1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 #include <linux/time.h> 26 #include <linux/math64.h> 27 #include <linux/export.h> 28 #include <sound/core.h> 29 #include <sound/control.h> 30 #include <sound/tlv.h> 31 #include <sound/info.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/timer.h> 35 36 #include "pcm_local.h" 37 38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 39 #define CREATE_TRACE_POINTS 40 #include "pcm_trace.h" 41 #else 42 #define trace_hwptr(substream, pos, in_interrupt) 43 #define trace_xrun(substream) 44 #define trace_hw_ptr_error(substream, reason) 45 #define trace_applptr(substream, prev, curr) 46 #endif 47 48 static int fill_silence_frames(struct snd_pcm_substream *substream, 49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames); 50 51 /* 52 * fill ring buffer with silence 53 * runtime->silence_start: starting pointer to silence area 54 * runtime->silence_filled: size filled with silence 55 * runtime->silence_threshold: threshold from application 56 * runtime->silence_size: maximal size from application 57 * 58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 59 */ 60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 61 { 62 struct snd_pcm_runtime *runtime = substream->runtime; 63 snd_pcm_uframes_t frames, ofs, transfer; 64 int err; 65 66 if (runtime->silence_size < runtime->boundary) { 67 snd_pcm_sframes_t noise_dist, n; 68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr); 69 if (runtime->silence_start != appl_ptr) { 70 n = appl_ptr - runtime->silence_start; 71 if (n < 0) 72 n += runtime->boundary; 73 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 74 runtime->silence_filled -= n; 75 else 76 runtime->silence_filled = 0; 77 runtime->silence_start = appl_ptr; 78 } 79 if (runtime->silence_filled >= runtime->buffer_size) 80 return; 81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 83 return; 84 frames = runtime->silence_threshold - noise_dist; 85 if (frames > runtime->silence_size) 86 frames = runtime->silence_size; 87 } else { 88 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 90 if (avail > runtime->buffer_size) 91 avail = runtime->buffer_size; 92 runtime->silence_filled = avail > 0 ? avail : 0; 93 runtime->silence_start = (runtime->status->hw_ptr + 94 runtime->silence_filled) % 95 runtime->boundary; 96 } else { 97 ofs = runtime->status->hw_ptr; 98 frames = new_hw_ptr - ofs; 99 if ((snd_pcm_sframes_t)frames < 0) 100 frames += runtime->boundary; 101 runtime->silence_filled -= frames; 102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 103 runtime->silence_filled = 0; 104 runtime->silence_start = new_hw_ptr; 105 } else { 106 runtime->silence_start = ofs; 107 } 108 } 109 frames = runtime->buffer_size - runtime->silence_filled; 110 } 111 if (snd_BUG_ON(frames > runtime->buffer_size)) 112 return; 113 if (frames == 0) 114 return; 115 ofs = runtime->silence_start % runtime->buffer_size; 116 while (frames > 0) { 117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 118 err = fill_silence_frames(substream, ofs, transfer); 119 snd_BUG_ON(err < 0); 120 runtime->silence_filled += transfer; 121 frames -= transfer; 122 ofs = 0; 123 } 124 } 125 126 #ifdef CONFIG_SND_DEBUG 127 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 128 char *name, size_t len) 129 { 130 snprintf(name, len, "pcmC%dD%d%c:%d", 131 substream->pcm->card->number, 132 substream->pcm->device, 133 substream->stream ? 'c' : 'p', 134 substream->number); 135 } 136 EXPORT_SYMBOL(snd_pcm_debug_name); 137 #endif 138 139 #define XRUN_DEBUG_BASIC (1<<0) 140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 142 143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 144 145 #define xrun_debug(substream, mask) \ 146 ((substream)->pstr->xrun_debug & (mask)) 147 #else 148 #define xrun_debug(substream, mask) 0 149 #endif 150 151 #define dump_stack_on_xrun(substream) do { \ 152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 153 dump_stack(); \ 154 } while (0) 155 156 static void xrun(struct snd_pcm_substream *substream) 157 { 158 struct snd_pcm_runtime *runtime = substream->runtime; 159 160 trace_xrun(substream); 161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 165 char name[16]; 166 snd_pcm_debug_name(substream, name, sizeof(name)); 167 pcm_warn(substream->pcm, "XRUN: %s\n", name); 168 dump_stack_on_xrun(substream); 169 } 170 } 171 172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 174 do { \ 175 trace_hw_ptr_error(substream, reason); \ 176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 178 (in_interrupt) ? 'Q' : 'P', ##args); \ 179 dump_stack_on_xrun(substream); \ 180 } \ 181 } while (0) 182 183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 184 185 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 186 187 #endif 188 189 int snd_pcm_update_state(struct snd_pcm_substream *substream, 190 struct snd_pcm_runtime *runtime) 191 { 192 snd_pcm_uframes_t avail; 193 194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 195 avail = snd_pcm_playback_avail(runtime); 196 else 197 avail = snd_pcm_capture_avail(runtime); 198 if (avail > runtime->avail_max) 199 runtime->avail_max = avail; 200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 201 if (avail >= runtime->buffer_size) { 202 snd_pcm_drain_done(substream); 203 return -EPIPE; 204 } 205 } else { 206 if (avail >= runtime->stop_threshold) { 207 xrun(substream); 208 return -EPIPE; 209 } 210 } 211 if (runtime->twake) { 212 if (avail >= runtime->twake) 213 wake_up(&runtime->tsleep); 214 } else if (avail >= runtime->control->avail_min) 215 wake_up(&runtime->sleep); 216 return 0; 217 } 218 219 static void update_audio_tstamp(struct snd_pcm_substream *substream, 220 struct timespec *curr_tstamp, 221 struct timespec *audio_tstamp) 222 { 223 struct snd_pcm_runtime *runtime = substream->runtime; 224 u64 audio_frames, audio_nsecs; 225 struct timespec driver_tstamp; 226 227 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 228 return; 229 230 if (!(substream->ops->get_time_info) || 231 (runtime->audio_tstamp_report.actual_type == 232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 233 234 /* 235 * provide audio timestamp derived from pointer position 236 * add delay only if requested 237 */ 238 239 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 240 241 if (runtime->audio_tstamp_config.report_delay) { 242 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 243 audio_frames -= runtime->delay; 244 else 245 audio_frames += runtime->delay; 246 } 247 audio_nsecs = div_u64(audio_frames * 1000000000LL, 248 runtime->rate); 249 *audio_tstamp = ns_to_timespec(audio_nsecs); 250 } 251 runtime->status->audio_tstamp = *audio_tstamp; 252 runtime->status->tstamp = *curr_tstamp; 253 254 /* 255 * re-take a driver timestamp to let apps detect if the reference tstamp 256 * read by low-level hardware was provided with a delay 257 */ 258 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp); 259 runtime->driver_tstamp = driver_tstamp; 260 } 261 262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 263 unsigned int in_interrupt) 264 { 265 struct snd_pcm_runtime *runtime = substream->runtime; 266 snd_pcm_uframes_t pos; 267 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 268 snd_pcm_sframes_t hdelta, delta; 269 unsigned long jdelta; 270 unsigned long curr_jiffies; 271 struct timespec curr_tstamp; 272 struct timespec audio_tstamp; 273 int crossed_boundary = 0; 274 275 old_hw_ptr = runtime->status->hw_ptr; 276 277 /* 278 * group pointer, time and jiffies reads to allow for more 279 * accurate correlations/corrections. 280 * The values are stored at the end of this routine after 281 * corrections for hw_ptr position 282 */ 283 pos = substream->ops->pointer(substream); 284 curr_jiffies = jiffies; 285 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 286 if ((substream->ops->get_time_info) && 287 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 288 substream->ops->get_time_info(substream, &curr_tstamp, 289 &audio_tstamp, 290 &runtime->audio_tstamp_config, 291 &runtime->audio_tstamp_report); 292 293 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 294 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 295 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 296 } else 297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 298 } 299 300 if (pos == SNDRV_PCM_POS_XRUN) { 301 xrun(substream); 302 return -EPIPE; 303 } 304 if (pos >= runtime->buffer_size) { 305 if (printk_ratelimit()) { 306 char name[16]; 307 snd_pcm_debug_name(substream, name, sizeof(name)); 308 pcm_err(substream->pcm, 309 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 310 name, pos, runtime->buffer_size, 311 runtime->period_size); 312 } 313 pos = 0; 314 } 315 pos -= pos % runtime->min_align; 316 trace_hwptr(substream, pos, in_interrupt); 317 hw_base = runtime->hw_ptr_base; 318 new_hw_ptr = hw_base + pos; 319 if (in_interrupt) { 320 /* we know that one period was processed */ 321 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 322 delta = runtime->hw_ptr_interrupt + runtime->period_size; 323 if (delta > new_hw_ptr) { 324 /* check for double acknowledged interrupts */ 325 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 326 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { 327 hw_base += runtime->buffer_size; 328 if (hw_base >= runtime->boundary) { 329 hw_base = 0; 330 crossed_boundary++; 331 } 332 new_hw_ptr = hw_base + pos; 333 goto __delta; 334 } 335 } 336 } 337 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 338 /* pointer crosses the end of the ring buffer */ 339 if (new_hw_ptr < old_hw_ptr) { 340 hw_base += runtime->buffer_size; 341 if (hw_base >= runtime->boundary) { 342 hw_base = 0; 343 crossed_boundary++; 344 } 345 new_hw_ptr = hw_base + pos; 346 } 347 __delta: 348 delta = new_hw_ptr - old_hw_ptr; 349 if (delta < 0) 350 delta += runtime->boundary; 351 352 if (runtime->no_period_wakeup) { 353 snd_pcm_sframes_t xrun_threshold; 354 /* 355 * Without regular period interrupts, we have to check 356 * the elapsed time to detect xruns. 