xref: /openbmc/linux/sound/core/pcm_lib.c (revision b78412b8)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35 
36 #include "pcm_local.h"
37 
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47 
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50 
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 	struct snd_pcm_runtime *runtime = substream->runtime;
63 	snd_pcm_uframes_t frames, ofs, transfer;
64 	int err;
65 
66 	if (runtime->silence_size < runtime->boundary) {
67 		snd_pcm_sframes_t noise_dist, n;
68 		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 		if (runtime->silence_start != appl_ptr) {
70 			n = appl_ptr - runtime->silence_start;
71 			if (n < 0)
72 				n += runtime->boundary;
73 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 				runtime->silence_filled -= n;
75 			else
76 				runtime->silence_filled = 0;
77 			runtime->silence_start = appl_ptr;
78 		}
79 		if (runtime->silence_filled >= runtime->buffer_size)
80 			return;
81 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 			return;
84 		frames = runtime->silence_threshold - noise_dist;
85 		if (frames > runtime->silence_size)
86 			frames = runtime->silence_size;
87 	} else {
88 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
89 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 			if (avail > runtime->buffer_size)
91 				avail = runtime->buffer_size;
92 			runtime->silence_filled = avail > 0 ? avail : 0;
93 			runtime->silence_start = (runtime->status->hw_ptr +
94 						  runtime->silence_filled) %
95 						 runtime->boundary;
96 		} else {
97 			ofs = runtime->status->hw_ptr;
98 			frames = new_hw_ptr - ofs;
99 			if ((snd_pcm_sframes_t)frames < 0)
100 				frames += runtime->boundary;
101 			runtime->silence_filled -= frames;
102 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 				runtime->silence_filled = 0;
104 				runtime->silence_start = new_hw_ptr;
105 			} else {
106 				runtime->silence_start = ofs;
107 			}
108 		}
109 		frames = runtime->buffer_size - runtime->silence_filled;
110 	}
111 	if (snd_BUG_ON(frames > runtime->buffer_size))
112 		return;
113 	if (frames == 0)
114 		return;
115 	ofs = runtime->silence_start % runtime->buffer_size;
116 	while (frames > 0) {
117 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 		err = fill_silence_frames(substream, ofs, transfer);
119 		snd_BUG_ON(err < 0);
120 		runtime->silence_filled += transfer;
121 		frames -= transfer;
122 		ofs = 0;
123 	}
124 }
125 
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 			   char *name, size_t len)
129 {
130 	snprintf(name, len, "pcmC%dD%d%c:%d",
131 		 substream->pcm->card->number,
132 		 substream->pcm->device,
133 		 substream->stream ? 'c' : 'p',
134 		 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138 
139 #define XRUN_DEBUG_BASIC	(1<<0)
140 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
142 
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144 
145 #define xrun_debug(substream, mask) \
146 			((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)	0
149 #endif
150 
151 #define dump_stack_on_xrun(substream) do {			\
152 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
153 			dump_stack();				\
154 	} while (0)
155 
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158 	struct snd_pcm_runtime *runtime = substream->runtime;
159 
160 	trace_xrun(substream);
161 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 		char name[16];
166 		snd_pcm_debug_name(substream, name, sizeof(name));
167 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 		dump_stack_on_xrun(substream);
169 	}
170 }
171 
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
174 	do {								\
175 		trace_hw_ptr_error(substream, reason);	\
176 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
177 			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 					   (in_interrupt) ? 'Q' : 'P', ##args);	\
179 			dump_stack_on_xrun(substream);			\
180 		}							\
181 	} while (0)
182 
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184 
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186 
187 #endif
188 
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 			 struct snd_pcm_runtime *runtime)
191 {
192 	snd_pcm_uframes_t avail;
193 
194 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195 		avail = snd_pcm_playback_avail(runtime);
196 	else
197 		avail = snd_pcm_capture_avail(runtime);
198 	if (avail > runtime->avail_max)
199 		runtime->avail_max = avail;
200 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201 		if (avail >= runtime->buffer_size) {
202 			snd_pcm_drain_done(substream);
203 			return -EPIPE;
204 		}
205 	} else {
206 		if (avail >= runtime->stop_threshold) {
207 			xrun(substream);
208 			return -EPIPE;
209 		}
210 	}
211 	if (runtime->twake) {
212 		if (avail >= runtime->twake)
213 			wake_up(&runtime->tsleep);
214 	} else if (avail >= runtime->control->avail_min)
215 		wake_up(&runtime->sleep);
216 	return 0;
217 }
218 
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220 				struct timespec *curr_tstamp,
221 				struct timespec *audio_tstamp)
222 {
223 	struct snd_pcm_runtime *runtime = substream->runtime;
224 	u64 audio_frames, audio_nsecs;
225 	struct timespec driver_tstamp;
226 
227 	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228 		return;
229 
230 	if (!(substream->ops->get_time_info) ||
231 		(runtime->audio_tstamp_report.actual_type ==
232 			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233 
234 		/*
235 		 * provide audio timestamp derived from pointer position
236 		 * add delay only if requested
237 		 */
238 
239 		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240 
241 		if (runtime->audio_tstamp_config.report_delay) {
242 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243 				audio_frames -=  runtime->delay;
244 			else
245 				audio_frames +=  runtime->delay;
246 		}
247 		audio_nsecs = div_u64(audio_frames * 1000000000LL,
248 				runtime->rate);
249 		*audio_tstamp = ns_to_timespec(audio_nsecs);
250 	}
251 	runtime->status->audio_tstamp = *audio_tstamp;
252 	runtime->status->tstamp = *curr_tstamp;
253 
254 	/*
255 	 * re-take a driver timestamp to let apps detect if the reference tstamp
256 	 * read by low-level hardware was provided with a delay
257 	 */
258 	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
259 	runtime->driver_tstamp = driver_tstamp;
260 }
261 
262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
263 				  unsigned int in_interrupt)
264 {
265 	struct snd_pcm_runtime *runtime = substream->runtime;
266 	snd_pcm_uframes_t pos;
267 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
268 	snd_pcm_sframes_t hdelta, delta;
269 	unsigned long jdelta;
270 	unsigned long curr_jiffies;
271 	struct timespec curr_tstamp;
272 	struct timespec audio_tstamp;
273 	int crossed_boundary = 0;
274 
275 	old_hw_ptr = runtime->status->hw_ptr;
276 
277 	/*
278 	 * group pointer, time and jiffies reads to allow for more
279 	 * accurate correlations/corrections.
280 	 * The values are stored at the end of this routine after
281 	 * corrections for hw_ptr position
282 	 */
283 	pos = substream->ops->pointer(substream);
284 	curr_jiffies = jiffies;
285 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
286 		if ((substream->ops->get_time_info) &&
287 			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
288 			substream->ops->get_time_info(substream, &curr_tstamp,
289 						&audio_tstamp,
290 						&runtime->audio_tstamp_config,
291 						&runtime->audio_tstamp_report);
292 
293 			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
294 			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
295 				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
296 		} else
297 			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 	}
299 
300 	if (pos == SNDRV_PCM_POS_XRUN) {
301 		xrun(substream);
302 		return -EPIPE;
303 	}
304 	if (pos >= runtime->buffer_size) {
305 		if (printk_ratelimit()) {
306 			char name[16];
307 			snd_pcm_debug_name(substream, name, sizeof(name));
308 			pcm_err(substream->pcm,
309 				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
310 				name, pos, runtime->buffer_size,
311 				runtime->period_size);
312 		}
313 		pos = 0;
314 	}
315 	pos -= pos % runtime->min_align;
316 	trace_hwptr(substream, pos, in_interrupt);
317 	hw_base = runtime->hw_ptr_base;
318 	new_hw_ptr = hw_base + pos;
319 	if (in_interrupt) {
320 		/* we know that one period was processed */
321 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
322 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
323 		if (delta > new_hw_ptr) {
324 			/* check for double acknowledged interrupts */
325 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
326 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
327 				hw_base += runtime->buffer_size;
328 				if (hw_base >= runtime->boundary) {
329 					hw_base = 0;
330 					crossed_boundary++;
331 				}
332 				new_hw_ptr = hw_base + pos;
333 				goto __delta;
334 			}
335 		}
336 	}
337 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
338 	/* pointer crosses the end of the ring buffer */
339 	if (new_hw_ptr < old_hw_ptr) {
340 		hw_base += runtime->buffer_size;
341 		if (hw_base >= runtime->boundary) {
342 			hw_base = 0;
343 			crossed_boundary++;
344 		}
345 		new_hw_ptr = hw_base + pos;
346 	}
347       __delta:
348 	delta = new_hw_ptr - old_hw_ptr;
349 	if (delta < 0)
350 		delta += runtime->boundary;
351 
352 	if (runtime->no_period_wakeup) {
353 		snd_pcm_sframes_t xrun_threshold;
354 		/*
355 		 * Without regular period interrupts, we have to check
356 		 * the elapsed time to detect xruns.
