1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <sound/core.h> 27 #include <sound/control.h> 28 #include <sound/info.h> 29 #include <sound/pcm.h> 30 #include <sound/pcm_params.h> 31 #include <sound/timer.h> 32 33 /* 34 * fill ring buffer with silence 35 * runtime->silence_start: starting pointer to silence area 36 * runtime->silence_filled: size filled with silence 37 * runtime->silence_threshold: threshold from application 38 * runtime->silence_size: maximal size from application 39 * 40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 41 */ 42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 43 { 44 struct snd_pcm_runtime *runtime = substream->runtime; 45 snd_pcm_uframes_t frames, ofs, transfer; 46 47 if (runtime->silence_size < runtime->boundary) { 48 snd_pcm_sframes_t noise_dist, n; 49 if (runtime->silence_start != runtime->control->appl_ptr) { 50 n = runtime->control->appl_ptr - runtime->silence_start; 51 if (n < 0) 52 n += runtime->boundary; 53 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 54 runtime->silence_filled -= n; 55 else 56 runtime->silence_filled = 0; 57 runtime->silence_start = runtime->control->appl_ptr; 58 } 59 if (runtime->silence_filled >= runtime->buffer_size) 60 return; 61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 63 return; 64 frames = runtime->silence_threshold - noise_dist; 65 if (frames > runtime->silence_size) 66 frames = runtime->silence_size; 67 } else { 68 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 70 if (avail > runtime->buffer_size) 71 avail = runtime->buffer_size; 72 runtime->silence_filled = avail > 0 ? avail : 0; 73 runtime->silence_start = (runtime->status->hw_ptr + 74 runtime->silence_filled) % 75 runtime->boundary; 76 } else { 77 ofs = runtime->status->hw_ptr; 78 frames = new_hw_ptr - ofs; 79 if ((snd_pcm_sframes_t)frames < 0) 80 frames += runtime->boundary; 81 runtime->silence_filled -= frames; 82 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 83 runtime->silence_filled = 0; 84 runtime->silence_start = new_hw_ptr; 85 } else { 86 runtime->silence_start = ofs; 87 } 88 } 89 frames = runtime->buffer_size - runtime->silence_filled; 90 } 91 if (snd_BUG_ON(frames > runtime->buffer_size)) 92 return; 93 if (frames == 0) 94 return; 95 ofs = runtime->silence_start % runtime->buffer_size; 96 while (frames > 0) { 97 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 98 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 99 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 100 if (substream->ops->silence) { 101 int err; 102 err = substream->ops->silence(substream, -1, ofs, transfer); 103 snd_BUG_ON(err < 0); 104 } else { 105 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 106 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 107 } 108 } else { 109 unsigned int c; 110 unsigned int channels = runtime->channels; 111 if (substream->ops->silence) { 112 for (c = 0; c < channels; ++c) { 113 int err; 114 err = substream->ops->silence(substream, c, ofs, transfer); 115 snd_BUG_ON(err < 0); 116 } 117 } else { 118 size_t dma_csize = runtime->dma_bytes / channels; 119 for (c = 0; c < channels; ++c) { 120 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 121 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 122 } 123 } 124 } 125 runtime->silence_filled += transfer; 126 frames -= transfer; 127 ofs = 0; 128 } 129 } 130 131 static void pcm_debug_name(struct snd_pcm_substream *substream, 132 char *name, size_t len) 133 { 134 snprintf(name, len, "pcmC%dD%d%c:%d", 135 substream->pcm->card->number, 136 substream->pcm->device, 137 substream->stream ? 'c' : 'p', 138 substream->number); 139 } 140 141 #define XRUN_DEBUG_BASIC (1<<0) 142 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 143 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 144 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */ 145 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */ 146 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */ 147 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */ 148 149 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 150 151 #define xrun_debug(substream, mask) \ 152 ((substream)->pstr->xrun_debug & (mask)) 153 #else 154 #define xrun_debug(substream, mask) 0 155 #endif 156 157 #define dump_stack_on_xrun(substream) do { \ 158 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 159 dump_stack(); \ 160 } while (0) 161 162 static void xrun(struct snd_pcm_substream *substream) 163 { 164 struct snd_pcm_runtime *runtime = substream->runtime; 165 166 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 167 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 168 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 169 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 170 char name[16]; 171 pcm_debug_name(substream, name, sizeof(name)); 172 snd_printd(KERN_DEBUG "XRUN: %s\n", name); 173 dump_stack_on_xrun(substream); 174 } 175 } 176 177 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 178 #define hw_ptr_error(substream, fmt, args...) \ 179 do { \ 180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 181 xrun_log_show(substream); \ 182 if (printk_ratelimit()) { \ 183 snd_printd("PCM: " fmt, ##args); \ 184 } \ 185 dump_stack_on_xrun(substream); \ 186 } \ 187 } while (0) 188 189 #define XRUN_LOG_CNT 10 190 191 struct hwptr_log_entry { 192 unsigned long jiffies; 193 snd_pcm_uframes_t pos; 194 snd_pcm_uframes_t period_size; 195 snd_pcm_uframes_t buffer_size; 196 snd_pcm_uframes_t old_hw_ptr; 197 snd_pcm_uframes_t hw_ptr_base; 198 }; 199 200 struct snd_pcm_hwptr_log { 201 unsigned int idx; 202 unsigned int hit: 1; 203 struct hwptr_log_entry entries[XRUN_LOG_CNT]; 204 }; 205 206 static void xrun_log(struct snd_pcm_substream *substream, 207 snd_pcm_uframes_t pos) 208 { 209 struct snd_pcm_runtime *runtime = substream->runtime; 210 struct snd_pcm_hwptr_log *log = runtime->hwptr_log; 211 struct hwptr_log_entry *entry; 212 213 if (log == NULL) { 214 log = kzalloc(sizeof(*log), GFP_ATOMIC); 215 if (log == NULL) 216 return; 217 runtime->hwptr_log = log; 218 } else { 219 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 220 return; 221 } 222 entry = &log->entries[log->idx]; 223 entry->jiffies = jiffies; 224 entry->pos = pos; 225 entry->period_size = runtime->period_size; 226 entry->buffer_size = runtime->buffer_size; 227 entry->old_hw_ptr = runtime->status->hw_ptr; 228 entry->hw_ptr_base = runtime->hw_ptr_base; 229 log->idx = (log->idx + 1) % XRUN_LOG_CNT; 230 } 231 232 static void xrun_log_show(struct snd_pcm_substream *substream) 233 { 234 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log; 235 struct hwptr_log_entry *entry; 236 char name[16]; 237 unsigned int idx; 238 int cnt; 239 240 if (log == NULL) 241 return; 242 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 243 return; 244 pcm_debug_name(substream, name, sizeof(name)); 245 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) { 246 entry = &log->entries[idx]; 247 if (entry->period_size == 0) 248 break; 249 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, " 250 "hwptr=%ld/%ld\n", 251 name, entry->jiffies, (unsigned long)entry->pos, 252 (unsigned long)entry->period_size, 253 (unsigned long)entry->buffer_size, 254 (unsigned long)entry->old_hw_ptr, 255 (unsigned long)entry->hw_ptr_base); 256 idx++; 257 idx %= XRUN_LOG_CNT; 258 } 259 log->hit = 1; 260 } 261 262 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 263 264 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 265 #define xrun_log(substream, pos) do { } while (0) 266 #define xrun_log_show(substream) do { } while (0) 267 268 #endif 269 270 int snd_pcm_update_state(struct snd_pcm_substream *substream, 271 struct snd_pcm_runtime *runtime) 272 { 273 snd_pcm_uframes_t avail; 274 275 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 276 avail = snd_pcm_playback_avail(runtime); 