357 */ 358 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 359 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 360 goto no_delta_check; 361 hdelta = jdelta - delta * HZ / runtime->rate; 362 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 363 while (hdelta > xrun_threshold) { 364 delta += runtime->buffer_size; 365 hw_base += runtime->buffer_size; 366 if (hw_base >= runtime->boundary) { 367 hw_base = 0; 368 crossed_boundary++; 369 } 370 new_hw_ptr = hw_base + pos; 371 hdelta -= runtime->hw_ptr_buffer_jiffies; 372 } 373 goto no_delta_check; 374 } 375 376 /* something must be really wrong */ 377 if (delta >= runtime->buffer_size + runtime->period_size) { 378 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 379 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 380 substream->stream, (long)pos, 381 (long)new_hw_ptr, (long)old_hw_ptr); 382 return 0; 383 } 384 385 /* Do jiffies check only in xrun_debug mode */ 386 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 387 goto no_jiffies_check; 388 389 /* Skip the jiffies check for hardwares with BATCH flag. 390 * Such hardware usually just increases the position at each IRQ, 391 * thus it can't give any strange position. 392 */ 393 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 394 goto no_jiffies_check; 395 hdelta = delta; 396 if (hdelta < runtime->delay) 397 goto no_jiffies_check; 398 hdelta -= runtime->delay; 399 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 400 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 401 delta = jdelta / 402 (((runtime->period_size * HZ) / runtime->rate) 403 + HZ/100); 404 /* move new_hw_ptr according jiffies not pos variable */ 405 new_hw_ptr = old_hw_ptr; 406 hw_base = delta; 407 /* use loop to avoid checks for delta overflows */ 408 /* the delta value is small or zero in most cases */ 409 while (delta > 0) { 410 new_hw_ptr += runtime->period_size; 411 if (new_hw_ptr >= runtime->boundary) { 412 new_hw_ptr -= runtime->boundary; 413 crossed_boundary--; 414 } 415 delta--; 416 } 417 /* align hw_base to buffer_size */ 418 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 419 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 420 (long)pos, (long)hdelta, 421 (long)runtime->period_size, jdelta, 422 ((hdelta * HZ) / runtime->rate), hw_base, 423 (unsigned long)old_hw_ptr, 424 (unsigned long)new_hw_ptr); 425 /* reset values to proper state */ 426 delta = 0; 427 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 428 } 429 no_jiffies_check: 430 if (delta > runtime->period_size + runtime->period_size / 2) { 431 hw_ptr_error(substream, in_interrupt, 432 "Lost interrupts?", 433 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 434 substream->stream, (long)delta, 435 (long)new_hw_ptr, 436 (long)old_hw_ptr); 437 } 438 439 no_delta_check: 440 if (runtime->status->hw_ptr == new_hw_ptr) { 441 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 442 return 0; 443 } 444 445 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 446 runtime->silence_size > 0) 447 snd_pcm_playback_silence(substream, new_hw_ptr); 448 449 if (in_interrupt) { 450 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 451 if (delta < 0) 452 delta += runtime->boundary; 453 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 454 runtime->hw_ptr_interrupt += delta; 455 if (runtime->hw_ptr_interrupt >= runtime->boundary) 456 runtime->hw_ptr_interrupt -= runtime->boundary; 457 } 458 runtime->hw_ptr_base = hw_base; 459 runtime->status->hw_ptr = new_hw_ptr; 460 runtime->hw_ptr_jiffies = curr_jiffies; 461 if (crossed_boundary) { 462 snd_BUG_ON(crossed_boundary != 1); 463 runtime->hw_ptr_wrap += runtime->boundary; 464 } 465 466 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 467 468 return snd_pcm_update_state(substream, runtime); 469 } 470 471 /* CAUTION: call it with irq disabled */ 472 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 473 { 474 return snd_pcm_update_hw_ptr0(substream, 0); 475 } 476 477 /** 478 * snd_pcm_set_ops - set the PCM operators 479 * @pcm: the pcm instance 480 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 481 * @ops: the operator table 482 * 483 * Sets the given PCM operators to the pcm instance. 484 */ 485 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 486 const struct snd_pcm_ops *ops) 487 { 488 struct snd_pcm_str *stream = &pcm->streams[direction]; 489 struct snd_pcm_substream *substream; 490 491 for (substream = stream->substream; substream != NULL; substream = substream->next) 492 substream->ops = ops; 493 } 494 EXPORT_SYMBOL(snd_pcm_set_ops); 495 496 /** 497 * snd_pcm_sync - set the PCM sync id 498 * @substream: the pcm substream 499 * 500 * Sets the PCM sync identifier for the card. 501 */ 502 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 503 { 504 struct snd_pcm_runtime *runtime = substream->runtime; 505 506 runtime->sync.id32[0] = substream->pcm->card->number; 507 runtime->sync.id32[1] = -1; 508 runtime->sync.id32[2] = -1; 509 runtime->sync.id32[3] = -1; 510 } 511 EXPORT_SYMBOL(snd_pcm_set_sync); 512 513 /* 514 * Standard ioctl routine 515 */ 516 517 static inline unsigned int div32(unsigned int a, unsigned int b, 518 unsigned int *r) 519 { 520 if (b == 0) { 521 *r = 0; 522 return UINT_MAX; 523 } 524 *r = a % b; 525 return a / b; 526 } 527 528 static inline unsigned int div_down(unsigned int a, unsigned int b) 529 { 530 if (b == 0) 531 return UINT_MAX; 532 return a / b; 533 } 534 535 static inline unsigned int div_up(unsigned int a, unsigned int b) 536 { 537 unsigned int r; 538 unsigned int q; 539 if (b == 0) 540 return UINT_MAX; 541 q = div32(a, b, &r); 542 if (r) 543 ++q; 544 return q; 545 } 546 547 static inline unsigned int mul(unsigned int a, unsigned int b) 548 { 549 if (a == 0) 550 return 0; 551 if (div_down(UINT_MAX, a) < b) 552 return UINT_MAX; 553 return a * b; 554 } 555 556 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 557 unsigned int c, unsigned int *r) 558 { 559 u_int64_t n = (u_int64_t) a * b; 560 if (c == 0) { 561 snd_BUG_ON(!n); 562 *r = 0; 563 return UINT_MAX; 564 } 565 n = div_u64_rem(n, c, r); 566 if (n >= UINT_MAX) { 567 *r = 0; 568 return UINT_MAX; 569 } 570 return n; 571 } 572 573 /** 574 * snd_interval_refine - refine the interval value of configurator 575 * @i: the interval value to refine 576 * @v: the interval value to refer to 577 * 578 * Refines the interval value with the reference value. 579 * The interval is changed to the range satisfying both intervals. 580 * The interval status (min, max, integer, etc.) are evaluated. 581 * 582 * Return: Positive if the value is changed, zero if it's not changed, or a 583 * negative error code. 584 */ 585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 586 { 587 int changed = 0; 588 if (snd_BUG_ON(snd_interval_empty(i))) 589 return -EINVAL; 590 if (i->min < v->min) { 591 i->min = v->min; 592 i->openmin = v->openmin; 593 changed = 1; 594 } else if (i->min == v->min && !i->openmin && v->openmin) { 595 i->openmin = 1; 596 changed = 1; 597 } 598 if (i->max > v->max) { 599 i->max = v->max; 600 i->openmax = v->openmax; 601 changed = 1; 602 } else if (i->max == v->max && !i->openmax && v->openmax) { 603 i->openmax = 1; 604 changed = 1; 605 } 606 if (!i->integer && v->integer) { 607 i->integer = 1; 608 changed = 1; 609 } 610 if (i->integer) { 611 if (i->openmin) { 612 i->min++; 613 i->openmin = 0; 614 } 615 if (i->openmax) { 616 i->max--; 617 i->openmax = 0; 618 } 619 } else if (!i->openmin && !i->openmax && i->min == i->max) 620 i->integer = 1; 621 if (snd_interval_checkempty(i)) { 622 snd_interval_none(i); 623 return -EINVAL; 624 } 625 return changed; 626 } 627 EXPORT_SYMBOL(snd_interval_refine); 628 629 static int snd_interval_refine_first(struct snd_interval *i) 630 { 631 if (snd_BUG_ON(snd_interval_empty(i))) 632 return -EINVAL; 633 if (snd_interval_single(i)) 634 return 0; 635 i->max = i->min; 636 i->openmax = i->openmin; 637 if (i->openmax) 638 i->max++; 639 return 1; 640 } 641 642 static int snd_interval_refine_last(struct snd_interval *i) 643 { 644 if (snd_BUG_ON(snd_interval_empty(i))) 645 return -EINVAL; 646 if (snd_interval_single(i)) 647 return 0; 648 i->min = i->max; 649 i->openmin = i->openmax; 650 if (i->openmin) 651 i->min--; 652 return 1; 653 } 654 655 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 656 { 657 if (a->empty || b->empty) { 658 snd_interval_none(c); 659 return; 660 } 661 c->empty = 0; 662 c->min = mul(a->min, b->min); 663 c->openmin = (a->openmin || b->openmin); 664 c->max = mul(a->max, b->max); 665 c->openmax = (a->openmax || b->openmax); 666 c->integer = (a->integer && b->integer); 667 } 668 669 /** 670 * snd_interval_div - refine the interval value with division 671 * @a: dividend 672 * @b: divisor 673 * @c: quotient 674 * 675 * c = a / b 676 * 677 * Returns non-zero if the value is changed, zero if not changed. 