xref: /openbmc/linux/sound/core/pcm_lib.c (revision b627b4ed)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31 
32 /*
33  * fill ring buffer with silence
34  * runtime->silence_start: starting pointer to silence area
35  * runtime->silence_filled: size filled with silence
36  * runtime->silence_threshold: threshold from application
37  * runtime->silence_size: maximal size from application
38  *
39  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40  */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43 	struct snd_pcm_runtime *runtime = substream->runtime;
44 	snd_pcm_uframes_t frames, ofs, transfer;
45 
46 	if (runtime->silence_size < runtime->boundary) {
47 		snd_pcm_sframes_t noise_dist, n;
48 		if (runtime->silence_start != runtime->control->appl_ptr) {
49 			n = runtime->control->appl_ptr - runtime->silence_start;
50 			if (n < 0)
51 				n += runtime->boundary;
52 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53 				runtime->silence_filled -= n;
54 			else
55 				runtime->silence_filled = 0;
56 			runtime->silence_start = runtime->control->appl_ptr;
57 		}
58 		if (runtime->silence_filled >= runtime->buffer_size)
59 			return;
60 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62 			return;
63 		frames = runtime->silence_threshold - noise_dist;
64 		if (frames > runtime->silence_size)
65 			frames = runtime->silence_size;
66 	} else {
67 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
68 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69 			runtime->silence_filled = avail > 0 ? avail : 0;
70 			runtime->silence_start = (runtime->status->hw_ptr +
71 						  runtime->silence_filled) %
72 						 runtime->boundary;
73 		} else {
74 			ofs = runtime->status->hw_ptr;
75 			frames = new_hw_ptr - ofs;
76 			if ((snd_pcm_sframes_t)frames < 0)
77 				frames += runtime->boundary;
78 			runtime->silence_filled -= frames;
79 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80 				runtime->silence_filled = 0;
81 				runtime->silence_start = new_hw_ptr;
82 			} else {
83 				runtime->silence_start = ofs;
84 			}
85 		}
86 		frames = runtime->buffer_size - runtime->silence_filled;
87 	}
88 	if (snd_BUG_ON(frames > runtime->buffer_size))
89 		return;
90 	if (frames == 0)
91 		return;
92 	ofs = runtime->silence_start % runtime->buffer_size;
93 	while (frames > 0) {
94 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97 			if (substream->ops->silence) {
98 				int err;
99 				err = substream->ops->silence(substream, -1, ofs, transfer);
100 				snd_BUG_ON(err < 0);
101 			} else {
102 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104 			}
105 		} else {
106 			unsigned int c;
107 			unsigned int channels = runtime->channels;
108 			if (substream->ops->silence) {
109 				for (c = 0; c < channels; ++c) {
110 					int err;
111 					err = substream->ops->silence(substream, c, ofs, transfer);
112 					snd_BUG_ON(err < 0);
113 				}
114 			} else {
115 				size_t dma_csize = runtime->dma_bytes / channels;
116 				for (c = 0; c < channels; ++c) {
117 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119 				}
120 			}
121 		}
122 		runtime->silence_filled += transfer;
123 		frames -= transfer;
124 		ofs = 0;
125 	}
126 }
127 
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 #define xrun_debug(substream)	((substream)->pstr->xrun_debug)
130 #else
131 #define xrun_debug(substream)	0
132 #endif
133 
134 #define dump_stack_on_xrun(substream) do {	\
135 		if (xrun_debug(substream) > 1)	\
136 			dump_stack();		\
137 	} while (0)
138 
139 static void xrun(struct snd_pcm_substream *substream)
140 {
141 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
142 	if (xrun_debug(substream)) {
143 		snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
144 			   substream->pcm->card->number,
145 			   substream->pcm->device,
146 			   substream->stream ? 'c' : 'p');
147 		dump_stack_on_xrun(substream);
148 	}
149 }
150 
151 static snd_pcm_uframes_t
152 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
153 			  struct snd_pcm_runtime *runtime)
154 {
155 	snd_pcm_uframes_t pos;
156 
157 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
158 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
159 	pos = substream->ops->pointer(substream);
160 	if (pos == SNDRV_PCM_POS_XRUN)
161 		return pos; /* XRUN */
162 	if (pos >= runtime->buffer_size) {
163 		if (printk_ratelimit()) {
164 			snd_printd(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, "
165 				   "buffer size = 0x%lx, period size = 0x%lx\n",
166 				   substream->stream, pos, runtime->buffer_size,
167 				   runtime->period_size);
168 		}
169 		pos = 0;
170 	}
171 	pos -= pos % runtime->min_align;
172 	return pos;
173 }
174 
175 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
176 				      struct snd_pcm_runtime *runtime)
177 {
178 	snd_pcm_uframes_t avail;
179 
180 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
181 		avail = snd_pcm_playback_avail(runtime);
182 	else
183 		avail = snd_pcm_capture_avail(runtime);
184 	if (avail > runtime->avail_max)
185 		runtime->avail_max = avail;
186 	if (avail >= runtime->stop_threshold) {
187 		if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
188 			snd_pcm_drain_done(substream);
189 		else
190 			xrun(substream);
191 		return -EPIPE;
192 	}
193 	if (avail >= runtime->control->avail_min)
194 		wake_up(&runtime->sleep);
195 	return 0;
196 }
197 
198 #define hw_ptr_error(substream, fmt, args...)				\
199 	do {								\
200 		if (xrun_debug(substream)) {				\
201 			if (printk_ratelimit()) {			\
202 				snd_printd("PCM: " fmt, ##args);	\
203 			}						\
204 			dump_stack_on_xrun(substream);			\
205 		}							\
206 	} while (0)
207 
208 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
209 {