357 		 */
358 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
359 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
360 			goto no_delta_check;
361 		hdelta = jdelta - delta * HZ / runtime->rate;
362 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
363 		while (hdelta > xrun_threshold) {
364 			delta += runtime->buffer_size;
365 			hw_base += runtime->buffer_size;
366 			if (hw_base >= runtime->boundary) {
367 				hw_base = 0;
368 				crossed_boundary++;
369 			}
370 			new_hw_ptr = hw_base + pos;
371 			hdelta -= runtime->hw_ptr_buffer_jiffies;
372 		}
373 		goto no_delta_check;
374 	}
375 
376 	/* something must be really wrong */
377 	if (delta >= runtime->buffer_size + runtime->period_size) {
378 		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
379 			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
380 			     substream->stream, (long)pos,
381 			     (long)new_hw_ptr, (long)old_hw_ptr);
382 		return 0;
383 	}
384 
385 	/* Do jiffies check only in xrun_debug mode */
386 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
387 		goto no_jiffies_check;
388 
389 	/* Skip the jiffies check for hardwares with BATCH flag.
390 	 * Such hardware usually just increases the position at each IRQ,
391 	 * thus it can't give any strange position.
392 	 */
393 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
394 		goto no_jiffies_check;
395 	hdelta = delta;
396 	if (hdelta < runtime->delay)
397 		goto no_jiffies_check;
398 	hdelta -= runtime->delay;
399 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
400 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
401 		delta = jdelta /
402 			(((runtime->period_size * HZ) / runtime->rate)
403 								+ HZ/100);
404 		/* move new_hw_ptr according jiffies not pos variable */
405 		new_hw_ptr = old_hw_ptr;
406 		hw_base = delta;
407 		/* use loop to avoid checks for delta overflows */
408 		/* the delta value is small or zero in most cases */
409 		while (delta > 0) {
410 			new_hw_ptr += runtime->period_size;
411 			if (new_hw_ptr >= runtime->boundary) {
412 				new_hw_ptr -= runtime->boundary;
413 				crossed_boundary--;
414 			}
415 			delta--;
416 		}
417 		/* align hw_base to buffer_size */
418 		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
419 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
420 			     (long)pos, (long)hdelta,
421 			     (long)runtime->period_size, jdelta,
422 			     ((hdelta * HZ) / runtime->rate), hw_base,
423 			     (unsigned long)old_hw_ptr,
424 			     (unsigned long)new_hw_ptr);
425 		/* reset values to proper state */
426 		delta = 0;
427 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
428 	}
429  no_jiffies_check:
430 	if (delta > runtime->period_size + runtime->period_size / 2) {
431 		hw_ptr_error(substream, in_interrupt,
432 			     "Lost interrupts?",
433 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
434 			     substream->stream, (long)delta,
435 			     (long)new_hw_ptr,
436 			     (long)old_hw_ptr);
437 	}
438 
439  no_delta_check:
440 	if (runtime->status->hw_ptr == new_hw_ptr) {
441 		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
442 		return 0;
443 	}
444 
445 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
446 	    runtime->silence_size > 0)
447 		snd_pcm_playback_silence(substream, new_hw_ptr);
448 
449 	if (in_interrupt) {
450 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
451 		if (delta < 0)
452 			delta += runtime->boundary;
453 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
454 		runtime->hw_ptr_interrupt += delta;
455 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
456 			runtime->hw_ptr_interrupt -= runtime->boundary;
457 	}
458 	runtime->hw_ptr_base = hw_base;
459 	runtime->status->hw_ptr = new_hw_ptr;
460 	runtime->hw_ptr_jiffies = curr_jiffies;
461 	if (crossed_boundary) {
462 		snd_BUG_ON(crossed_boundary != 1);
463 		runtime->hw_ptr_wrap += runtime->boundary;
464 	}
465 
466 	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
467 
468 	return snd_pcm_update_state(substream, runtime);
469 }
470 
471 /* CAUTION: call it with irq disabled */
472 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
473 {
474 	return snd_pcm_update_hw_ptr0(substream, 0);
475 }
476 
477 /**
478  * snd_pcm_set_ops - set the PCM operators
479  * @pcm: the pcm instance
480  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
481  * @ops: the operator table
482  *
483  * Sets the given PCM operators to the pcm instance.
484  */
485 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
486 		     const struct snd_pcm_ops *ops)
487 {
488 	struct snd_pcm_str *stream = &pcm->streams[direction];
489 	struct snd_pcm_substream *substream;
490 
491 	for (substream = stream->substream; substream != NULL; substream = substream->next)
492 		substream->ops = ops;
493 }
494 EXPORT_SYMBOL(snd_pcm_set_ops);
495 
496 /**
497  * snd_pcm_sync - set the PCM sync id
498  * @substream: the pcm substream
499  *
500  * Sets the PCM sync identifier for the card.
501  */
502 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
503 {
504 	struct snd_pcm_runtime *runtime = substream->runtime;
505 
506 	runtime->sync.id32[0] = substream->pcm->card->number;
507 	runtime->sync.id32[1] = -1;
508 	runtime->sync.id32[2] = -1;
509 	runtime->sync.id32[3] = -1;
510 }
511 EXPORT_SYMBOL(snd_pcm_set_sync);
512 
513 /*
514  *  Standard ioctl routine
515  */
516 
517 static inline unsigned int div32(unsigned int a, unsigned int b,
518 				 unsigned int *r)
519 {
520 	if (b == 0) {
521 		*r = 0;
522 		return UINT_MAX;
523 	}
524 	*r = a % b;
525 	return a / b;
526 }
527 
528 static inline unsigned int div_down(unsigned int a, unsigned int b)
529 {
530 	if (b == 0)
531 		return UINT_MAX;
532 	return a / b;
533 }
534 
535 static inline unsigned int div_up(unsigned int a, unsigned int b)
536 {
537 	unsigned int r;
538 	unsigned int q;
539 	if (b == 0)
540 		return UINT_MAX;
541 	q = div32(a, b, &r);
542 	if (r)
543 		++q;
544 	return q;
545 }
546 
547 static inline unsigned int mul(unsigned int a, unsigned int b)
548 {
549 	if (a == 0)
550 		return 0;
551 	if (div_down(UINT_MAX, a) < b)
552 		return UINT_MAX;
553 	return a * b;
554 }
555 
556 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
557 				    unsigned int c, unsigned int *r)
558 {
559 	u_int64_t n = (u_int64_t) a * b;
560 	if (c == 0) {
561 		snd_BUG_ON(!n);
562 		*r = 0;
563 		return UINT_MAX;
564 	}
565 	n = div_u64_rem(n, c, r);
566 	if (n >= UINT_MAX) {
567 		*r = 0;
568 		return UINT_MAX;
569 	}
570 	return n;
571 }
572 
573 /**
574  * snd_interval_refine - refine the interval value of configurator
575  * @i: the interval value to refine
576  * @v: the interval value to refer to
577  *
578  * Refines the interval value with the reference value.
579  * The interval is changed to the range satisfying both intervals.
580  * The interval status (min, max, integer, etc.) are evaluated.
581  *
582  * Return: Positive if the value is changed, zero if it's not changed, or a
583  * negative error code.
584  */
585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
586 {
587 	int changed = 0;
588 	if (snd_BUG_ON(snd_interval_empty(i)))
589 		return -EINVAL;
590 	if (i->min < v->min) {
591 		i->min = v->min;
592 		i->openmin = v->openmin;
593 		changed = 1;
594 	} else if (i->min == v->min && !i->openmin && v->openmin) {
595 		i->openmin = 1;
596 		changed = 1;
597 	}
598 	if (i->max > v->max) {
599 		i->max = v->max;
600 		i->openmax = v->openmax;
601 		changed = 1;
602 	} else if (i->max == v->max && !i->openmax && v->openmax) {
603 		i->openmax = 1;
604 		changed = 1;
605 	}
606 	if (!i->integer && v->integer) {
607 		i->integer = 1;
608 		changed = 1;
609 	}
610 	if (i->integer) {
611 		if (i->openmin) {
612 			i->min++;
613 			i->openmin = 0;
614 		}
615 		if (i->openmax) {
616 			i->max--;
617 			i->openmax = 0;
618 		}
619 	} else if (!i->openmin && !i->openmax && i->min == i->max)
620 		i->integer = 1;
621 	if (snd_interval_checkempty(i)) {
622 		snd_interval_none(i);
623 		return -EINVAL;
624 	}
625 	return changed;
626 }
627 EXPORT_SYMBOL(snd_interval_refine);
628 
629 static int snd_interval_refine_first(struct snd_interval *i)
630 {
631 	if (snd_BUG_ON(snd_interval_empty(i)))
632 		return -EINVAL;
633 	if (snd_interval_single(i))
634 		return 0;
635 	i->max = i->min;
636 	i->openmax = i->openmin;
637 	if (i->openmax)
638 		i->max++;
639 	return 1;
640 }
641 
642 static int snd_interval_refine_last(struct snd_interval *i)
643 {
644 	if (snd_BUG_ON(snd_interval_empty(i)))
645 		return -EINVAL;
646 	if (snd_interval_single(i))
647 		return 0;
648 	i->min = i->max;
649 	i->openmin = i->openmax;
650 	if (i->openmin)
651 		i->min--;
652 	return 1;
653 }
654 
655 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
656 {
657 	if (a->empty || b->empty) {
658 		snd_interval_none(c);
659 		return;
660 	}
661 	c->empty = 0;
662 	c->min = mul(a->min, b->min);
663 	c->openmin = (a->openmin || b->openmin);
664 	c->max = mul(a->max,  b->max);
665 	c->openmax = (a->openmax || b->openmax);
666 	c->integer = (a->integer && b->integer);
667 }
668 
669 /**
670  * snd_interval_div - refine the interval value with division
671  * @a: dividend
672  * @b: divisor
673  * @c: quotient
674  *
675  * c = a / b
676  *
677  * Returns non-zero if the value is changed, zero if not changed.