678 */ 679 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 680 { 681 unsigned int r; 682 if (a->empty || b->empty) { 683 snd_interval_none(c); 684 return; 685 } 686 c->empty = 0; 687 c->min = div32(a->min, b->max, &r); 688 c->openmin = (r || a->openmin || b->openmax); 689 if (b->min > 0) { 690 c->max = div32(a->max, b->min, &r); 691 if (r) { 692 c->max++; 693 c->openmax = 1; 694 } else 695 c->openmax = (a->openmax || b->openmin); 696 } else { 697 c->max = UINT_MAX; 698 c->openmax = 0; 699 } 700 c->integer = 0; 701 } 702 703 /** 704 * snd_interval_muldivk - refine the interval value 705 * @a: dividend 1 706 * @b: dividend 2 707 * @k: divisor (as integer) 708 * @c: result 709 * 710 * c = a * b / k 711 * 712 * Returns non-zero if the value is changed, zero if not changed. 713 */ 714 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 715 unsigned int k, struct snd_interval *c) 716 { 717 unsigned int r; 718 if (a->empty || b->empty) { 719 snd_interval_none(c); 720 return; 721 } 722 c->empty = 0; 723 c->min = muldiv32(a->min, b->min, k, &r); 724 c->openmin = (r || a->openmin || b->openmin); 725 c->max = muldiv32(a->max, b->max, k, &r); 726 if (r) { 727 c->max++; 728 c->openmax = 1; 729 } else 730 c->openmax = (a->openmax || b->openmax); 731 c->integer = 0; 732 } 733 734 /** 735 * snd_interval_mulkdiv - refine the interval value 736 * @a: dividend 1 737 * @k: dividend 2 (as integer) 738 * @b: divisor 739 * @c: result 740 * 741 * c = a * k / b 742 * 743 * Returns non-zero if the value is changed, zero if not changed. 744 */ 745 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 746 const struct snd_interval *b, struct snd_interval *c) 747 { 748 unsigned int r; 749 if (a->empty || b->empty) { 750 snd_interval_none(c); 751 return; 752 } 753 c->empty = 0; 754 c->min = muldiv32(a->min, k, b->max, &r); 755 c->openmin = (r || a->openmin || b->openmax); 756 if (b->min > 0) { 757 c->max = muldiv32(a->max, k, b->min, &r); 758 if (r) { 759 c->max++; 760 c->openmax = 1; 761 } else 762 c->openmax = (a->openmax || b->openmin); 763 } else { 764 c->max = UINT_MAX; 765 c->openmax = 0; 766 } 767 c->integer = 0; 768 } 769 770 /* ---- */ 771 772 773 /** 774 * snd_interval_ratnum - refine the interval value 775 * @i: interval to refine 776 * @rats_count: number of ratnum_t 777 * @rats: ratnum_t array 778 * @nump: pointer to store the resultant numerator 779 * @denp: pointer to store the resultant denominator 780 * 781 * Return: Positive if the value is changed, zero if it's not changed, or a 782 * negative error code. 783 */ 784 int snd_interval_ratnum(struct snd_interval *i, 785 unsigned int rats_count, const struct snd_ratnum *rats, 786 unsigned int *nump, unsigned int *denp) 787 { 788 unsigned int best_num, best_den; 789 int best_diff; 790 unsigned int k; 791 struct snd_interval t; 792 int err; 793 unsigned int result_num, result_den; 794 int result_diff; 795 796 best_num = best_den = best_diff = 0; 797 for (k = 0; k < rats_count; ++k) { 798 unsigned int num = rats[k].num; 799 unsigned int den; 800 unsigned int q = i->min; 801 int diff; 802 if (q == 0) 803 q = 1; 804 den = div_up(num, q); 805 if (den < rats[k].den_min) 806 continue; 807 if (den > rats[k].den_max) 808 den = rats[k].den_max; 809 else { 810 unsigned int r; 811 r = (den - rats[k].den_min) % rats[k].den_step; 812 if (r != 0) 813 den -= r; 814 } 815 diff = num - q * den; 816 if (diff < 0) 817 diff = -diff; 818 if (best_num == 0 || 819 diff * best_den < best_diff * den) { 820 best_diff = diff; 821 best_den = den; 822 best_num = num; 823 } 824 } 825 if (best_den == 0) { 826 i->empty = 1; 827 return -EINVAL; 828 } 829 t.min = div_down(best_num, best_den); 830 t.openmin = !!(best_num % best_den); 831 832 result_num = best_num; 833 result_diff = best_diff; 834 result_den = best_den; 835 best_num = best_den = best_diff = 0; 836 for (k = 0; k < rats_count; ++k) { 837 unsigned int num = rats[k].num; 838 unsigned int den; 839 unsigned int q = i->max; 840 int diff; 841 if (q == 0) { 842 i->empty = 1; 843 return -EINVAL; 844 } 845 den = div_down(num, q); 846 if (den > rats[k].den_max) 847 continue; 848 if (den < rats[k].den_min) 849 den = rats[k].den_min; 850 else { 851 unsigned int r; 852 r = (den - rats[k].den_min) % rats[k].den_step; 853 if (r != 0) 854 den += rats[k].den_step - r; 855 } 856 diff = q * den - num; 857 if (diff < 0) 858 diff = -diff; 859 if (best_num == 0 || 860 diff * best_den < best_diff * den) { 861 best_diff = diff; 862 best_den = den; 863 best_num = num; 864 } 865 } 866 if (best_den == 0) { 867 i->empty = 1; 868 return -EINVAL; 869 } 870 t.max = div_up(best_num, best_den); 871 t.openmax = !!(best_num % best_den); 872 t.integer = 0; 873 err = snd_interval_refine(i, &t); 874 if (err < 0) 875 return err; 876 877 if (snd_interval_single(i)) { 878 if (best_diff * result_den < result_diff * best_den) { 879 result_num = best_num; 880 result_den = best_den; 881 } 882 if (nump) 883 *nump = result_num; 884 if (denp) 885 *denp = result_den; 886 } 887 return err; 888 } 889 EXPORT_SYMBOL(snd_interval_ratnum); 890 891 /** 892 * snd_interval_ratden - refine the interval value 893 * @i: interval to refine 894 * @rats_count: number of struct ratden 895 * @rats: struct ratden array 896 * @nump: pointer to store the resultant numerator 897 * @denp: pointer to store the resultant denominator 898 * 899 * Return: Positive if the value is changed, zero if it's not changed, or a 900 * negative error code. 901 */ 902 static int snd_interval_ratden(struct snd_interval *i, 903 unsigned int rats_count, 904 const struct snd_ratden *rats, 905 unsigned int *nump, unsigned int *denp) 906 { 907 unsigned int best_num, best_diff, best_den; 908 unsigned int k; 909 struct snd_interval t; 910 int err; 911 912 best_num = best_den = best_diff = 0; 913 for (k = 0; k < rats_count; ++k) { 914 unsigned int num; 915 unsigned int den = rats[k].den; 916 unsigned int q = i->min; 917 int diff; 918 num = mul(q, den); 919 if (num > rats[k].num_max) 920 continue; 921 if (num < rats[k].num_min) 922 num = rats[k].num_max; 923 else { 924 unsigned int r; 925 r = (num - rats[k].num_min) % rats[k].num_step; 926 if (r != 0) 927 num += rats[k].num_step - r; 928 } 929 diff = num - q * den; 930 if (best_num == 0 || 931 diff * best_den < best_diff * den) { 932 best_diff = diff; 933 best_den = den; 934 best_num = num; 935 } 936 } 937 if (best_den == 0) { 938 i->empty = 1; 939 return -EINVAL; 940 } 941 t.min = div_down(best_num, best_den); 942 t.openmin = !!(best_num % best_den); 943 944 best_num = best_den = best_diff = 0; 945 for (k = 0; k < rats_count; ++k) { 946 unsigned int num; 947 unsigned int den = rats[k].den; 948 unsigned int q = i->max; 949 int diff; 950 num = mul(q, den); 951 if (num < rats[k].num_min) 952 continue; 953 if (num > rats[k].num_max) 954 num = rats[k].num_max; 955 else { 956 unsigned int r; 957 r = (num - rats[k].num_min) % rats[k].num_step; 958 if (r != 0) 959 num -= r; 960 } 961 diff = q * den - num; 962 if (best_num == 0 || 963 diff * best_den < best_diff * den) { 964 best_diff = diff; 965 best_den = den; 966 best_num = num; 967 } 968 } 969 if (best_den == 0) { 970 i->empty = 1; 971 return -EINVAL; 972 } 973 t.max = div_up(best_num, best_den); 974 t.openmax = !!(best_num % best_den); 975 t.integer = 0; 976 err = snd_interval_refine(i, &t); 977 if (err < 0) 978 return err; 979 980 if (snd_interval_single(i)) { 981 if (nump) 982 *nump = best_num; 983 if (denp) 984 *denp = best_den; 985 } 986 return err; 987 } 988 989 /** 990 * snd_interval_list - refine the interval value from the list 991 * @i: the interval value to refine 992 * @count: the number of elements in the list 993 * @list: the value list 994 * @mask: the bit-mask to evaluate 995 * 996 * Refines the interval value from the list. 997 * When mask is non-zero, only the elements corresponding to bit 1 are 998 * evaluated. 999 * 1000 * Return: Positive if the value is changed, zero if it's not changed, or a 1001 * negative error code. 1002 */ 1003 int snd_interval_list(struct snd_interval *i, unsigned int count, 1004 const unsigned int *list, unsigned int mask) 1005 { 1006 unsigned int k; 1007 struct snd_interval list_range; 1008 1009 if (!count) { 1010 i->empty = 1; 1011 return -EINVAL; 1012 } 1013 snd_interval_any(&list_range); 1014 list_range.min = UINT_MAX; 1015 list_range.max = 0; 1016 for (k = 0; k < count; k++) { 1017 if (mask && !