210 	struct snd_pcm_runtime *runtime = substream->runtime;
211 	snd_pcm_uframes_t pos;
212 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
213 	snd_pcm_sframes_t hdelta, delta;
214 	unsigned long jdelta;
215 
216 	old_hw_ptr = runtime->status->hw_ptr;
217 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
218 	if (pos == SNDRV_PCM_POS_XRUN) {
219 		xrun(substream);
220 		return -EPIPE;
221 	}
222 	hw_base = runtime->hw_ptr_base;
223 	new_hw_ptr = hw_base + pos;
224 	hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
225 	delta = new_hw_ptr - hw_ptr_interrupt;
226 	if (hw_ptr_interrupt >= runtime->boundary) {
227 		hw_ptr_interrupt -= runtime->boundary;
228 		if (hw_base < runtime->boundary / 2)
229 			/* hw_base was already lapped; recalc delta */
230 			delta = new_hw_ptr - hw_ptr_interrupt;
231 	}
232 	if (delta < 0) {
233 		delta += runtime->buffer_size;
234 		if (delta < 0) {
235 			hw_ptr_error(substream,
236 				     "Unexpected hw_pointer value "
237 				     "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
238 				     substream->stream, (long)pos,
239 				     (long)hw_ptr_interrupt);
240 			/* rebase to interrupt position */
241 			hw_base = new_hw_ptr = hw_ptr_interrupt;
242 			/* align hw_base to buffer_size */
243 			hw_base -= hw_base % runtime->buffer_size;
244 			delta = 0;
245 		} else {
246 			hw_base += runtime->buffer_size;
247 			if (hw_base >= runtime->boundary)
248 				hw_base = 0;
249 			new_hw_ptr = hw_base + pos;
250 		}
251 	}
252 	hdelta = new_hw_ptr - old_hw_ptr;
253 	jdelta = jiffies - runtime->hw_ptr_jiffies;
254 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
255 		delta = jdelta /
256 			(((runtime->period_size * HZ) / runtime->rate)
257 								+ HZ/100);
258 		hw_ptr_error(substream,
259 			     "hw_ptr skipping! [Q] "
260 			     "(pos=%ld, delta=%ld, period=%ld, "
261 			     "jdelta=%lu/%lu/%lu)\n",
262 			     (long)pos, (long)hdelta,
263 			     (long)runtime->period_size, jdelta,
264 			     ((hdelta * HZ) / runtime->rate), delta);
265 		hw_ptr_interrupt = runtime->hw_ptr_interrupt +
266 				   runtime->period_size * delta;
267 		if (hw_ptr_interrupt >= runtime->boundary)
268 			hw_ptr_interrupt -= runtime->boundary;
269 		/* rebase to interrupt position */
270 		hw_base = new_hw_ptr = hw_ptr_interrupt;
271 		/* align hw_base to buffer_size */
272 		hw_base -= hw_base % runtime->buffer_size;
273 		delta = 0;
274 	}
275 	if (delta > runtime->period_size + runtime->period_size / 2) {
276 		hw_ptr_error(substream,
277 			     "Lost interrupts? "
278 			     "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
279 			     substream->stream, (long)delta,
280 			     (long)hw_ptr_interrupt);
281 		/* rebase hw_ptr_interrupt */
282 		hw_ptr_interrupt =
283 			new_hw_ptr - new_hw_ptr % runtime->period_size;
284 	}
285 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
286 	    runtime->silence_size > 0)
287 		snd_pcm_playback_silence(substream, new_hw_ptr);
288 
289 	runtime->hw_ptr_base = hw_base;
290 	runtime->status->hw_ptr = new_hw_ptr;
291 	runtime->hw_ptr_jiffies = jiffies;
292 	runtime->hw_ptr_interrupt = hw_ptr_interrupt;
293 
294 	return snd_pcm_update_hw_ptr_post(substream, runtime);
295 }
296 
297 /* CAUTION: call it with irq disabled */
298 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
299 {
300 	struct snd_pcm_runtime *runtime = substream->runtime;
301 	snd_pcm_uframes_t pos;
302 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
303 	snd_pcm_sframes_t delta;
304 	unsigned long jdelta;
305 
306 	old_hw_ptr = runtime->status->hw_ptr;
307 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
308 	if (pos == SNDRV_PCM_POS_XRUN) {
309 		xrun(substream);
310 		return -EPIPE;
311 	}
312 	hw_base = runtime->hw_ptr_base;
313 	new_hw_ptr = hw_base + pos;
314 
315 	delta = new_hw_ptr - old_hw_ptr;
316 	jdelta = jiffies - runtime->hw_ptr_jiffies;
317 	if (delta < 0) {
318 		delta += runtime->buffer_size;
319 		if (delta < 0) {
320 			hw_ptr_error(substream,
321 				     "Unexpected hw_pointer value [2] "
322 				     "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
323 				     substream->stream, (long)pos,
324 				     (long)old_hw_ptr, jdelta);
325 			return 0;
326 		}
327 		hw_base += runtime->buffer_size;
328 		if (hw_base >= runtime->boundary)
329 			hw_base = 0;
330 		new_hw_ptr = hw_base + pos;
331 	}
332 	if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
333 		hw_ptr_error(substream,
334 			     "hw_ptr skipping! "
335 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
336 			     (long)pos, (long)delta,
337 			     (long)runtime->period_size, jdelta,
338 			     ((delta * HZ) / runtime->rate));
339 		return 0;
340 	}
341 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
342 	    runtime->silence_size > 0)
343 		snd_pcm_playback_silence(substream, new_hw_ptr);
344 
345 	runtime->hw_ptr_base = hw_base;
346 	runtime->status->hw_ptr = new_hw_ptr;
347 	runtime->hw_ptr_jiffies = jiffies;
348 
349 	return snd_pcm_update_hw_ptr_post(substream, runtime);
350 }
351 
352 /**
353  * snd_pcm_set_ops - set the PCM operators
354  * @pcm: the pcm instance
355  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
356  * @ops: the operator table
357  *
358  * Sets the given PCM operators to the pcm instance.
359  */
360 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
361 {
362 	struct snd_pcm_str *stream = &pcm->streams[direction];
363 	struct snd_pcm_substream *substream;
364 
365 	for (substream = stream->substream; substream != NULL; substream = substream->next)
366 		substream->ops = ops;
367 }
368 
369 EXPORT_SYMBOL(snd_pcm_set_ops);
370 
371 /**
372  * snd_pcm_sync - set the PCM sync id
373  * @substream: the pcm substream
374  *
375  * Sets the PCM sync identifier for the card.
