xref: /openbmc/linux/sound/core/pcm_lib.c (revision c819e2cf)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34 
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43 
44 /*
45  * fill ring buffer with silence
46  * runtime->silence_start: starting pointer to silence area
47  * runtime->silence_filled: size filled with silence
48  * runtime->silence_threshold: threshold from application
49  * runtime->silence_size: maximal size from application
50  *
51  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52  */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55 	struct snd_pcm_runtime *runtime = substream->runtime;
56 	snd_pcm_uframes_t frames, ofs, transfer;
57 
58 	if (runtime->silence_size < runtime->boundary) {
59 		snd_pcm_sframes_t noise_dist, n;
60 		if (runtime->silence_start != runtime->control->appl_ptr) {
61 			n = runtime->control->appl_ptr - runtime->silence_start;
62 			if (n < 0)
63 				n += runtime->boundary;
64 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 				runtime->silence_filled -= n;
66 			else
67 				runtime->silence_filled = 0;
68 			runtime->silence_start = runtime->control->appl_ptr;
69 		}
70 		if (runtime->silence_filled >= runtime->buffer_size)
71 			return;
72 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 			return;
75 		frames = runtime->silence_threshold - noise_dist;
76 		if (frames > runtime->silence_size)
77 			frames = runtime->silence_size;
78 	} else {
79 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
80 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 			if (avail > runtime->buffer_size)
82 				avail = runtime->buffer_size;
83 			runtime->silence_filled = avail > 0 ? avail : 0;
84 			runtime->silence_start = (runtime->status->hw_ptr +
85 						  runtime->silence_filled) %
86 						 runtime->boundary;
87 		} else {
88 			ofs = runtime->status->hw_ptr;
89 			frames = new_hw_ptr - ofs;
90 			if ((snd_pcm_sframes_t)frames < 0)
91 				frames += runtime->boundary;
92 			runtime->silence_filled -= frames;
93 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 				runtime->silence_filled = 0;
95 				runtime->silence_start = new_hw_ptr;
96 			} else {
97 				runtime->silence_start = ofs;
98 			}
99 		}
100 		frames = runtime->buffer_size - runtime->silence_filled;
101 	}
102 	if (snd_BUG_ON(frames > runtime->buffer_size))
103 		return;
104 	if (frames == 0)
105 		return;
106 	ofs = runtime->silence_start % runtime->buffer_size;
107 	while (frames > 0) {
108 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 			if (substream->ops->silence) {
112 				int err;
113 				err = substream->ops->silence(substream, -1, ofs, transfer);
114 				snd_BUG_ON(err < 0);
115 			} else {
116 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 			}
119 		} else {
120 			unsigned int c;
121 			unsigned int channels = runtime->channels;
122 			if (substream->ops->silence) {
123 				for (c = 0; c < channels; ++c) {
124 					int err;
125 					err = substream->ops->silence(substream, c, ofs, transfer);
126 					snd_BUG_ON(err < 0);
127 				}
128 			} else {
129 				size_t dma_csize = runtime->dma_bytes / channels;
130 				for (c = 0; c < channels; ++c) {
131 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 				}
134 			}
135 		}
136 		runtime->silence_filled += transfer;
137 		frames -= transfer;
138 		ofs = 0;
139 	}
140 }
141 
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 			   char *name, size_t len)
145 {
146 	snprintf(name, len, "pcmC%dD%d%c:%d",
147 		 substream->pcm->card->number,
148 		 substream->pcm->device,
149 		 substream->stream ? 'c' : 'p',
150 		 substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154 
155 #define XRUN_DEBUG_BASIC	(1<<0)
156 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
158 
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160 
161 #define xrun_debug(substream, mask) \
162 			((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask)	0
165 #endif
166 
167 #define dump_stack_on_xrun(substream) do {			\
168 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
169 			dump_stack();				\
170 	} while (0)
171 
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174 	struct snd_pcm_runtime *runtime = substream->runtime;
175 
176 	trace_xrun(substream);
177 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 		char name[16];
182 		snd_pcm_debug_name(substream, name, sizeof(name));
183 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 		dump_stack_on_xrun(substream);
185 	}
186 }
187 
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
190 	do {								\
191 		trace_hw_ptr_error(substream, reason);	\
192 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
193 			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 					   (in_interrupt) ? 'Q' : 'P', ##args);	\
195 			dump_stack_on_xrun(substream);			\
196 		}							\
197 	} while (0)
198 
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200 
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202 
203 #endif
204 
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 			 struct snd_pcm_runtime *runtime)
207 {
208 	snd_pcm_uframes_t avail;
209 
210 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 		avail = snd_pcm_playback_avail(runtime);
212 	else
213 		avail = snd_pcm_capture_avail(runtime);
214 	if (avail > runtime->avail_max)
215 		runtime->avail_max = avail;
216 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 		if (avail >= runtime->buffer_size) {
218 			snd_pcm_drain_done(substream);
219 			return -EPIPE;
220 		}
221 	} else {
222 		if (avail >= runtime->stop_threshold) {
223 			xrun(substream);
224 			return -EPIPE;
225 		}
226 	}
227 	if (runtime->twake) {
228 		if (avail >= runtime->twake)
229 			wake_up(&runtime->tsleep);
230 	} else if (avail >= runtime->control->avail_min)
231 		wake_up(&runtime->sleep);
232 	return 0;
233 }
234 
235 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
236 				  unsigned int in_interrupt)
237 {
238 	struct snd_pcm_runtime *runtime = substream->runtime;
239 	snd_pcm_uframes_t pos;
240 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
241 	snd_pcm_sframes_t hdelta, delta;
242 	unsigned long jdelta;
243 	unsigned long curr_jiffies;
244 	struct timespec curr_tstamp;
245 	struct timespec audio_tstamp;
246 	int crossed_boundary = 0;
247 
248 	old_hw_ptr = runtime->status->hw_ptr;
249 
250 	/*
251 	 * group pointer, time and jiffies reads to allow for more
252 	 * accurate correlations/corrections.
253 	 * The values are stored at the end of this routine after
254 	 * corrections for hw_ptr position
255 	 */
256 	pos = substream->ops->pointer(substream);
257 	curr_jiffies = jiffies;
258 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
259 		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
260 
261 		if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
262 			(substream->ops->wall_clock))
263 			substream->ops->wall_clock(substream, &audio_tstamp);
264 	}
265 
266 	if (pos == SNDRV_PCM_POS_XRUN) {
267 		xrun(substream);
268 		return -EPIPE;
269 	}
270 	if (pos >= runtime->buffer_size) {
271 		if (printk_ratelimit()) {
272 			char name[16];
273 			snd_pcm_debug_name(substream, name, sizeof(name));
274 			pcm_err(substream->pcm,
275 				"BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
276 				name, pos, runtime->buffer_size,
277 				runtime->period_size);
278 		}
279 		pos = 0;
280 	}
281 	pos -= pos % runtime->min_align;
282 	trace_hwptr(substream, pos, in_interrupt);
283 	hw_base = runtime->hw_ptr_base;
284 	new_hw_ptr = hw_base + pos;
285 	if (in_interrupt) {
286 		/* we know that one period was processed */
287 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
288 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
289 		if (delta > new_hw_ptr) {
290 			/* check for double acknowledged interrupts */
291 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
292 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
293 				hw_base += runtime->buffer_size;
294 				if (hw_base >= runtime->boundary) {
295 					hw_base = 0;
296 					crossed_boundary++;
297 				}
298 				new_hw_ptr = hw_base + pos;
299 				goto __delta;
300 			}
301 		}
302 	}
303 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
304 	/* pointer crosses the end of the ring buffer */
305 	if (new_hw_ptr < old_hw_ptr) {
306 		hw_base += runtime->buffer_size;
307 		if (hw_base >= runtime->boundary) {
308 			hw_base = 0;
309 			crossed_boundary++;
310 		}
311 		new_hw_ptr = hw_base + pos;
312 	}
313       __delta:
314 	delta = new_hw_ptr - old_hw_ptr;
315 	if (delta < 0)
316 		delta += runtime->boundary;
317 
318 	if (runtime->no_period_wakeup) {
319 		snd_pcm_sframes_t xrun_threshold;
320 		/*
321 		 * Without regular period interrupts, we have to check
322 		 * the elapsed time to detect xruns.
323 		 */
324 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
325 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
326 			goto no_delta_check;
327 		hdelta = jdelta - delta * HZ / runtime->rate;
328 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
329 		while (hdelta > xrun_threshold) {
330 			delta += runtime->buffer_size;
331 			hw_base += runtime->buffer_size;
332 			if (hw_base >= runtime->boundary) {
333 				hw_base = 0;
334 				crossed_boundary++;
335 			}
336 			new_hw_ptr = hw_base + pos;
337 			hdelta -= runtime->hw_ptr_buffer_jiffies;
338 		}
339 		goto no_delta_check;
340 	}
341 
342 	/* something must be really wrong */
343 	if (delta >= runtime->buffer_size + runtime->period_size) {
344 		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
345 			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
346 			     substream->stream, (long)pos,
347 			     (long)new_hw_ptr, (long)old_hw_ptr);
348 		return 0;
349 	}
350 
351 	/* Do jiffies check only in xrun_debug mode */
352 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
353 		goto no_jiffies_check;
354 
355 	/* Skip the jiffies check for hardwares with BATCH flag.
356 	 * Such hardware usually just increases the position at each IRQ,
357 	 * thus it can't give any strange position.