(mask & (1 << k))) 1018 continue; 1019 if (!snd_interval_test(i, list[k])) 1020 continue; 1021 list_range.min = min(list_range.min, list[k]); 1022 list_range.max = max(list_range.max, list[k]); 1023 } 1024 return snd_interval_refine(i, &list_range); 1025 } 1026 EXPORT_SYMBOL(snd_interval_list); 1027 1028 /** 1029 * snd_interval_ranges - refine the interval value from the list of ranges 1030 * @i: the interval value to refine 1031 * @count: the number of elements in the list of ranges 1032 * @ranges: the ranges list 1033 * @mask: the bit-mask to evaluate 1034 * 1035 * Refines the interval value from the list of ranges. 1036 * When mask is non-zero, only the elements corresponding to bit 1 are 1037 * evaluated. 1038 * 1039 * Return: Positive if the value is changed, zero if it's not changed, or a 1040 * negative error code. 1041 */ 1042 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1043 const struct snd_interval *ranges, unsigned int mask) 1044 { 1045 unsigned int k; 1046 struct snd_interval range_union; 1047 struct snd_interval range; 1048 1049 if (!count) { 1050 snd_interval_none(i); 1051 return -EINVAL; 1052 } 1053 snd_interval_any(&range_union); 1054 range_union.min = UINT_MAX; 1055 range_union.max = 0; 1056 for (k = 0; k < count; k++) { 1057 if (mask && !(mask & (1 << k))) 1058 continue; 1059 snd_interval_copy(&range, &ranges[k]); 1060 if (snd_interval_refine(&range, i) < 0) 1061 continue; 1062 if (snd_interval_empty(&range)) 1063 continue; 1064 1065 if (range.min < range_union.min) { 1066 range_union.min = range.min; 1067 range_union.openmin = 1; 1068 } 1069 if (range.min == range_union.min && !range.openmin) 1070 range_union.openmin = 0; 1071 if (range.max > range_union.max) { 1072 range_union.max = range.max; 1073 range_union.openmax = 1; 1074 } 1075 if (range.max == range_union.max && !range.openmax) 1076 range_union.openmax = 0; 1077 } 1078 return snd_interval_refine(i, &range_union); 1079 } 1080 EXPORT_SYMBOL(snd_interval_ranges); 1081 1082 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1083 { 1084 unsigned int n; 1085 int changed = 0; 1086 n = i->min % step; 1087 if (n != 0 || i->openmin) { 1088 i->min += step - n; 1089 i->openmin = 0; 1090 changed = 1; 1091 } 1092 n = i->max % step; 1093 if (n != 0 || i->openmax) { 1094 i->max -= n; 1095 i->openmax = 0; 1096 changed = 1; 1097 } 1098 if (snd_interval_checkempty(i)) { 1099 i->empty = 1; 1100 return -EINVAL; 1101 } 1102 return changed; 1103 } 1104 1105 /* Info constraints helpers */ 1106 1107 /** 1108 * snd_pcm_hw_rule_add - add the hw-constraint rule 1109 * @runtime: the pcm runtime instance 1110 * @cond: condition bits 1111 * @var: the variable to evaluate 1112 * @func: the evaluation function 1113 * @private: the private data pointer passed to function 1114 * @dep: the dependent variables 1115 * 1116 * Return: Zero if successful, or a negative error code on failure. 1117 */ 1118 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1119 int var, 1120 snd_pcm_hw_rule_func_t func, void *private, 1121 int dep, ...) 1122 { 1123 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1124 struct snd_pcm_hw_rule *c; 1125 unsigned int k; 1126 va_list args; 1127 va_start(args, dep); 1128 if (constrs->rules_num >= constrs->rules_all) { 1129 struct snd_pcm_hw_rule *new; 1130 unsigned int new_rules = constrs->rules_all + 16; 1131 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1132 if (!new) { 1133 va_end(args); 1134 return -ENOMEM; 1135 } 1136 if (constrs->rules) { 1137 memcpy(new, constrs->rules, 1138 constrs->rules_num * sizeof(*c)); 1139 kfree(constrs->rules); 1140 } 1141 constrs->rules = new; 1142 constrs->rules_all = new_rules; 1143 } 1144 c = &constrs->rules[constrs->rules_num]; 1145 c->cond = cond; 1146 c->func = func; 1147 c->var = var; 1148 c->private = private; 1149 k = 0; 1150 while (1) { 1151 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1152 va_end(args); 1153 return -EINVAL; 1154 } 1155 c->deps[k++] = dep; 1156 if (dep < 0) 1157 break; 1158 dep = va_arg(args, int); 1159 } 1160 constrs->rules_num++; 1161 va_end(args); 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1165 1166 /** 1167 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1168 * @runtime: PCM runtime instance 1169 * @var: hw_params variable to apply the mask 1170 * @mask: the bitmap mask 1171 * 1172 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1173 * 1174 * Return: Zero if successful, or a negative error code on failure. 1175 */ 1176 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1177 u_int32_t mask) 1178 { 1179 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1180 struct snd_mask *maskp = constrs_mask(constrs, var); 1181 *maskp->bits &= mask; 1182 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1183 if (*maskp->bits == 0) 1184 return -EINVAL; 1185 return 0; 1186 } 1187 1188 /** 1189 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1190 * @runtime: PCM runtime instance 1191 * @var: hw_params variable to apply the mask 1192 * @mask: the 64bit bitmap mask 1193 * 1194 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1195 * 1196 * Return: Zero if successful, or a negative error code on failure. 1197 */ 1198 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1199 u_int64_t mask) 1200 { 1201 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1202 struct snd_mask *maskp = constrs_mask(constrs, var); 1203 maskp->bits[0] &= (u_int32_t)mask; 1204 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1205 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1206 if (! maskp->bits[0] && ! maskp->bits[1]) 1207 return -EINVAL; 1208 return 0; 1209 } 1210 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1211 1212 /** 1213 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1214 * @runtime: PCM runtime instance 1215 * @var: hw_params variable to apply the integer constraint 1216 * 1217 * Apply the constraint of integer to an interval parameter. 1218 * 1219 * Return: Positive if the value is changed, zero if it's not changed, or a 1220 * negative error code. 1221 */ 1222 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1223 { 1224 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1225 return snd_interval_setinteger(constrs_interval(constrs, var)); 1226 } 1227 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1228 1229 /** 1230 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1231 * @runtime: PCM runtime instance 1232 * @var: hw_params variable to apply the range 1233 * @min: the minimal value 1234 * @max: the maximal value 1235 * 1236 * Apply the min/max range constraint to an interval parameter. 1237 * 1238 * Return: Positive if the value is changed, zero if it's not changed, or a 1239 * negative error code. 1240 */ 1241 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1242 unsigned int min, unsigned int max) 1243 { 1244 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1245 struct snd_interval t; 1246 t.min = min; 1247 t.max = max; 1248 t.openmin = t.openmax = 0; 1249 t.integer = 0; 1250 return snd_interval_refine(constrs_interval(constrs, var), &t); 1251 } 1252 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1253 1254 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1255 struct snd_pcm_hw_rule *rule) 1256 { 1257 struct snd_pcm_hw_constraint_list *list = rule->private; 1258 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1259 } 1260 1261 1262 /** 1263 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1264 * @runtime: PCM runtime instance 1265 * @cond: condition bits 1266 * @var: hw_params variable to apply the list constraint 1267 * @l: list 1268 * 1269 * Apply the list of constraints to an interval parameter. 1270 * 1271 * Return: Zero if successful, or a negative error code on failure. 1272 */ 1273 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1274 unsigned int cond, 1275 snd_pcm_hw_param_t var, 1276 const struct snd_pcm_hw_constraint_list *l) 1277 { 1278 return snd_pcm_hw_rule_add(runtime, cond, var, 1279 snd_pcm_hw_rule_list, (void *)l, 1280 var, -1); 1281 } 1282 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1283 1284 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1285 struct snd_pcm_hw_rule *rule) 1286 { 1287 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1288 return snd_interval_ranges(hw_param_interval(params, rule->var), 1289 r->count, r->ranges, r->mask); 1290 } 1291 1292 1293 /** 1294 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1295 * @runtime: PCM runtime instance 1296 * @cond: condition bits 1297 * @var: hw_params variable to apply the list of range constraints 1298 * @r: ranges 1299 * 1300 * Apply the list of range constraints to an interval parameter. 1301 * 1302 * Return: Zero if successful, or a negative error code on failure. 