376  */
377 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
378 {
379 	struct snd_pcm_runtime *runtime = substream->runtime;
380 
381 	runtime->sync.id32[0] = substream->pcm->card->number;
382 	runtime->sync.id32[1] = -1;
383 	runtime->sync.id32[2] = -1;
384 	runtime->sync.id32[3] = -1;
385 }
386 
387 EXPORT_SYMBOL(snd_pcm_set_sync);
388 
389 /*
390  *  Standard ioctl routine
391  */
392 
393 static inline unsigned int div32(unsigned int a, unsigned int b,
394 				 unsigned int *r)
395 {
396 	if (b == 0) {
397 		*r = 0;
398 		return UINT_MAX;
399 	}
400 	*r = a % b;
401 	return a / b;
402 }
403 
404 static inline unsigned int div_down(unsigned int a, unsigned int b)
405 {
406 	if (b == 0)
407 		return UINT_MAX;
408 	return a / b;
409 }
410 
411 static inline unsigned int div_up(unsigned int a, unsigned int b)
412 {
413 	unsigned int r;
414 	unsigned int q;
415 	if (b == 0)
416 		return UINT_MAX;
417 	q = div32(a, b, &r);
418 	if (r)
419 		++q;
420 	return q;
421 }
422 
423 static inline unsigned int mul(unsigned int a, unsigned int b)
424 {
425 	if (a == 0)
426 		return 0;
427 	if (div_down(UINT_MAX, a) < b)
428 		return UINT_MAX;
429 	return a * b;
430 }
431 
432 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
433 				    unsigned int c, unsigned int *r)
434 {
435 	u_int64_t n = (u_int64_t) a * b;
436 	if (c == 0) {
437 		snd_BUG_ON(!n);
438 		*r = 0;
439 		return UINT_MAX;
440 	}
441 	div64_32(&n, c, r);
442 	if (n >= UINT_MAX) {
443 		*r = 0;
444 		return UINT_MAX;
445 	}
446 	return n;
447 }
448 
449 /**
450  * snd_interval_refine - refine the interval value of configurator
451  * @i: the interval value to refine
452  * @v: the interval value to refer to
453  *
454  * Refines the interval value with the reference value.
455  * The interval is changed to the range satisfying both intervals.
456  * The interval status (min, max, integer, etc.) are evaluated.
457  *
458  * Returns non-zero if the value is changed, zero if not changed.
459  */
460 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
461 {
462 	int changed = 0;
463 	if (snd_BUG_ON(snd_interval_empty(i)))
464 		return -EINVAL;
465 	if (i->min < v->min) {
466 		i->min = v->min;
467 		i->openmin = v->openmin;
468 		changed = 1;
469 	} else if (i->min == v->min && !i->openmin && v->openmin) {
470 		i->openmin = 1;
471 		changed = 1;
472 	}
473 	if (i->max > v->max) {
474 		i->max = v->max;
475 		i->openmax = v->openmax;
476 		changed = 1;
477 	} else if (i->max == v->max && !i->openmax && v->openmax) {
478 		i->openmax = 1;
479 		changed = 1;
480 	}
481 	if (!i->integer && v->integer) {
482 		i->integer = 1;
483 		changed = 1;
484 	}
485 	if (i->integer) {
486 		if (i->openmin) {
487 			i->min++;
488 			i->openmin = 0;
489 		}
490 		if (i->openmax) {
491 			i->max--;
492 			i->openmax = 0;
493 		}
494 	} else if (!i->openmin && !i->openmax && i->min == i->max)
495 		i->integer = 1;
496 	if (snd_interval_checkempty(i)) {
497 		snd_interval_none(i);
498 		return -EINVAL;
499 	}
500 	return changed;
501 }
502 
503 EXPORT_SYMBOL(snd_interval_refine);
504 
505 static int snd_interval_refine_first(struct snd_interval *i)
506 {
507 	if (snd_BUG_ON(snd_interval_empty(i)))
508 		return -EINVAL;
509 	if (snd_interval_single(i))
510 		return 0;
511 	i->max = i->min;
512 	i->openmax = i->openmin;
513 	if (i->openmax)
514 		i->max++;
515 	return 1;
516 }
517 
518 static int snd_interval_refine_last(struct snd_interval *i)
519 {
520 	if (snd_BUG_ON(snd_interval_empty(i)))
521 		return -EINVAL;
522 	if (snd_interval_single(i))
523 		return 0;
524 	i->min = i->max;
525 	i->openmin = i->openmax;
526 	if (i->openmin)
527 		i->min--;
528 	return 1;
529 }
530 
531 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
532 {
533 	if (a->empty || b->empty) {
534 		snd_interval_none(c);
535 		return;
536 	}
537 	c->empty = 0;
538 	c->min = mul(a->min, b->min);
539 	c->openmin = (a->openmin || b->openmin);
540 	c->max = mul(a->max,  b->max);
541 	c->openmax = (a->openmax || b->openmax);
542 	c->integer = (a->integer && b->integer);
543 }
544 
545 /**
546  * snd_interval_div - refine the interval value with division
547  * @a: dividend
548  * @b: divisor
549  * @c: quotient
550  *
551  * c = a / b
552  *
553  * Returns non-zero if the value is changed, zero if not changed.
554  */
555 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
556 {
557 	unsigned int r;
558 	if (a->empty || b->empty) {
559 		snd_interval_none(c);
560 		return;
561 	}
562 	c->empty = 0;
563 	c->min = div32(a->min, b->max, &r);
564 	c->openmin = (r || a->openmin || b->openmax);
565 	if (b->min > 0) {
566 		c->max = div32(a->max, b->min, &r);
567 		if (r) {
568 			c->max++;
569 			c->openmax = 1;
570 		} else
571 			c->openmax = (a->openmax || b->openmin);
572 	} else {
573 		c->max = UINT_MAX;
574 		c->openmax = 0;
575 	}
576 	c->integer = 0;
577 }
578 
579 /**
580  * snd_interval_muldivk - refine the interval value
581  * @a: dividend 1
582  * @b: dividend 2
583  * @k: divisor (as integer)
584  * @c: result
585   *
586  * c = a * b / k
587  *
588  * Returns non-zero if the value is changed, zero if not changed.