358 	 */
359 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
360 		goto no_jiffies_check;
361 	hdelta = delta;
362 	if (hdelta < runtime->delay)
363 		goto no_jiffies_check;
364 	hdelta -= runtime->delay;
365 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
367 		delta = jdelta /
368 			(((runtime->period_size * HZ) / runtime->rate)
369 								+ HZ/100);
370 		/* move new_hw_ptr according jiffies not pos variable */
371 		new_hw_ptr = old_hw_ptr;
372 		hw_base = delta;
373 		/* use loop to avoid checks for delta overflows */
374 		/* the delta value is small or zero in most cases */
375 		while (delta > 0) {
376 			new_hw_ptr += runtime->period_size;
377 			if (new_hw_ptr >= runtime->boundary) {
378 				new_hw_ptr -= runtime->boundary;
379 				crossed_boundary--;
380 			}
381 			delta--;
382 		}
383 		/* align hw_base to buffer_size */
384 		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
385 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
386 			     (long)pos, (long)hdelta,
387 			     (long)runtime->period_size, jdelta,
388 			     ((hdelta * HZ) / runtime->rate), hw_base,
389 			     (unsigned long)old_hw_ptr,
390 			     (unsigned long)new_hw_ptr);
391 		/* reset values to proper state */
392 		delta = 0;
393 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
394 	}
395  no_jiffies_check:
396 	if (delta > runtime->period_size + runtime->period_size / 2) {
397 		hw_ptr_error(substream, in_interrupt,
398 			     "Lost interrupts?",
399 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
400 			     substream->stream, (long)delta,
401 			     (long)new_hw_ptr,
402 			     (long)old_hw_ptr);
403 	}
404 
405  no_delta_check:
406 	if (runtime->status->hw_ptr == new_hw_ptr)
407 		return 0;
408 
409 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
410 	    runtime->silence_size > 0)
411 		snd_pcm_playback_silence(substream, new_hw_ptr);
412 
413 	if (in_interrupt) {
414 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
415 		if (delta < 0)
416 			delta += runtime->boundary;
417 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
418 		runtime->hw_ptr_interrupt += delta;
419 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
420 			runtime->hw_ptr_interrupt -= runtime->boundary;
421 	}
422 	runtime->hw_ptr_base = hw_base;
423 	runtime->status->hw_ptr = new_hw_ptr;
424 	runtime->hw_ptr_jiffies = curr_jiffies;
425 	if (crossed_boundary) {
426 		snd_BUG_ON(crossed_boundary != 1);
427 		runtime->hw_ptr_wrap += runtime->boundary;
428 	}
429 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
430 		runtime->status->tstamp = curr_tstamp;
431 
432 		if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
433 			/*
434 			 * no wall clock available, provide audio timestamp
435 			 * derived from pointer position+delay
436 			 */
437 			u64 audio_frames, audio_nsecs;
438 
439 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 				audio_frames = runtime->hw_ptr_wrap
441 					+ runtime->status->hw_ptr
442 					- runtime->delay;
443 			else
444 				audio_frames = runtime->hw_ptr_wrap
445 					+ runtime->status->hw_ptr
446 					+ runtime->delay;
447 			audio_nsecs = div_u64(audio_frames * 1000000000LL,
448 					runtime->rate);
449 			audio_tstamp = ns_to_timespec(audio_nsecs);
450 		}
451 		runtime->status->audio_tstamp = audio_tstamp;
452 	}
453 
454 	return snd_pcm_update_state(substream, runtime);
455 }
456 
457 /* CAUTION: call it with irq disabled */
458 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
459 {
460 	return snd_pcm_update_hw_ptr0(substream, 0);
461 }
462 
463 /**
464  * snd_pcm_set_ops - set the PCM operators
465  * @pcm: the pcm instance
466  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
467  * @ops: the operator table
468  *
469  * Sets the given PCM operators to the pcm instance.
470  */
471 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
472 		     const struct snd_pcm_ops *ops)
473 {
474 	struct snd_pcm_str *stream = &pcm->streams[direction];
475 	struct snd_pcm_substream *substream;
476 
477 	for (substream = stream->substream; substream != NULL; substream = substream->next)
478 		substream->ops = ops;
479 }
480 
481 EXPORT_SYMBOL(snd_pcm_set_ops);
482 
483 /**
484  * snd_pcm_sync - set the PCM sync id
485  * @substream: the pcm substream
486  *
487  * Sets the PCM sync identifier for the card.
488  */
489 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
490 {
491 	struct snd_pcm_runtime *runtime = substream->runtime;
492 
493 	runtime->sync.id32[0] = substream->pcm->card->number;
494 	runtime->sync.id32[1] = -1;
495 	runtime->sync.id32[2] = -1;
496 	runtime->sync.id32[3] = -1;
497 }
498 
499 EXPORT_SYMBOL(snd_pcm_set_sync);
500 
501 /*
502  *  Standard ioctl routine
503  */
504 
505 static inline unsigned int div32(unsigned int a, unsigned int b,
506 				 unsigned int *r)
507 {
508 	if (b == 0) {
509 		*r = 0;
510 		return UINT_MAX;
511 	}
512 	*r = a % b;
513 	return a / b;
514 }
515 
516 static inline unsigned int div_down(unsigned int a, unsigned int b)
517 {
518 	if (b == 0)
519 		return UINT_MAX;
520 	return a / b;
521 }
522 
523 static inline unsigned int div_up(unsigned int a, unsigned int b)
524 {
525 	unsigned int r;
526 	unsigned int q;
527 	if (b == 0)
528 		return UINT_MAX;
529 	q = div32(a, b, &r);
530 	if (r)
531 		++q;
532 	return q;
533 }
534 
535 static inline unsigned int mul(unsigned int a, unsigned int b)
536 {
537 	if (a == 0)
538 		return 0;
539 	if (div_down(UINT_MAX, a) < b)
540 		return UINT_MAX;
541 	return a * b;
542 }
543 
544 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
545 				    unsigned int c, unsigned int *r)
546 {
547 	u_int64_t n = (u_int64_t) a * b;
548 	if (c == 0) {
549 		snd_BUG_ON(!n);
550 		*r = 0;
551 		return UINT_MAX;
552 	}
553 	n = div_u64_rem(n, c, r);
554 	if (n >= UINT_MAX) {
555 		*r = 0;
556 		return UINT_MAX;
557 	}
558 	return n;
559 }
560 
561 /**
562  * snd_interval_refine - refine the interval value of configurator
563  * @i: the interval value to refine
564  * @v: the interval value to refer to
565  *
566  * Refines the interval value with the reference value.
567  * The interval is changed to the range satisfying both intervals.
568  * The interval status (min, max, integer, etc.) are evaluated.
569  *
570  * Return: Positive if the value is changed, zero if it's not changed, or a
571  * negative error code.
572  */
573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
574 {
575 	int changed = 0;
576 	if (snd_BUG_ON(snd_interval_empty(i)))
577 		return -EINVAL;
578 	if (i->min < v->min) {
579 		i->min = v->min;
580 		i->openmin = v->openmin;
581 		changed = 1;
582 	} else if (i->min == v->min && !i->openmin && v->openmin) {
583 		i->openmin = 1;
584 		changed = 1;
585 	}
586 	if (i->max > v->max) {
587 		i->max = v->max;
588 		i->openmax = v->openmax;
589 		changed = 1;
590 	} else if (i->max == v->max && !i->openmax && v->openmax) {
591 		i->openmax = 1;
592 		changed = 1;
593 	}
594 	if (!i->integer && v->integer) {
595 		i->integer = 1;
596 		changed = 1;
597 	}
598 	if (i->integer) {
599 		if (i->openmin) {
600 			i->min++;
601 			i->openmin = 0;
602 		}
603 		if (i->openmax) {
604 			i->max--;
605 			i->openmax = 0;
606 		}
607 	} else if (!i->openmin && !i->openmax && i->min == i->max)
608 		i->integer = 1;
609 	if (snd_interval_checkempty(i)) {
610 		snd_interval_none(i);
611 		return -EINVAL;
612 	}
613 	return changed;
614 }
615 
616 EXPORT_SYMBOL(snd_interval_refine);
617 
618 static int snd_interval_refine_first(struct snd_interval *i)
619 {
620 	if (snd_BUG_ON(snd_interval_empty(i)))
621 		return -EINVAL;
622 	if (snd_interval_single(i))
623 		return 0;
624 	i->max = i->min;
625 	i->openmax = i->openmin;
626 	if (i->openmax)
627 		i->max++;
628 	return 1;
629 }
630 
631 static int snd_interval_refine_last(struct snd_interval *i)
632 {
633 	if (snd_BUG_ON(snd_interval_empty(i)))
634 		return -EINVAL;
635 	if (snd_interval_single(i))
636 		return 0;
637 	i->min = i->max;
638 	i->openmin = i->openmax;
639 	if (i->openmin)
640 		i->min--;
641 	return 1;
642 }
643 
644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
645 {
646 	if (a->empty || b->empty) {
647 		snd_interval_none(c);
648 		return;
649 	}
650 	c->empty = 0;
651 	c->min = mul(a->min, b->min);
652 	c->openmin = (a->openmin || b->openmin);
653 	c->max = mul(a->max,  b->max);
654 	c->openmax = (a->openmax || b->openmax);
655 	c->integer = (a->integer && b->integer);
656 }
657 
658 /**
659  * snd_interval_div - refine the interval value with division
660  * @a: dividend
661  * @b: divisor
662  * @c: quotient
663  *
664  * c = a / b
665  *
666  * Returns non-zero if the value is changed, zero if not changed.