678  */
679 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
680 {
681 	unsigned int r;
682 	if (a->empty || b->empty) {
683 		snd_interval_none(c);
684 		return;
685 	}
686 	c->empty = 0;
687 	c->min = div32(a->min, b->max, &r);
688 	c->openmin = (r || a->openmin || b->openmax);
689 	if (b->min > 0) {
690 		c->max = div32(a->max, b->min, &r);
691 		if (r) {
692 			c->max++;
693 			c->openmax = 1;
694 		} else
695 			c->openmax = (a->openmax || b->openmin);
696 	} else {
697 		c->max = UINT_MAX;
698 		c->openmax = 0;
699 	}
700 	c->integer = 0;
701 }
702 
703 /**
704  * snd_interval_muldivk - refine the interval value
705  * @a: dividend 1
706  * @b: dividend 2
707  * @k: divisor (as integer)
708  * @c: result
709   *
710  * c = a * b / k
711  *
712  * Returns non-zero if the value is changed, zero if not changed.
713  */
714 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
715 		      unsigned int k, struct snd_interval *c)
716 {
717 	unsigned int r;
718 	if (a->empty || b->empty) {
719 		snd_interval_none(c);
720 		return;
721 	}
722 	c->empty = 0;
723 	c->min = muldiv32(a->min, b->min, k, &r);
724 	c->openmin = (r || a->openmin || b->openmin);
725 	c->max = muldiv32(a->max, b->max, k, &r);
726 	if (r) {
727 		c->max++;
728 		c->openmax = 1;
729 	} else
730 		c->openmax = (a->openmax || b->openmax);
731 	c->integer = 0;
732 }
733 
734 /**
735  * snd_interval_mulkdiv - refine the interval value
736  * @a: dividend 1
737  * @k: dividend 2 (as integer)
738  * @b: divisor
739  * @c: result
740  *
741  * c = a * k / b
742  *
743  * Returns non-zero if the value is changed, zero if not changed.
744  */
745 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
746 		      const struct snd_interval *b, struct snd_interval *c)
747 {
748 	unsigned int r;
749 	if (a->empty || b->empty) {
750 		snd_interval_none(c);
751 		return;
752 	}
753 	c->empty = 0;
754 	c->min = muldiv32(a->min, k, b->max, &r);
755 	c->openmin = (r || a->openmin || b->openmax);
756 	if (b->min > 0) {
757 		c->max = muldiv32(a->max, k, b->min, &r);
758 		if (r) {
759 			c->max++;
760 			c->openmax = 1;
761 		} else
762 			c->openmax = (a->openmax || b->openmin);
763 	} else {
764 		c->max = UINT_MAX;
765 		c->openmax = 0;
766 	}
767 	c->integer = 0;
768 }
769 
770 /* ---- */
771 
772 
773 /**
774  * snd_interval_ratnum - refine the interval value
775  * @i: interval to refine
776  * @rats_count: number of ratnum_t
777  * @rats: ratnum_t array
778  * @nump: pointer to store the resultant numerator
779  * @denp: pointer to store the resultant denominator
780  *
781  * Return: Positive if the value is changed, zero if it's not changed, or a
782  * negative error code.
783  */
784 int snd_interval_ratnum(struct snd_interval *i,
785 			unsigned int rats_count, const struct snd_ratnum *rats,
786 			unsigned int *nump, unsigned int *denp)
787 {
788 	unsigned int best_num, best_den;
789 	int best_diff;
790 	unsigned int k;
791 	struct snd_interval t;
792 	int err;
793 	unsigned int result_num, result_den;
794 	int result_diff;
795 
796 	best_num = best_den = best_diff = 0;
797 	for (k = 0; k < rats_count; ++k) {
798 		unsigned int num = rats[k].num;
799 		unsigned int den;
800 		unsigned int q = i->min;
801 		int diff;
802 		if (q == 0)
803 			q = 1;
804 		den = div_up(num, q);
805 		if (den < rats[k].den_min)
806 			continue;
807 		if (den > rats[k].den_max)
808 			den = rats[k].den_max;
809 		else {
810 			unsigned int r;
811 			r = (den - rats[k].den_min) % rats[k].den_step;
812 			if (r != 0)
813 				den -= r;
814 		}
815 		diff = num - q * den;
816 		if (diff < 0)
817 			diff = -diff;
818 		if (best_num == 0 ||
819 		    diff * best_den < best_diff * den) {
820 			best_diff = diff;
821 			best_den = den;
822 			best_num = num;
823 		}
824 	}
825 	if (best_den == 0) {
826 		i->empty = 1;
827 		return -EINVAL;
828 	}
829 	t.min = div_down(best_num, best_den);
830 	t.openmin = !!(best_num % best_den);
831 
832 	result_num = best_num;
833 	result_diff = best_diff;
834 	result_den = best_den;
835 	best_num = best_den = best_diff = 0;
836 	for (k = 0; k < rats_count; ++k) {
837 		unsigned int num = rats[k].num;
838 		unsigned int den;
839 		unsigned int q = i->max;
840 		int diff;
841 		if (q == 0) {
842 			i->empty = 1;
843 			return -EINVAL;
844 		}
845 		den = div_down(num, q);
846 		if (den > rats[k].den_max)
847 			continue;
848 		if (den < rats[k].den_min)
849 			den = rats[k].den_min;
850 		else {
851 			unsigned int r;
852 			r = (den - rats[k].den_min) % rats[k].den_step;
853 			if (r != 0)
854 				den += rats[k].den_step - r;
855 		}
856 		diff = q * den - num;
857 		if (diff < 0)
858 			diff = -diff;
859 		if (best_num == 0 ||
860 		    diff * best_den < best_diff * den) {
861 			best_diff = diff;
862 			best_den = den;
863 			best_num = num;
864 		}
865 	}
866 	if (best_den == 0) {
867 		i->empty = 1;
868 		return -EINVAL;
869 	}
870 	t.max = div_up(best_num, best_den);
871 	t.openmax = !!(best_num % best_den);
872 	t.integer = 0;
873 	err = snd_interval_refine(i, &t);
874 	if (err < 0)
875 		return err;
876 
877 	if (snd_interval_single(i)) {
878 		if (best_diff * result_den < result_diff * best_den) {
879 			result_num = best_num;
880 			result_den = best_den;
881 		}
882 		if (nump)
883 			*nump = result_num;
884 		if (denp)
885 			*denp = result_den;
886 	}
887 	return err;
888 }
889 EXPORT_SYMBOL(snd_interval_ratnum);
890 
891 /**
892  * snd_interval_ratden - refine the interval value
893  * @i: interval to refine
894  * @rats_count: number of struct ratden
895  * @rats: struct ratden array
896  * @nump: pointer to store the resultant numerator
897  * @denp: pointer to store the resultant denominator
898  *
899  * Return: Positive if the value is changed, zero if it's not changed, or a
900  * negative error code.
901  */
902 static int snd_interval_ratden(struct snd_interval *i,
903 			       unsigned int rats_count,
904 			       const struct snd_ratden *rats,
905 			       unsigned int *nump, unsigned int *denp)
906 {
907 	unsigned int best_num, best_diff, best_den;
908 	unsigned int k;
909 	struct snd_interval t;
910 	int err;
911 
912 	best_num = best_den = best_diff = 0;
913 	for (k = 0; k < rats_count; ++k) {
914 		unsigned int num;
915 		unsigned int den = rats[k].den;
916 		unsigned int q = i->min;
917 		int diff;
918 		num = mul(q, den);
919 		if (num > rats[k].num_max)
920 			continue;
921 		if (num < rats[k].num_min)
922 			num = rats[k].num_max;
923 		else {
924 			unsigned int r;
925 			r = (num - rats[k].num_min) % rats[k].num_step;
926 			if (r != 0)
927 				num += rats[k].num_step - r;
928 		}
929 		diff = num - q * den;
930 		if (best_num == 0 ||
931 		    diff * best_den < best_diff * den) {
932 			best_diff = diff;
933 			best_den = den;
934 			best_num = num;
935 		}
936 	}
937 	if (best_den == 0) {
938 		i->empty = 1;
939 		return -EINVAL;
940 	}
941 	t.min = div_down(best_num, best_den);
942 	t.openmin = !!(best_num % best_den);
943 
944 	best_num = best_den = best_diff = 0;
945 	for (k = 0; k < rats_count; ++k) {
946 		unsigned int num;
947 		unsigned int den = rats[k].den;
948 		unsigned int q = i->max;
949 		int diff;
950 		num = mul(q, den);
951 		if (num < rats[k].num_min)
952 			continue;
953 		if (num > rats[k].num_max)
954 			num = rats[k].num_max;
955 		else {
956 			unsigned int r;
957 			r = (num - rats[k].num_min) % rats[k].num_step;
958 			if (r != 0)
959 				num -= r;
960 		}
961 		diff = q * den - num;
962 		if (best_num == 0 ||
963 		    diff * best_den < best_diff * den) {
964 			best_diff = diff;
965 			best_den = den;
966 			best_num = num;
967 		}
968 	}
969 	if (best_den == 0) {
970 		i->empty = 1;
971 		return -EINVAL;
972 	}
973 	t.max = div_up(best_num, best_den);
974 	t.openmax = !!(best_num % best_den);
975 	t.integer = 0;
976 	err = snd_interval_refine(i, &t);
977 	if (err < 0)
978 		return err;
979 
980 	if (snd_interval_single(i)) {
981 		if (nump)
982 			*nump = best_num;
983 		if (denp)
984 			*denp = best_den;
985 	}
986 	return err;
987 }
988 
989 /**
990  * snd_interval_list - refine the interval value from the list
991  * @i: the interval value to refine
992  * @count: the number of elements in the list
993  * @list: the value list
994  * @mask: the bit-mask to evaluate
995  *
996  * Refines the interval value from the list.