1303 */ 1304 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1305 unsigned int cond, 1306 snd_pcm_hw_param_t var, 1307 const struct snd_pcm_hw_constraint_ranges *r) 1308 { 1309 return snd_pcm_hw_rule_add(runtime, cond, var, 1310 snd_pcm_hw_rule_ranges, (void *)r, 1311 var, -1); 1312 } 1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1314 1315 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1316 struct snd_pcm_hw_rule *rule) 1317 { 1318 const struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1319 unsigned int num = 0, den = 0; 1320 int err; 1321 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1322 r->nrats, r->rats, &num, &den); 1323 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1324 params->rate_num = num; 1325 params->rate_den = den; 1326 } 1327 return err; 1328 } 1329 1330 /** 1331 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1332 * @runtime: PCM runtime instance 1333 * @cond: condition bits 1334 * @var: hw_params variable to apply the ratnums constraint 1335 * @r: struct snd_ratnums constriants 1336 * 1337 * Return: Zero if successful, or a negative error code on failure. 1338 */ 1339 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1340 unsigned int cond, 1341 snd_pcm_hw_param_t var, 1342 const struct snd_pcm_hw_constraint_ratnums *r) 1343 { 1344 return snd_pcm_hw_rule_add(runtime, cond, var, 1345 snd_pcm_hw_rule_ratnums, (void *)r, 1346 var, -1); 1347 } 1348 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1349 1350 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1351 struct snd_pcm_hw_rule *rule) 1352 { 1353 const struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1354 unsigned int num = 0, den = 0; 1355 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1356 r->nrats, r->rats, &num, &den); 1357 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1358 params->rate_num = num; 1359 params->rate_den = den; 1360 } 1361 return err; 1362 } 1363 1364 /** 1365 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1366 * @runtime: PCM runtime instance 1367 * @cond: condition bits 1368 * @var: hw_params variable to apply the ratdens constraint 1369 * @r: struct snd_ratdens constriants 1370 * 1371 * Return: Zero if successful, or a negative error code on failure. 1372 */ 1373 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1374 unsigned int cond, 1375 snd_pcm_hw_param_t var, 1376 const struct snd_pcm_hw_constraint_ratdens *r) 1377 { 1378 return snd_pcm_hw_rule_add(runtime, cond, var, 1379 snd_pcm_hw_rule_ratdens, (void *)r, 1380 var, -1); 1381 } 1382 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1383 1384 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1385 struct snd_pcm_hw_rule *rule) 1386 { 1387 unsigned int l = (unsigned long) rule->private; 1388 int width = l & 0xffff; 1389 unsigned int msbits = l >> 16; 1390 const struct snd_interval *i = 1391 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1392 1393 if (!snd_interval_single(i)) 1394 return 0; 1395 1396 if ((snd_interval_value(i) == width) || 1397 (width == 0 && snd_interval_value(i) > msbits)) 1398 params->msbits = min_not_zero(params->msbits, msbits); 1399 1400 return 0; 1401 } 1402 1403 /** 1404 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1405 * @runtime: PCM runtime instance 1406 * @cond: condition bits 1407 * @width: sample bits width 1408 * @msbits: msbits width 1409 * 1410 * This constraint will set the number of most significant bits (msbits) if a 1411 * sample format with the specified width has been select. If width is set to 0 1412 * the msbits will be set for any sample format with a width larger than the 1413 * specified msbits. 1414 * 1415 * Return: Zero if successful, or a negative error code on failure. 1416 */ 1417 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1418 unsigned int cond, 1419 unsigned int width, 1420 unsigned int msbits) 1421 { 1422 unsigned long l = (msbits << 16) | width; 1423 return snd_pcm_hw_rule_add(runtime, cond, -1, 1424 snd_pcm_hw_rule_msbits, 1425 (void*) l, 1426 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1427 } 1428 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1429 1430 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1431 struct snd_pcm_hw_rule *rule) 1432 { 1433 unsigned long step = (unsigned long) rule->private; 1434 return snd_interval_step(hw_param_interval(params, rule->var), step); 1435 } 1436 1437 /** 1438 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1439 * @runtime: PCM runtime instance 1440 * @cond: condition bits 1441 * @var: hw_params variable to apply the step constraint 1442 * @step: step size 1443 * 1444 * Return: Zero if successful, or a negative error code on failure. 1445 */ 1446 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1447 unsigned int cond, 1448 snd_pcm_hw_param_t var, 1449 unsigned long step) 1450 { 1451 return snd_pcm_hw_rule_add(runtime, cond, var, 1452 snd_pcm_hw_rule_step, (void *) step, 1453 var, -1); 1454 } 1455 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1456 1457 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1458 { 1459 static unsigned int pow2_sizes[] = { 1460 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1461 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1462 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1463 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1464 }; 1465 return snd_interval_list(hw_param_interval(params, rule->var), 1466 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1467 } 1468 1469 /** 1470 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1471 * @runtime: PCM runtime instance 1472 * @cond: condition bits 1473 * @var: hw_params variable to apply the power-of-2 constraint 1474 * 1475 * Return: Zero if successful, or a negative error code on failure. 1476 */ 1477 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1478 unsigned int cond, 1479 snd_pcm_hw_param_t var) 1480 { 1481 return snd_pcm_hw_rule_add(runtime, cond, var, 1482 snd_pcm_hw_rule_pow2, NULL, 1483 var, -1); 1484 } 1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1486 1487 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1488 struct snd_pcm_hw_rule *rule) 1489 { 1490 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1491 struct snd_interval *rate; 1492 1493 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1494 return snd_interval_list(rate, 1, &base_rate, 0); 1495 } 1496 1497 /** 1498 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1499 * @runtime: PCM runtime instance 1500 * @base_rate: the rate at which the hardware does not resample 1501 * 1502 * Return: Zero if successful, or a negative error code on failure. 1503 */ 1504 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1505 unsigned int base_rate) 1506 { 1507 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1508 SNDRV_PCM_HW_PARAM_RATE, 1509 snd_pcm_hw_rule_noresample_func, 1510 (void *)(uintptr_t)base_rate, 1511 SNDRV_PCM_HW_PARAM_RATE, -1); 1512 } 1513 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1514 1515 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1516 snd_pcm_hw_param_t var) 1517 { 1518 if (hw_is_mask(var)) { 1519 snd_mask_any(hw_param_mask(params, var)); 1520 params->cmask |= 1 << var; 1521 params->rmask |= 1 << var; 1522 return; 1523 } 1524 if (hw_is_interval(var)) { 1525 snd_interval_any(hw_param_interval(params, var)); 1526 params->cmask |= 1 << var; 1527 params->rmask |= 1 << var; 1528 return; 1529 } 1530 snd_BUG(); 1531 } 1532 1533 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1534 { 1535 unsigned int k; 1536 memset(params, 0, sizeof(*params)); 1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1538 _snd_pcm_hw_param_any(params, k); 1539 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1540 _snd_pcm_hw_param_any(params, k); 1541 params->info = ~0U; 1542 } 1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1544 1545 /** 1546 * snd_pcm_hw_param_value - return @params field @var value 1547 * @params: the hw_params instance 1548 * @var: parameter to retrieve 1549 * @dir: pointer to the direction (-1,0,1) or %NULL 1550 * 1551 * Return: The value for field @var if it's fixed in configuration space 1552 * defined by @params. -%EINVAL otherwise. 1553 */ 1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1555 snd_pcm_hw_param_t var, int *dir) 1556 { 1557 if (hw_is_mask(var)) { 1558 const struct snd_mask *mask = hw_param_mask_c(params, var); 1559 if (!snd_mask_single(mask)) 1560 return -EINVAL; 1561 if (dir) 1562 *dir = 0; 1563 return snd_mask_value(mask); 1564 } 1565 if (hw_is_interval(var)) { 1566 const struct snd_interval *i = hw_param_interval_c(params, var); 1567 if (!snd_interval_single(i)) 1568 return -EINVAL; 1569 if (dir) 1570 *dir = i->openmin; 1571 return snd_interval_value(i); 1572 } 1573 return -EINVAL; 1574 } 1575 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1576 1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1578 snd_pcm_hw_param_t var) 1579 { 1580 if (hw_is_mask(var)) { 1581 snd_mask_none(hw_param_mask(params, var)); 1582 params->cmask |= 1 << var; 1583 params->rmask |= 1 << var; 1584 } else if (hw_is_interval(var)) { 1585 snd_interval_none(hw_param_interval(params, var)); 1586 params->cmask |= 1 << var; 1587 params->rmask |= 1 << var; 1588 } else { 1589 snd_BUG(); 1590 } 1591 } 1592 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1593 1594 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1595 snd_pcm_hw_param_t var) 1596 { 1597 int changed; 1598 if (hw_is_mask(var)) 1599 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1600 else if (hw_is_interval(var)) 1601 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1602 else 1603 return -EINVAL; 1604 if (changed) { 1605 params->cmask |= 1 << var; 1606 params->rmask |= 1 << var; 1607 } 1608 return changed; 1609 } 1610 1611 1612 /** 1613 * snd_pcm_hw_param_first - refine config space and return minimum value 1614 * @pcm: PCM instance 1615 * @params: the hw_params instance 1616 * @var: parameter to retrieve 1617 * @dir: pointer to the direction (-1,0,1) or %NULL 1618 * 1619 * Inside configuration space defined by @params remove from @var all 1620 * values > minimum. Reduce configuration space accordingly. 