667  */
668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
669 {
670 	unsigned int r;
671 	if (a->empty || b->empty) {
672 		snd_interval_none(c);
673 		return;
674 	}
675 	c->empty = 0;
676 	c->min = div32(a->min, b->max, &r);
677 	c->openmin = (r || a->openmin || b->openmax);
678 	if (b->min > 0) {
679 		c->max = div32(a->max, b->min, &r);
680 		if (r) {
681 			c->max++;
682 			c->openmax = 1;
683 		} else
684 			c->openmax = (a->openmax || b->openmin);
685 	} else {
686 		c->max = UINT_MAX;
687 		c->openmax = 0;
688 	}
689 	c->integer = 0;
690 }
691 
692 /**
693  * snd_interval_muldivk - refine the interval value
694  * @a: dividend 1
695  * @b: dividend 2
696  * @k: divisor (as integer)
697  * @c: result
698   *
699  * c = a * b / k
700  *
701  * Returns non-zero if the value is changed, zero if not changed.
702  */
703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
704 		      unsigned int k, struct snd_interval *c)
705 {
706 	unsigned int r;
707 	if (a->empty || b->empty) {
708 		snd_interval_none(c);
709 		return;
710 	}
711 	c->empty = 0;
712 	c->min = muldiv32(a->min, b->min, k, &r);
713 	c->openmin = (r || a->openmin || b->openmin);
714 	c->max = muldiv32(a->max, b->max, k, &r);
715 	if (r) {
716 		c->max++;
717 		c->openmax = 1;
718 	} else
719 		c->openmax = (a->openmax || b->openmax);
720 	c->integer = 0;
721 }
722 
723 /**
724  * snd_interval_mulkdiv - refine the interval value
725  * @a: dividend 1
726  * @k: dividend 2 (as integer)
727  * @b: divisor
728  * @c: result
729  *
730  * c = a * k / b
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
735 		      const struct snd_interval *b, struct snd_interval *c)
736 {
737 	unsigned int r;
738 	if (a->empty || b->empty) {
739 		snd_interval_none(c);
740 		return;
741 	}
742 	c->empty = 0;
743 	c->min = muldiv32(a->min, k, b->max, &r);
744 	c->openmin = (r || a->openmin || b->openmax);
745 	if (b->min > 0) {
746 		c->max = muldiv32(a->max, k, b->min, &r);
747 		if (r) {
748 			c->max++;
749 			c->openmax = 1;
750 		} else
751 			c->openmax = (a->openmax || b->openmin);
752 	} else {
753 		c->max = UINT_MAX;
754 		c->openmax = 0;
755 	}
756 	c->integer = 0;
757 }
758 
759 /* ---- */
760 
761 
762 /**
763  * snd_interval_ratnum - refine the interval value
764  * @i: interval to refine
765  * @rats_count: number of ratnum_t
766  * @rats: ratnum_t array
767  * @nump: pointer to store the resultant numerator
768  * @denp: pointer to store the resultant denominator
769  *
770  * Return: Positive if the value is changed, zero if it's not changed, or a
771  * negative error code.
772  */
773 int snd_interval_ratnum(struct snd_interval *i,
774 			unsigned int rats_count, struct snd_ratnum *rats,
775 			unsigned int *nump, unsigned int *denp)
776 {
777 	unsigned int best_num, best_den;
778 	int best_diff;
779 	unsigned int k;
780 	struct snd_interval t;
781 	int err;
782 	unsigned int result_num, result_den;
783 	int result_diff;
784 
785 	best_num = best_den = best_diff = 0;
786 	for (k = 0; k < rats_count; ++k) {
787 		unsigned int num = rats[k].num;
788 		unsigned int den;
789 		unsigned int q = i->min;
790 		int diff;
791 		if (q == 0)
792 			q = 1;
793 		den = div_up(num, q);
794 		if (den < rats[k].den_min)
795 			continue;
796 		if (den > rats[k].den_max)
797 			den = rats[k].den_max;
798 		else {
799 			unsigned int r;
800 			r = (den - rats[k].den_min) % rats[k].den_step;
801 			if (r != 0)
802 				den -= r;
803 		}
804 		diff = num - q * den;
805 		if (diff < 0)
806 			diff = -diff;
807 		if (best_num == 0 ||
808 		    diff * best_den < best_diff * den) {
809 			best_diff = diff;
810 			best_den = den;
811 			best_num = num;
812 		}
813 	}
814 	if (best_den == 0) {
815 		i->empty = 1;
816 		return -EINVAL;
817 	}
818 	t.min = div_down(best_num, best_den);
819 	t.openmin = !!(best_num % best_den);
820 
821 	result_num = best_num;
822 	result_diff = best_diff;
823 	result_den = best_den;
824 	best_num = best_den = best_diff = 0;
825 	for (k = 0; k < rats_count; ++k) {
826 		unsigned int num = rats[k].num;
827 		unsigned int den;
828 		unsigned int q = i->max;
829 		int diff;
830 		if (q == 0) {
831 			i->empty = 1;
832 			return -EINVAL;
833 		}
834 		den = div_down(num, q);
835 		if (den > rats[k].den_max)
836 			continue;
837 		if (den < rats[k].den_min)
838 			den = rats[k].den_min;
839 		else {
840 			unsigned int r;
841 			r = (den - rats[k].den_min) % rats[k].den_step;
842 			if (r != 0)
843 				den += rats[k].den_step - r;
844 		}
845 		diff = q * den - num;
846 		if (diff < 0)
847 			diff = -diff;
848 		if (best_num == 0 ||
849 		    diff * best_den < best_diff * den) {
850 			best_diff = diff;
851 			best_den = den;
852 			best_num = num;
853 		}
854 	}
855 	if (best_den == 0) {
856 		i->empty = 1;
857 		return -EINVAL;
858 	}
859 	t.max = div_up(best_num, best_den);
860 	t.openmax = !!(best_num % best_den);
861 	t.integer = 0;
862 	err = snd_interval_refine(i, &t);
863 	if (err < 0)
864 		return err;
865 
866 	if (snd_interval_single(i)) {
867 		if (best_diff * result_den < result_diff * best_den) {
868 			result_num = best_num;
869 			result_den = best_den;
870 		}
871 		if (nump)
872 			*nump = result_num;
873 		if (denp)
874 			*denp = result_den;
875 	}
876 	return err;
877 }
878 
879 EXPORT_SYMBOL(snd_interval_ratnum);
880 
881 /**
882  * snd_interval_ratden - refine the interval value
883  * @i: interval to refine
884  * @rats_count: number of struct ratden
885  * @rats: struct ratden array
886  * @nump: pointer to store the resultant numerator
887  * @denp: pointer to store the resultant denominator
888  *
889  * Return: Positive if the value is changed, zero if it's not changed, or a
890  * negative error code.
891  */
892 static int snd_interval_ratden(struct snd_interval *i,
893 			       unsigned int rats_count, struct snd_ratden *rats,
894 			       unsigned int *nump, unsigned int *denp)
895 {
896 	unsigned int best_num, best_diff, best_den;
897 	unsigned int k;
898 	struct snd_interval t;
899 	int err;
900 
901 	best_num = best_den = best_diff = 0;
902 	for (k = 0; k < rats_count; ++k) {
903 		unsigned int num;
904 		unsigned int den = rats[k].den;
905 		unsigned int q = i->min;
906 		int diff;
907 		num = mul(q, den);
908 		if (num > rats[k].num_max)
909 			continue;
910 		if (num < rats[k].num_min)
911 			num = rats[k].num_max;
912 		else {
913 			unsigned int r;
914 			r = (num - rats[k].num_min) % rats[k].num_step;
915 			if (r != 0)
916 				num += rats[k].num_step - r;
917 		}
918 		diff = num - q * den;
919 		if (best_num == 0 ||
920 		    diff * best_den < best_diff * den) {
921 			best_diff = diff;
922 			best_den = den;
923 			best_num = num;
924 		}
925 	}
926 	if (best_den == 0) {
927 		i->empty = 1;
928 		return -EINVAL;
929 	}
930 	t.min = div_down(best_num, best_den);
931 	t.openmin = !!(best_num % best_den);
932 
933 	best_num = best_den = best_diff = 0;
934 	for (k = 0; k < rats_count; ++k) {
935 		unsigned int num;
936 		unsigned int den = rats[k].den;
937 		unsigned int q = i->max;
938 		int diff;
939 		num = mul(q, den);
940 		if (num < rats[k].num_min)
941 			continue;
942 		if (num > rats[k].num_max)
943 			num = rats[k].num_max;
944 		else {
945 			unsigned int r;
946 			r = (num - rats[k].num_min) % rats[k].num_step;
947 			if (r != 0)
948 				num -= r;
949 		}
950 		diff = q * den - num;
951 		if (best_num == 0 ||
952 		    diff * best_den < best_diff * den) {
953 			best_diff = diff;
954 			best_den = den;
955 			best_num = num;
956 		}
957 	}
958 	if (best_den == 0) {
959 		i->empty = 1;
960 		return -EINVAL;
961 	}
962 	t.max = div_up(best_num, best_den);
963 	t.openmax = !!(best_num % best_den);
964 	t.integer = 0;
965 	err = snd_interval_refine(i, &t);
966 	if (err < 0)
967 		return err;
968 
969 	if (snd_interval_single(i)) {
970 		if (nump)
971 			*nump = best_num;
972 		if (denp)
973 			*denp = best_den;
974 	}
975 	return err;
976 }
977 
978 /**
979  * snd_interval_list - refine the interval value from the list
980  * @i: the interval value to refine
981  * @count: the number of elements in the list
982  * @list: the value list
983  * @mask: the bit-mask to evaluate
984  *
985  * Refines the interval value from the list.