589  */
590 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
591 		      unsigned int k, struct snd_interval *c)
592 {
593 	unsigned int r;
594 	if (a->empty || b->empty) {
595 		snd_interval_none(c);
596 		return;
597 	}
598 	c->empty = 0;
599 	c->min = muldiv32(a->min, b->min, k, &r);
600 	c->openmin = (r || a->openmin || b->openmin);
601 	c->max = muldiv32(a->max, b->max, k, &r);
602 	if (r) {
603 		c->max++;
604 		c->openmax = 1;
605 	} else
606 		c->openmax = (a->openmax || b->openmax);
607 	c->integer = 0;
608 }
609 
610 /**
611  * snd_interval_mulkdiv - refine the interval value
612  * @a: dividend 1
613  * @k: dividend 2 (as integer)
614  * @b: divisor
615  * @c: result
616  *
617  * c = a * k / b
618  *
619  * Returns non-zero if the value is changed, zero if not changed.
620  */
621 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
622 		      const struct snd_interval *b, struct snd_interval *c)
623 {
624 	unsigned int r;
625 	if (a->empty || b->empty) {
626 		snd_interval_none(c);
627 		return;
628 	}
629 	c->empty = 0;
630 	c->min = muldiv32(a->min, k, b->max, &r);
631 	c->openmin = (r || a->openmin || b->openmax);
632 	if (b->min > 0) {
633 		c->max = muldiv32(a->max, k, b->min, &r);
634 		if (r) {
635 			c->max++;
636 			c->openmax = 1;
637 		} else
638 			c->openmax = (a->openmax || b->openmin);
639 	} else {
640 		c->max = UINT_MAX;
641 		c->openmax = 0;
642 	}
643 	c->integer = 0;
644 }
645 
646 /* ---- */
647 
648 
649 /**
650  * snd_interval_ratnum - refine the interval value
651  * @i: interval to refine
652  * @rats_count: number of ratnum_t
653  * @rats: ratnum_t array
654  * @nump: pointer to store the resultant numerator
655  * @denp: pointer to store the resultant denominator
656  *
657  * Returns non-zero if the value is changed, zero if not changed.
658  */
659 int snd_interval_ratnum(struct snd_interval *i,
660 			unsigned int rats_count, struct snd_ratnum *rats,
661 			unsigned int *nump, unsigned int *denp)
662 {
663 	unsigned int best_num, best_diff, best_den;
664 	unsigned int k;
665 	struct snd_interval t;
666 	int err;
667 
668 	best_num = best_den = best_diff = 0;
669 	for (k = 0; k < rats_count; ++k) {
670 		unsigned int num = rats[k].num;
671 		unsigned int den;
672 		unsigned int q = i->min;
673 		int diff;
674 		if (q == 0)
675 			q = 1;
676 		den = div_down(num, q);
677 		if (den < rats[k].den_min)
678 			continue;
679 		if (den > rats[k].den_max)
680 			den = rats[k].den_max;
681 		else {
682 			unsigned int r;
683 			r = (den - rats[k].den_min) % rats[k].den_step;
684 			if (r != 0)
685 				den -= r;
686 		}
687 		diff = num - q * den;
688 		if (best_num == 0 ||
689 		    diff * best_den < best_diff * den) {
690 			best_diff = diff;
691 			best_den = den;
692 			best_num = num;
693 		}
694 	}
695 	if (best_den == 0) {
696 		i->empty = 1;
697 		return -EINVAL;
698 	}
699 	t.min = div_down(best_num, best_den);
700 	t.openmin = !!(best_num % best_den);
701 
702 	best_num = best_den = best_diff = 0;
703 	for (k = 0; k < rats_count; ++k) {
704 		unsigned int num = rats[k].num;
705 		unsigned int den;
706 		unsigned int q = i->max;
707 		int diff;
708 		if (q == 0) {
709 			i->empty = 1;
710 			return -EINVAL;
711 		}
712 		den = div_up(num, q);
713 		if (den > rats[k].den_max)
714 			continue;
715 		if (den < rats[k].den_min)
716 			den = rats[k].den_min;
717 		else {
718 			unsigned int r;
719 			r = (den - rats[k].den_min) % rats[k].den_step;
720 			if (r != 0)
721 				den += rats[k].den_step - r;
722 		}
723 		diff = q * den - num;
724 		if (best_num == 0 ||
725 		    diff * best_den < best_diff * den) {
726 			best_diff = diff;
727 			best_den = den;
728 			best_num = num;
729 		}
730 	}
731 	if (best_den == 0) {
732 		i->empty = 1;
733 		return -EINVAL;
734 	}
735 	t.max = div_up(best_num, best_den);
736 	t.openmax = !!(best_num % best_den);
737 	t.integer = 0;
738 	err = snd_interval_refine(i, &t);
739 	if (err < 0)
740 		return err;
741 
742 	if (snd_interval_single(i)) {
743 		if (nump)
744 			*nump = best_num;
745 		if (denp)
746 			*denp = best_den;
747 	}
748 	return err;
749 }
750 
751 EXPORT_SYMBOL(snd_interval_ratnum);
752 
753 /**
754  * snd_interval_ratden - refine the interval value
755  * @i: interval to refine
756  * @rats_count: number of struct ratden
757  * @rats: struct ratden array
758  * @nump: pointer to store the resultant numerator
759  * @denp: pointer to store the resultant denominator
760  *
761  * Returns non-zero if the value is changed, zero if not changed.