997  * When mask is non-zero, only the elements corresponding to bit 1 are
998  * evaluated.
999  *
1000  * Return: Positive if the value is changed, zero if it's not changed, or a
1001  * negative error code.
1002  */
1003 int snd_interval_list(struct snd_interval *i, unsigned int count,
1004 		      const unsigned int *list, unsigned int mask)
1005 {
1006         unsigned int k;
1007 	struct snd_interval list_range;
1008 
1009 	if (!count) {
1010 		i->empty = 1;
1011 		return -EINVAL;
1012 	}
1013 	snd_interval_any(&list_range);
1014 	list_range.min = UINT_MAX;
1015 	list_range.max = 0;
1016         for (k = 0; k < count; k++) {
1017 		if (mask && !(mask & (1 << k)))
1018 			continue;
1019 		if (!snd_interval_test(i, list[k]))
1020 			continue;
1021 		list_range.min = min(list_range.min, list[k]);
1022 		list_range.max = max(list_range.max, list[k]);
1023         }
1024 	return snd_interval_refine(i, &list_range);
1025 }
1026 EXPORT_SYMBOL(snd_interval_list);
1027 
1028 /**
1029  * snd_interval_ranges - refine the interval value from the list of ranges
1030  * @i: the interval value to refine
1031  * @count: the number of elements in the list of ranges
1032  * @ranges: the ranges list
1033  * @mask: the bit-mask to evaluate
1034  *
1035  * Refines the interval value from the list of ranges.
1036  * When mask is non-zero, only the elements corresponding to bit 1 are
1037  * evaluated.
1038  *
1039  * Return: Positive if the value is changed, zero if it's not changed, or a
1040  * negative error code.
1041  */
1042 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1043 			const struct snd_interval *ranges, unsigned int mask)
1044 {
1045 	unsigned int k;
1046 	struct snd_interval range_union;
1047 	struct snd_interval range;
1048 
1049 	if (!count) {
1050 		snd_interval_none(i);
1051 		return -EINVAL;
1052 	}
1053 	snd_interval_any(&range_union);
1054 	range_union.min = UINT_MAX;
1055 	range_union.max = 0;
1056 	for (k = 0; k < count; k++) {
1057 		if (mask && !(mask & (1 << k)))
1058 			continue;
1059 		snd_interval_copy(&range, &ranges[k]);
1060 		if (snd_interval_refine(&range, i) < 0)
1061 			continue;
1062 		if (snd_interval_empty(&range))
1063 			continue;
1064 
1065 		if (range.min < range_union.min) {
1066 			range_union.min = range.min;
1067 			range_union.openmin = 1;
1068 		}
1069 		if (range.min == range_union.min && !range.openmin)
1070 			range_union.openmin = 0;
1071 		if (range.max > range_union.max) {
1072 			range_union.max = range.max;
1073 			range_union.openmax = 1;
1074 		}
1075 		if (range.max == range_union.max && !range.openmax)
1076 			range_union.openmax = 0;
1077 	}
1078 	return snd_interval_refine(i, &range_union);
1079 }
1080 EXPORT_SYMBOL(snd_interval_ranges);
1081 
1082 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1083 {
1084 	unsigned int n;
1085 	int changed = 0;
1086 	n = i->min % step;
1087 	if (n != 0 || i->openmin) {
1088 		i->min += step - n;
1089 		i->openmin = 0;
1090 		changed = 1;
1091 	}
1092 	n = i->max % step;
1093 	if (n != 0 || i->openmax) {
1094 		i->max -= n;
1095 		i->openmax = 0;
1096 		changed = 1;
1097 	}
1098 	if (snd_interval_checkempty(i)) {
1099 		i->empty = 1;
1100 		return -EINVAL;
1101 	}
1102 	return changed;
1103 }
1104 
1105 /* Info constraints helpers */
1106 
1107 /**
1108  * snd_pcm_hw_rule_add - add the hw-constraint rule
1109  * @runtime: the pcm runtime instance
1110  * @cond: condition bits
1111  * @var: the variable to evaluate
1112  * @func: the evaluation function
1113  * @private: the private data pointer passed to function
1114  * @dep: the dependent variables
1115  *
1116  * Return: Zero if successful, or a negative error code on failure.
1117  */
1118 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1119 			int var,
1120 			snd_pcm_hw_rule_func_t func, void *private,
1121 			int dep, ...)
1122 {
1123 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1124 	struct snd_pcm_hw_rule *c;
1125 	unsigned int k;
1126 	va_list args;
1127 	va_start(args, dep);
1128 	if (constrs->rules_num >= constrs->rules_all) {
1129 		struct snd_pcm_hw_rule *new;
1130 		unsigned int new_rules = constrs->rules_all + 16;
1131 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1132 		if (!new) {
1133 			va_end(args);
1134 			return -ENOMEM;
1135 		}
1136 		if (constrs->rules) {
1137 			memcpy(new, constrs->rules,
1138 			       constrs->rules_num * sizeof(*c));
1139 			kfree(constrs->rules);
1140 		}
1141 		constrs->rules = new;
1142 		constrs->rules_all = new_rules;
1143 	}
1144 	c = &constrs->rules[constrs->rules_num];
1145 	c->cond = cond;
1146 	c->func = func;
1147 	c->var = var;
1148 	c->private = private;
1149 	k = 0;
1150 	while (1) {
1151 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1152 			va_end(args);
1153 			return -EINVAL;
1154 		}
1155 		c->deps[k++] = dep;
1156 		if (dep < 0)
1157 			break;
1158 		dep = va_arg(args, int);
1159 	}
1160 	constrs->rules_num++;
1161 	va_end(args);
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1165 
1166 /**
1167  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1168  * @runtime: PCM runtime instance
1169  * @var: hw_params variable to apply the mask
1170  * @mask: the bitmap mask
1171  *
1172  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1173  *
1174  * Return: Zero if successful, or a negative error code on failure.
1175  */
1176 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1177 			       u_int32_t mask)
1178 {
1179 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1180 	struct snd_mask *maskp = constrs_mask(constrs, var);
1181 	*maskp->bits &= mask;
1182 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1183 	if (*maskp->bits == 0)
1184 		return -EINVAL;
1185 	return 0;
1186 }
1187 
1188 /**
1189  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1190  * @runtime: PCM runtime instance
1191  * @var: hw_params variable to apply the mask
1192  * @mask: the 64bit bitmap mask
1193  *
1194  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1195  *
1196  * Return: Zero if successful, or a negative error code on failure.
1197  */
1198 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199 				 u_int64_t mask)
1200 {
1201 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202 	struct snd_mask *maskp = constrs_mask(constrs, var);
1203 	maskp->bits[0] &= (u_int32_t)mask;
1204 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1205 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1206 	if (! maskp->bits[0] && ! maskp->bits[1])
1207 		return -EINVAL;
1208 	return 0;
1209 }
1210 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1211 
1212 /**
1213  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1214  * @runtime: PCM runtime instance
1215  * @var: hw_params variable to apply the integer constraint
1216  *
1217  * Apply the constraint of integer to an interval parameter.
1218  *
1219  * Return: Positive if the value is changed, zero if it's not changed, or a
1220  * negative error code.
1221  */
1222 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1223 {
1224 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225 	return snd_interval_setinteger(constrs_interval(constrs, var));
1226 }
1227 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1228 
1229 /**
1230  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1231  * @runtime: PCM runtime instance
1232  * @var: hw_params variable to apply the range
1233  * @min: the minimal value
1234  * @max: the maximal value
1235  *
1236  * Apply the min/max range constraint to an interval parameter.
1237  *
1238  * Return: Positive if the value is changed, zero if it's not changed, or a
1239  * negative error code.
1240  */
1241 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1242 				 unsigned int min, unsigned int max)
1243 {
1244 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1245 	struct snd_interval t;
1246 	t.min = min;
1247 	t.max = max;
1248 	t.openmin = t.openmax = 0;
1249 	t.integer = 0;
1250 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1251 }
1252 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1253 
1254 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1255 				struct snd_pcm_hw_rule *rule)
1256 {
1257 	struct snd_pcm_hw_constraint_list *list = rule->private;
1258 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1259 }
1260 
1261 
1262 /**
1263  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1264  * @runtime: PCM runtime instance
1265  * @cond: condition bits
1266  * @var: hw_params variable to apply the list constraint
1267  * @l: list
1268  *
1269  * Apply the list of constraints to an interval parameter.
1270  *
1271  * Return: Zero if successful, or a negative error code on failure.