277 else 278 avail = snd_pcm_capture_avail(runtime); 279 if (avail > runtime->avail_max) 280 runtime->avail_max = avail; 281 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 282 if (avail >= runtime->buffer_size) { 283 snd_pcm_drain_done(substream); 284 return -EPIPE; 285 } 286 } else { 287 if (avail >= runtime->stop_threshold) { 288 xrun(substream); 289 return -EPIPE; 290 } 291 } 292 if (runtime->twake) { 293 if (avail >= runtime->twake) 294 wake_up(&runtime->tsleep); 295 } else if (avail >= runtime->control->avail_min) 296 wake_up(&runtime->sleep); 297 return 0; 298 } 299 300 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 301 unsigned int in_interrupt) 302 { 303 struct snd_pcm_runtime *runtime = substream->runtime; 304 snd_pcm_uframes_t pos; 305 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 306 snd_pcm_sframes_t hdelta, delta; 307 unsigned long jdelta; 308 309 old_hw_ptr = runtime->status->hw_ptr; 310 pos = substream->ops->pointer(substream); 311 if (pos == SNDRV_PCM_POS_XRUN) { 312 xrun(substream); 313 return -EPIPE; 314 } 315 if (pos >= runtime->buffer_size) { 316 if (printk_ratelimit()) { 317 char name[16]; 318 pcm_debug_name(substream, name, sizeof(name)); 319 xrun_log_show(substream); 320 snd_printd(KERN_ERR "BUG: %s, pos = %ld, " 321 "buffer size = %ld, period size = %ld\n", 322 name, pos, runtime->buffer_size, 323 runtime->period_size); 324 } 325 pos = 0; 326 } 327 pos -= pos % runtime->min_align; 328 if (xrun_debug(substream, XRUN_DEBUG_LOG)) 329 xrun_log(substream, pos); 330 hw_base = runtime->hw_ptr_base; 331 new_hw_ptr = hw_base + pos; 332 if (in_interrupt) { 333 /* we know that one period was processed */ 334 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 335 delta = runtime->hw_ptr_interrupt + runtime->period_size; 336 if (delta > new_hw_ptr) { 337 /* check for double acknowledged interrupts */ 338 hdelta = jiffies - runtime->hw_ptr_jiffies; 339 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 340 hw_base += runtime->buffer_size; 341 if (hw_base >= runtime->boundary) 342 hw_base = 0; 343 new_hw_ptr = hw_base + pos; 344 goto __delta; 345 } 346 } 347 } 348 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 349 /* pointer crosses the end of the ring buffer */ 350 if (new_hw_ptr < old_hw_ptr) { 351 hw_base += runtime->buffer_size; 352 if (hw_base >= runtime->boundary) 353 hw_base = 0; 354 new_hw_ptr = hw_base + pos; 355 } 356 __delta: 357 delta = new_hw_ptr - old_hw_ptr; 358 if (delta < 0) 359 delta += runtime->boundary; 360 if (xrun_debug(substream, in_interrupt ? 361 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) { 362 char name[16]; 363 pcm_debug_name(substream, name, sizeof(name)); 364 snd_printd("%s_update: %s: pos=%u/%u/%u, " 365 "hwptr=%ld/%ld/%ld/%ld\n", 366 in_interrupt ? "period" : "hwptr", 367 name, 368 (unsigned int)pos, 369 (unsigned int)runtime->period_size, 370 (unsigned int)runtime->buffer_size, 371 (unsigned long)delta, 372 (unsigned long)old_hw_ptr, 373 (unsigned long)new_hw_ptr, 374 (unsigned long)runtime->hw_ptr_base); 375 } 376 /* something must be really wrong */ 377 if (delta >= runtime->buffer_size + runtime->period_size) { 378 hw_ptr_error(substream, 379 "Unexpected hw_pointer value %s" 380 "(stream=%i, pos=%ld, new_hw_ptr=%ld, " 381 "old_hw_ptr=%ld)\n", 382 in_interrupt ? "[Q] " : "[P]", 383 substream->stream, (long)pos, 384 (long)new_hw_ptr, (long)old_hw_ptr); 385 return 0; 386 } 387 388 /* Do jiffies check only in xrun_debug mode */ 389 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 390 goto no_jiffies_check; 391 392 /* Skip the jiffies check for hardwares with BATCH flag. 393 * Such hardware usually just increases the position at each IRQ, 394 * thus it can't give any strange position. 395 */ 396 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 397 goto no_jiffies_check; 398 hdelta = delta; 399 if (hdelta < runtime->delay) 400 goto no_jiffies_check; 401 hdelta -= runtime->delay; 402 jdelta = jiffies - runtime->hw_ptr_jiffies; 403 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 404 delta = jdelta / 405 (((runtime->period_size * HZ) / runtime->rate) 406 + HZ/100); 407 /* move new_hw_ptr according jiffies not pos variable */ 408 new_hw_ptr = old_hw_ptr; 409 hw_base = delta; 410 /* use loop to avoid checks for delta overflows */ 411 /* the delta value is small or zero in most cases */ 412 while (delta > 0) { 413 new_hw_ptr += runtime->period_size; 414 if (new_hw_ptr >= runtime->boundary) 415 new_hw_ptr -= runtime->boundary; 416 delta--; 417 } 418 /* align hw_base to buffer_size */ 419 hw_ptr_error(substream, 420 "hw_ptr skipping! %s" 421 "(pos=%ld, delta=%ld, period=%ld, " 422 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 423 in_interrupt ? "[Q] " : "", 424 (long)pos, (long)hdelta, 425 (long)runtime->period_size, jdelta, 426 ((hdelta * HZ) / runtime->rate), hw_base, 427 (unsigned long)old_hw_ptr, 428 (unsigned long)new_hw_ptr); 429 /* reset values to proper state */ 430 delta = 0; 431 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 432 } 433 no_jiffies_check: 434 if (delta > runtime->period_size + runtime->period_size / 2) { 435 hw_ptr_error(substream, 436 "Lost interrupts? %s" 437 "(stream=%i, delta=%ld, new_hw_ptr=%ld, " 438 "old_hw_ptr=%ld)\n", 439 in_interrupt ? "[Q] " : "", 440 substream->stream, (long)delta, 441 (long)new_hw_ptr, 442 (long)old_hw_ptr); 443 } 444 445 if (runtime->status->hw_ptr == new_hw_ptr) 446 return 0; 447 448 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 449 runtime->silence_size > 0) 450 snd_pcm_playback_silence(substream, new_hw_ptr); 451 452 if (in_interrupt) { 453 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 454 if (delta < 0) 455 delta += runtime->boundary; 456 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 457 runtime->hw_ptr_interrupt += delta; 458 if (runtime->hw_ptr_interrupt >= runtime->boundary) 459 runtime->hw_ptr_interrupt -= runtime->boundary; 460 } 461 runtime->hw_ptr_base = hw_base; 462 runtime->status->hw_ptr = new_hw_ptr; 463 runtime->hw_ptr_jiffies = jiffies; 464 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 465 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 466 467 return snd_pcm_update_state(substream, runtime); 468 } 469 470 /* CAUTION: call it with irq disabled */ 471 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 472 { 473 return snd_pcm_update_hw_ptr0(substream, 0); 474 } 475 476 /** 477 * snd_pcm_set_ops - set the PCM operators 478 * @pcm: the pcm instance 479 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 480 * @ops: the operator table 481 * 482 * Sets the given PCM operators to the pcm instance. 483 */ 484 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 485 { 486 struct snd_pcm_str *stream = &pcm->streams[direction]; 487 struct snd_pcm_substream *substream; 488 489 for (substream = stream->substream; substream != NULL; substream = substream->next) 490 substream->ops = ops; 491 } 492 493 EXPORT_SYMBOL(snd_pcm_set_ops); 494 495 /** 496 * snd_pcm_sync - set the PCM sync id 497 * @substream: the pcm substream 498 * 499 * Sets the PCM sync identifier for the card. 500 */ 501 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 502 { 503 struct snd_pcm_runtime *runtime = substream->runtime; 504 505 runtime->sync.id32[0] = substream->pcm->card->number; 506 runtime->sync.id32[1] = -1; 507 runtime->sync.id32[2] = -1; 508 runtime->sync.id32[3] = -1; 509 } 510 511 EXPORT_SYMBOL(snd_pcm_set_sync); 512 513 /* 514 * Standard ioctl routine 515 */ 516 517 static inline unsigned int div32(unsigned int a, unsigned int b, 518 unsigned int *r) 519 { 520 if (b == 0) { 521 *r = 0; 522 return UINT_MAX; 523 } 524 *r = a % b; 525 return a / b; 526 } 527 528 static inline unsigned int div_down(unsigned int a, unsigned int b) 529 { 530 if (b == 0) 531 return UINT_MAX; 532 return a / b; 533 } 534 535 static inline unsigned int div_up(unsigned int a, unsigned int b) 536 { 537 unsigned int r; 538 unsigned int q; 539 if (b == 0) 540 return UINT_MAX; 541 q = div32(a, b, &r); 542 if (r) 543 ++q; 544 return q; 545 } 546 547 static inline unsigned int mul(unsigned int a, unsigned int b) 548 { 549 if (a == 0) 550 return 0; 551 if (div_down(UINT_MAX, a) < b) 552 return UINT_MAX; 553 return a * b; 554 } 555 556 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 557 unsigned int c, unsigned int *r) 558 { 559 u_int64_t n = (u_int64_t) a * b; 560 if (c == 0) { 561 snd_BUG_ON(!n); 562 *r = 0; 563 return UINT_MAX; 564 } 565 n = div_u64_rem(n, c, r); 566 if (n >= UINT_MAX) { 567 *r = 0; 568 return UINT_MAX; 569 } 570 return n; 571 } 572 573 /** 574 * snd_interval_refine - refine the interval value of configurator 575 * @i: the interval value to refine 576 * @v: the interval value to refer to 577 * 578 * Refines the interval value with the reference value. 