762  */
763 static int snd_interval_ratden(struct snd_interval *i,
764 			       unsigned int rats_count, struct snd_ratden *rats,
765 			       unsigned int *nump, unsigned int *denp)
766 {
767 	unsigned int best_num, best_diff, best_den;
768 	unsigned int k;
769 	struct snd_interval t;
770 	int err;
771 
772 	best_num = best_den = best_diff = 0;
773 	for (k = 0; k < rats_count; ++k) {
774 		unsigned int num;
775 		unsigned int den = rats[k].den;
776 		unsigned int q = i->min;
777 		int diff;
778 		num = mul(q, den);
779 		if (num > rats[k].num_max)
780 			continue;
781 		if (num < rats[k].num_min)
782 			num = rats[k].num_max;
783 		else {
784 			unsigned int r;
785 			r = (num - rats[k].num_min) % rats[k].num_step;
786 			if (r != 0)
787 				num += rats[k].num_step - r;
788 		}
789 		diff = num - q * den;
790 		if (best_num == 0 ||
791 		    diff * best_den < best_diff * den) {
792 			best_diff = diff;
793 			best_den = den;
794 			best_num = num;
795 		}
796 	}
797 	if (best_den == 0) {
798 		i->empty = 1;
799 		return -EINVAL;
800 	}
801 	t.min = div_down(best_num, best_den);
802 	t.openmin = !!(best_num % best_den);
803 
804 	best_num = best_den = best_diff = 0;
805 	for (k = 0; k < rats_count; ++k) {
806 		unsigned int num;
807 		unsigned int den = rats[k].den;
808 		unsigned int q = i->max;
809 		int diff;
810 		num = mul(q, den);
811 		if (num < rats[k].num_min)
812 			continue;
813 		if (num > rats[k].num_max)
814 			num = rats[k].num_max;
815 		else {
816 			unsigned int r;
817 			r = (num - rats[k].num_min) % rats[k].num_step;
818 			if (r != 0)
819 				num -= r;
820 		}
821 		diff = q * den - num;
822 		if (best_num == 0 ||
823 		    diff * best_den < best_diff * den) {
824 			best_diff = diff;
825 			best_den = den;
826 			best_num = num;
827 		}
828 	}
829 	if (best_den == 0) {
830 		i->empty = 1;
831 		return -EINVAL;
832 	}
833 	t.max = div_up(best_num, best_den);
834 	t.openmax = !!(best_num % best_den);
835 	t.integer = 0;
836 	err = snd_interval_refine(i, &t);
837 	if (err < 0)
838 		return err;
839 
840 	if (snd_interval_single(i)) {
841 		if (nump)
842 			*nump = best_num;
843 		if (denp)
844 			*denp = best_den;
845 	}
846 	return err;
847 }
848 
849 /**
850  * snd_interval_list - refine the interval value from the list
851  * @i: the interval value to refine
852  * @count: the number of elements in the list
853  * @list: the value list
854  * @mask: the bit-mask to evaluate
855  *
856  * Refines the interval value from the list.
857  * When mask is non-zero, only the elements corresponding to bit 1 are
858  * evaluated.
859  *
860  * Returns non-zero if the value is changed, zero if not changed.
861  */
862 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
863 {
864         unsigned int k;
865 	int changed = 0;
866 
867 	if (!count) {
868 		i->empty = 1;
869 		return -EINVAL;
870 	}
871         for (k = 0; k < count; k++) {
872 		if (mask && !(mask & (1 << k)))
873 			continue;
874                 if (i->min == list[k] && !i->openmin)
875                         goto _l1;
876                 if (i->min < list[k]) {
877                         i->min = list[k];
878 			i->openmin = 0;
879 			changed = 1;
880                         goto _l1;
881                 }
882         }
883         i->empty = 1;
884         return -EINVAL;
885  _l1:
886         for (k = count; k-- > 0;) {
887 		if (mask && !(mask & (1 << k)))
888 			continue;
889                 if (i->max == list[k] && !i->openmax)
890                         goto _l2;
891                 if (i->max > list[k]) {
892                         i->max = list[k];
893 			i->openmax = 0;
894 			changed = 1;
895                         goto _l2;
896                 }
897         }
898         i->empty = 1;
899         return -EINVAL;
900  _l2:
901 	if (snd_interval_checkempty(i)) {
902 		i->empty = 1;
903 		return -EINVAL;
904 	}
905         return changed;
906 }
907 
908 EXPORT_SYMBOL(snd_interval_list);
909 
910 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
911 {
912 	unsigned int n;
913 	int changed = 0;
914 	n = (i->min - min) % step;
915 	if (n != 0 || i->openmin) {
916 		i->min += step - n;
917 		changed = 1;
918 	}
919 	n = (i->max - min) % step;
920 	if (n != 0 || i->openmax) {
921 		i->max -= n;
922 		changed = 1;
923 	}
924 	if (snd_interval_checkempty(i)) {
925 		i->empty = 1;
926 		return -EINVAL;
927 	}
928 	return changed;
929 }
930 
931 /* Info constraints helpers */
932 
933 /**
934  * snd_pcm_hw_rule_add - add the hw-constraint rule
935  * @runtime: the pcm runtime instance
936  * @cond: condition bits
937  * @var: the variable to evaluate
938  * @func: the evaluation function
939  * @private: the private data pointer passed to function
940  * @dep: the dependent variables
941  *
942  * Returns zero if successful, or a negative error code on failure.
943  */
944 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
945 			int var,
946 			snd_pcm_hw_rule_func_t func, void *private,
947 			int dep, ...)