1272  */
1273 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1274 			       unsigned int cond,
1275 			       snd_pcm_hw_param_t var,
1276 			       const struct snd_pcm_hw_constraint_list *l)
1277 {
1278 	return snd_pcm_hw_rule_add(runtime, cond, var,
1279 				   snd_pcm_hw_rule_list, (void *)l,
1280 				   var, -1);
1281 }
1282 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1283 
1284 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1285 				  struct snd_pcm_hw_rule *rule)
1286 {
1287 	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1288 	return snd_interval_ranges(hw_param_interval(params, rule->var),
1289 				   r->count, r->ranges, r->mask);
1290 }
1291 
1292 
1293 /**
1294  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1295  * @runtime: PCM runtime instance
1296  * @cond: condition bits
1297  * @var: hw_params variable to apply the list of range constraints
1298  * @r: ranges
1299  *
1300  * Apply the list of range constraints to an interval parameter.
1301  *
1302  * Return: Zero if successful, or a negative error code on failure.
1303  */
1304 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1305 				 unsigned int cond,
1306 				 snd_pcm_hw_param_t var,
1307 				 const struct snd_pcm_hw_constraint_ranges *r)
1308 {
1309 	return snd_pcm_hw_rule_add(runtime, cond, var,
1310 				   snd_pcm_hw_rule_ranges, (void *)r,
1311 				   var, -1);
1312 }
1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1314 
1315 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1316 				   struct snd_pcm_hw_rule *rule)
1317 {
1318 	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1319 	unsigned int num = 0, den = 0;
1320 	int err;
1321 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1322 				  r->nrats, r->rats, &num, &den);
1323 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1324 		params->rate_num = num;
1325 		params->rate_den = den;
1326 	}
1327 	return err;
1328 }
1329 
1330 /**
1331  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1332  * @runtime: PCM runtime instance
1333  * @cond: condition bits
1334  * @var: hw_params variable to apply the ratnums constraint
1335  * @r: struct snd_ratnums constriants
1336  *
1337  * Return: Zero if successful, or a negative error code on failure.
1338  */
1339 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1340 				  unsigned int cond,
1341 				  snd_pcm_hw_param_t var,
1342 				  const struct snd_pcm_hw_constraint_ratnums *r)
1343 {
1344 	return snd_pcm_hw_rule_add(runtime, cond, var,
1345 				   snd_pcm_hw_rule_ratnums, (void *)r,
1346 				   var, -1);
1347 }
1348 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1349 
1350 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1351 				   struct snd_pcm_hw_rule *rule)
1352 {
1353 	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1354 	unsigned int num = 0, den = 0;
1355 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1356 				  r->nrats, r->rats, &num, &den);
1357 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1358 		params->rate_num = num;
1359 		params->rate_den = den;
1360 	}
1361 	return err;
1362 }
1363 
1364 /**
1365  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1366  * @runtime: PCM runtime instance
1367  * @cond: condition bits
1368  * @var: hw_params variable to apply the ratdens constraint
1369  * @r: struct snd_ratdens constriants
1370  *
1371  * Return: Zero if successful, or a negative error code on failure.
1372  */
1373 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1374 				  unsigned int cond,
1375 				  snd_pcm_hw_param_t var,
1376 				  const struct snd_pcm_hw_constraint_ratdens *r)
1377 {
1378 	return snd_pcm_hw_rule_add(runtime, cond, var,
1379 				   snd_pcm_hw_rule_ratdens, (void *)r,
1380 				   var, -1);
1381 }
1382 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1383 
1384 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1385 				  struct snd_pcm_hw_rule *rule)
1386 {
1387 	unsigned int l = (unsigned long) rule->private;
1388 	int width = l & 0xffff;
1389 	unsigned int msbits = l >> 16;
1390 	const struct snd_interval *i =
1391 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1392 
1393 	if (!snd_interval_single(i))
1394 		return 0;
1395 
1396 	if ((snd_interval_value(i) == width) ||
1397 	    (width == 0 && snd_interval_value(i) > msbits))
1398 		params->msbits = min_not_zero(params->msbits, msbits);
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405  * @runtime: PCM runtime instance
1406  * @cond: condition bits
1407  * @width: sample bits width
1408  * @msbits: msbits width
1409  *
1410  * This constraint will set the number of most significant bits (msbits) if a
1411  * sample format with the specified width has been select. If width is set to 0
1412  * the msbits will be set for any sample format with a width larger than the
1413  * specified msbits.
1414  *
1415  * Return: Zero if successful, or a negative error code on failure.
1416  */
1417 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1418 				 unsigned int cond,
1419 				 unsigned int width,
1420 				 unsigned int msbits)
1421 {
1422 	unsigned long l = (msbits << 16) | width;
1423 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1424 				    snd_pcm_hw_rule_msbits,
1425 				    (void*) l,
1426 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1427 }
1428 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1429 
1430 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1431 				struct snd_pcm_hw_rule *rule)
1432 {
1433 	unsigned long step = (unsigned long) rule->private;
1434 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1435 }
1436 
1437 /**
1438  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1439  * @runtime: PCM runtime instance
1440  * @cond: condition bits
1441  * @var: hw_params variable to apply the step constraint
1442  * @step: step size
1443  *
1444  * Return: Zero if successful, or a negative error code on failure.
1445  */
1446 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1447 			       unsigned int cond,
1448 			       snd_pcm_hw_param_t var,
1449 			       unsigned long step)
1450 {
1451 	return snd_pcm_hw_rule_add(runtime, cond, var,
1452 				   snd_pcm_hw_rule_step, (void *) step,
1453 				   var, -1);
1454 }
1455 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1456 
1457 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1458 {
1459 	static unsigned int pow2_sizes[] = {
1460 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1461 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1462 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1463 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1464 	};
1465 	return snd_interval_list(hw_param_interval(params, rule->var),
1466 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1467 }
1468 
1469 /**
1470  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1471  * @runtime: PCM runtime instance
1472  * @cond: condition bits
1473  * @var: hw_params variable to apply the power-of-2 constraint
1474  *
1475  * Return: Zero if successful, or a negative error code on failure.
1476  */
1477 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1478 			       unsigned int cond,
1479 			       snd_pcm_hw_param_t var)
1480 {
1481 	return snd_pcm_hw_rule_add(runtime, cond, var,
1482 				   snd_pcm_hw_rule_pow2, NULL,
1483 				   var, -1);
1484 }
1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1486 
1487 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1488 					   struct snd_pcm_hw_rule *rule)
1489 {
1490 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1491 	struct snd_interval *rate;
1492 
1493 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1494 	return snd_interval_list(rate, 1, &base_rate, 0);
1495 }
1496 
1497 /**
1498  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1499  * @runtime: PCM runtime instance
1500  * @base_rate: the rate at which the hardware does not resample
1501  *
1502  * Return: Zero if successful, or a negative error code on failure.
1503  */
1504 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1505 			       unsigned int base_rate)
1506 {
1507 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1508 				   SNDRV_PCM_HW_PARAM_RATE,
1509 				   snd_pcm_hw_rule_noresample_func,
1510 				   (void *)(uintptr_t)base_rate,
1511 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1512 }
1513 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1514 
1515 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1516 				  snd_pcm_hw_param_t var)
1517 {
1518 	if (hw_is_mask(var)) {
1519 		snd_mask_any(hw_param_mask(params, var));
1520 		params->cmask |= 1 << var;
1521 		params->rmask |= 1 << var;
1522 		return;
1523 	}
1524 	if (hw_is_interval(var)) {
1525 		snd_interval_any(hw_param_interval(params, var));
1526 		params->cmask |= 1 << var;
1527 		params->rmask |= 1 << var;
1528 		return;
1529 	}
1530 	snd_BUG();
1531 }
1532 
1533 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1534 {
1535 	unsigned int k;
1536 	memset(params, 0, sizeof(*params));
1537 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1538 		_snd_pcm_hw_param_any(params, k);
1539 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1540 		_snd_pcm_hw_param_any(params, k);
1541 	params->info = ~0U;
1542 }
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1544 
1545 /**
1546  * snd_pcm_hw_param_value - return @params field @var value
1547  * @params: the hw_params instance
1548  * @var: parameter to retrieve
1549  * @dir: pointer to the direction (-1,0,1) or %NULL
1550  *
1551  * Return: The value for field @var if it's fixed in configuration space
1552  * defined by @params. -%EINVAL otherwise.
1553  */
1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1555 			   snd_pcm_hw_param_t var, int *dir)
1556 {
1557 	if (hw_is_mask(var)) {
1558 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1559 		if (!snd_mask_single(mask))
1560 			return -EINVAL;
1561 		if (dir)
1562 			*dir = 0;
1563 		return snd_mask_value(mask);
1564 	}
1565 	if (hw_is_interval(var)) {
1566 		const struct snd_interval *i = hw_param_interval_c(params, var);
1567 		if (!snd_interval_single(i))
1568 			return -EINVAL;
1569 		if (dir)
1570 			*dir = i->openmin;
1571 		return snd_interval_value(i);
1572 	}
1573 	return -EINVAL;
1574 }
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576 
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578 				snd_pcm_hw_param_t var)
1579 {
1580 	if (hw_is_mask(var)) {
1581 		snd_mask_none(hw_param_mask(params, var));
1582 		params->cmask |= 1 << var;
1583 		params->rmask |= 1 << var;
1584 	} else if (hw_is_interval(var)) {
1585 		snd_interval_none(hw_param_interval(params, var));
1586 		params->cmask |= 1 << var;
1587 		params->rmask |= 1 << var;
1588 	} else {
1589 		snd_BUG();
1590 	}
1591 }
1592 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1593 
1594 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1595 				   snd_pcm_hw_param_t var)
1596 {
1597 	int changed;
1598 	if (hw_is_mask(var))
1599 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1600 	else if (hw_is_interval(var))
1601 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1602 	else
1603 		return -EINVAL;
1604 	if (changed) {
1605 		params->cmask |= 1 << var;
1606 		params->rmask |= 1 << var;
1607 	}
1608 	return changed;
1609 }
1610 
1611 
1612 /**
1613  * snd_pcm_hw_param_first - refine config space and return minimum value
1614  * @pcm: PCM instance
1615  * @params: the hw_params instance
1616  * @var: parameter to retrieve
1617  * @dir: pointer to the direction (-1,0,1) or %NULL
1618  *
1619  * Inside configuration space defined by @params remove from @var all
1620  * values > minimum. Reduce configuration space accordingly.