579 * The interval is changed to the range satisfying both intervals. 580 * The interval status (min, max, integer, etc.) are evaluated. 581 * 582 * Returns non-zero if the value is changed, zero if not changed. 583 */ 584 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 585 { 586 int changed = 0; 587 if (snd_BUG_ON(snd_interval_empty(i))) 588 return -EINVAL; 589 if (i->min < v->min) { 590 i->min = v->min; 591 i->openmin = v->openmin; 592 changed = 1; 593 } else if (i->min == v->min && !i->openmin && v->openmin) { 594 i->openmin = 1; 595 changed = 1; 596 } 597 if (i->max > v->max) { 598 i->max = v->max; 599 i->openmax = v->openmax; 600 changed = 1; 601 } else if (i->max == v->max && !i->openmax && v->openmax) { 602 i->openmax = 1; 603 changed = 1; 604 } 605 if (!i->integer && v->integer) { 606 i->integer = 1; 607 changed = 1; 608 } 609 if (i->integer) { 610 if (i->openmin) { 611 i->min++; 612 i->openmin = 0; 613 } 614 if (i->openmax) { 615 i->max--; 616 i->openmax = 0; 617 } 618 } else if (!i->openmin && !i->openmax && i->min == i->max) 619 i->integer = 1; 620 if (snd_interval_checkempty(i)) { 621 snd_interval_none(i); 622 return -EINVAL; 623 } 624 return changed; 625 } 626 627 EXPORT_SYMBOL(snd_interval_refine); 628 629 static int snd_interval_refine_first(struct snd_interval *i) 630 { 631 if (snd_BUG_ON(snd_interval_empty(i))) 632 return -EINVAL; 633 if (snd_interval_single(i)) 634 return 0; 635 i->max = i->min; 636 i->openmax = i->openmin; 637 if (i->openmax) 638 i->max++; 639 return 1; 640 } 641 642 static int snd_interval_refine_last(struct snd_interval *i) 643 { 644 if (snd_BUG_ON(snd_interval_empty(i))) 645 return -EINVAL; 646 if (snd_interval_single(i)) 647 return 0; 648 i->min = i->max; 649 i->openmin = i->openmax; 650 if (i->openmin) 651 i->min--; 652 return 1; 653 } 654 655 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 656 { 657 if (a->empty || b->empty) { 658 snd_interval_none(c); 659 return; 660 } 661 c->empty = 0; 662 c->min = mul(a->min, b->min); 663 c->openmin = (a->openmin || b->openmin); 664 c->max = mul(a->max, b->max); 665 c->openmax = (a->openmax || b->openmax); 666 c->integer = (a->integer && b->integer); 667 } 668 669 /** 670 * snd_interval_div - refine the interval value with division 671 * @a: dividend 672 * @b: divisor 673 * @c: quotient 674 * 675 * c = a / b 676 * 677 * Returns non-zero if the value is changed, zero if not changed. 678 */ 679 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 680 { 681 unsigned int r; 682 if (a->empty || b->empty) { 683 snd_interval_none(c); 684 return; 685 } 686 c->empty = 0; 687 c->min = div32(a->min, b->max, &r); 688 c->openmin = (r || a->openmin || b->openmax); 689 if (b->min > 0) { 690 c->max = div32(a->max, b->min, &r); 691 if (r) { 692 c->max++; 693 c->openmax = 1; 694 } else 695 c->openmax = (a->openmax || b->openmin); 696 } else { 697 c->max = UINT_MAX; 698 c->openmax = 0; 699 } 700 c->integer = 0; 701 } 702 703 /** 704 * snd_interval_muldivk - refine the interval value 705 * @a: dividend 1 706 * @b: dividend 2 707 * @k: divisor (as integer) 708 * @c: result 709 * 710 * c = a * b / k 711 * 712 * Returns non-zero if the value is changed, zero if not changed. 713 */ 714 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 715 unsigned int k, struct snd_interval *c) 716 { 717 unsigned int r; 718 if (a->empty || b->empty) { 719 snd_interval_none(c); 720 return; 721 } 722 c->empty = 0; 723 c->min = muldiv32(a->min, b->min, k, &r); 724 c->openmin = (r || a->openmin || b->openmin); 725 c->max = muldiv32(a->max, b->max, k, &r); 726 if (r) { 727 c->max++; 728 c->openmax = 1; 729 } else 730 c->openmax = (a->openmax || b->openmax); 731 c->integer = 0; 732 } 733 734 /** 735 * snd_interval_mulkdiv - refine the interval value 736 * @a: dividend 1 737 * @k: dividend 2 (as integer) 738 * @b: divisor 739 * @c: result 740 * 741 * c = a * k / b 742 * 743 * Returns non-zero if the value is changed, zero if not changed. 744 */ 745 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 746 const struct snd_interval *b, struct snd_interval *c) 747 { 748 unsigned int r; 749 if (a->empty || b->empty) { 750 snd_interval_none(c); 751 return; 752 } 753 c->empty = 0; 754 c->min = muldiv32(a->min, k, b->max, &r); 755 c->openmin = (r || a->openmin || b->openmax); 756 if (b->min > 0) { 757 c->max = muldiv32(a->max, k, b->min, &r); 758 if (r) { 759 c->max++; 760 c->openmax = 1; 761 } else 762 c->openmax = (a->openmax || b->openmin); 763 } else { 764 c->max = UINT_MAX; 765 c->openmax = 0; 766 } 767 c->integer = 0; 768 } 769 770 /* ---- */ 771 772 773 /** 774 * snd_interval_ratnum - refine the interval value 775 * @i: interval to refine 776 * @rats_count: number of ratnum_t 777 * @rats: ratnum_t array 778 * @nump: pointer to store the resultant numerator 779 * @denp: pointer to store the resultant denominator 780 * 781 * Returns non-zero if the value is changed, zero if not changed. 782 */ 783 int snd_interval_ratnum(struct snd_interval *i, 784 unsigned int rats_count, struct snd_ratnum *rats, 785 unsigned int *nump, unsigned int *denp) 786 { 787 unsigned int best_num, best_den; 788 int best_diff; 789 unsigned int k; 790 struct snd_interval t; 791 int err; 792 unsigned int result_num, result_den; 793 int result_diff; 794 795 best_num = best_den = best_diff = 0; 796 for (k = 0; k < rats_count; ++k) { 797 unsigned int num = rats[k].num; 798 unsigned int den; 799 unsigned int q = i->min; 800 int diff; 801 if (q == 0) 802 q = 1; 803 den = div_up(num, q); 804 if (den < rats[k].den_min) 805 continue; 806 if (den > rats[k].den_max) 807 den = rats[k].den_max; 808 else { 809 unsigned int r; 810 r = (den - rats[k].den_min) % rats[k].den_step; 811 if (r != 0) 812 den -= r; 813 } 814 diff = num - q * den; 815 if (diff < 0) 816 diff = -diff; 817 if (best_num == 0 || 818 diff * best_den < best_diff * den) { 819 best_diff = diff; 820 best_den = den; 821 best_num = num; 822 } 823 } 824 if (best_den == 0) { 825 i->empty = 1; 826 return -EINVAL; 827 } 828 t.min = div_down(best_num, best_den); 829 t.openmin = !!(best_num % best_den); 830 831 result_num = best_num; 832 result_diff = best_diff; 833 result_den = best_den; 834 best_num = best_den = best_diff = 0; 835 for (k = 0; k < rats_count; ++k) { 836 unsigned int num = rats[k].num; 837 unsigned int den; 838 unsigned int q = i->max; 839 int diff; 840 if (q == 0) { 841 i->empty = 1; 842 return -EINVAL; 843 } 844 den = div_down(num, q); 845 if (den > rats[k].den_max) 846 continue; 847 if (den < rats[k].den_min) 848 den = rats[k].den_min; 849 else { 850 unsigned int r; 851 r = (den - rats[k].den_min) % rats[k].den_step; 852 if (r != 0) 853 den += rats[k].den_step - r; 854 } 855 diff = q * den - num; 856 if (diff < 0) 857 diff = -diff; 858 if (best_num == 0 || 859 diff * best_den < best_diff * den) { 860 best_diff = diff; 861 best_den = den; 862 best_num = num; 863 } 864 } 865 if (best_den == 0) { 866 i->empty = 1; 867 return -EINVAL; 868 } 869 t.max = div_up(best_num, best_den); 870 t.openmax = !!