SYMBOL(snd_pcm_lib_write); 2023 2024 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 2025 unsigned int hwoff, 2026 unsigned long data, unsigned int off, 2027 snd_pcm_uframes_t frames) 2028 { 2029 struct snd_pcm_runtime *runtime = substream->runtime; 2030 int err; 2031 void __user **bufs = (void __user **)data; 2032 int channels = runtime->channels; 2033 int c; 2034 if (substream->ops->copy) { 2035 if (snd_BUG_ON(!substream->ops->silence)) 2036 return -EINVAL; 2037 for (c = 0; c < channels; ++c, ++bufs) { 2038 if (*bufs == NULL) { 2039 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 2040 return err; 2041 } else { 2042 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2043 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2044 return err; 2045 } 2046 } 2047 } else { 2048 /* default transfer behaviour */ 2049 size_t dma_csize = runtime->dma_bytes / channels; 2050 for (c = 0; c < channels; ++c, ++bufs) { 2051 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2052 if (*bufs == NULL) { 2053 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 2054 } else { 2055 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2056 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2057 return -EFAULT; 2058 } 2059 } 2060 } 2061 return 0; 2062 } 2063 2064 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2065 void __user **bufs, 2066 snd_pcm_uframes_t frames) 2067 { 2068 struct snd_pcm_runtime *runtime; 2069 int nonblock; 2070 int err; 2071 2072 err = pcm_sanity_check(substream); 2073 if (err < 0) 2074 return err; 2075 runtime = substream->runtime; 2076 nonblock = !!(substream->f_flags & O_NONBLOCK); 2077 2078 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2079 return -EINVAL; 2080 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2081 nonblock, snd_pcm_lib_writev_transfer); 2082 } 2083 2084 EXPORT_SYMBOL(snd_pcm_lib_writev); 2085 2086 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2087 unsigned int hwoff, 2088 unsigned long data, unsigned int off, 2089 snd_pcm_uframes_t frames) 2090 { 2091 struct snd_pcm_runtime *runtime = substream->runtime; 2092 int err; 2093 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2094 if (substream->ops->copy) { 2095 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2096 return err; 2097 } else { 2098 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2099 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2100 return -EFAULT; 2101 } 2102 return 0; 2103 } 2104 2105 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2106 unsigned long data, 2107 snd_pcm_uframes_t size, 2108 int nonblock, 2109 transfer_f transfer) 2110 { 2111 struct snd_pcm_runtime *runtime = substream->runtime; 2112 snd_pcm_uframes_t xfer = 0; 2113 snd_pcm_uframes_t offset = 0; 2114 int err = 0; 2115 2116 if (size == 0) 2117 return 0; 2118 2119 snd_pcm_stream_lock_irq(substream); 2120 switch (runtime->status->state) { 2121 case SNDRV_PCM_STATE_PREPARED: 2122 if (size >= runtime->start_threshold) { 2123 err = snd_pcm_start(substream); 2124 if (err < 0) 2125 goto _end_unlock; 2126 } 2127 break; 2128 case SNDRV_PCM_STATE_DRAINING: 2129 case SNDRV_PCM_STATE_RUNNING: 2130 case SNDRV_PCM_STATE_PAUSED: 2131 break; 2132 case SNDRV_PCM_STATE_XRUN: 2133 err = -EPIPE; 2134 goto _end_unlock; 2135 case SNDRV_PCM_STATE_SUSPENDED: 2136 err = -ESTRPIPE; 2137 goto _end_unlock; 2138 default: 2139 err = -EBADFD; 2140 goto _end_unlock; 2141 } 2142 2143 runtime->twake = runtime->control->avail_min ? : 1; 2144 while (size > 0) { 2145 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2146 snd_pcm_uframes_t avail; 2147 snd_pcm_uframes_t cont; 2148 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2149 snd_pcm_update_hw_ptr(substream); 2150 avail = snd_pcm_capture_avail(runtime); 2151 if (!avail) { 2152 if (runtime->status->state == 2153 SNDRV_PCM_STATE_DRAINING) { 2154 