948 {
949 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
950 	struct snd_pcm_hw_rule *c;
951 	unsigned int k;
952 	va_list args;
953 	va_start(args, dep);
954 	if (constrs->rules_num >= constrs->rules_all) {
955 		struct snd_pcm_hw_rule *new;
956 		unsigned int new_rules = constrs->rules_all + 16;
957 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
958 		if (!new)
959 			return -ENOMEM;
960 		if (constrs->rules) {
961 			memcpy(new, constrs->rules,
962 			       constrs->rules_num * sizeof(*c));
963 			kfree(constrs->rules);
964 		}
965 		constrs->rules = new;
966 		constrs->rules_all = new_rules;
967 	}
968 	c = &constrs->rules[constrs->rules_num];
969 	c->cond = cond;
970 	c->func = func;
971 	c->var = var;
972 	c->private = private;
973 	k = 0;
974 	while (1) {
975 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
976 			return -EINVAL;
977 		c->deps[k++] = dep;
978 		if (dep < 0)
979 			break;
980 		dep = va_arg(args, int);
981 	}
982 	constrs->rules_num++;
983 	va_end(args);
984 	return 0;
985 }
986 
987 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
988 
989 /**
990  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
991  * @runtime: PCM runtime instance
992  * @var: hw_params variable to apply the mask
993  * @mask: the bitmap mask
994  *
995  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
996  */
997 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
998 			       u_int32_t mask)
999 {
1000 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1001 	struct snd_mask *maskp = constrs_mask(constrs, var);
1002 	*maskp->bits &= mask;
1003 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1004 	if (*maskp->bits == 0)
1005 		return -EINVAL;
1006 	return 0;
1007 }
1008 
1009 /**
1010  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1011  * @runtime: PCM runtime instance
1012  * @var: hw_params variable to apply the mask
1013  * @mask: the 64bit bitmap mask
1014  *
1015  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1016  */
1017 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1018 				 u_int64_t mask)
1019 {
1020 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1021 	struct snd_mask *maskp = constrs_mask(constrs, var);
1022 	maskp->bits[0] &= (u_int32_t)mask;
1023 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1024 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1025 	if (! maskp->bits[0] && ! maskp->bits[1])
1026 		return -EINVAL;
1027 	return 0;
1028 }
1029 
1030 /**
1031  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1032  * @runtime: PCM runtime instance
1033  * @var: hw_params variable to apply the integer constraint
1034  *
1035  * Apply the constraint of integer to an interval parameter.
1036  */
1037 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1038 {
1039 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1040 	return snd_interval_setinteger(constrs_interval(constrs, var));
1041 }
1042 
1043 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1044 
1045 /**
1046  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1047  * @runtime: PCM runtime instance
1048  * @var: hw_params variable to apply the range
1049  * @min: the minimal value
1050  * @max: the maximal value
1051  *
1052  * Apply the min/max range constraint to an interval parameter.
1053  */
1054 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1055 				 unsigned int min, unsigned int max)
1056 {
1057 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1058 	struct snd_interval t;
1059 	t.min = min;
1060 	t.max = max;
1061 	t.openmin = t.openmax = 0;
1062 	t.integer = 0;
1063 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1064 }
1065 
1066 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1067 
1068 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1069 				struct snd_pcm_hw_rule *rule)
1070 {
1071 	struct snd_pcm_hw_constraint_list *list = rule->private;
1072 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1073 }
1074 
1075 
1076 /**
1077  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1078  * @runtime: PCM runtime instance
1079  * @cond: condition bits
1080  * @var: hw_params variable to apply the list constraint
1081  * @l: list
1082  *
1083  * Apply the list of constraints to an interval parameter.
1084  */
1085 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1086 			       unsigned int cond,
1087 			       snd_pcm_hw_param_t var,
1088 			       struct snd_pcm_hw_constraint_list *l)
1089 {
1090 	return snd_pcm_hw_rule_add(runtime, cond, var,
1091 				   snd_pcm_hw_rule_list, l,
1092 				   var, -1);
1093 }
1094 
1095 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1096 
1097 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1098 				   struct snd_pcm_hw_rule *rule)
1099 {
1100 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1101 	unsigned int num = 0, den = 0;
1102 	int err;
1103 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1104 				  r->nrats, r->rats, &num, &den);
1105 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1106 		params->rate_num = num;
1107 		params->rate_den = den;
1108 	}
1109 	return err;
1110 }
1111 
1112 /**
1113  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1114  * @runtime: PCM runtime instance
1115  * @cond: condition bits
1116  * @var: hw_params variable to apply the ratnums constraint
1117  * @r: struct snd_ratnums constriants
1118  */
1119 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1120 				  unsigned int cond,
1121 				  snd_pcm_hw_param_t var,
1122 				  struct snd_pcm_hw_constraint_ratnums *r)
1123 {
1124 	return snd_pcm_hw_rule_add(runtime, cond, var,
1125 				   snd_pcm_hw_rule_ratnums, r,
1126 				   var, -1);
1127 }
1128 
1129 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1130 
1131 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1132 				   struct snd_pcm_hw_rule *rule)
1133 {
1134 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1135 	unsigned int num = 0, den = 0;
1136 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1137 				  r->nrats, r->rats, &num, &den);
1138 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1139 		params->rate_num = num;
1140 		params->rate_den = den;
1141 	}
1142 	return err;
1143 }
1144 
1145 /**
1146  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1147  * @runtime: PCM runtime instance
1148  * @cond: condition bits
1149  * @var: hw_params variable to apply the ratdens constraint
1150  * @r: struct snd_ratdens constriants
1151  */
1152 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1153 				  unsigned int cond,
1154 				  snd_pcm_hw_param_t var,
1155 				  struct snd_pcm_hw_constraint_ratdens *r)
1156 {
1157 	return snd_pcm_hw_rule_add(runtime, cond, var,
1158 				   snd_pcm_hw_rule_ratdens, r,
1159 				   var, -1);
1160 }
1161 
1162 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1163 
1164 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1165 				  struct snd_pcm_hw_rule *rule)
1166 {
1167 	unsigned int l = (unsigned long) rule->private;
1168 	int width = l & 0xffff;
1169 	unsigned int msbits = l >> 16;
1170 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1171 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1172 		params->msbits = msbits;
1173 	return 0;
1174 }
1175 
1176 /**