(best_num % best_den); 871 t.integer = 0; 872 err = snd_interval_refine(i, &t); 873 if (err < 0) 874 return err; 875 876 if (snd_interval_single(i)) { 877 if (best_diff * result_den < result_diff * best_den) { 878 result_num = best_num; 879 result_den = best_den; 880 } 881 if (nump) 882 *nump = result_num; 883 if (denp) 884 *denp = result_den; 885 } 886 return err; 887 } 888 889 EXPORT_SYMBOL(snd_interval_ratnum); 890 891 /** 892 * snd_interval_ratden - refine the interval value 893 * @i: interval to refine 894 * @rats_count: number of struct ratden 895 * @rats: struct ratden array 896 * @nump: pointer to store the resultant numerator 897 * @denp: pointer to store the resultant denominator 898 * 899 * Returns non-zero if the value is changed, zero if not changed. 900 */ 901 static int snd_interval_ratden(struct snd_interval *i, 902 unsigned int rats_count, struct snd_ratden *rats, 903 unsigned int *nump, unsigned int *denp) 904 { 905 unsigned int best_num, best_diff, best_den; 906 unsigned int k; 907 struct snd_interval t; 908 int err; 909 910 best_num = best_den = best_diff = 0; 911 for (k = 0; k < rats_count; ++k) { 912 unsigned int num; 913 unsigned int den = rats[k].den; 914 unsigned int q = i->min; 915 int diff; 916 num = mul(q, den); 917 if (num > rats[k].num_max) 918 continue; 919 if (num < rats[k].num_min) 920 num = rats[k].num_max; 921 else { 922 unsigned int r; 923 r = (num - rats[k].num_min) % rats[k].num_step; 924 if (r != 0) 925 num += rats[k].num_step - r; 926 } 927 diff = num - q * den; 928 if (best_num == 0 || 929 diff * best_den < best_diff * den) { 930 best_diff = diff; 931 best_den = den; 932 best_num = num; 933 } 934 } 935 if (best_den == 0) { 936 i->empty = 1; 937 return -EINVAL; 938 } 939 t.min = div_down(best_num, best_den); 940 t.openmin = !!(best_num % best_den); 941 942 best_num = best_den = best_diff = 0; 943 for (k = 0; k < rats_count; ++k) { 944 unsigned int num; 945 unsigned int den = rats[k].den; 946 unsigned int q = i->max; 947 int diff; 948 num = mul(q, den); 949 if (num < rats[k].num_min) 950 continue; 951 if (num > rats[k].num_max) 952 num = rats[k].num_max; 953 else { 954 unsigned int r; 955 r = (num - rats[k].num_min) % rats[k].num_step; 956 if (r != 0) 957 num -= r; 958 } 959 diff = q * den - num; 960 if (best_num == 0 || 961 diff * best_den < best_diff * den) { 962 best_diff = diff; 963 best_den = den; 964 best_num = num; 965 } 966 } 967 if (best_den == 0) { 968 i->empty = 1; 969 return -EINVAL; 970 } 971 t.max = div_up(best_num, best_den); 972 t.openmax = !!(best_num % best_den); 973 t.integer = 0; 974 err = snd_interval_refine(i, &t); 975 if (err < 0) 976 return err; 977 978 if (snd_interval_single(i)) { 979 if (nump) 980 *nump = best_num; 981 if (denp) 982 *denp = best_den; 983 } 984 return err; 985 } 986 987 /** 988 * snd_interval_list - refine the interval value from the list 989 * @i: the interval value to refine 990 * @count: the number of elements in the list 991 * @list: the value list 992 * @mask: the bit-mask to evaluate 993 * 994 * Refines the interval value from the list. 995 * When mask is non-zero, only the elements corresponding to bit 1 are 996 * evaluated. 997 * 998 * Returns non-zero if the value is changed, zero if not changed. 999 */ 1000 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 1001 { 1002 unsigned int k; 1003 struct snd_interval list_range; 1004 1005 if (!count) { 1006 i->empty = 1; 1007 return -EINVAL; 1008 } 1009 snd_interval_any(&list_range); 1010 list_range.min = UINT_MAX; 1011 list_range.max = 0; 1012 for (k = 0; k < count; k++) { 1013 if (mask && !(mask & (1 << k))) 1014 continue; 1015 if (!snd_interval_test(i, list[k])) 1016 continue; 1017 list_range.min = min(list_range.min, list[k]); 1018 list_range.max = max(list_range.max, list[k]); 1019 } 1020 return snd_interval_refine(i, &list_range); 1021 } 1022 1023 EXPORT_SYMBOL(snd_interval_list); 1024 1025 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 1026 { 1027 unsigned int n; 1028 int changed = 0; 1029 n = (i->min - min) % step; 1030 if (n != 0 || i->openmin) { 1031 i->min += step - n; 1032 changed = 1; 1033 } 1034 n = (i->max - min) % step; 1035 if (n != 0 || i->openmax) { 1036 i->max -= n; 1037 changed = 1; 1038 } 1039 if (snd_interval_checkempty(i)) { 1040 i->empty = 1; 1041 return -EINVAL; 1042 } 1043 return changed; 1044 } 1045 1046 /* Info constraints helpers */ 1047 1048 /** 1049 * snd_pcm_hw_rule_add - add the hw-constraint rule 1050 * @runtime: the pcm runtime instance 1051 * @cond: condition bits 1052 * @var: the variable to evaluate 1053 * @func: the evaluation function 1054 * @private: the private data pointer passed to function 1055 * @dep: the dependent variables 1056 * 1057 * Returns zero if successful, or a negative error code on failure. 1058 */ 1059 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1060 int var, 1061 snd_pcm_hw_rule_func_t func, void *private, 1062 int dep, ...) 1063 { 1064 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1065 struct snd_pcm_hw_rule *c; 1066 unsigned int k; 1067 va_list args; 1068 va_start(args, dep); 1069 if (constrs->rules_num >= constrs->rules_all) { 1070 struct snd_pcm_hw_rule *new; 1071 unsigned int new_rules = constrs->rules_all + 16; 1072 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1073 if (!new) { 1074 va_end(args); 1075 return -ENOMEM; 1076 } 1077 if (constrs->rules) { 1078 memcpy(new, constrs->rules, 1079 constrs->rules_num * sizeof(*c)); 1080 kfree(constrs->rules); 1081 } 1082 constrs->rules = new; 1083 constrs->rules_all = new_rules; 1084 } 1085 c = &constrs->rules[constrs->rules_num]; 1086 c->cond = cond; 1087 c->func = func; 1088 c->var = var; 1089 c->private = private; 1090 k = 0; 1091 while (1) { 1092 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1093 va_end(args); 1094 return -EINVAL; 1095 } 1096 c->deps[k++] = dep; 1097 if (dep < 0) 1098 break; 1099 dep = va_arg(args, int); 1100 } 1101 constrs->rules_num++; 1102 va_end(args); 1103 return 0; 1104 } 1105 1106 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1107 1108 /** 1109 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1110 * @runtime: PCM runtime instance 1111 * @var: hw_params variable to apply the mask 1112 * @mask: the bitmap mask 1113 * 1114 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1115 */ 1116 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1117 u_int32_t mask) 1118 { 1119 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1120 struct snd_mask *maskp = constrs_mask(constrs, var); 1121 *maskp->bits &= mask; 1122 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1123 if (*maskp->bits == 0) 1124 return -EINVAL; 1125 return 0; 1126 } 1127 1128 /** 1129 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1130 * @runtime: PCM runtime instance 1131 * @var: hw_params variable to apply the mask 1132 * @mask: the 64bit bitmap mask 1133 * 1134 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1135 */ 1136 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1137 u_int64_t mask) 1138 { 1139 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1140 struct snd_mask *maskp = constrs_mask(constrs, var); 1141 maskp->bits[0] &= (u_int32_t)mask; 1142 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1143 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1144 if (! maskp->bits[0] && ! maskp->bits[1]) 1145 return -EINVAL; 1146 return 0; 1147 } 1148 1149 /** 1150 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1151 * @runtime: PCM runtime instance 1152 * @var: hw_params variable to apply the integer constraint 1153 * 1154 * Apply the constraint of integer to an interval parameter. 