986  * When mask is non-zero, only the elements corresponding to bit 1 are
987  * evaluated.
988  *
989  * Return: Positive if the value is changed, zero if it's not changed, or a
990  * negative error code.
991  */
992 int snd_interval_list(struct snd_interval *i, unsigned int count,
993 		      const unsigned int *list, unsigned int mask)
994 {
995         unsigned int k;
996 	struct snd_interval list_range;
997 
998 	if (!count) {
999 		i->empty = 1;
1000 		return -EINVAL;
1001 	}
1002 	snd_interval_any(&list_range);
1003 	list_range.min = UINT_MAX;
1004 	list_range.max = 0;
1005         for (k = 0; k < count; k++) {
1006 		if (mask && !(mask & (1 << k)))
1007 			continue;
1008 		if (!snd_interval_test(i, list[k]))
1009 			continue;
1010 		list_range.min = min(list_range.min, list[k]);
1011 		list_range.max = max(list_range.max, list[k]);
1012         }
1013 	return snd_interval_refine(i, &list_range);
1014 }
1015 
1016 EXPORT_SYMBOL(snd_interval_list);
1017 
1018 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1019 {
1020 	unsigned int n;
1021 	int changed = 0;
1022 	n = i->min % step;
1023 	if (n != 0 || i->openmin) {
1024 		i->min += step - n;
1025 		i->openmin = 0;
1026 		changed = 1;
1027 	}
1028 	n = i->max % step;
1029 	if (n != 0 || i->openmax) {
1030 		i->max -= n;
1031 		i->openmax = 0;
1032 		changed = 1;
1033 	}
1034 	if (snd_interval_checkempty(i)) {
1035 		i->empty = 1;
1036 		return -EINVAL;
1037 	}
1038 	return changed;
1039 }
1040 
1041 /* Info constraints helpers */
1042 
1043 /**
1044  * snd_pcm_hw_rule_add - add the hw-constraint rule
1045  * @runtime: the pcm runtime instance
1046  * @cond: condition bits
1047  * @var: the variable to evaluate
1048  * @func: the evaluation function
1049  * @private: the private data pointer passed to function
1050  * @dep: the dependent variables
1051  *
1052  * Return: Zero if successful, or a negative error code on failure.
1053  */
1054 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1055 			int var,
1056 			snd_pcm_hw_rule_func_t func, void *private,
1057 			int dep, ...)
1058 {
1059 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1060 	struct snd_pcm_hw_rule *c;
1061 	unsigned int k;
1062 	va_list args;
1063 	va_start(args, dep);
1064 	if (constrs->rules_num >= constrs->rules_all) {
1065 		struct snd_pcm_hw_rule *new;
1066 		unsigned int new_rules = constrs->rules_all + 16;
1067 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1068 		if (!new) {
1069 			va_end(args);
1070 			return -ENOMEM;
1071 		}
1072 		if (constrs->rules) {
1073 			memcpy(new, constrs->rules,
1074 			       constrs->rules_num * sizeof(*c));
1075 			kfree(constrs->rules);
1076 		}
1077 		constrs->rules = new;
1078 		constrs->rules_all = new_rules;
1079 	}
1080 	c = &constrs->rules[constrs->rules_num];
1081 	c->cond = cond;
1082 	c->func = func;
1083 	c->var = var;
1084 	c->private = private;
1085 	k = 0;
1086 	while (1) {
1087 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1088 			va_end(args);
1089 			return -EINVAL;
1090 		}
1091 		c->deps[k++] = dep;
1092 		if (dep < 0)
1093 			break;
1094 		dep = va_arg(args, int);
1095 	}
1096 	constrs->rules_num++;
1097 	va_end(args);
1098 	return 0;
1099 }
1100 
1101 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1102 
1103 /**
1104  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1105  * @runtime: PCM runtime instance
1106  * @var: hw_params variable to apply the mask
1107  * @mask: the bitmap mask
1108  *
1109  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1110  *
1111  * Return: Zero if successful, or a negative error code on failure.
1112  */
1113 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1114 			       u_int32_t mask)
1115 {
1116 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1117 	struct snd_mask *maskp = constrs_mask(constrs, var);
1118 	*maskp->bits &= mask;
1119 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1120 	if (*maskp->bits == 0)
1121 		return -EINVAL;
1122 	return 0;
1123 }
1124 
1125 /**
1126  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1127  * @runtime: PCM runtime instance
1128  * @var: hw_params variable to apply the mask
1129  * @mask: the 64bit bitmap mask
1130  *
1131  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1132  *
1133  * Return: Zero if successful, or a negative error code on failure.
1134  */
1135 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1136 				 u_int64_t mask)
1137 {
1138 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1139 	struct snd_mask *maskp = constrs_mask(constrs, var);
1140 	maskp->bits[0] &= (u_int32_t)mask;
1141 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1142 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1143 	if (! maskp->bits[0] && ! maskp->bits[1])
1144 		return -EINVAL;
1145 	return 0;
1146 }
1147 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1148 
1149 /**
1150  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1151  * @runtime: PCM runtime instance
1152  * @var: hw_params variable to apply the integer constraint
1153  *
1154  * Apply the constraint of integer to an interval parameter.
1155  *
1156  * Return: Positive if the value is changed, zero if it's not changed, or a
1157  * negative error code.
1158  */
1159 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1160 {
1161 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1162 	return snd_interval_setinteger(constrs_interval(constrs, var));
1163 }
1164 
1165 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1166 
1167 /**
1168  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1169  * @runtime: PCM runtime instance
1170  * @var: hw_params variable to apply the range
1171  * @min: the minimal value
1172  * @max: the maximal value
1173  *
1174  * Apply the min/max range constraint to an interval parameter.
1175  *
1176  * Return: Positive if the value is changed, zero if it's not changed, or a
1177  * negative error code.
1178  */
1179 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1180 				 unsigned int min, unsigned int max)
1181 {
1182 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1183 	struct snd_interval t;
1184 	t.min = min;
1185 	t.max = max;
1186 	t.openmin = t.openmax = 0;
1187 	t.integer = 0;
1188 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1189 }
1190 
1191 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1192 
1193 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1194 				struct snd_pcm_hw_rule *rule)
1195 {
1196 	struct snd_pcm_hw_constraint_list *list = rule->private;
1197 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1198 }
1199 
1200 
1201 /**
1202  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1203  * @runtime: PCM runtime instance
1204  * @cond: condition bits
1205  * @var: hw_params variable to apply the list constraint
1206  * @l: list
1207  *
1208  * Apply the list of constraints to an interval parameter.
1209  *
1210  * Return: Zero if successful, or a negative error code on failure.
1211  */
1212 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1213 			       unsigned int cond,
1214 			       snd_pcm_hw_param_t var,
1215 			       const struct snd_pcm_hw_constraint_list *l)
1216 {
1217 	return snd_pcm_hw_rule_add(runtime, cond, var,
1218 				   snd_pcm_hw_rule_list, (void *)l,
1219 				   var, -1);
1220 }
1221 
1222 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1223 
1224 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1225 				   struct snd_pcm_hw_rule *rule)
1226 {
1227 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1228 	unsigned int num = 0, den = 0;
1229 	int err;
1230 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1231 				  r->nrats, r->rats, &num, &den);
1232 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1233 		params->rate_num = num;
1234 		params->rate_den = den;
1235 	}
1236 	return err;
1237 }
1238 
1239 /**
1240  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1241  * @runtime: PCM runtime instance
1242  * @cond: condition bits
1243  * @var: hw_params variable to apply the ratnums constraint
1244  * @r: struct snd_ratnums constriants
1245  *
1246  * Return: Zero if successful, or a negative error code on failure.
1247  */
1248 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1249 				  unsigned int cond,
1250 				  snd_pcm_hw_param_t var,
1251 				  struct snd_pcm_hw_constraint_ratnums *r)
1252 {
1253 	return snd_pcm_hw_rule_add(runtime, cond, var,
1254 				   snd_pcm_hw_rule_ratnums, r,
1255 				   var, -1);
1256 }
1257 
1258 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1259 
1260 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1261 				   struct snd_pcm_hw_rule *rule)
1262 {
1263 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1264 	unsigned int num = 0, den = 0;
1265 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1266 				  r->nrats, r->rats, &num, &den);
1267 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1268 		params->rate_num = num;
1269 		params->rate_den = den;
1270 	}
1271 	return err;
1272 }
1273 
1274 /**
1275  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1276  * @runtime: PCM runtime instance
1277  * @cond: condition bits
1278  * @var: hw_params variable to apply the ratdens constraint
1279  * @r: struct snd_ratdens constriants
1280  *
1281  * Return: Zero if successful, or a negative error code on failure.