1621 * 1622 * Return: The minimum, or a negative error code on failure. 1623 */ 1624 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1625 struct snd_pcm_hw_params *params, 1626 snd_pcm_hw_param_t var, int *dir) 1627 { 1628 int changed = _snd_pcm_hw_param_first(params, var); 1629 if (changed < 0) 1630 return changed; 1631 if (params->rmask) { 1632 int err = snd_pcm_hw_refine(pcm, params); 1633 if (snd_BUG_ON(err < 0)) 1634 return err; 1635 } 1636 return snd_pcm_hw_param_value(params, var, dir); 1637 } 1638 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1639 1640 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1641 snd_pcm_hw_param_t var) 1642 { 1643 int changed; 1644 if (hw_is_mask(var)) 1645 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1646 else if (hw_is_interval(var)) 1647 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1648 else 1649 return -EINVAL; 1650 if (changed) { 1651 params->cmask |= 1 << var; 1652 params->rmask |= 1 << var; 1653 } 1654 return changed; 1655 } 1656 1657 1658 /** 1659 * snd_pcm_hw_param_last - refine config space and return maximum value 1660 * @pcm: PCM instance 1661 * @params: the hw_params instance 1662 * @var: parameter to retrieve 1663 * @dir: pointer to the direction (-1,0,1) or %NULL 1664 * 1665 * Inside configuration space defined by @params remove from @var all 1666 * values < maximum. Reduce configuration space accordingly. 1667 * 1668 * Return: The maximum, or a negative error code on failure. 1669 */ 1670 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1671 struct snd_pcm_hw_params *params, 1672 snd_pcm_hw_param_t var, int *dir) 1673 { 1674 int changed = _snd_pcm_hw_param_last(params, var); 1675 if (changed < 0) 1676 return changed; 1677 if (params->rmask) { 1678 int err = snd_pcm_hw_refine(pcm, params); 1679 if (snd_BUG_ON(err < 0)) 1680 return err; 1681 } 1682 return snd_pcm_hw_param_value(params, var, dir); 1683 } 1684 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1685 1686 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1687 void *arg) 1688 { 1689 struct snd_pcm_runtime *runtime = substream->runtime; 1690 unsigned long flags; 1691 snd_pcm_stream_lock_irqsave(substream, flags); 1692 if (snd_pcm_running(substream) && 1693 snd_pcm_update_hw_ptr(substream) >= 0) 1694 runtime->status->hw_ptr %= runtime->buffer_size; 1695 else { 1696 runtime->status->hw_ptr = 0; 1697 runtime->hw_ptr_wrap = 0; 1698 } 1699 snd_pcm_stream_unlock_irqrestore(substream, flags); 1700 return 0; 1701 } 1702 1703 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1704 void *arg) 1705 { 1706 struct snd_pcm_channel_info *info = arg; 1707 struct snd_pcm_runtime *runtime = substream->runtime; 1708 int width; 1709 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1710 info->offset = -1; 1711 return 0; 1712 } 1713 width = snd_pcm_format_physical_width(runtime->format); 1714 if (width < 0) 1715 return width; 1716 info->offset = 0; 1717 switch (runtime->access) { 1718 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1719 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1720 info->first = info->channel * width; 1721 info->step = runtime->channels * width; 1722 break; 1723 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1724 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1725 { 1726 size_t size = runtime->dma_bytes / runtime->channels; 1727 info->first = info->channel * size * 8; 1728 info->step = width; 1729 break; 1730 } 1731 default: 1732 snd_BUG(); 1733 break; 1734 } 1735 return 0; 1736 } 1737 1738 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1739 void *arg) 1740 { 1741 struct snd_pcm_hw_params *params = arg; 1742 snd_pcm_format_t format; 1743 int channels; 1744 ssize_t frame_size; 1745 1746 params->fifo_size = substream->runtime->hw.fifo_size; 1747 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1748 format = params_format(params); 1749 channels = params_channels(params); 1750 frame_size = snd_pcm_format_size(format, channels); 1751 if (frame_size > 0) 1752 params->fifo_size /= (unsigned)frame_size; 1753 } 1754 return 0; 1755 } 1756 1757 /** 1758 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1759 * @substream: the pcm substream instance 1760 * @cmd: ioctl command 1761 * @arg: ioctl argument 1762 * 1763 * Processes the generic ioctl commands for PCM. 1764 * Can be passed as the ioctl callback for PCM ops. 1765 * 1766 * Return: Zero if successful, or a negative error code on failure. 1767 */ 1768 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1769 unsigned int cmd, void *arg) 1770 { 1771 switch (cmd) { 1772 case SNDRV_PCM_IOCTL1_RESET: 1773 return snd_pcm_lib_ioctl_reset(substream, arg); 1774 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1775 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1776 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1777 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1778 } 1779 return -ENXIO; 1780 } 1781 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1782 1783 /** 1784 * snd_pcm_period_elapsed - update the pcm status for the next period 1785 * @substream: the pcm substream instance 1786 * 1787 * This function is called from the interrupt handler when the 1788 * PCM has processed the period size. It will update the current 1789 * pointer, wake up sleepers, etc. 1790 * 1791 * Even if more than one periods have elapsed since the last call, you 1792 * have to call this only once. 1793 */ 1794 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1795 { 1796 struct snd_pcm_runtime *runtime; 1797 unsigned long flags; 1798 1799 if (PCM_RUNTIME_CHECK(substream)) 1800 return; 1801 runtime = substream->runtime; 1802 1803 snd_pcm_stream_lock_irqsave(substream, flags); 1804 if (!snd_pcm_running(substream) || 1805 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1806 goto _end; 1807 1808 #ifdef CONFIG_SND_PCM_TIMER 1809 if (substream->timer_running) 1810 snd_timer_interrupt(substream->timer, 1); 1811 #endif 1812 _end: 1813 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1814 snd_pcm_stream_unlock_irqrestore(substream, flags); 1815 } 1816 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1817 1818 /* 1819 * Wait until avail_min data becomes available 1820 * Returns a negative error code if any error occurs during operation. 1821 * The available space is stored on availp. When err = 0 and avail = 0 1822 * on the capture stream, it indicates the stream is in DRAINING state. 1823 */ 1824 static int wait_for_avail(struct snd_pcm_substream *substream, 1825 snd_pcm_uframes_t *availp) 1826 { 1827 struct snd_pcm_runtime *runtime = substream->runtime; 1828 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1829 wait_queue_entry_t wait; 1830 int err = 0; 1831 snd_pcm_uframes_t avail = 0; 1832 long wait_time, tout; 1833 1834 init_waitqueue_entry(&wait, current); 1835 set_current_state(TASK_INTERRUPTIBLE); 1836 add_wait_queue(&runtime->tsleep, &wait); 1837 1838 if (runtime->no_period_wakeup) 1839 wait_time = MAX_SCHEDULE_TIMEOUT; 1840 else { 1841 wait_time = 10; 1842 if (runtime->rate) { 1843 long t = runtime->period_size * 2 / runtime->rate; 1844 wait_time = max(t, wait_time); 1845 } 1846 wait_time = msecs_to_jiffies(wait_time * 1000); 1847 } 1848 1849 for (;;) { 1850 if (signal_pending(current)) { 1851 err = -ERESTARTSYS; 1852 break; 1853 } 1854 1855 /* 1856 * We need to check if space became available already 1857 * (and thus the wakeup happened already) first to close 1858 * the race of space already having become available. 1859 * This check must happen after been added to the waitqueue 1860 * and having current state be INTERRUPTIBLE. 1861 */ 1862 if (is_playback) 1863 avail = snd_pcm_playback_avail(runtime); 1864 else 1865 avail = snd_pcm_capture_avail(runtime); 1866 if (avail >= runtime->twake) 1867 break; 1868 snd_pcm_stream_unlock_irq(substream); 1869 1870 tout = schedule_timeout(wait_time); 1871 1872 snd_pcm_stream_lock_irq(substream); 1873 set_current_state(TASK_INTERRUPTIBLE); 1874 switch (runtime->status->state) { 1875 case SNDRV_PCM_STATE_SUSPENDED: 1876 err = -ESTRPIPE; 1877 goto _endloop; 1878 case SNDRV_PCM_STATE_XRUN: 1879 err = -EPIPE; 1880 goto _endloop; 1881 case SNDRV_PCM_STATE_DRAINING: 1882 if (is_playback) 1883 err = -EPIPE; 1884 else 1885 avail = 0; /* indicate draining */ 1886 goto _endloop; 1887 case SNDRV_PCM_STATE_OPEN: 1888 case SNDRV_PCM_STATE_SETUP: 1889 case SNDRV_PCM_STATE_DISCONNECTED: 1890 err = -EBADFD; 1891 goto _endloop; 1892 case SNDRV_PCM_STATE_PAUSED: 1893 continue; 1894 } 1895 if (!tout) { 1896 pcm_dbg(substream->pcm, 1897 "%s write error (DMA or IRQ trouble?)