1155 */ 1156 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1157 { 1158 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1159 return snd_interval_setinteger(constrs_interval(constrs, var)); 1160 } 1161 1162 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1163 1164 /** 1165 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1166 * @runtime: PCM runtime instance 1167 * @var: hw_params variable to apply the range 1168 * @min: the minimal value 1169 * @max: the maximal value 1170 * 1171 * Apply the min/max range constraint to an interval parameter. 1172 */ 1173 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1174 unsigned int min, unsigned int max) 1175 { 1176 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1177 struct snd_interval t; 1178 t.min = min; 1179 t.max = max; 1180 t.openmin = t.openmax = 0; 1181 t.integer = 0; 1182 return snd_interval_refine(constrs_interval(constrs, var), &t); 1183 } 1184 1185 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1186 1187 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1188 struct snd_pcm_hw_rule *rule) 1189 { 1190 struct snd_pcm_hw_constraint_list *list = rule->private; 1191 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1192 } 1193 1194 1195 /** 1196 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1197 * @runtime: PCM runtime instance 1198 * @cond: condition bits 1199 * @var: hw_params variable to apply the list constraint 1200 * @l: list 1201 * 1202 * Apply the list of constraints to an interval parameter. 1203 */ 1204 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1205 unsigned int cond, 1206 snd_pcm_hw_param_t var, 1207 struct snd_pcm_hw_constraint_list *l) 1208 { 1209 return snd_pcm_hw_rule_add(runtime, cond, var, 1210 snd_pcm_hw_rule_list, l, 1211 var, -1); 1212 } 1213 1214 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1215 1216 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1217 struct snd_pcm_hw_rule *rule) 1218 { 1219 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1220 unsigned int num = 0, den = 0; 1221 int err; 1222 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1223 r->nrats, r->rats, &num, &den); 1224 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1225 params->rate_num = num; 1226 params->rate_den = den; 1227 } 1228 return err; 1229 } 1230 1231 /** 1232 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1233 * @runtime: PCM runtime instance 1234 * @cond: condition bits 1235 * @var: hw_params variable to apply the ratnums constraint 1236 * @r: struct snd_ratnums constriants 1237 */ 1238 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1239 unsigned int cond, 1240 snd_pcm_hw_param_t var, 1241 struct snd_pcm_hw_constraint_ratnums *r) 1242 { 1243 return snd_pcm_hw_rule_add(runtime, cond, var, 1244 snd_pcm_hw_rule_ratnums, r, 1245 var, -1); 1246 } 1247 1248 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1249 1250 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1251 struct snd_pcm_hw_rule *rule) 1252 { 1253 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1254 unsigned int num = 0, den = 0; 1255 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1256 r->nrats, r->rats, &num, &den); 1257 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1258 params->rate_num = num; 1259 params->rate_den = den; 1260 } 1261 return err; 1262 } 1263 1264 /** 1265 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1266 * @runtime: PCM runtime instance 1267 * @cond: condition bits 1268 * @var: hw_params variable to apply the ratdens constraint 1269 * @r: struct snd_ratdens constriants 1270 */ 1271 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1272 unsigned int cond, 1273 snd_pcm_hw_param_t var, 1274 struct snd_pcm_hw_constraint_ratdens *r) 1275 { 1276 return snd_pcm_hw_rule_add(runtime, cond, var, 1277 snd_pcm_hw_rule_ratdens, r, 1278 var, -1); 1279 } 1280 1281 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1282 1283 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1284 struct snd_pcm_hw_rule *rule) 1285 { 1286 unsigned int l = (unsigned long) rule->private; 1287 int width = l & 0xffff; 1288 unsigned int msbits = l >> 16; 1289 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1290 if (snd_interval_single(i) && snd_interval_value(i) == width) 1291 params->msbits = msbits; 1292 return 0; 1293 } 1294 1295 /** 1296 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1297 * @runtime: PCM runtime instance 1298 * @cond: condition bits 1299 * @width: sample bits width 1300 * @msbits: msbits width 1301 */ 1302 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1303 unsigned int cond, 1304 unsigned int width, 1305 unsigned int msbits) 1306 { 1307 unsigned long l = (msbits << 16) | width; 1308 return snd_pcm_hw_rule_add(runtime, cond, -1, 1309 snd_pcm_hw_rule_msbits, 1310 (void*) l, 1311 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1312 } 1313 1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1315 1316 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1317 struct snd_pcm_hw_rule *rule) 1318 { 1319 unsigned long step = (unsigned long) rule->private; 1320 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1321 } 1322 1323 /** 1324 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1325 * @runtime: PCM runtime instance 1326 * @cond: condition bits 1327 * @var: hw_params variable to apply the step constraint 1328 * @step: step size 1329 */ 1330 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1331 unsigned int cond, 1332 snd_pcm_hw_param_t var, 1333 unsigned long step) 1334 { 1335 return snd_pcm_hw_rule_add(runtime, cond, var, 1336 snd_pcm_hw_rule_step, (void *) step, 1337 var, -1); 1338 } 1339 1340 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1341 1342 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1343 { 1344 static unsigned int pow2_sizes[] = { 1345 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1346 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1347 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1348 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1349 }; 1350 return snd_interval_list(hw_param_interval(params, rule->var), 1351 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1352 } 1353 1354 /** 1355 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1356 * @runtime: PCM runtime instance 1357 * @cond: condition bits 1358 * @var: hw_params variable to apply the power-of-2 constraint 1359 */ 1360 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1361 unsigned int cond, 1362 snd_pcm_hw_param_t var) 1363 { 1364 return snd_pcm_hw_rule_add(runtime, cond, var, 1365 snd_pcm_hw_rule_pow2, NULL, 1366 var, -1); 1367 } 1368 1369 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1370 1371 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1372 snd_pcm_hw_param_t var) 1373 { 1374 if (hw_is_mask(var)) { 1375 snd_mask_any(hw_param_mask(params, var)); 1376 params->cmask |= 1 << var; 1377 params->rmask |= 1 << var; 1378 return; 1379 } 1380 if (hw_is_interval(var)) { 1381 snd_interval_any(hw_param_interval(params, var)); 1382 params->cmask |= 1 << var; 1383 params->rmask |= 1 << var; 1384 return; 1385 } 1386 snd_BUG(); 1387 } 1388 1389 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1390 { 1391 unsigned int k; 1392 memset(params, 0, sizeof(*params)); 1393 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1394 _snd_pcm_hw_param_any(params, k); 1395 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1396 _snd_pcm_hw_param_any(params, k); 1397 params->info = ~0U; 1398 } 1399 1400 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1401 1402 /** 1403 * snd_pcm_hw_param_value - return @params field @var value 1404 * @params: the hw_params instance 1405 * @var: parameter to retrieve 1406 * @dir: pointer to the direction (-1,0,1) or %NULL 1407 * 1408 * Return the value for field @var if it's fixed in configuration space 1409 * defined by @params. Return -%EINVAL otherwise. 