1621  *
1622  * Return: The minimum, or a negative error code on failure.
1623  */
1624 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1625 			   struct snd_pcm_hw_params *params,
1626 			   snd_pcm_hw_param_t var, int *dir)
1627 {
1628 	int changed = _snd_pcm_hw_param_first(params, var);
1629 	if (changed < 0)
1630 		return changed;
1631 	if (params->rmask) {
1632 		int err = snd_pcm_hw_refine(pcm, params);
1633 		if (snd_BUG_ON(err < 0))
1634 			return err;
1635 	}
1636 	return snd_pcm_hw_param_value(params, var, dir);
1637 }
1638 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1639 
1640 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1641 				  snd_pcm_hw_param_t var)
1642 {
1643 	int changed;
1644 	if (hw_is_mask(var))
1645 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1646 	else if (hw_is_interval(var))
1647 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1648 	else
1649 		return -EINVAL;
1650 	if (changed) {
1651 		params->cmask |= 1 << var;
1652 		params->rmask |= 1 << var;
1653 	}
1654 	return changed;
1655 }
1656 
1657 
1658 /**
1659  * snd_pcm_hw_param_last - refine config space and return maximum value
1660  * @pcm: PCM instance
1661  * @params: the hw_params instance
1662  * @var: parameter to retrieve
1663  * @dir: pointer to the direction (-1,0,1) or %NULL
1664  *
1665  * Inside configuration space defined by @params remove from @var all
1666  * values < maximum. Reduce configuration space accordingly.
1667  *
1668  * Return: The maximum, or a negative error code on failure.
1669  */
1670 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1671 			  struct snd_pcm_hw_params *params,
1672 			  snd_pcm_hw_param_t var, int *dir)
1673 {
1674 	int changed = _snd_pcm_hw_param_last(params, var);
1675 	if (changed < 0)
1676 		return changed;
1677 	if (params->rmask) {
1678 		int err = snd_pcm_hw_refine(pcm, params);
1679 		if (snd_BUG_ON(err < 0))
1680 			return err;
1681 	}
1682 	return snd_pcm_hw_param_value(params, var, dir);
1683 }
1684 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1685 
1686 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1687 				   void *arg)
1688 {
1689 	struct snd_pcm_runtime *runtime = substream->runtime;
1690 	unsigned long flags;
1691 	snd_pcm_stream_lock_irqsave(substream, flags);
1692 	if (snd_pcm_running(substream) &&
1693 	    snd_pcm_update_hw_ptr(substream) >= 0)
1694 		runtime->status->hw_ptr %= runtime->buffer_size;
1695 	else {
1696 		runtime->status->hw_ptr = 0;
1697 		runtime->hw_ptr_wrap = 0;
1698 	}
1699 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1700 	return 0;
1701 }
1702 
1703 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1704 					  void *arg)
1705 {
1706 	struct snd_pcm_channel_info *info = arg;
1707 	struct snd_pcm_runtime *runtime = substream->runtime;
1708 	int width;
1709 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1710 		info->offset = -1;
1711 		return 0;
1712 	}
1713 	width = snd_pcm_format_physical_width(runtime->format);
1714 	if (width < 0)
1715 		return width;
1716 	info->offset = 0;
1717 	switch (runtime->access) {
1718 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1719 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1720 		info->first = info->channel * width;
1721 		info->step = runtime->channels * width;
1722 		break;
1723 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1724 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1725 	{
1726 		size_t size = runtime->dma_bytes / runtime->channels;
1727 		info->first = info->channel * size * 8;
1728 		info->step = width;
1729 		break;
1730 	}
1731 	default:
1732 		snd_BUG();
1733 		break;
1734 	}
1735 	return 0;
1736 }
1737 
1738 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1739 				       void *arg)
1740 {
1741 	struct snd_pcm_hw_params *params = arg;
1742 	snd_pcm_format_t format;
1743 	int channels;
1744 	ssize_t frame_size;
1745 
1746 	params->fifo_size = substream->runtime->hw.fifo_size;
1747 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1748 		format = params_format(params);
1749 		channels = params_channels(params);
1750 		frame_size = snd_pcm_format_size(format, channels);
1751 		if (frame_size > 0)
1752 			params->fifo_size /= (unsigned)frame_size;
1753 	}
1754 	return 0;
1755 }
1756 
1757 /**
1758  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1759  * @substream: the pcm substream instance
1760  * @cmd: ioctl command
1761  * @arg: ioctl argument
1762  *
1763  * Processes the generic ioctl commands for PCM.
1764  * Can be passed as the ioctl callback for PCM ops.
1765  *
1766  * Return: Zero if successful, or a negative error code on failure.
1767  */
1768 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1769 		      unsigned int cmd, void *arg)
1770 {
1771 	switch (cmd) {
1772 	case SNDRV_PCM_IOCTL1_RESET:
1773 		return snd_pcm_lib_ioctl_reset(substream, arg);
1774 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1775 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1776 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1777 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1778 	}
1779 	return -ENXIO;
1780 }
1781 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1782 
1783 /**
1784  * snd_pcm_period_elapsed - update the pcm status for the next period
1785  * @substream: the pcm substream instance
1786  *
1787  * This function is called from the interrupt handler when the
1788  * PCM has processed the period size.  It will update the current
1789  * pointer, wake up sleepers, etc.
1790  *
1791  * Even if more than one periods have elapsed since the last call, you
1792  * have to call this only once.
1793  */
1794 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1795 {
1796 	struct snd_pcm_runtime *runtime;
1797 	unsigned long flags;
1798 
1799 	if (PCM_RUNTIME_CHECK(substream))
1800 		return;
1801 	runtime = substream->runtime;
1802 
1803 	snd_pcm_stream_lock_irqsave(substream, flags);
1804 	if (!snd_pcm_running(substream) ||
1805 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1806 		goto _end;
1807 
1808 #ifdef CONFIG_SND_PCM_TIMER
1809 	if (substream->timer_running)
1810 		snd_timer_interrupt(substream->timer, 1);
1811 #endif
1812  _end:
1813 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1814 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1815 }
1816 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1817 
1818 /*
1819  * Wait until avail_min data becomes available
1820  * Returns a negative error code if any error occurs during operation.
1821  * The available space is stored on availp.  When err = 0 and avail = 0
1822  * on the capture stream, it indicates the stream is in DRAINING state.
1823  */
1824 static int wait_for_avail(struct snd_pcm_substream *substream,
1825 			      snd_pcm_uframes_t *availp)
1826 {
1827 	struct snd_pcm_runtime *runtime = substream->runtime;
1828 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1829 	wait_queue_entry_t wait;
1830 	int err = 0;
1831 	snd_pcm_uframes_t avail = 0;
1832 	long wait_time, tout;
1833 
1834 	init_waitqueue_entry(&wait, current);
1835 	set_current_state(TASK_INTERRUPTIBLE);
1836 	add_wait_queue(&runtime->tsleep, &wait);
1837 
1838 	if (runtime->no_period_wakeup)
1839 		wait_time = MAX_SCHEDULE_TIMEOUT;
1840 	else {
1841 		wait_time = 10;
1842 		if (runtime->rate) {
1843 			long t = runtime->period_size * 2 / runtime->rate;
1844 			wait_time = max(t, wait_time);
1845 		}
1846 		wait_time = msecs_to_jiffies(wait_time * 1000);
1847 	}
1848 
1849 	for (;;) {
1850 		if (signal_pending(current)) {
1851 			err = -ERESTARTSYS;
1852 			break;
1853 		}
1854 
1855 		/*
1856 		 * We need to check if space became available already
1857 		 * (and thus the wakeup happened already) first to close
1858 		 * the race of space already having become available.
1859 		 * This check must happen after been added to the waitqueue
1860 		 * and having current state be INTERRUPTIBLE.