1177  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1178  * @runtime: PCM runtime instance
1179  * @cond: condition bits
1180  * @width: sample bits width
1181  * @msbits: msbits width
1182  */
1183 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1184 				 unsigned int cond,
1185 				 unsigned int width,
1186 				 unsigned int msbits)
1187 {
1188 	unsigned long l = (msbits << 16) | width;
1189 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1190 				    snd_pcm_hw_rule_msbits,
1191 				    (void*) l,
1192 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1193 }
1194 
1195 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1196 
1197 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1198 				struct snd_pcm_hw_rule *rule)
1199 {
1200 	unsigned long step = (unsigned long) rule->private;
1201 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1202 }
1203 
1204 /**
1205  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1206  * @runtime: PCM runtime instance
1207  * @cond: condition bits
1208  * @var: hw_params variable to apply the step constraint
1209  * @step: step size
1210  */
1211 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1212 			       unsigned int cond,
1213 			       snd_pcm_hw_param_t var,
1214 			       unsigned long step)
1215 {
1216 	return snd_pcm_hw_rule_add(runtime, cond, var,
1217 				   snd_pcm_hw_rule_step, (void *) step,
1218 				   var, -1);
1219 }
1220 
1221 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1222 
1223 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1224 {
1225 	static unsigned int pow2_sizes[] = {
1226 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1227 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1228 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1229 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1230 	};
1231 	return snd_interval_list(hw_param_interval(params, rule->var),
1232 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1233 }
1234 
1235 /**
1236  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1237  * @runtime: PCM runtime instance
1238  * @cond: condition bits
1239  * @var: hw_params variable to apply the power-of-2 constraint
1240  */
1241 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1242 			       unsigned int cond,
1243 			       snd_pcm_hw_param_t var)
1244 {
1245 	return snd_pcm_hw_rule_add(runtime, cond, var,
1246 				   snd_pcm_hw_rule_pow2, NULL,
1247 				   var, -1);
1248 }
1249 
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1251 
1252 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1253 				  snd_pcm_hw_param_t var)
1254 {
1255 	if (hw_is_mask(var)) {
1256 		snd_mask_any(hw_param_mask(params, var));
1257 		params->cmask |= 1 << var;
1258 		params->rmask |= 1 << var;
1259 		return;
1260 	}
1261 	if (hw_is_interval(var)) {
1262 		snd_interval_any(hw_param_interval(params, var));
1263 		params->cmask |= 1 << var;
1264 		params->rmask |= 1 << var;
1265 		return;
1266 	}
1267 	snd_BUG();
1268 }
1269 
1270 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1271 {
1272 	unsigned int k;
1273 	memset(params, 0, sizeof(*params));
1274 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1275 		_snd_pcm_hw_param_any(params, k);
1276 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1277 		_snd_pcm_hw_param_any(params, k);
1278 	params->info = ~0U;
1279 }
1280 
1281 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1282 
1283 /**
1284  * snd_pcm_hw_param_value - return @params field @var value
1285  * @params: the hw_params instance
1286  * @var: parameter to retrieve
1287  * @dir: pointer to the direction (-1,0,1) or %NULL
1288  *
1289  * Return the value for field @var if it's fixed in configuration space
1290  * defined by @params. Return -%EINVAL otherwise.
1291  */
1292 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1293 			   snd_pcm_hw_param_t var, int *dir)
1294 {
1295 	if (hw_is_mask(var)) {
1296 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1297 		if (!snd_mask_single(mask))
1298 			return -EINVAL;
1299 		if (dir)
1300 			*dir = 0;
1301 		return snd_mask_value(mask);
1302 	}
1303 	if (hw_is_interval(var)) {
1304 		const struct snd_interval *i = hw_param_interval_c(params, var);
1305 		if (!snd_interval_single(i))
1306 			return -EINVAL;
1307 		if (dir)
1308 			*dir = i->openmin;
1309 		return snd_interval_value(i);
1310 	}
1311 	return -EINVAL;
1312 }
1313 
1314 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1315 
1316 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1317 				snd_pcm_hw_param_t var)
1318 {
1319 	if (hw_is_mask(var)) {
1320 		snd_mask_none(hw_param_mask(params, var));
1321 		params->cmask |= 1 << var;
1322 		params->rmask |= 1 << var;
1323 	} else if (hw_is_interval(var)) {
1324 		snd_interval_none(hw_param_interval(params, var));
1325 		params->cmask |= 1 << var;
1326 		params->rmask |= 1 << var;
1327 	} else {
1328 		snd_BUG();
1329 	}
1330 }
1331 
1332 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1333 
1334 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1335 				   snd_pcm_hw_param_t var)
1336 {
1337 	int changed;
1338 	if (hw_is_mask(var))
1339 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1340 	else if (hw_is_interval(var))
1341 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1342 	else
1343 		return -EINVAL;
1344 	if (changed) {
1345 		params->cmask |= 1 << var;
1346 		params->rmask |= 1 << var;
1347 	}
1348 	return changed;
1349 }
1350 
1351 
1352 /**
1353  * snd_pcm_hw_param_first - refine config space and return minimum value
1354  * @pcm: PCM instance
1355  * @params: the hw_params instance
1356  * @var: parameter to retrieve
1357  * @dir: pointer to the direction (-1,0,1) or %NULL
1358  *
1359  * Inside configuration space defined by @params remove from @var all
1360  * values > minimum. Reduce configuration space accordingly.
1361  * Return the minimum.
1362  */
1363 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1364 			   struct snd_pcm_hw_params *params,
1365 			   snd_pcm_hw_param_t var, int *dir)
1366 {
1367 	int changed = _snd_pcm_hw_param_first(params, var);
1368 	if (changed < 0)
1369 		return changed;
1370 	if (params->rmask) {
1371 		int err = snd_pcm_hw_refine(pcm, params);
1372 		if (snd_BUG_ON(err < 0))
1373 			return err;
1374 	}
1375 	return snd_pcm_hw_param_value(params, var, dir);
1376 }
1377 
1378 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1379 
1380 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1381 				  snd_pcm_hw_param_t var)
1382 {
1383 	int changed;
1384 	if (hw_is_mask(var))
1385 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1386 	else if (hw_is_interval(var))
1387 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1388 	else
1389 		return -EINVAL;
1390 	if (changed) {
1391 		params->cmask |= 1 << var;
1392 		params->rmask |= 1 << var;
1393 	}
1394 	return changed;
1395 }
1396 
1397 
1398 /**
1399  * snd_pcm_hw_param_last - refine config space and return maximum value
1400  * @pcm: PCM instance
1401  * @params: the hw_params instance
1402  * @var: parameter to retrieve
1403  * @dir: pointer to the direction (-1,0,1) or %NULL
1404  *
1405  * Inside configuration space defined by @params remove from @var all
1406  * values < maximum. Reduce configuration space accordingly.