1410 */ 1411 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1412 snd_pcm_hw_param_t var, int *dir) 1413 { 1414 if (hw_is_mask(var)) { 1415 const struct snd_mask *mask = hw_param_mask_c(params, var); 1416 if (!snd_mask_single(mask)) 1417 return -EINVAL; 1418 if (dir) 1419 *dir = 0; 1420 return snd_mask_value(mask); 1421 } 1422 if (hw_is_interval(var)) { 1423 const struct snd_interval *i = hw_param_interval_c(params, var); 1424 if (!snd_interval_single(i)) 1425 return -EINVAL; 1426 if (dir) 1427 *dir = i->openmin; 1428 return snd_interval_value(i); 1429 } 1430 return -EINVAL; 1431 } 1432 1433 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1434 1435 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1436 snd_pcm_hw_param_t var) 1437 { 1438 if (hw_is_mask(var)) { 1439 snd_mask_none(hw_param_mask(params, var)); 1440 params->cmask |= 1 << var; 1441 params->rmask |= 1 << var; 1442 } else if (hw_is_interval(var)) { 1443 snd_interval_none(hw_param_interval(params, var)); 1444 params->cmask |= 1 << var; 1445 params->rmask |= 1 << var; 1446 } else { 1447 snd_BUG(); 1448 } 1449 } 1450 1451 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1452 1453 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1454 snd_pcm_hw_param_t var) 1455 { 1456 int changed; 1457 if (hw_is_mask(var)) 1458 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1459 else if (hw_is_interval(var)) 1460 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1461 else 1462 return -EINVAL; 1463 if (changed) { 1464 params->cmask |= 1 << var; 1465 params->rmask |= 1 << var; 1466 } 1467 return changed; 1468 } 1469 1470 1471 /** 1472 * snd_pcm_hw_param_first - refine config space and return minimum value 1473 * @pcm: PCM instance 1474 * @params: the hw_params instance 1475 * @var: parameter to retrieve 1476 * @dir: pointer to the direction (-1,0,1) or %NULL 1477 * 1478 * Inside configuration space defined by @params remove from @var all 1479 * values > minimum. Reduce configuration space accordingly. 1480 * Return the minimum. 1481 */ 1482 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1483 struct snd_pcm_hw_params *params, 1484 snd_pcm_hw_param_t var, int *dir) 1485 { 1486 int changed = _snd_pcm_hw_param_first(params, var); 1487 if (changed < 0) 1488 return changed; 1489 if (params->rmask) { 1490 int err = snd_pcm_hw_refine(pcm, params); 1491 if (snd_BUG_ON(err < 0)) 1492 return err; 1493 } 1494 return snd_pcm_hw_param_value(params, var, dir); 1495 } 1496 1497 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1498 1499 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1500 snd_pcm_hw_param_t var) 1501 { 1502 int changed; 1503 if (hw_is_mask(var)) 1504 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1505 else if (hw_is_interval(var)) 1506 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1507 else 1508 return -EINVAL; 1509 if (changed) { 1510 params->cmask |= 1 << var; 1511 params->rmask |= 1 << var; 1512 } 1513 return changed; 1514 } 1515 1516 1517 /** 1518 * snd_pcm_hw_param_last - refine config space and return maximum value 1519 * @pcm: PCM instance 1520 * @params: the hw_params instance 1521 * @var: parameter to retrieve 1522 * @dir: pointer to the direction (-1,0,1) or %NULL 1523 * 1524 * Inside configuration space defined by @params remove from @var all 1525 * values < maximum. Reduce configuration space accordingly. 1526 * Return the maximum. 1527 */ 1528 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1529 struct snd_pcm_hw_params *params, 1530 snd_pcm_hw_param_t var, int *dir) 1531 { 1532 int changed = _snd_pcm_hw_param_last(params, var); 1533 if (changed < 0) 1534 return changed; 1535 if (params->rmask) { 1536 int err = snd_pcm_hw_refine(pcm, params); 1537 if (snd_BUG_ON(err < 0)) 1538 return err; 1539 } 1540 return snd_pcm_hw_param_value(params, var, dir); 1541 } 1542 1543 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1544 1545 /** 1546 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1547 * @pcm: PCM instance 1548 * @params: the hw_params instance 1549 * 1550 * Choose one configuration from configuration space defined by @params. 1551 * The configuration chosen is that obtained fixing in this order: 1552 * first access, first format, first subformat, min channels, 1553 * min rate, min period time, max buffer size, min tick time 1554 */ 1555 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1556 struct snd_pcm_hw_params *params) 1557 { 1558 static int vars[] = { 1559 SNDRV_PCM_HW_PARAM_ACCESS, 1560 SNDRV_PCM_HW_PARAM_FORMAT, 1561 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1562 SNDRV_PCM_HW_PARAM_CHANNELS, 1563 SNDRV_PCM_HW_PARAM_RATE, 1564 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1565 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1566 SNDRV_PCM_HW_PARAM_TICK_TIME, 1567 -1 1568 }; 1569 int err, *v; 1570 1571 for (v = vars; *v != -1; v++) { 1572 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1573 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1574 else 1575 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1576 if (snd_BUG_ON(err < 0)) 1577 return err; 1578 } 1579 return 0; 1580 } 1581 1582 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1583 void *arg) 1584 { 1585 struct snd_pcm_runtime *runtime = substream->runtime; 1586 unsigned long flags; 1587 snd_pcm_stream_lock_irqsave(substream, flags); 1588 if (snd_pcm_running(substream) && 1589 snd_pcm_update_hw_ptr(substream) >= 0) 1590 runtime->status->hw_ptr %= runtime->buffer_size; 1591 else 1592 runtime->status->hw_ptr = 0; 1593 snd_pcm_stream_unlock_irqrestore(substream, flags); 1594 return 0; 1595 } 1596 1597 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1598 void *arg) 1599 { 1600 struct snd_pcm_channel_info *info = arg; 1601 struct snd_pcm_runtime *runtime = substream->runtime; 1602 int width; 1603 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1604 info->offset = -1; 1605 return 0; 1606 } 1607 width = snd_pcm_format_physical_width(runtime->format); 1608 if (width < 0) 1609 return width; 1610 info->offset = 0; 1611 switch (runtime->access) { 1612 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1613 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1614 info->first = info->channel * width; 1615 info->step = runtime->channels * width; 1616 break; 1617 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1618 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1619 { 1620 size_t size = runtime->dma_bytes / runtime->channels; 1621 info->first = info->channel * size * 8; 1622 info->step = width; 1623 break; 1624 } 1625 default: 1626 snd_BUG(); 1627 break; 1628 } 1629 return 0; 1630 } 1631 1632 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1633 void *arg) 1634 { 1635 struct snd_pcm_hw_params *params = arg; 1636 snd_pcm_format_t format; 1637 int channels, width; 1638 1639 params->fifo_size = substream->runtime->hw.fifo_size; 1640 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1641 format = params_format(params); 1642 channels = params_channels(params); 1643 width = snd_pcm_format_physical_width(format); 1644 params->fifo_size /= width * channels; 1645 } 1646 return 0; 1647 } 1648 1649 /** 1650 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1651 * @substream: the pcm substream instance 1652 * @cmd: ioctl command 1653 * @arg: ioctl argument 1654 * 1655 * Processes the generic ioctl commands for PCM. 1656 * Can be passed as the ioctl callback for PCM ops. 1657 * 1658 * Returns zero if successful, or a negative error code on failure. 