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2155 goto _end_unlock; 2156 } 2157 if (nonblock) { 2158 err = -EAGAIN; 2159 goto _end_unlock; 2160 } 2161 runtime->twake = min_t(snd_pcm_uframes_t, size, 2162 runtime->control->avail_min ? : 1); 2163 err = wait_for_avail(substream, &avail); 2164 if (err < 0) 2165 goto _end_unlock; 2166 if (!avail) 2167 continue; /* draining */ 2168 } 2169 frames = size > avail ? avail : size; 2170 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2171 if (frames > cont) 2172 frames = cont; 2173 if (snd_BUG_ON(!frames)) { 2174 runtime->twake = 0; 2175 snd_pcm_stream_unlock_irq(substream); 2176 return -EINVAL; 2177 } 2178 appl_ptr = runtime->control->appl_ptr; 2179 appl_ofs = appl_ptr % runtime->buffer_size; 2180 snd_pcm_stream_unlock_irq(substream); 2181 err = transfer(substream, appl_ofs, data, offset, frames); 2182 snd_pcm_stream_lock_irq(substream); 2183 if (err < 0) 2184 goto _end_unlock; 2185 switch (runtime->status->state) { 2186 case SNDRV_PCM_STATE_XRUN: 2187 err = -EPIPE; 2188 goto _end_unlock; 2189 case SNDRV_PCM_STATE_SUSPENDED: 2190 err = -ESTRPIPE; 2191 goto _end_unlock; 2192 default: 2193 break; 2194 } 2195 appl_ptr += frames; 2196 if (appl_ptr >= runtime->boundary) 2197 appl_ptr -= runtime->boundary; 2198 runtime->control->appl_ptr = appl_ptr; 2199 if (substream->ops->ack) 2200 substream->ops->ack(substream); 2201 2202 offset += frames; 2203 size -= frames; 2204 xfer += frames; 2205 } 2206 _end_unlock: 2207 runtime->twake = 0; 2208 if (xfer > 0 && err >= 0) 2209 snd_pcm_update_state(substream, runtime); 2210 snd_pcm_stream_unlock_irq(substream); 2211 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2212 } 2213 2214 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2215 { 2216 struct snd_pcm_runtime *runtime; 2217 int nonblock; 2218 int err; 2219 2220 err = pcm_sanity_check(substream); 2221 if (err < 0) 2222 return err; 2223 runtime = substream->runtime; 2224 nonblock = !!(substream->f_flags & O_NONBLOCK); 2225 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2226 return -EINVAL; 2227 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2228 } 2229 2230 EXPORT_SYMBOL(snd_pcm_lib_read); 2231 2232 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2233 unsigned int hwoff, 2234 unsigned long data, unsigned int off, 2235 snd_pcm_uframes_t frames) 2236 { 2237 struct snd_pcm_runtime *runtime = substream->runtime; 2238 int err; 2239 void __user **bufs = (void __user **)data; 2240 int channels = runtime->channels; 2241 int c; 2242 if (substream->ops->copy) { 2243 for (c = 0; c < channels; ++c, ++bufs) { 2244 char __user *buf; 2245 if (*bufs == NULL) 2246 continue; 2247 buf = *bufs + samples_to_bytes(runtime, off); 2248 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2249 return err; 2250 } 2251 } else { 2252 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2253 for (c = 0; c < channels; ++c, ++bufs) { 2254 char *hwbuf; 2255 char __user *buf; 2256 if (*bufs == NULL) 2257 continue; 2258 2259 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2260 buf = *bufs + samples_to_bytes(runtime, off); 2261 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2262 return -EFAULT; 2263 } 2264 } 2265 return 0; 2266 } 2267 2268 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2269 void __user **bufs, 2270 snd_pcm_uframes_t frames) 2271 { 2272 struct snd_pcm_runtime *runtime; 2273 int nonblock; 2274 int err; 2275 2276 err = pcm_sanity_check(substream); 2277 if (err < 0) 2278 return err; 2279 runtime = substream->runtime; 2280 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2281 return -EBADFD; 2282 2283 nonblock = !!(substream->f_flags & O_NONBLOCK); 2284 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2285 return -EINVAL; 2286 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2287 } 2288 2289 EXPORT_SYMBOL(snd_pcm_lib_readv); 2290