\n", 1898 is_playback ? "playback" : "capture"); 1899 err = -EIO; 1900 break; 1901 } 1902 } 1903 _endloop: 1904 set_current_state(TASK_RUNNING); 1905 remove_wait_queue(&runtime->tsleep, &wait); 1906 *availp = avail; 1907 return err; 1908 } 1909 1910 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, 1911 int channel, unsigned long hwoff, 1912 void *buf, unsigned long bytes); 1913 1914 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, 1915 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f); 1916 1917 /* calculate the target DMA-buffer position to be written/read */ 1918 static void *get_dma_ptr(struct snd_pcm_runtime *runtime, 1919 int channel, unsigned long hwoff) 1920 { 1921 return runtime->dma_area + hwoff + 1922 channel * (runtime->dma_bytes / runtime->channels); 1923 } 1924 1925 /* default copy_user ops for write; used for both interleaved and non- modes */ 1926 static int default_write_copy(struct snd_pcm_substream *substream, 1927 int channel, unsigned long hwoff, 1928 void *buf, unsigned long bytes) 1929 { 1930 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff), 1931 (void __user *)buf, bytes)) 1932 return -EFAULT; 1933 return 0; 1934 } 1935 1936 /* default copy_kernel ops for write */ 1937 static int default_write_copy_kernel(struct snd_pcm_substream *substream, 1938 int channel, unsigned long hwoff, 1939 void *buf, unsigned long bytes) 1940 { 1941 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes); 1942 return 0; 1943 } 1944 1945 /* fill silence instead of copy data; called as a transfer helper 1946 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when 1947 * a NULL buffer is passed 1948 */ 1949 static int fill_silence(struct snd_pcm_substream *substream, int channel, 1950 unsigned long hwoff, void *buf, unsigned long bytes) 1951 { 1952 struct snd_pcm_runtime *runtime = substream->runtime; 1953 1954 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 1955 return 0; 1956 if (substream->ops->fill_silence) 1957 return substream->ops->fill_silence(substream, channel, 1958 hwoff, bytes); 1959 1960 snd_pcm_format_set_silence(runtime->format, 1961 get_dma_ptr(runtime, channel, hwoff), 1962 bytes_to_samples(runtime, bytes)); 1963 return 0; 1964 } 1965 1966 /* default copy_user ops for read; used for both interleaved and non- modes */ 1967 static int default_read_copy(struct snd_pcm_substream *substream, 1968 int channel, unsigned long hwoff, 1969 void *buf, unsigned long bytes) 1970 { 1971 if (copy_to_user((void __user *)buf, 1972 get_dma_ptr(substream->runtime, channel, hwoff), 1973 bytes)) 1974 return -EFAULT; 1975 return 0; 1976 } 1977 1978 /* default copy_kernel ops for read */ 1979 static int default_read_copy_kernel(struct snd_pcm_substream *substream, 1980 int channel, unsigned long hwoff, 1981 void *buf, unsigned long bytes) 1982 { 1983 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes); 1984 return 0; 1985 } 1986 1987 /* call transfer function with the converted pointers and sizes; 1988 * for interleaved mode, it's one shot for all samples 1989 */ 1990 static int interleaved_copy(struct snd_pcm_substream *substream, 1991 snd_pcm_uframes_t hwoff, void *data, 1992 snd_pcm_uframes_t off, 1993 snd_pcm_uframes_t frames, 1994 pcm_transfer_f transfer) 1995 { 1996 struct snd_pcm_runtime *runtime = substream->runtime; 1997 1998 /* convert to bytes */ 1999 hwoff = frames_to_bytes(runtime, hwoff); 2000 off = frames_to_bytes(runtime, off); 2001 frames = frames_to_bytes(runtime, frames); 2002 return transfer(substream, 0, hwoff, data + off, frames); 2003 } 2004 2005 /* call transfer function with the converted pointers and sizes for each 2006 * non-interleaved channel; when buffer is NULL, silencing instead of copying 2007 */ 2008 static int noninterleaved_copy(struct snd_pcm_substream *substream, 2009 snd_pcm_uframes_t hwoff, void *data, 2010 snd_pcm_uframes_t off, 2011 snd_pcm_uframes_t frames, 2012 pcm_transfer_f transfer) 2013 { 2014 struct snd_pcm_runtime *runtime = substream->runtime; 2015 int channels = runtime->channels; 2016 void **bufs = data; 2017 int c, err; 2018 2019 /* convert to bytes; note that it's not frames_to_bytes() here. 2020 * in non-interleaved mode, we copy for each channel, thus 2021 * each copy is n_samples bytes x channels = whole frames. 2022 */ 2023 off = samples_to_bytes(runtime, off); 2024 frames = samples_to_bytes(runtime, frames); 2025 hwoff = samples_to_bytes(runtime, hwoff); 2026 for (c = 0; c < channels; ++c, ++bufs) { 2027 if (!data || !*bufs) 2028 err = fill_silence(substream, c, hwoff, NULL, frames); 2029 else 2030 err = transfer(substream, c, hwoff, *bufs + off, 2031 frames); 2032 if (err < 0) 2033 return err; 2034 } 2035 return 0; 2036 } 2037 2038 /* fill silence on the given buffer position; 2039 * called from snd_pcm_playback_silence() 2040 */ 2041 static int fill_silence_frames(struct snd_pcm_substream *substream, 2042 snd_pcm_uframes_t off, snd_pcm_uframes_t frames) 2043 { 2044 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 2045 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) 2046 return interleaved_copy(substream, off, NULL, 0, frames, 2047 fill_silence); 2048 else 2049 return noninterleaved_copy(substream, off, NULL, 0, frames, 2050 fill_silence); 2051 } 2052 2053 /* sanity-check for read/write methods */ 2054 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2055 { 2056 struct snd_pcm_runtime *runtime; 2057 if (PCM_RUNTIME_CHECK(substream)) 2058 return -ENXIO; 2059 runtime = substream->runtime; 2060 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area)) 2061 return -EINVAL; 2062 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2063 return -EBADFD; 2064 return 0; 2065 } 2066 2067 static int pcm_accessible_state(struct snd_pcm_runtime *runtime) 2068 { 2069 switch (runtime->status->state) { 2070 case SNDRV_PCM_STATE_PREPARED: 2071 case SNDRV_PCM_STATE_RUNNING: 2072 case SNDRV_PCM_STATE_PAUSED: 2073 return 0; 2074 case SNDRV_PCM_STATE_XRUN: 2075 return -EPIPE; 2076 case SNDRV_PCM_STATE_SUSPENDED: 2077 return -ESTRPIPE; 2078 default: 2079 return -EBADFD; 2080 } 2081 } 2082 2083 /* update to the given appl_ptr and call ack callback if needed; 2084 * when an error is returned, take back to the original value 2085 */ 2086 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream, 2087 snd_pcm_uframes_t appl_ptr) 2088 { 2089 struct snd_pcm_runtime *runtime = substream->runtime; 2090 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr; 2091 int ret; 2092 2093 if (old_appl_ptr == appl_ptr) 2094 return 0; 2095 2096 runtime->control->appl_ptr = appl_ptr; 2097 if (substream->ops->ack) { 2098 ret = substream->ops->ack(substream); 2099 if (ret < 0) { 2100 runtime->control->appl_ptr = old_appl_ptr; 2101 return ret; 2102 } 2103 } 2104 2105 trace_applptr(substream, old_appl_ptr, appl_ptr); 2106 2107 return 0; 2108 } 2109 2110 /* the common loop for read/write data */ 2111 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, 2112 void *data, bool interleaved, 2113 snd_pcm_uframes_t size, bool in_kernel) 2114 { 2115 struct snd_pcm_runtime *runtime = substream->runtime; 2116 snd_pcm_uframes_t xfer = 0; 2117 snd_pcm_uframes_t offset = 0; 2118 snd_pcm_uframes_t avail; 2119 pcm_copy_f writer; 2120 pcm_transfer_f transfer; 2121 bool nonblock; 2122 bool is_playback; 2123 int err; 2124 2125 err = pcm_sanity_check(substream); 2126 if (err < 0) 2127 return err; 2128 2129 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 2130 if (interleaved) { 2131 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2132 runtime->channels > 1) 2133 return -EINVAL; 2134 writer = interleaved_copy; 2135 } else { 2136 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2137 return -EINVAL; 2138 writer = noninterleaved_copy; 2139 } 2140 2141 if (!data) { 2142 if (is_playback) 2143 transfer = fill_silence; 2144 else 2145 return -EINVAL; 2146 } else if (in_kernel) { 2147 if (substream->ops->copy_kernel) 2148 transfer = substream->ops->copy_kernel; 2149 else 2150 transfer = is_playback ? 2151 default_write_copy_kernel : default_read_copy_kernel; 2152 } else { 2153 if (substream->ops->copy_user) 2154 transfer = (pcm_transfer_f)substream->ops->copy_user; 2155 else 2156 transfer = is_playback ? 2157 default_write_copy : default_read_copy; 2158 } 2159 2160 if (size == 0) 2161 return 0; 2162 2163 nonblock = !!