1659 */ 1660 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1661 unsigned int cmd, void *arg) 1662 { 1663 switch (cmd) { 1664 case SNDRV_PCM_IOCTL1_INFO: 1665 return 0; 1666 case SNDRV_PCM_IOCTL1_RESET: 1667 return snd_pcm_lib_ioctl_reset(substream, arg); 1668 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1669 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1670 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1671 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1672 } 1673 return -ENXIO; 1674 } 1675 1676 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1677 1678 /** 1679 * snd_pcm_period_elapsed - update the pcm status for the next period 1680 * @substream: the pcm substream instance 1681 * 1682 * This function is called from the interrupt handler when the 1683 * PCM has processed the period size. It will update the current 1684 * pointer, wake up sleepers, etc. 1685 * 1686 * Even if more than one periods have elapsed since the last call, you 1687 * have to call this only once. 1688 */ 1689 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1690 { 1691 struct snd_pcm_runtime *runtime; 1692 unsigned long flags; 1693 1694 if (PCM_RUNTIME_CHECK(substream)) 1695 return; 1696 runtime = substream->runtime; 1697 1698 if (runtime->transfer_ack_begin) 1699 runtime->transfer_ack_begin(substream); 1700 1701 snd_pcm_stream_lock_irqsave(substream, flags); 1702 if (!snd_pcm_running(substream) || 1703 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1704 goto _end; 1705 1706 if (substream->timer_running) 1707 snd_timer_interrupt(substream->timer, 1); 1708 _end: 1709 snd_pcm_stream_unlock_irqrestore(substream, flags); 1710 if (runtime->transfer_ack_end) 1711 runtime->transfer_ack_end(substream); 1712 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1713 } 1714 1715 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1716 1717 /* 1718 * Wait until avail_min data becomes available 1719 * Returns a negative error code if any error occurs during operation. 1720 * The available space is stored on availp. When err = 0 and avail = 0 1721 * on the capture stream, it indicates the stream is in DRAINING state. 1722 */ 1723 static int wait_for_avail(struct snd_pcm_substream *substream, 1724 snd_pcm_uframes_t *availp) 1725 { 1726 struct snd_pcm_runtime *runtime = substream->runtime; 1727 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1728 wait_queue_t wait; 1729 int err = 0; 1730 snd_pcm_uframes_t avail = 0; 1731 long tout; 1732 1733 init_waitqueue_entry(&wait, current); 1734 add_wait_queue(&runtime->tsleep, &wait); 1735 for (;;) { 1736 if (signal_pending(current)) { 1737 err = -ERESTARTSYS; 1738 break; 1739 } 1740 set_current_state(TASK_INTERRUPTIBLE); 1741 snd_pcm_stream_unlock_irq(substream); 1742 tout = schedule_timeout(msecs_to_jiffies(10000)); 1743 snd_pcm_stream_lock_irq(substream); 1744 switch (runtime->status->state) { 1745 case SNDRV_PCM_STATE_SUSPENDED: 1746 err = -ESTRPIPE; 1747 goto _endloop; 1748 case SNDRV_PCM_STATE_XRUN: 1749 err = -EPIPE; 1750 goto _endloop; 1751 case SNDRV_PCM_STATE_DRAINING: 1752 if (is_playback) 1753 err = -EPIPE; 1754 else 1755 avail = 0; /* indicate draining */ 1756 goto _endloop; 1757 case SNDRV_PCM_STATE_OPEN: 1758 case SNDRV_PCM_STATE_SETUP: 1759 case SNDRV_PCM_STATE_DISCONNECTED: 1760 err = -EBADFD; 1761 goto _endloop; 1762 } 1763 if (!tout) { 1764 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1765 is_playback ? "playback" : "capture"); 1766 err = -EIO; 1767 break; 1768 } 1769 if (is_playback) 1770 avail = snd_pcm_playback_avail(runtime); 1771 else 1772 avail = snd_pcm_capture_avail(runtime); 1773 if (avail >= runtime->twake) 1774 break; 1775 } 1776 _endloop: 1777 remove_wait_queue(&runtime->tsleep, &wait); 1778 *availp = avail; 1779 return err; 1780 } 1781 1782 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1783 unsigned int hwoff, 1784 unsigned long data, unsigned int off, 1785 snd_pcm_uframes_t frames) 1786 { 1787 struct snd_pcm_runtime *runtime = substream->runtime; 1788 int err; 1789 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1790 if (substream->ops->copy) { 1791 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1792 return err; 1793 } else { 1794 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1795 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1796 return -EFAULT; 1797 } 1798 return 0; 1799 } 1800 1801 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1802 unsigned long data, unsigned int off, 1803 snd_pcm_uframes_t size); 1804 1805 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1806 unsigned long data, 1807 snd_pcm_uframes_t size, 1808 int nonblock, 1809 transfer_f transfer) 1810 { 1811 struct snd_pcm_runtime *runtime = substream->runtime; 1812 snd_pcm_uframes_t xfer = 0; 1813 snd_pcm_uframes_t offset = 0; 1814 int err = 0; 1815 1816 if (size == 0) 1817 return 0; 1818 1819 snd_pcm_stream_lock_irq(substream); 1820 switch (runtime->status->state) { 1821 case SNDRV_PCM_STATE_PREPARED: 1822 case SNDRV_PCM_STATE_RUNNING: 1823 case SNDRV_PCM_STATE_PAUSED: 1824 break; 1825 case SNDRV_PCM_STATE_XRUN: 1826 err = -EPIPE; 1827 goto _end_unlock; 1828 case SNDRV_PCM_STATE_SUSPENDED: 1829 err = -ESTRPIPE; 1830 goto _end_unlock; 1831 default: 1832 err = -EBADFD; 1833 goto _end_unlock; 1834 } 1835 1836 runtime->twake = runtime->control->avail_min ? : 1; 1837 while (size > 0) { 1838 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1839 snd_pcm_uframes_t avail; 1840 snd_pcm_uframes_t cont; 1841 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1842 snd_pcm_update_hw_ptr(substream); 1843 avail = snd_pcm_playback_avail(runtime); 1844 if (!avail) { 1845 if (nonblock) { 1846 err = -EAGAIN; 1847 goto _end_unlock; 1848 } 1849 runtime->twake = min_t(snd_pcm_uframes_t, size, 1850 runtime->control->avail_min ? : 1); 1851 err = wait_for_avail(substream, &avail); 1852 if (err < 0) 1853 goto _end_unlock; 1854 } 1855 frames = size > avail ? avail : size; 1856 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1857 if (frames > cont) 1858 frames = cont; 1859 if (snd_BUG_ON(!frames)) { 1860 runtime->twake = 0; 1861 snd_pcm_stream_unlock_irq(substream); 1862 return -EINVAL; 1863 } 1864 appl_ptr = runtime->control->appl_ptr; 1865 appl_ofs = appl_ptr % runtime->buffer_size; 1866 snd_pcm_stream_unlock_irq(substream); 1867 err = transfer(substream, appl_ofs, data, offset, frames); 1868 snd_pcm_stream_lock_irq(substream); 1869 if (err < 0) 1870 goto _end_unlock; 1871 switch (runtime->status->state) { 1872 case SNDRV_PCM_STATE_XRUN: 1873 err = -EPIPE; 1874 goto _end_unlock; 1875 case SNDRV_PCM_STATE_SUSPENDED: 1876 err = -ESTRPIPE; 1877 goto _end_unlock; 1878 default: 1879 break; 1880 } 1881 appl_ptr += frames; 1882 if (appl_ptr >= runtime->boundary) 1883 appl_ptr -= runtime->boundary; 1884 runtime->control->appl_ptr = appl_ptr; 1885 if (substream->ops->ack) 1886 substream->ops->ack(substream); 1887 1888 offset += frames; 1889 size -= frames; 1890 xfer += frames; 1891 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1892 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1893 err = snd_pcm_start(substream); 1894 if (err < 0) 1895 goto _end_unlock; 1896 } 1897 } 1898 _end_unlock: 1899 runtime->twake = 0; 1900 if (xfer > 0 && err >= 0) 1901 snd_pcm_update_state(substream, runtime); 1902 snd_pcm_stream_unlock_irq(substream); 1903 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1904 } 1905 1906 /* sanity-check for read/write methods */ 1907 static int pcm_sanity_check(struct snd_pcm_substream *substream) 1908 { 1909 struct snd_pcm_runtime *runtime; 1910 if (PCM_RUNTIME_CHECK(substream)) 1911 return -ENXIO; 1912 runtime = substream->runtime; 1913 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 1914 return -EINVAL; 1915 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1916 return -EBADFD; 1917 return 0; 1918 } 1919 1920 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 1921 { 1922 struct snd_pcm_runtime *runtime; 1923 int nonblock; 1924 int err; 1925 1926 err = pcm_sanity_check(substream); 1927 if (err < 0) 1928 return err; 1929 runtime = substream->runtime; 1930 nonblock = !!