1282  */
1283 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1284 				  unsigned int cond,
1285 				  snd_pcm_hw_param_t var,
1286 				  struct snd_pcm_hw_constraint_ratdens *r)
1287 {
1288 	return snd_pcm_hw_rule_add(runtime, cond, var,
1289 				   snd_pcm_hw_rule_ratdens, r,
1290 				   var, -1);
1291 }
1292 
1293 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1294 
1295 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1296 				  struct snd_pcm_hw_rule *rule)
1297 {
1298 	unsigned int l = (unsigned long) rule->private;
1299 	int width = l & 0xffff;
1300 	unsigned int msbits = l >> 16;
1301 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1302 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1303 		params->msbits = msbits;
1304 	return 0;
1305 }
1306 
1307 /**
1308  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1309  * @runtime: PCM runtime instance
1310  * @cond: condition bits
1311  * @width: sample bits width
1312  * @msbits: msbits width
1313  *
1314  * Return: Zero if successful, or a negative error code on failure.
1315  */
1316 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1317 				 unsigned int cond,
1318 				 unsigned int width,
1319 				 unsigned int msbits)
1320 {
1321 	unsigned long l = (msbits << 16) | width;
1322 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1323 				    snd_pcm_hw_rule_msbits,
1324 				    (void*) l,
1325 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1326 }
1327 
1328 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1329 
1330 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1331 				struct snd_pcm_hw_rule *rule)
1332 {
1333 	unsigned long step = (unsigned long) rule->private;
1334 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1335 }
1336 
1337 /**
1338  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1339  * @runtime: PCM runtime instance
1340  * @cond: condition bits
1341  * @var: hw_params variable to apply the step constraint
1342  * @step: step size
1343  *
1344  * Return: Zero if successful, or a negative error code on failure.
1345  */
1346 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1347 			       unsigned int cond,
1348 			       snd_pcm_hw_param_t var,
1349 			       unsigned long step)
1350 {
1351 	return snd_pcm_hw_rule_add(runtime, cond, var,
1352 				   snd_pcm_hw_rule_step, (void *) step,
1353 				   var, -1);
1354 }
1355 
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1357 
1358 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1359 {
1360 	static unsigned int pow2_sizes[] = {
1361 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1362 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1363 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1364 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1365 	};
1366 	return snd_interval_list(hw_param_interval(params, rule->var),
1367 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1368 }
1369 
1370 /**
1371  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the power-of-2 constraint
1375  *
1376  * Return: Zero if successful, or a negative error code on failure.
1377  */
1378 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1379 			       unsigned int cond,
1380 			       snd_pcm_hw_param_t var)
1381 {
1382 	return snd_pcm_hw_rule_add(runtime, cond, var,
1383 				   snd_pcm_hw_rule_pow2, NULL,
1384 				   var, -1);
1385 }
1386 
1387 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1388 
1389 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1390 					   struct snd_pcm_hw_rule *rule)
1391 {
1392 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1393 	struct snd_interval *rate;
1394 
1395 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1396 	return snd_interval_list(rate, 1, &base_rate, 0);
1397 }
1398 
1399 /**
1400  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1401  * @runtime: PCM runtime instance
1402  * @base_rate: the rate at which the hardware does not resample
1403  *
1404  * Return: Zero if successful, or a negative error code on failure.
1405  */
1406 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1407 			       unsigned int base_rate)
1408 {
1409 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1410 				   SNDRV_PCM_HW_PARAM_RATE,
1411 				   snd_pcm_hw_rule_noresample_func,
1412 				   (void *)(uintptr_t)base_rate,
1413 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1414 }
1415 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1416 
1417 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1418 				  snd_pcm_hw_param_t var)
1419 {
1420 	if (hw_is_mask(var)) {
1421 		snd_mask_any(hw_param_mask(params, var));
1422 		params->cmask |= 1 << var;
1423 		params->rmask |= 1 << var;
1424 		return;
1425 	}
1426 	if (hw_is_interval(var)) {
1427 		snd_interval_any(hw_param_interval(params, var));
1428 		params->cmask |= 1 << var;
1429 		params->rmask |= 1 << var;
1430 		return;
1431 	}
1432 	snd_BUG();
1433 }
1434 
1435 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1436 {
1437 	unsigned int k;
1438 	memset(params, 0, sizeof(*params));
1439 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1440 		_snd_pcm_hw_param_any(params, k);
1441 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1442 		_snd_pcm_hw_param_any(params, k);
1443 	params->info = ~0U;
1444 }
1445 
1446 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1447 
1448 /**
1449  * snd_pcm_hw_param_value - return @params field @var value
1450  * @params: the hw_params instance
1451  * @var: parameter to retrieve
1452  * @dir: pointer to the direction (-1,0,1) or %NULL
1453  *
1454  * Return: The value for field @var if it's fixed in configuration space
1455  * defined by @params. -%EINVAL otherwise.
1456  */
1457 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1458 			   snd_pcm_hw_param_t var, int *dir)
1459 {
1460 	if (hw_is_mask(var)) {
1461 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1462 		if (!snd_mask_single(mask))
1463 			return -EINVAL;
1464 		if (dir)
1465 			*dir = 0;
1466 		return snd_mask_value(mask);
1467 	}
1468 	if (hw_is_interval(var)) {
1469 		const struct snd_interval *i = hw_param_interval_c(params, var);
1470 		if (!snd_interval_single(i))
1471 			return -EINVAL;
1472 		if (dir)
1473 			*dir = i->openmin;
1474 		return snd_interval_value(i);
1475 	}
1476 	return -EINVAL;
1477 }
1478 
1479 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1480 
1481 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1482 				snd_pcm_hw_param_t var)
1483 {
1484 	if (hw_is_mask(var)) {
1485 		snd_mask_none(hw_param_mask(params, var));
1486 		params->cmask |= 1 << var;
1487 		params->rmask |= 1 << var;
1488 	} else if (hw_is_interval(var)) {
1489 		snd_interval_none(hw_param_interval(params, var));
1490 		params->cmask |= 1 << var;
1491 		params->rmask |= 1 << var;
1492 	} else {
1493 		snd_BUG();
1494 	}
1495 }
1496 
1497 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1498 
1499 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1500 				   snd_pcm_hw_param_t var)
1501 {
1502 	int changed;
1503 	if (hw_is_mask(var))
1504 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1505 	else if (hw_is_interval(var))
1506 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1507 	else
1508 		return -EINVAL;
1509 	if (changed) {
1510 		params->cmask |= 1 << var;
1511 		params->rmask |= 1 << var;
1512 	}
1513 	return changed;
1514 }
1515 
1516 
1517 /**
1518  * snd_pcm_hw_param_first - refine config space and return minimum value
1519  * @pcm: PCM instance
1520  * @params: the hw_params instance
1521  * @var: parameter to retrieve
1522  * @dir: pointer to the direction (-1,0,1) or %NULL
1523  *
1524  * Inside configuration space defined by @params remove from @var all
1525  * values > minimum. Reduce configuration space accordingly.
1526  *
1527  * Return: The minimum, or a negative error code on failure.
1528  */
1529 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1530 			   struct snd_pcm_hw_params *params,
1531 			   snd_pcm_hw_param_t var, int *dir)
1532 {
1533 	int changed = _snd_pcm_hw_param_first(params, var);
1534 	if (changed < 0)
1535 		return changed;
1536 	if (params->rmask) {
1537 		int err = snd_pcm_hw_refine(pcm, params);
1538 		if (snd_BUG_ON(err < 0))
1539 			return err;
1540 	}
1541 	return snd_pcm_hw_param_value(params, var, dir);
1542 }
1543 
1544 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1545 
1546 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1547 				  snd_pcm_hw_param_t var)
1548 {
1549 	int changed;
1550 	if (hw_is_mask(var))
1551 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1552 	else if (hw_is_interval(var))
1553 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1554 	else
1555 		return -EINVAL;
1556 	if (changed) {
1557 		params->cmask |= 1 << var;
1558 		params->rmask |= 1 << var;
1559 	}
1560 	return changed;
1561 }
1562 
1563 
1564 /**
1565  * snd_pcm_hw_param_last - refine config space and return maximum value
1566  * @pcm: PCM instance
1567  * @params: the hw_params instance
1568  * @var: parameter to retrieve
1569  * @dir: pointer to the direction (-1,0,1) or %NULL
1570  *
1571  * Inside configuration space defined by @params remove from @var all
1572  * values < maximum. Reduce configuration space accordingly.
1573  *
1574  * Return: The maximum, or a negative error code on failure.
1575  */
1576 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1577 			  struct snd_pcm_hw_params *params,
1578 			  snd_pcm_hw_param_t var, int *dir)
1579 {
1580 	int changed = _snd_pcm_hw_param_last(params, var);
1581 	if (changed < 0)
1582 		return changed;
1583 	if (params->rmask) {
1584 		int err = snd_pcm_hw_refine(pcm, params);
1585 		if (snd_BUG_ON(err < 0))
1586 			return err;
1587 	}
1588 	return snd_pcm_hw_param_value(params, var, dir);
1589 }
1590 
1591 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1592 
1593 /**
1594  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1595  * @pcm: PCM instance
1596  * @params: the hw_params instance
1597  *
1598  * Choose one configuration from configuration space defined by @params.
1599  * The configuration chosen is that obtained fixing in this order:
1600  * first access, first format, first subformat, min channels,
1601  * min rate, min period time, max buffer size, min tick time
1602  *
1603  * Return: Zero if successful, or a negative error code on failure.