(substream->f_flags & O_NONBLOCK); 2164 2165 snd_pcm_stream_lock_irq(substream); 2166 err = pcm_accessible_state(runtime); 2167 if (err < 0) 2168 goto _end_unlock; 2169 2170 if (!is_playback && 2171 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2172 size >= runtime->start_threshold) { 2173 err = snd_pcm_start(substream); 2174 if (err < 0) 2175 goto _end_unlock; 2176 } 2177 2178 runtime->twake = runtime->control->avail_min ? : 1; 2179 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2180 snd_pcm_update_hw_ptr(substream); 2181 if (is_playback) 2182 avail = snd_pcm_playback_avail(runtime); 2183 else 2184 avail = snd_pcm_capture_avail(runtime); 2185 while (size > 0) { 2186 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2187 snd_pcm_uframes_t cont; 2188 if (!avail) { 2189 if (!is_playback && 2190 runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 2191 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2192 goto _end_unlock; 2193 } 2194 if (nonblock) { 2195 err = -EAGAIN; 2196 goto _end_unlock; 2197 } 2198 runtime->twake = min_t(snd_pcm_uframes_t, size, 2199 runtime->control->avail_min ? : 1); 2200 err = wait_for_avail(substream, &avail); 2201 if (err < 0) 2202 goto _end_unlock; 2203 if (!avail) 2204 continue; /* draining */ 2205 } 2206 frames = size > avail ? avail : size; 2207 appl_ptr = READ_ONCE(runtime->control->appl_ptr); 2208 appl_ofs = appl_ptr % runtime->buffer_size; 2209 cont = runtime->buffer_size - appl_ofs; 2210 if (frames > cont) 2211 frames = cont; 2212 if (snd_BUG_ON(!frames)) { 2213 runtime->twake = 0; 2214 snd_pcm_stream_unlock_irq(substream); 2215 return -EINVAL; 2216 } 2217 snd_pcm_stream_unlock_irq(substream); 2218 err = writer(substream, appl_ofs, data, offset, frames, 2219 transfer); 2220 snd_pcm_stream_lock_irq(substream); 2221 if (err < 0) 2222 goto _end_unlock; 2223 err = pcm_accessible_state(runtime); 2224 if (err < 0) 2225 goto _end_unlock; 2226 appl_ptr += frames; 2227 if (appl_ptr >= runtime->boundary) 2228 appl_ptr -= runtime->boundary; 2229 err = pcm_lib_apply_appl_ptr(substream, appl_ptr); 2230 if (err < 0) 2231 goto _end_unlock; 2232 2233 offset += frames; 2234 size -= frames; 2235 xfer += frames; 2236 avail -= frames; 2237 if (is_playback && 2238 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2239 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2240 err = snd_pcm_start(substream); 2241 if (err < 0) 2242 goto _end_unlock; 2243 } 2244 } 2245 _end_unlock: 2246 runtime->twake = 0; 2247 if (xfer > 0 && err >= 0) 2248 snd_pcm_update_state(substream, runtime); 2249 snd_pcm_stream_unlock_irq(substream); 2250 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2251 } 2252 EXPORT_SYMBOL(__snd_pcm_lib_xfer); 2253 2254 /* 2255 * standard channel mapping helpers 2256 */ 2257 2258 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2259 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2260 { .channels = 1, 2261 .map = { SNDRV_CHMAP_MONO } }, 2262 { .channels = 2, 2263 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2264 { .channels = 4, 2265 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2266 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2267 { .channels = 6, 2268 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2269 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2270 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2271 { .channels = 8, 2272 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2273 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2274 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2275 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2276 { } 2277 }; 2278 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2279 2280 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2281 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2282 { .channels = 1, 2283 .map = { SNDRV_CHMAP_MONO } }, 2284 { .channels = 2, 2285 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2286 { .channels = 4, 2287 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2289 { .channels = 6, 2290 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2291 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2292 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2293 { .channels = 8, 2294 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2295 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2296 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2297 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2298 { } 2299 }; 2300 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2301 2302 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2303 { 2304 if (ch > info->max_channels) 2305 return false; 2306 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2307 } 2308 2309 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2310 struct snd_ctl_elem_info *uinfo) 2311 { 2312 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2313 2314 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2315 uinfo->count = 0; 2316 uinfo->count = info->max_channels; 2317 uinfo->value.integer.min = 0; 2318 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2319 return 0; 2320 } 2321 2322 /* get callback for channel map ctl element 2323 * stores the channel position firstly matching with the current channels 2324 */ 2325 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2326 struct snd_ctl_elem_value *ucontrol) 2327 { 2328 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2329 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2330 struct snd_pcm_substream *substream; 2331 const struct snd_pcm_chmap_elem *map; 2332 2333 if (!info->chmap) 2334 return -EINVAL; 2335 substream = snd_pcm_chmap_substream(info, idx); 2336 if (!substream) 2337 return -ENODEV; 2338 memset(ucontrol->value.integer.value, 0, 2339 sizeof(ucontrol->value.integer.value)); 2340 if (!substream->runtime) 2341 return 0; /* no channels set */ 2342 for (map = info->chmap; map->channels; map++) { 2343 int i; 2344 if (map->channels == substream->runtime->channels && 2345 valid_chmap_channels(info, map->channels)) { 2346 for (i = 0; i < map->channels; i++) 2347 ucontrol->value.integer.value[i] = map->map[i]; 2348 return 0; 2349 } 2350 } 2351 return -EINVAL; 2352 } 2353 2354 /* tlv callback for channel map ctl element 2355 * expands the pre-defined channel maps in a form of TLV 2356 */ 2357 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2358 unsigned int size, unsigned int __user *tlv) 2359 { 2360 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2361 const struct snd_pcm_chmap_elem *map; 2362 unsigned int __user *dst; 2363 int c, count = 0; 2364 2365 if (!info->chmap) 2366 return -EINVAL; 2367 if (size < 8) 2368 return -ENOMEM; 2369 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2370 return -EFAULT; 2371 size -= 8; 2372 dst = tlv + 2; 2373 for (map = info->chmap; map->channels; map++) { 2374 int chs_bytes = map->channels * 4; 2375 if (!valid_chmap_channels(info, map->channels)) 2376 continue; 2377 if (size < 8) 2378 return -ENOMEM; 2379 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2380 put_user(chs_bytes, dst + 1)) 2381 return -EFAULT; 2382 dst += 2; 2383 size -= 8; 2384 count += 8; 2385 if (size < chs_bytes) 2386 return -ENOMEM; 2387 size -= chs_bytes; 2388 count += chs_bytes; 2389 for (c = 0; c < map->channels; c++) { 2390 if (put_user(map->map[c], dst)) 2391 return -EFAULT; 2392 dst++; 2393 } 2394 } 2395 if (put_user(count, tlv + 1)) 2396 return -EFAULT; 2397 return 0; 2398 } 2399 2400 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2401 { 2402 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2403 info->pcm->streams[info->stream].chmap_kctl = NULL; 2404 kfree(info); 2405 } 2406 2407 /** 2408 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2409 * @pcm: the assigned PCM instance 2410 * @stream: stream direction 2411 * @chmap: channel map elements (for query) 2412 * @max_channels: the max number of channels for the stream 2413 * @private_value: the value passed to each kcontrol's private_value field 2414 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2415 * 2416 * Create channel-mapping control elements assigned to the given PCM stream(s). 2417 * Return: Zero if successful, or a negative error value. 2418 */ 2419 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2420 const struct snd_pcm_chmap_elem *chmap, 2421 int max_channels, 2422 unsigned long private_value, 2423 struct snd_pcm_chmap **info_ret) 2424 { 2425 struct snd_pcm_chmap *info; 2426 struct snd_kcontrol_new knew = { 2427 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2428 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2429 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2430 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2431 .info = pcm_chmap_ctl_info, 2432 .get = pcm_chmap_ctl_get, 2433 .tlv.c = pcm_chmap_ctl_tlv, 2434 }; 2435 int err; 2436 2437 if (WARN_ON(pcm->streams[stream].chmap_kctl)) 2438 return -EBUSY; 2439 info = kzalloc(sizeof(*info), GFP_KERNEL); 2440 if (!info) 2441 return -ENOMEM; 2442 info->pcm = pcm; 2443 info->stream = stream; 2444 info->chmap = chmap; 2445 info->max_channels = max_channels; 2446 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2447 knew.name = "Playback Channel Map"; 2448 else 2449 knew.name = "Capture Channel Map"; 2450 knew.device = pcm->device; 2451 knew.count = pcm->streams[stream].substream_count; 2452 knew.private_value = private_value; 2453 info->kctl = snd_ctl_new1(&knew, info); 2454 if (!info->kctl) { 2455 kfree(info); 2456 return -ENOMEM; 2457 } 2458 info->kctl->private_free = pcm_chmap_ctl_private_free; 2459 err = snd_ctl_add(pcm->card, info->kctl); 2460 if (err < 0) 2461 return err; 2462 pcm->streams[stream].chmap_kctl = info->kctl; 2463 if (info_ret) 2464 *info_ret = info; 2465 return 0; 2466 } 2467 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2468