(substream->f_flags & O_NONBLOCK); 1931 1932 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 1933 runtime->channels > 1) 1934 return -EINVAL; 1935 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 1936 snd_pcm_lib_write_transfer); 1937 } 1938 1939 EXPORT_SYMBOL(snd_pcm_lib_write); 1940 1941 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 1942 unsigned int hwoff, 1943 unsigned long data, unsigned int off, 1944 snd_pcm_uframes_t frames) 1945 { 1946 struct snd_pcm_runtime *runtime = substream->runtime; 1947 int err; 1948 void __user **bufs = (void __user **)data; 1949 int channels = runtime->channels; 1950 int c; 1951 if (substream->ops->copy) { 1952 if (snd_BUG_ON(!substream->ops->silence)) 1953 return -EINVAL; 1954 for (c = 0; c < channels; ++c, ++bufs) { 1955 if (*bufs == NULL) { 1956 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 1957 return err; 1958 } else { 1959 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1960 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 1961 return err; 1962 } 1963 } 1964 } else { 1965 /* default transfer behaviour */ 1966 size_t dma_csize = runtime->dma_bytes / channels; 1967 for (c = 0; c < channels; ++c, ++bufs) { 1968 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 1969 if (*bufs == NULL) { 1970 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 1971 } else { 1972 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1973 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 1974 return -EFAULT; 1975 } 1976 } 1977 } 1978 return 0; 1979 } 1980 1981 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 1982 void __user **bufs, 1983 snd_pcm_uframes_t frames) 1984 { 1985 struct snd_pcm_runtime *runtime; 1986 int nonblock; 1987 int err; 1988 1989 err = pcm_sanity_check(substream); 1990 if (err < 0) 1991 return err; 1992 runtime = substream->runtime; 1993 nonblock = !!(substream->f_flags & O_NONBLOCK); 1994 1995 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 1996 return -EINVAL; 1997 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 1998 nonblock, snd_pcm_lib_writev_transfer); 1999 } 2000 2001 EXPORT_SYMBOL(snd_pcm_lib_writev); 2002 2003 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2004 unsigned int hwoff, 2005 unsigned long data, unsigned int off, 2006 snd_pcm_uframes_t frames) 2007 { 2008 struct snd_pcm_runtime *runtime = substream->runtime; 2009 int err; 2010 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2011 if (substream->ops->copy) { 2012 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2013 return err; 2014 } else { 2015 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2016 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2017 return -EFAULT; 2018 } 2019 return 0; 2020 } 2021 2022 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2023 unsigned long data, 2024 snd_pcm_uframes_t size, 2025 int nonblock, 2026 transfer_f transfer) 2027 { 2028 struct snd_pcm_runtime *runtime = substream->runtime; 2029 snd_pcm_uframes_t xfer = 0; 2030 snd_pcm_uframes_t offset = 0; 2031 int err = 0; 2032 2033 if (size == 0) 2034 return 0; 2035 2036 snd_pcm_stream_lock_irq(substream); 2037 switch (runtime->status->state) { 2038 case SNDRV_PCM_STATE_PREPARED: 2039 if (size >= runtime->start_threshold) { 2040 err = snd_pcm_start(substream); 2041 if (err < 0) 2042 goto _end_unlock; 2043 } 2044 break; 2045 case SNDRV_PCM_STATE_DRAINING: 2046 case SNDRV_PCM_STATE_RUNNING: 2047 case SNDRV_PCM_STATE_PAUSED: 2048 break; 2049 case SNDRV_PCM_STATE_XRUN: 2050 err = -EPIPE; 2051 goto _end_unlock; 2052 case SNDRV_PCM_STATE_SUSPENDED: 2053 err = -ESTRPIPE; 2054 goto _end_unlock; 2055 default: 2056 err = -EBADFD; 2057 goto _end_unlock; 2058 } 2059 2060 runtime->twake = runtime->control->avail_min ? : 1; 2061 while (size > 0) { 2062 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2063 snd_pcm_uframes_t avail; 2064 snd_pcm_uframes_t cont; 2065 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2066 snd_pcm_update_hw_ptr(substream); 2067 avail = snd_pcm_capture_avail(runtime); 2068 if (!avail) { 2069 if (runtime->status->state == 2070 SNDRV_PCM_STATE_DRAINING) { 2071 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2072 goto _end_unlock; 2073 } 2074 if (nonblock) { 2075 err = -EAGAIN; 2076 goto _end_unlock; 2077 } 2078 runtime->twake = min_t(snd_pcm_uframes_t, size, 2079 runtime->control->avail_min ? : 1); 2080 err = wait_for_avail(substream, &avail); 2081 if (err < 0) 2082 goto _end_unlock; 2083 if (!avail) 2084 continue; /* draining */ 2085 } 2086 frames = size > avail ? avail : size; 2087 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2088 if (frames > cont) 2089 frames = cont; 2090 if (snd_BUG_ON(!frames)) { 2091 runtime->twake = 0; 2092 snd_pcm_stream_unlock_irq(substream); 2093 return -EINVAL; 2094 } 2095 appl_ptr = runtime->control->appl_ptr; 2096 appl_ofs = appl_ptr % runtime->buffer_size; 2097 snd_pcm_stream_unlock_irq(substream); 2098 err = transfer(substream, appl_ofs, data, offset, frames); 2099 snd_pcm_stream_lock_irq(substream); 2100 if (err < 0) 2101 goto _end_unlock; 2102 switch (runtime->status->state) { 2103 case SNDRV_PCM_STATE_XRUN: 2104 err = -EPIPE; 2105 goto _end_unlock; 2106 case SNDRV_PCM_STATE_SUSPENDED: 2107 err = -ESTRPIPE; 2108 goto _end_unlock; 2109 default: 2110 break; 2111 } 2112 appl_ptr += frames; 2113 if (appl_ptr >= runtime->boundary) 2114 appl_ptr -= runtime->boundary; 2115 runtime->control->appl_ptr = appl_ptr; 2116 if (substream->ops->ack) 2117 substream->ops->ack(substream); 2118 2119 offset += frames; 2120 size -= frames; 2121 xfer += frames; 2122 } 2123 _end_unlock: 2124 runtime->twake = 0; 2125 if (xfer > 0 && err >= 0) 2126 snd_pcm_update_state(substream, runtime); 2127 snd_pcm_stream_unlock_irq(substream); 2128 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2129 } 2130 2131 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2132 { 2133 struct snd_pcm_runtime *runtime; 2134 int nonblock; 2135 int err; 2136 2137 err = pcm_sanity_check(substream); 2138 if (err < 0) 2139 return err; 2140 runtime = substream->runtime; 2141 nonblock = !!(substream->f_flags & O_NONBLOCK); 2142 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2143 return -EINVAL; 2144 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2145 } 2146 2147 EXPORT_SYMBOL(snd_pcm_lib_read); 2148 2149 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2150 unsigned int hwoff, 2151 unsigned long data, unsigned int off, 2152 snd_pcm_uframes_t frames) 2153 { 2154 struct snd_pcm_runtime *runtime = substream->runtime; 2155 int err; 2156 void __user **bufs = (void __user **)data; 2157 int channels = runtime->channels; 2158 int c; 2159 if (substream->ops->copy) { 2160 for (c = 0; c < channels; ++c, ++bufs) { 2161 char __user *buf; 2162 if (*bufs == NULL) 2163 continue; 2164 buf = *bufs + samples_to_bytes(runtime, off); 2165 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2166 return err; 2167 } 2168 } else { 2169 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2170 for (c = 0; c < channels; ++c, ++bufs) { 2171 char *hwbuf; 2172 char __user *buf; 2173 if (*bufs == NULL) 2174 continue; 2175 2176 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2177 buf = *bufs + samples_to_bytes(runtime, off); 2178 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2179 return -EFAULT; 2180 } 2181 } 2182 return 0; 2183 } 2184 2185 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2186 void __user **bufs, 2187 snd_pcm_uframes_t frames) 2188 { 2189 struct snd_pcm_runtime *runtime; 2190 int nonblock; 2191 int err; 2192 2193 err = pcm_sanity_check(substream); 2194 if (err < 0) 2195 return err; 2196 runtime = substream->runtime; 2197 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2198 return -EBADFD; 2199 2200 nonblock = !!(substream->f_flags & O_NONBLOCK); 2201 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2202 return -EINVAL; 2203 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2204 } 2205 2206 EXPORT_SYMBOL(snd_pcm_lib_readv); 2207