1604  */
1605 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1606 			     struct snd_pcm_hw_params *params)
1607 {
1608 	static int vars[] = {
1609 		SNDRV_PCM_HW_PARAM_ACCESS,
1610 		SNDRV_PCM_HW_PARAM_FORMAT,
1611 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1612 		SNDRV_PCM_HW_PARAM_CHANNELS,
1613 		SNDRV_PCM_HW_PARAM_RATE,
1614 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1615 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1616 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1617 		-1
1618 	};
1619 	int err, *v;
1620 
1621 	for (v = vars; *v != -1; v++) {
1622 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1623 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1624 		else
1625 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1626 		if (snd_BUG_ON(err < 0))
1627 			return err;
1628 	}
1629 	return 0;
1630 }
1631 
1632 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1633 				   void *arg)
1634 {
1635 	struct snd_pcm_runtime *runtime = substream->runtime;
1636 	unsigned long flags;
1637 	snd_pcm_stream_lock_irqsave(substream, flags);
1638 	if (snd_pcm_running(substream) &&
1639 	    snd_pcm_update_hw_ptr(substream) >= 0)
1640 		runtime->status->hw_ptr %= runtime->buffer_size;
1641 	else {
1642 		runtime->status->hw_ptr = 0;
1643 		runtime->hw_ptr_wrap = 0;
1644 	}
1645 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1646 	return 0;
1647 }
1648 
1649 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1650 					  void *arg)
1651 {
1652 	struct snd_pcm_channel_info *info = arg;
1653 	struct snd_pcm_runtime *runtime = substream->runtime;
1654 	int width;
1655 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1656 		info->offset = -1;
1657 		return 0;
1658 	}
1659 	width = snd_pcm_format_physical_width(runtime->format);
1660 	if (width < 0)
1661 		return width;
1662 	info->offset = 0;
1663 	switch (runtime->access) {
1664 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1665 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1666 		info->first = info->channel * width;
1667 		info->step = runtime->channels * width;
1668 		break;
1669 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1670 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1671 	{
1672 		size_t size = runtime->dma_bytes / runtime->channels;
1673 		info->first = info->channel * size * 8;
1674 		info->step = width;
1675 		break;
1676 	}
1677 	default:
1678 		snd_BUG();
1679 		break;
1680 	}
1681 	return 0;
1682 }
1683 
1684 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1685 				       void *arg)
1686 {
1687 	struct snd_pcm_hw_params *params = arg;
1688 	snd_pcm_format_t format;
1689 	int channels;
1690 	ssize_t frame_size;
1691 
1692 	params->fifo_size = substream->runtime->hw.fifo_size;
1693 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1694 		format = params_format(params);
1695 		channels = params_channels(params);
1696 		frame_size = snd_pcm_format_size(format, channels);
1697 		if (frame_size > 0)
1698 			params->fifo_size /= (unsigned)frame_size;
1699 	}
1700 	return 0;
1701 }
1702 
1703 /**
1704  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1705  * @substream: the pcm substream instance
1706  * @cmd: ioctl command
1707  * @arg: ioctl argument
1708  *
1709  * Processes the generic ioctl commands for PCM.
1710  * Can be passed as the ioctl callback for PCM ops.
1711  *
1712  * Return: Zero if successful, or a negative error code on failure.
1713  */
1714 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1715 		      unsigned int cmd, void *arg)
1716 {
1717 	switch (cmd) {
1718 	case SNDRV_PCM_IOCTL1_INFO:
1719 		return 0;
1720 	case SNDRV_PCM_IOCTL1_RESET:
1721 		return snd_pcm_lib_ioctl_reset(substream, arg);
1722 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1723 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1724 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1725 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1726 	}
1727 	return -ENXIO;
1728 }
1729 
1730 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1731 
1732 /**
1733  * snd_pcm_period_elapsed - update the pcm status for the next period
1734  * @substream: the pcm substream instance
1735  *
1736  * This function is called from the interrupt handler when the
1737  * PCM has processed the period size.  It will update the current
1738  * pointer, wake up sleepers, etc.
1739  *
1740  * Even if more than one periods have elapsed since the last call, you
1741  * have to call this only once.
1742  */
1743 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1744 {
1745 	struct snd_pcm_runtime *runtime;
1746 	unsigned long flags;
1747 
1748 	if (PCM_RUNTIME_CHECK(substream))
1749 		return;
1750 	runtime = substream->runtime;
1751 
1752 	if (runtime->transfer_ack_begin)
1753 		runtime->transfer_ack_begin(substream);
1754 
1755 	snd_pcm_stream_lock_irqsave(substream, flags);
1756 	if (!snd_pcm_running(substream) ||
1757 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1758 		goto _end;
1759 
1760 	if (substream->timer_running)
1761 		snd_timer_interrupt(substream->timer, 1);
1762  _end:
1763 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1764 	if (runtime->transfer_ack_end)
1765 		runtime->transfer_ack_end(substream);
1766 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1767 }
1768 
1769 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1770 
1771 /*
1772  * Wait until avail_min data becomes available
1773  * Returns a negative error code if any error occurs during operation.
1774  * The available space is stored on availp.  When err = 0 and avail = 0
1775  * on the capture stream, it indicates the stream is in DRAINING state.
1776  */
1777 static int wait_for_avail(struct snd_pcm_substream *substream,
1778 			      snd_pcm_uframes_t *availp)
1779 {
1780 	struct snd_pcm_runtime *runtime = substream->runtime;
1781 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1782 	wait_queue_t wait;
1783 	int err = 0;
1784 	snd_pcm_uframes_t avail = 0;
1785 	long wait_time, tout;
1786 
1787 	init_waitqueue_entry(&wait, current);
1788 	set_current_state(TASK_INTERRUPTIBLE);
1789 	add_wait_queue(&runtime->tsleep, &wait);
1790 
1791 	if (runtime->no_period_wakeup)
1792 		wait_time = MAX_SCHEDULE_TIMEOUT;
1793 	else {
1794 		wait_time = 10;
1795 		if (runtime->rate) {
1796 			long t = runtime->period_size * 2 / runtime->rate;
1797 			wait_time = max(t, wait_time);
1798 		}
1799 		wait_time = msecs_to_jiffies(wait_time * 1000);
1800 	}
1801 
1802 	for (;;) {
1803 		if (signal_pending(current)) {
1804 			err = -ERESTARTSYS;
1805 			break;
1806 		}
1807 
1808 		/*
1809 		 * We need to check if space became available already
1810 		 * (and thus the wakeup happened already) first to close
1811 		 * the race of space already having become available.
1812 		 * This check must happen after been added to the waitqueue
1813 		 * and having current state be INTERRUPTIBLE.
1814 		 */
1815 		if (is_playback)
1816 			avail = snd_pcm_playback_avail(runtime);
1817 		else
1818 			avail = snd_pcm_capture_avail(runtime);
1819 		if (avail >= runtime->twake)
1820 			break;
1821 		snd_pcm_stream_unlock_irq(substream);
1822 
1823 		tout = schedule_timeout(wait_time);
1824 
1825 		snd_pcm_stream_lock_irq(substream);
1826 		set_current_state(TASK_INTERRUPTIBLE);
1827 		switch (runtime->status->state) {
1828 		case SNDRV_PCM_STATE_SUSPENDED:
1829 			err = -ESTRPIPE;
1830 			goto _endloop;
1831 		case SNDRV_PCM_STATE_XRUN:
1832 			err = -EPIPE;
1833 			goto _endloop;
1834 		case SNDRV_PCM_STATE_DRAINING:
1835 			if (is_playback)
1836 				err = -EPIPE;
1837 			else
1838 				avail = 0; /* indicate draining */
1839 			goto _endloop;
1840 		case SNDRV_PCM_STATE_OPEN:
1841 		case SNDRV_PCM_STATE_SETUP:
1842 		case SNDRV_PCM_STATE_DISCONNECTED:
1843 			err = -EBADFD;
1844 			goto _endloop;
1845 		case SNDRV_PCM_STATE_PAUSED:
1846 			continue;
1847 		}
1848 		if (!tout) {
1849 			pcm_dbg(substream->pcm,
1850 				"%s write error (DMA or IRQ trouble?)\n",
1851 				is_playback ? "playback" : "capture");
1852 			err = -EIO;
1853 			break;
1854 		}
1855 	}
1856  _endloop:
1857 	set_current_state(TASK_RUNNING);
1858 	remove_wait_queue(&runtime->tsleep, &wait);
1859 	*availp = avail;
1860 	return err;
1861 }
1862 
1863 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1864 				      unsigned int hwoff,
1865 				      unsigned long data, unsigned int off,
1866 				      snd_pcm_uframes_t frames)
1867 {
1868 	struct snd_pcm_runtime *runtime = substream->runtime;
1869 	int err;
1870 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1871 	if (substream->ops->copy) {
1872 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1873 			return err;
1874 	} else {
1875 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1876 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1877 			return -EFAULT;
1878 	}
1879 	return 0;
1880 }
1881 
1882 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1883 			  unsigned long data, unsigned int off,
1884 			  snd_pcm_uframes_t size);
1885 
1886 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1887 					    unsigned long data,
1888 					    snd_pcm_uframes_t size,
1889 					    int nonblock,
1890 					    transfer_f transfer)
1891 {
1892 	struct snd_pcm_runtime *runtime = substream->runtime;
1893 	snd_pcm_uframes_t xfer = 0;
1894 	snd_pcm_uframes_t offset = 0;
1895 	snd_pcm_uframes_t avail;
1896 	int err = 0;
1897 
1898 	if (size == 0)
1899 		return 0;
1900 
1901 	snd_pcm_stream_lock_irq(substream);
1902 	switch (runtime->status->state) {
1903 	case SNDRV_PCM_STATE_PREPARED:
1904 	case SNDRV_PCM_STATE_RUNNING:
1905 	case SNDRV_PCM_STATE_PAUSED:
1906 		break;
1907 	case SNDRV_PCM_STATE_XRUN:
1908 		err = -EPIPE;
1909 		goto _end_unlock;
1910 	case SNDRV_PCM_STATE_SUSPENDED:
1911 		err = -ESTRPIPE;
1912 		goto _end_unlock;
1913 	default:
1914 		err = -EBADFD;
1915 		goto _end_unlock;
1916 	}
1917 
1918 	runtime->twake = runtime->control->avail_min ? : 1;
1919 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1920 		snd_pcm_update_hw_ptr(substream);
1921 	avail = snd_pcm_playback_avail(runtime);
1922 	while (size > 0) {
1923 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1924 		snd_pcm_uframes_t cont;
1925 		if (!avail) {
1926 			if (nonblock) {
1927 				err = -EAGAIN;
1928 				goto _end_unlock;
1929 			}
1930 			runtime->twake = min_t(snd_pcm_uframes_t, size,
1931 					runtime->control->avail_min ? : 1);
1932 			err = wait_for_avail(substream, &avail);
1933 			if (err < 0)
1934 				goto _end_unlock;
1935 		}
1936 		frames = size > avail ? avail : size;
1937 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1938 		if (frames > cont)
1939 			frames = cont;
1940 		if (snd_BUG_ON(!frames)) {
1941 			runtime->twake = 0;
1942 			snd_pcm_stream_unlock_irq(substream);
1943 			return -EINVAL;
1944 		}
1945 		appl_ptr = runtime->control->appl_ptr;
1946 		appl_ofs = appl_ptr % runtime->buffer_size;
1947 		snd_pcm_stream_unlock_irq(substream);
1948 		err = transfer(substream, appl_ofs, data, offset, frames);
1949 		snd_pcm_stream_lock_irq(substream);
1950 		if (err < 0)
1951 			goto _end_unlock;
1952 		switch (runtime->status->state) {
1953 		case SNDRV_PCM_STATE_XRUN:
1954 			err = -EPIPE;
1955 			goto _end_unlock;
1956 		case SNDRV_PCM_STATE_SUSPENDED:
1957 			err = -ESTRPIPE;
1958 			goto _end_unlock;
1959 		default:
1960 			break;
1961 		}
1962 		appl_ptr += frames;
1963 		if (appl_ptr >= runtime->boundary)
1964 			appl_ptr -= runtime->boundary;
1965 		runtime->control->appl_ptr = appl_ptr;
1966 		if (substream->ops->ack)
1967 			substream->ops->ack(substream);
1968 
1969 		offset += frames;
1970 		size -= frames;
1971 		xfer += frames;
1972 		avail -= frames;
1973 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1974 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1975 			err = snd_pcm_start(substream);
1976 			if (err < 0)
1977 				goto _end_unlock;
1978 		}
1979 	}
1980  _end_unlock:
1981 	runtime->twake = 0;
1982 	if (xfer > 0 && err >= 0)
1983 		snd_pcm_update_state(substream, runtime);
1984 	snd_pcm_stream_unlock_irq(substream);
1985 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1986 }
1987 
1988 /* sanity-check for read/write methods */
1989 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1990 {
1991 	struct snd_pcm_runtime *runtime;
1992 	if (PCM_RUNTIME_CHECK(substream))
1993 		return -ENXIO;
1994 	runtime = substream->runtime;
1995 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1996 		return -EINVAL;
1997 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1998 		return -EBADFD;
1999 	return 0;
2000 }
2001 
2002 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2003 {
2004 	struct snd_pcm_runtime *runtime;
2005 	int nonblock;
2006 	int err;
2007 
2008 	err = pcm_sanity_check(substream);
2009 	if (err < 0)
2010 		return err;
2011 	runtime = substream->runtime;
2012 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2013 
2014 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2015 	    runtime->channels > 1)
2016 		return -EINVAL;
2017 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2018 				  snd_pcm_lib_write_transfer);
2019 }
2020 
2021 EXPORT_SYMBOL(snd_pcm_lib_write);
2022 
2023 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2024 				       unsigned int hwoff,
2025 				       unsigned long data, unsigned int off,
2026 				       snd_pcm_uframes_t frames)
2027 {
2028 	struct snd_pcm_runtime *runtime = substream->runtime;
2029 	int err;
2030 	void __user **bufs = (void __user **)data;
2031 	int channels = runtime->channels;
2032 	int c;
2033 	if (substream->ops->copy) {
2034 		if (snd_BUG_ON(!substream->ops->silence))
2035 			return -EINVAL;
2036 		for (c = 0; c < channels; ++c, ++bufs) {
2037 			if (*bufs == NULL) {
2038 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2039 					return err;
2040 			} else {
2041 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2042 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2043 					return err;
2044 			}
2045 		}
2046 	} else {
2047 		/* default transfer behaviour */
2048 		size_t dma_csize = runtime->dma_bytes / channels;
2049 		for (c = 0; c < channels; ++c, ++bufs) {
2050 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2051 			if (*bufs == NULL) {
2052 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2053 			} else {
2054 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2055 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2056 					return -EFAULT;
2057 			}
2058 		}
2059 	}
2060 	return 0;
2061 }
2062 
2063 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2064 				     void __user **bufs,
2065 				     snd_pcm_uframes_t frames)
2066 {
2067 	struct snd_pcm_runtime *runtime;
2068 	int nonblock;
2069 	int err;
2070 
2071 	err = pcm_sanity_check(substream);
2072 	if (err < 0)
2073 		return err;
2074 	runtime = substream->runtime;
2075 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2076 
2077 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2078 		return -EINVAL;
2079 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2080 				  nonblock, snd_pcm_lib_writev_transfer);
2081 }
2082 
2083 EXPORT_SYMBOL(snd_pcm_lib_writev);
2084 
2085 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2086 				     unsigned int hwoff,
2087 				     unsigned long data, unsigned int off,
2088 				     snd_pcm_uframes_t frames)
2089 {
2090 	struct snd_pcm_runtime *runtime = substream->runtime;
2091 	int err;
2092 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2093 	if (substream->ops->copy) {
2094 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2095 			return err;
2096 	} else {
2097 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2098 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2099 			return -EFAULT;
2100 	}
2101 	return 0;
2102 }
2103 
2104 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2105 					   unsigned long data,
2106 					   snd_pcm_uframes_t size,
2107 					   int nonblock,
2108 					   transfer_f transfer)
2109 {
2110 	struct snd_pcm_runtime *runtime = substream->runtime;
2111 	snd_pcm_uframes_t xfer = 0;
2112 	snd_pcm_uframes_t offset = 0;
2113 	snd_pcm_uframes_t avail;
2114 	int err = 0;
2115 
2116 	if (size == 0)
2117 		return 0;
2118 
2119 	snd_pcm_stream_lock_irq(substream);
2120 	switch (runtime->status->state) {
2121 	case SNDRV_PCM_STATE_PREPARED:
2122 		if (size >= runtime->start_threshold) {
2123 			err = snd_pcm_start(substream);
2124 			if (err < 0)
2125 				goto _end_unlock;
2126 		}
2127 		break;
2128 	case SNDRV_PCM_STATE_DRAINING:
2129 	case SNDRV_PCM_STATE_RUNNING:
2130 	case SNDRV_PCM_STATE_PAUSED:
2131 		break;
2132 	case SNDRV_PCM_STATE_XRUN:
2133 		err = -EPIPE;
2134 		goto _end_unlock;
2135 	case SNDRV_PCM_STATE_SUSPENDED:
2136 		err = -ESTRPIPE;
2137 		goto _end_unlock;
2138 	default:
2139 		err = -EBADFD;
2140 		goto _end_unlock;
2141 	}
2142 
2143 	runtime->twake = runtime->control->avail_min ? : 1;
2144 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2145 		snd_pcm_update_hw_ptr(substream);
2146 	avail = snd_pcm_capture_avail(runtime);
2147 	while (size > 0) {
2148 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2149 		snd_pcm_uframes_t cont;
2150 		if (!avail) {
2151 			if (runtime->status->state ==
2152 			    SNDRV_PCM_STATE_DRAINING) {
2153 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2154 				goto _end_unlock;
2155 			}
2156 			if (nonblock) {
2157 				err = -EAGAIN;
2158 				goto _end_unlock;
2159 			}
2160 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2161 					runtime->control->avail_min ? : 1);
2162 			err = wait_for_avail(substream, &avail);
2163 			if (err < 0)
2164 				goto _end_unlock;
2165 			if (!avail)
2166 				continue; /* draining */
2167 		}
2168 		frames = size > avail ? avail : size;
2169 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2170 		if (frames > cont)
2171 			frames = cont;
2172 		if (snd_BUG_ON(!frames)) {
2173 			runtime->twake = 0;
2174 			snd_pcm_stream_unlock_irq(substream);
2175 			return -EINVAL;
2176 		}
2177 		appl_ptr = runtime->control->appl_ptr;
2178 		appl_ofs = appl_ptr % runtime->buffer_size;
2179 		snd_pcm_stream_unlock_irq(substream);
2180 		err = transfer(substream, appl_ofs, data, offset, frames);
2181 		snd_pcm_stream_lock_irq(substream);
2182 		if (err < 0)
2183 			goto _end_unlock;
2184 		switch (runtime->status->state) {
2185 		case SNDRV_PCM_STATE_XRUN:
2186 			err = -EPIPE;
2187 			goto _end_unlock;
2188 		case SNDRV_PCM_STATE_SUSPENDED:
2189 			err = -ESTRPIPE;
2190 			goto _end_unlock;
2191 		default:
2192 			break;
2193 		}
2194 		appl_ptr += frames;
2195 		if (appl_ptr >= runtime->boundary)
2196 			appl_ptr -= runtime->boundary;
2197 		runtime->control->appl_ptr = appl_ptr;
2198 		if (substream->ops->ack)
2199 			substream->ops->ack(substream);
2200 
2201 		offset += frames;
2202 		size -= frames;
2203 		xfer += frames;
2204 		avail -= frames;
2205 	}
2206  _end_unlock:
2207 	runtime->twake = 0;
2208 	if (xfer > 0 && err >= 0)
2209 		snd_pcm_update_state(substream, runtime);
2210 	snd_pcm_stream_unlock_irq(substream);
2211 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2212 }
2213 
2214 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2215 {
2216 	struct snd_pcm_runtime *runtime;
2217 	int nonblock;