1861 		 */
1862 		if (is_playback)
1863 			avail = snd_pcm_playback_avail(runtime);
1864 		else
1865 			avail = snd_pcm_capture_avail(runtime);
1866 		if (avail >= runtime->twake)
1867 			break;
1868 		snd_pcm_stream_unlock_irq(substream);
1869 
1870 		tout = schedule_timeout(wait_time);
1871 
1872 		snd_pcm_stream_lock_irq(substream);
1873 		set_current_state(TASK_INTERRUPTIBLE);
1874 		switch (runtime->status->state) {
1875 		case SNDRV_PCM_STATE_SUSPENDED:
1876 			err = -ESTRPIPE;
1877 			goto _endloop;
1878 		case SNDRV_PCM_STATE_XRUN:
1879 			err = -EPIPE;
1880 			goto _endloop;
1881 		case SNDRV_PCM_STATE_DRAINING:
1882 			if (is_playback)
1883 				err = -EPIPE;
1884 			else
1885 				avail = 0; /* indicate draining */
1886 			goto _endloop;
1887 		case SNDRV_PCM_STATE_OPEN:
1888 		case SNDRV_PCM_STATE_SETUP:
1889 		case SNDRV_PCM_STATE_DISCONNECTED:
1890 			err = -EBADFD;
1891 			goto _endloop;
1892 		case SNDRV_PCM_STATE_PAUSED:
1893 			continue;
1894 		}
1895 		if (!tout) {
1896 			pcm_dbg(substream->pcm,
1897 				"%s write error (DMA or IRQ trouble?)\n",
1898 				is_playback ? "playback" : "capture");
1899 			err = -EIO;
1900 			break;
1901 		}
1902 	}
1903  _endloop:
1904 	set_current_state(TASK_RUNNING);
1905 	remove_wait_queue(&runtime->tsleep, &wait);
1906 	*availp = avail;
1907 	return err;
1908 }
1909 
1910 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1911 			      int channel, unsigned long hwoff,
1912 			      void *buf, unsigned long bytes);
1913 
1914 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1915 			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1916 
1917 /* calculate the target DMA-buffer position to be written/read */
1918 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1919 			   int channel, unsigned long hwoff)
1920 {
1921 	return runtime->dma_area + hwoff +
1922 		channel * (runtime->dma_bytes / runtime->channels);
1923 }
1924 
1925 /* default copy_user ops for write; used for both interleaved and non- modes */
1926 static int default_write_copy(struct snd_pcm_substream *substream,
1927 			      int channel, unsigned long hwoff,
1928 			      void *buf, unsigned long bytes)
1929 {
1930 	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1931 			   (void __user *)buf, bytes))
1932 		return -EFAULT;
1933 	return 0;
1934 }
1935 
1936 /* default copy_kernel ops for write */
1937 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1938 				     int channel, unsigned long hwoff,
1939 				     void *buf, unsigned long bytes)
1940 {
1941 	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1942 	return 0;
1943 }
1944 
1945 /* fill silence instead of copy data; called as a transfer helper
1946  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1947  * a NULL buffer is passed
1948  */
1949 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1950 			unsigned long hwoff, void *buf, unsigned long bytes)
1951 {
1952 	struct snd_pcm_runtime *runtime = substream->runtime;
1953 
1954 	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1955 		return 0;
1956 	if (substream->ops->fill_silence)
1957 		return substream->ops->fill_silence(substream, channel,
1958 						    hwoff, bytes);
1959 
1960 	snd_pcm_format_set_silence(runtime->format,
1961 				   get_dma_ptr(runtime, channel, hwoff),
1962 				   bytes_to_samples(runtime, bytes));
1963 	return 0;
1964 }
1965 
1966 /* default copy_user ops for read; used for both interleaved and non- modes */
1967 static int default_read_copy(struct snd_pcm_substream *substream,
1968 			     int channel, unsigned long hwoff,
1969 			     void *buf, unsigned long bytes)
1970 {
1971 	if (copy_to_user((void __user *)buf,
1972 			 get_dma_ptr(substream->runtime, channel, hwoff),
1973 			 bytes))
1974 		return -EFAULT;
1975 	return 0;
1976 }
1977 
1978 /* default copy_kernel ops for read */
1979 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1980 				    int channel, unsigned long hwoff,
1981 				    void *buf, unsigned long bytes)
1982 {
1983 	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1984 	return 0;
1985 }
1986 
1987 /* call transfer function with the converted pointers and sizes;
1988  * for interleaved mode, it's one shot for all samples
1989  */
1990 static int interleaved_copy(struct snd_pcm_substream *substream,
1991 			    snd_pcm_uframes_t hwoff, void *data,
1992 			    snd_pcm_uframes_t off,
1993 			    snd_pcm_uframes_t frames,
1994 			    pcm_transfer_f transfer)
1995 {
1996 	struct snd_pcm_runtime *runtime = substream->runtime;
1997 
1998 	/* convert to bytes */
1999 	hwoff = frames_to_bytes(runtime, hwoff);
2000 	off = frames_to_bytes(runtime, off);
2001 	frames = frames_to_bytes(runtime, frames);
2002 	return transfer(substream, 0, hwoff, data + off, frames);
2003 }
2004 
2005 /* call transfer function with the converted pointers and sizes for each
2006  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2007  */
2008 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2009 			       snd_pcm_uframes_t hwoff, void *data,
2010 			       snd_pcm_uframes_t off,
2011 			       snd_pcm_uframes_t frames,
2012 			       pcm_transfer_f transfer)
2013 {
2014 	struct snd_pcm_runtime *runtime = substream->runtime;
2015 	int channels = runtime->channels;
2016 	void **bufs = data;
2017 	int c, err;
2018 
2019 	/* convert to bytes; note that it's not frames_to_bytes() here.
2020 	 * in non-interleaved mode, we copy for each channel, thus
2021 	 * each copy is n_samples bytes x channels = whole frames.
2022 	 */
2023 	off = samples_to_bytes(runtime, off);
2024 	frames = samples_to_bytes(runtime, frames);
2025 	hwoff = samples_to_bytes(runtime, hwoff);
2026 	for (c = 0; c < channels; ++c, ++bufs) {
2027 		if (!data || !*bufs)
2028 			err = fill_silence(substream, c, hwoff, NULL, frames);
2029 		else
2030 			err = transfer(substream, c, hwoff, *bufs + off,
2031 				       frames);
2032 		if (err < 0)
2033 			return err;
2034 	}
2035 	return 0;
2036 }
2037 
2038 /* fill silence on the given buffer position;
2039  * called from snd_pcm_playback_silence()
2040  */
2041 static int fill_silence_frames(struct snd_pcm_substream *substream,
2042 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2043 {
2044 	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2045 	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2046 		return interleaved_copy(substream, off, NULL, 0, frames,
2047 					fill_silence);
2048 	else
2049 		return noninterleaved_copy(substream, off, NULL, 0, frames,
2050 					   fill_silence);
2051 }
2052 
2053 /* sanity-check for read/write methods */
2054 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2055 {
2056 	struct snd_pcm_runtime *runtime;
2057 	if (PCM_RUNTIME_CHECK(substream))
2058 		return -ENXIO;
2059 	runtime = substream->runtime;
2060 	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2061 		return -EINVAL;
2062 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2063 		return -EBADFD;
2064 	return 0;
2065 }
2066 
2067 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2068 {
2069 	switch (runtime->status->state) {
2070 	case SNDRV_PCM_STATE_PREPARED:
2071 	case SNDRV_PCM_STATE_RUNNING:
2072 	case SNDRV_PCM_STATE_PAUSED:
2073 		return 0;
2074 	case SNDRV_PCM_STATE_XRUN:
2075 		return -EPIPE;
2076 	case SNDRV_PCM_STATE_SUSPENDED:
2077 		return -ESTRPIPE;
2078 	default:
2079 		return -EBADFD;
2080 	}
2081 }
2082 
2083 /* update to the given appl_ptr and call ack callback if needed;
2084  * when an error is returned, take back to the original value
2085  */
2086 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2087 			   snd_pcm_uframes_t appl_ptr)
2088 {
2089 	struct snd_pcm_runtime *runtime = substream->runtime;
2090 	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2091 	int ret;
2092 
2093 	if (old_appl_ptr == appl_ptr)
2094 		return 0;
2095 
2096 	runtime->control->appl_ptr = appl_ptr;
2097 	if (substream->ops->ack) {
2098 		ret = substream->ops->ack(substream);
2099 		if (ret < 0) {
2100 			runtime->control->appl_ptr = old_appl_ptr;
2101 			return ret;
2102 		}
2103 	}
2104 
2105 	trace_applptr(substream, old_appl_ptr, appl_ptr);
2106 
2107 	return 0;
2108 }
2109 
2110 /* the common loop for read/write data */
2111 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2112 				     void *data, bool interleaved,
2113 				     snd_pcm_uframes_t size, bool in_kernel)
2114 {
2115 	struct snd_pcm_runtime *runtime = substream->runtime;
2116 	snd_pcm_uframes_t xfer = 0;
2117 	snd_pcm_uframes_t offset = 0;
2118 	snd_pcm_uframes_t avail;
2119 	pcm_copy_f writer;
2120 	pcm_transfer_f transfer;
2121 	bool nonblock;
2122 	bool is_playback;
2123 	int err;
2124 
2125 	err = pcm_sanity_check(substream);
2126 	if (err < 0)
2127 		return err;
2128 
2129 	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2130 	if (interleaved) {
2131 		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2132 		    runtime->channels > 1)
2133 			return -EINVAL;
2134 		writer = interleaved_copy;
2135 	} else {
2136 		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2137 			return -EINVAL;
2138 		writer = noninterleaved_copy;
2139 	}
2140 
2141 	if (!data) {
2142 		if (is_playback)
2143 			transfer = fill_silence;
2144 		else
2145 			return -EINVAL;
2146 	} else if (in_kernel) {
2147 		if (substream->ops->copy_kernel)
2148 			transfer = substream->ops->copy_kernel;
2149 		else
2150 			transfer = is_playback ?