2218 	int err;
2219 
2220 	err = pcm_sanity_check(substream);
2221 	if (err < 0)
2222 		return err;
2223 	runtime = substream->runtime;
2224 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2225 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2226 		return -EINVAL;
2227 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2228 }
2229 
2230 EXPORT_SYMBOL(snd_pcm_lib_read);
2231 
2232 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2233 				      unsigned int hwoff,
2234 				      unsigned long data, unsigned int off,
2235 				      snd_pcm_uframes_t frames)
2236 {
2237 	struct snd_pcm_runtime *runtime = substream->runtime;
2238 	int err;
2239 	void __user **bufs = (void __user **)data;
2240 	int channels = runtime->channels;
2241 	int c;
2242 	if (substream->ops->copy) {
2243 		for (c = 0; c < channels; ++c, ++bufs) {
2244 			char __user *buf;
2245 			if (*bufs == NULL)
2246 				continue;
2247 			buf = *bufs + samples_to_bytes(runtime, off);
2248 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2249 				return err;
2250 		}
2251 	} else {
2252 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2253 		for (c = 0; c < channels; ++c, ++bufs) {
2254 			char *hwbuf;
2255 			char __user *buf;
2256 			if (*bufs == NULL)
2257 				continue;
2258 
2259 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2260 			buf = *bufs + samples_to_bytes(runtime, off);
2261 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2262 				return -EFAULT;
2263 		}
2264 	}
2265 	return 0;
2266 }
2267 
2268 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2269 				    void __user **bufs,
2270 				    snd_pcm_uframes_t frames)
2271 {
2272 	struct snd_pcm_runtime *runtime;
2273 	int nonblock;
2274 	int err;
2275 
2276 	err = pcm_sanity_check(substream);
2277 	if (err < 0)
2278 		return err;
2279 	runtime = substream->runtime;
2280 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2281 		return -EBADFD;
2282 
2283 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2284 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2285 		return -EINVAL;
2286 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2287 }
2288 
2289 EXPORT_SYMBOL(snd_pcm_lib_readv);
2290 
2291 /*
2292  * standard channel mapping helpers
2293  */
2294 
2295 /* default channel maps for multi-channel playbacks, up to 8 channels */
2296 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2297 	{ .channels = 1,
2298 	  .map = { SNDRV_CHMAP_MONO } },
2299 	{ .channels = 2,
2300 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2301 	{ .channels = 4,
2302 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2303 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2304 	{ .channels = 6,
2305 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2306 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2307 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2308 	{ .channels = 8,
2309 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2310 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2311 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2312 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2313 	{ }
2314 };
2315 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2316 
2317 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2318 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2319 	{ .channels = 1,
2320 	  .map = { SNDRV_CHMAP_MONO } },
2321 	{ .channels = 2,
2322 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2323 	{ .channels = 4,
2324 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2325 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2326 	{ .channels = 6,
2327 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2328 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2329 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2330 	{ .channels = 8,
2331 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2332 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2333 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2334 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2335 	{ }
2336 };
2337 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2338 
2339 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2340 {
2341 	if (ch > info->max_channels)
2342 		return false;
2343 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2344 }
2345 
2346 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2347 			      struct snd_ctl_elem_info *uinfo)
2348 {
2349 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2350 
2351 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2352 	uinfo->count = 0;
2353 	uinfo->count = info->max_channels;
2354 	uinfo->value.integer.min = 0;
2355 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2356 	return 0;
2357 }
2358 
2359 /* get callback for channel map ctl element
2360  * stores the channel position firstly matching with the current channels
2361  */
2362 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2363 			     struct snd_ctl_elem_value *ucontrol)
2364 {
2365 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2366 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2367 	struct snd_pcm_substream *substream;
2368 	const struct snd_pcm_chmap_elem *map;
2369 
2370 	if (snd_BUG_ON(!info->chmap))
2371 		return -EINVAL;
2372 	substream = snd_pcm_chmap_substream(info, idx);
2373 	if (!substream)
2374 		return -ENODEV;
2375 	memset(ucontrol->value.integer.value, 0,
2376 	       sizeof(ucontrol->value.integer.value));
2377 	if (!substream->runtime)
2378 		return 0; /* no channels set */
2379 	for (map = info->chmap; map->channels; map++) {
2380 		int i;
2381 		if (map->channels == substream->runtime->channels &&
2382 		    valid_chmap_channels(info, map->channels)) {
2383 			for (i = 0; i < map->channels; i++)
2384 				ucontrol->value.integer.value[i] = map->map[i];
2385 			return 0;
2386 		}
2387 	}
2388 	return -EINVAL;
2389 }
2390 
2391 /* tlv callback for channel map ctl element
2392  * expands the pre-defined channel maps in a form of TLV
2393  */
2394 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2395 			     unsigned int size, unsigned int __user *tlv)
2396 {
2397 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2398 	const struct snd_pcm_chmap_elem *map;
2399 	unsigned int __user *dst;
2400 	int c, count = 0;
2401 
2402 	if (snd_BUG_ON(!info->chmap))
2403 		return -EINVAL;
2404 	if (size < 8)
2405 		return -ENOMEM;
2406 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2407 		return -EFAULT;
2408 	size -= 8;
2409 	dst = tlv + 2;
2410 	for (map = info->chmap; map->channels; map++) {
2411 		int chs_bytes = map->channels * 4;
2412 		if (!valid_chmap_channels(info, map->channels))
2413 			continue;
2414 		if (size < 8)
2415 			return -ENOMEM;
2416 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2417 		    put_user(chs_bytes, dst + 1))
2418 			return -EFAULT;
2419 		dst += 2;
2420 		size -= 8;
2421 		count += 8;
2422 		if (size < chs_bytes)
2423 			return -ENOMEM;
2424 		size -= chs_bytes;
2425 		count += chs_bytes;
2426 		for (c = 0; c < map->channels; c++) {
2427 			if (put_user(map->map[c], dst))
2428 				return -EFAULT;
2429 			dst++;
2430 		}
2431 	}
2432 	if (put_user(count, tlv + 1))
2433 		return -EFAULT;
2434 	return 0;
2435 }
2436 
2437 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2438 {
2439 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2440 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2441 	kfree(info);
2442 }
2443 
2444 /**
2445  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2446  * @pcm: the assigned PCM instance
2447  * @stream: stream direction
2448  * @chmap: channel map elements (for query)
2449  * @max_channels: the max number of channels for the stream
2450  * @private_value: the value passed to each kcontrol's private_value field
2451  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2452  *
2453  * Create channel-mapping control elements assigned to the given PCM stream(s).
2454  * Return: Zero if successful, or a negative error value.
2455  */
2456 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2457 			   const struct snd_pcm_chmap_elem *chmap,
2458 			   int max_channels,
2459 			   unsigned long private_value,
2460 			   struct snd_pcm_chmap **info_ret)
2461 {
2462 	struct snd_pcm_chmap *info;
2463 	struct snd_kcontrol_new knew = {
2464 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2465 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2466 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2467 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2468 		.info = pcm_chmap_ctl_info,
2469 		.get = pcm_chmap_ctl_get,
2470 		.tlv.c = pcm_chmap_ctl_tlv,
2471 	};
2472 	int err;
2473 
2474 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2475 	if (!info)
2476 		return -ENOMEM;
2477 	info->pcm = pcm;
2478 	info->stream = stream;
2479 	info->chmap = chmap;
2480 	info->max_channels = max_channels;
2481 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2482 		knew.name = "Playback Channel Map";
2483 	else
2484 		knew.name = "Capture Channel Map";
2485 	knew.device = pcm->device;
2486 	knew.count = pcm->streams[stream].substream_count;
2487 	knew.private_value = private_value;
2488 	info->kctl = snd_ctl_new1(&knew, info);
2489 	if (!info->kctl) {
2490 		kfree(info);
2491 		return -ENOMEM;
2492 	}
2493 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2494 	err = snd_ctl_add(pcm->card, info->kctl);
2495 	if (err < 0)
2496 		return err;
2497 	pcm->streams[stream].chmap_kctl = info->kctl;
2498 	if (info_ret)
2499 		*info_ret = info;
2500 	return 0;
2501 }
2502 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2503