2151 				default_write_copy_kernel : default_read_copy_kernel;
2152 	} else {
2153 		if (substream->ops->copy_user)
2154 			transfer = (pcm_transfer_f)substream->ops->copy_user;
2155 		else
2156 			transfer = is_playback ?
2157 				default_write_copy : default_read_copy;
2158 	}
2159 
2160 	if (size == 0)
2161 		return 0;
2162 
2163 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2164 
2165 	snd_pcm_stream_lock_irq(substream);
2166 	err = pcm_accessible_state(runtime);
2167 	if (err < 0)
2168 		goto _end_unlock;
2169 
2170 	if (!is_playback &&
2171 	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2172 	    size >= runtime->start_threshold) {
2173 		err = snd_pcm_start(substream);
2174 		if (err < 0)
2175 			goto _end_unlock;
2176 	}
2177 
2178 	runtime->twake = runtime->control->avail_min ? : 1;
2179 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2180 		snd_pcm_update_hw_ptr(substream);
2181 	if (is_playback)
2182 		avail = snd_pcm_playback_avail(runtime);
2183 	else
2184 		avail = snd_pcm_capture_avail(runtime);
2185 	while (size > 0) {
2186 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2187 		snd_pcm_uframes_t cont;
2188 		if (!avail) {
2189 			if (!is_playback &&
2190 			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2191 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2192 				goto _end_unlock;
2193 			}
2194 			if (nonblock) {
2195 				err = -EAGAIN;
2196 				goto _end_unlock;
2197 			}
2198 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2199 					runtime->control->avail_min ? : 1);
2200 			err = wait_for_avail(substream, &avail);
2201 			if (err < 0)
2202 				goto _end_unlock;
2203 			if (!avail)
2204 				continue; /* draining */
2205 		}
2206 		frames = size > avail ? avail : size;
2207 		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2208 		appl_ofs = appl_ptr % runtime->buffer_size;
2209 		cont = runtime->buffer_size - appl_ofs;
2210 		if (frames > cont)
2211 			frames = cont;
2212 		if (snd_BUG_ON(!frames)) {
2213 			runtime->twake = 0;
2214 			snd_pcm_stream_unlock_irq(substream);
2215 			return -EINVAL;
2216 		}
2217 		snd_pcm_stream_unlock_irq(substream);
2218 		err = writer(substream, appl_ofs, data, offset, frames,
2219 			     transfer);
2220 		snd_pcm_stream_lock_irq(substream);
2221 		if (err < 0)
2222 			goto _end_unlock;
2223 		err = pcm_accessible_state(runtime);
2224 		if (err < 0)
2225 			goto _end_unlock;
2226 		appl_ptr += frames;
2227 		if (appl_ptr >= runtime->boundary)
2228 			appl_ptr -= runtime->boundary;
2229 		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2230 		if (err < 0)
2231 			goto _end_unlock;
2232 
2233 		offset += frames;
2234 		size -= frames;
2235 		xfer += frames;
2236 		avail -= frames;
2237 		if (is_playback &&
2238 		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2239 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2240 			err = snd_pcm_start(substream);
2241 			if (err < 0)
2242 				goto _end_unlock;
2243 		}
2244 	}
2245  _end_unlock:
2246 	runtime->twake = 0;
2247 	if (xfer > 0 && err >= 0)
2248 		snd_pcm_update_state(substream, runtime);
2249 	snd_pcm_stream_unlock_irq(substream);
2250 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2251 }
2252 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2253 
2254 /*
2255  * standard channel mapping helpers
2256  */
2257 
2258 /* default channel maps for multi-channel playbacks, up to 8 channels */
2259 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2260 	{ .channels = 1,
2261 	  .map = { SNDRV_CHMAP_MONO } },
2262 	{ .channels = 2,
2263 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2264 	{ .channels = 4,
2265 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2266 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2267 	{ .channels = 6,
2268 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2271 	{ .channels = 8,
2272 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2273 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2274 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2275 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2276 	{ }
2277 };
2278 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2279 
2280 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2281 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2282 	{ .channels = 1,
2283 	  .map = { SNDRV_CHMAP_MONO } },
2284 	{ .channels = 2,
2285 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2286 	{ .channels = 4,
2287 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2288 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289 	{ .channels = 6,
2290 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2293 	{ .channels = 8,
2294 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2295 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2296 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2297 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2298 	{ }
2299 };
2300 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2301 
2302 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2303 {
2304 	if (ch > info->max_channels)
2305 		return false;
2306 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2307 }
2308 
2309 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2310 			      struct snd_ctl_elem_info *uinfo)
2311 {
2312 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2313 
2314 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2315 	uinfo->count = 0;
2316 	uinfo->count = info->max_channels;
2317 	uinfo->value.integer.min = 0;
2318 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2319 	return 0;
2320 }
2321 
2322 /* get callback for channel map ctl element
2323  * stores the channel position firstly matching with the current channels
2324  */
2325 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2326 			     struct snd_ctl_elem_value *ucontrol)
2327 {
2328 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2329 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2330 	struct snd_pcm_substream *substream;
2331 	const struct snd_pcm_chmap_elem *map;
2332 
2333 	if (!info->chmap)
2334 		return -EINVAL;
2335 	substream = snd_pcm_chmap_substream(info, idx);
2336 	if (!substream)
2337 		return -ENODEV;
2338 	memset(ucontrol->value.integer.value, 0,
2339 	       sizeof(ucontrol->value.integer.value));
2340 	if (!substream->runtime)
2341 		return 0; /* no channels set */
2342 	for (map = info->chmap; map->channels; map++) {
2343 		int i;
2344 		if (map->channels == substream->runtime->channels &&
2345 		    valid_chmap_channels(info, map->channels)) {
2346 			for (i = 0; i < map->channels; i++)
2347 				ucontrol->value.integer.value[i] = map->map[i];
2348 			return 0;
2349 		}
2350 	}
2351 	return -EINVAL;
2352 }
2353 
2354 /* tlv callback for channel map ctl element
2355  * expands the pre-defined channel maps in a form of TLV
2356  */
2357 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2358 			     unsigned int size, unsigned int __user *tlv)
2359 {
2360 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2361 	const struct snd_pcm_chmap_elem *map;
2362 	unsigned int __user *dst;
2363 	int c, count = 0;
2364 
2365 	if (!info->chmap)
2366 		return -EINVAL;
2367 	if (size < 8)
2368 		return -ENOMEM;
2369 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2370 		return -EFAULT;
2371 	size -= 8;
2372 	dst = tlv + 2;
2373 	for (map = info->chmap; map->channels; map++) {
2374 		int chs_bytes = map->channels * 4;
2375 		if (!valid_chmap_channels(info, map->channels))
2376 			continue;
2377 		if (size < 8)
2378 			return -ENOMEM;
2379 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2380 		    put_user(chs_bytes, dst + 1))
2381 			return -EFAULT;
2382 		dst += 2;
2383 		size -= 8;
2384 		count += 8;
2385 		if (size < chs_bytes)
2386 			return -ENOMEM;
2387 		size -= chs_bytes;
2388 		count += chs_bytes;
2389 		for (c = 0; c < map->channels; c++) {
2390 			if (put_user(map->map[c], dst))
2391 				return -EFAULT;
2392 			dst++;
2393 		}
2394 	}
2395 	if (put_user(count, tlv + 1))
2396 		return -EFAULT;
2397 	return 0;
2398 }
2399 
2400 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2401 {
2402 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2403 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2404 	kfree(info);
2405 }
2406 
2407 /**
2408  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2409  * @pcm: the assigned PCM instance
2410  * @stream: stream direction
2411  * @chmap: channel map elements (for query)
2412  * @max_channels: the max number of channels for the stream
2413  * @private_value: the value passed to each kcontrol's private_value field
2414  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2415  *
2416  * Create channel-mapping control elements assigned to the given PCM stream(s).
2417  * Return: Zero if successful, or a negative error value.
2418  */
2419 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2420 			   const struct snd_pcm_chmap_elem *chmap,
2421 			   int max_channels,
2422 			   unsigned long private_value,
2423 			   struct snd_pcm_chmap **info_ret)
2424 {
2425 	struct snd_pcm_chmap *info;
2426 	struct snd_kcontrol_new knew = {
2427 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2428 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2429 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2430 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2431 		.info = pcm_chmap_ctl_info,
2432 		.get = pcm_chmap_ctl_get,
2433 		.tlv.c = pcm_chmap_ctl_tlv,
2434 	};
2435 	int err;
2436 
2437 	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2438 		return -EBUSY;
2439 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2440 	if (!info)
2441 		return -ENOMEM;
2442 	info->pcm = pcm;
2443 	info->stream = stream;
2444 	info->chmap = chmap;
2445 	info->max_channels = max_channels;
2446 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2447 		knew.name = "Playback Channel Map";
2448 	else
2449 		knew.name = "Capture Channel Map";
2450 	knew.device = pcm->device;
2451 	knew.count = pcm->streams[stream].substream_count;
2452 	knew.private_value = private_value;
2453 	info->kctl = snd_ctl_new1(&knew, info);
2454 	if (!info->kctl) {
2455 		kfree(info);
2456 		return -ENOMEM;
2457 	}
2458 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2459 	err = snd_ctl_add(pcm->card, info->kctl);
2460 	if (err < 0)
2461 		return err;
2462 	pcm->streams[stream].chmap_kctl = info->kctl;
2463 	if (info_ret)
2464 		*info_ret = info;
2465 	return 0;
2466 }
2467 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2468