1407  * Return the maximum.
1408  */
1409 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1410 			  struct snd_pcm_hw_params *params,
1411 			  snd_pcm_hw_param_t var, int *dir)
1412 {
1413 	int changed = _snd_pcm_hw_param_last(params, var);
1414 	if (changed < 0)
1415 		return changed;
1416 	if (params->rmask) {
1417 		int err = snd_pcm_hw_refine(pcm, params);
1418 		if (snd_BUG_ON(err < 0))
1419 			return err;
1420 	}
1421 	return snd_pcm_hw_param_value(params, var, dir);
1422 }
1423 
1424 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1425 
1426 /**
1427  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1428  * @pcm: PCM instance
1429  * @params: the hw_params instance
1430  *
1431  * Choose one configuration from configuration space defined by @params.
1432  * The configuration chosen is that obtained fixing in this order:
1433  * first access, first format, first subformat, min channels,
1434  * min rate, min period time, max buffer size, min tick time
1435  */
1436 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1437 			     struct snd_pcm_hw_params *params)
1438 {
1439 	static int vars[] = {
1440 		SNDRV_PCM_HW_PARAM_ACCESS,
1441 		SNDRV_PCM_HW_PARAM_FORMAT,
1442 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1443 		SNDRV_PCM_HW_PARAM_CHANNELS,
1444 		SNDRV_PCM_HW_PARAM_RATE,
1445 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1446 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1447 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1448 		-1
1449 	};
1450 	int err, *v;
1451 
1452 	for (v = vars; *v != -1; v++) {
1453 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1454 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1455 		else
1456 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1457 		if (snd_BUG_ON(err < 0))
1458 			return err;
1459 	}
1460 	return 0;
1461 }
1462 
1463 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1464 				   void *arg)
1465 {
1466 	struct snd_pcm_runtime *runtime = substream->runtime;
1467 	unsigned long flags;
1468 	snd_pcm_stream_lock_irqsave(substream, flags);
1469 	if (snd_pcm_running(substream) &&
1470 	    snd_pcm_update_hw_ptr(substream) >= 0)
1471 		runtime->status->hw_ptr %= runtime->buffer_size;
1472 	else
1473 		runtime->status->hw_ptr = 0;
1474 	runtime->hw_ptr_jiffies = jiffies;
1475 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1476 	return 0;
1477 }
1478 
1479 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1480 					  void *arg)
1481 {
1482 	struct snd_pcm_channel_info *info = arg;
1483 	struct snd_pcm_runtime *runtime = substream->runtime;
1484 	int width;
1485 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1486 		info->offset = -1;
1487 		return 0;
1488 	}
1489 	width = snd_pcm_format_physical_width(runtime->format);
1490 	if (width < 0)
1491 		return width;
1492 	info->offset = 0;
1493 	switch (runtime->access) {
1494 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1495 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1496 		info->first = info->channel * width;
1497 		info->step = runtime->channels * width;
1498 		break;
1499 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1500 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1501 	{
1502 		size_t size = runtime->dma_bytes / runtime->channels;
1503 		info->first = info->channel * size * 8;
1504 		info->step = width;
1505 		break;
1506 	}
1507 	default:
1508 		snd_BUG();
1509 		break;
1510 	}
1511 	return 0;
1512 }
1513 
1514 /**
1515  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1516  * @substream: the pcm substream instance
1517  * @cmd: ioctl command
1518  * @arg: ioctl argument
1519  *
1520  * Processes the generic ioctl commands for PCM.
1521  * Can be passed as the ioctl callback for PCM ops.
1522  *
1523  * Returns zero if successful, or a negative error code on failure.
1524  */
1525 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1526 		      unsigned int cmd, void *arg)
1527 {
1528 	switch (cmd) {
1529 	case SNDRV_PCM_IOCTL1_INFO:
1530 		return 0;
1531 	case SNDRV_PCM_IOCTL1_RESET:
1532 		return snd_pcm_lib_ioctl_reset(substream, arg);
1533 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1534 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1535 	}
1536 	return -ENXIO;
1537 }
1538 
1539 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1540 
1541 /**
1542  * snd_pcm_period_elapsed - update the pcm status for the next period
1543  * @substream: the pcm substream instance
1544  *
1545  * This function is called from the interrupt handler when the
1546  * PCM has processed the period size.  It will update the current
1547  * pointer, wake up sleepers, etc.
1548  *
1549  * Even if more than one periods have elapsed since the last call, you
1550  * have to call this only once.
1551  */
1552 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1553 {
1554 	struct snd_pcm_runtime *runtime;
1555 	unsigned long flags;
1556 
1557 	if (PCM_RUNTIME_CHECK(substream))
1558 		return;
1559 	runtime = substream->runtime;
1560 
1561 	if (runtime->transfer_ack_begin)
1562 		runtime->transfer_ack_begin(substream);
1563 
1564 	snd_pcm_stream_lock_irqsave(substream, flags);
1565 	if (!snd_pcm_running(substream) ||
1566 	    snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1567 		goto _end;
1568 
1569 	if (substream->timer_running)
1570 		snd_timer_interrupt(substream->timer, 1);
1571  _end:
1572 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1573 	if (runtime->transfer_ack_end)
1574 		runtime->transfer_ack_end(substream);
1575 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1576 }
1577 
1578 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1579 
1580 /*
1581  * Wait until avail_min data becomes available
1582  * Returns a negative error code if any error occurs during operation.
1583  * The available space is stored on availp.  When err = 0 and avail = 0
1584  * on the capture stream, it indicates the stream is in DRAINING state.
1585  */
1586 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1587 			      snd_pcm_uframes_t *availp)
1588 {
1589 	struct snd_pcm_runtime *runtime = substream->runtime;
1590 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1591 	wait_queue_t wait;
1592 	int err = 0;
1593 	snd_pcm_uframes_t avail = 0;
1594 	long tout;
1595 
1596 	init_waitqueue_entry(&wait, current);
1597 	add_wait_queue(&runtime->sleep, &wait);
1598 	for (;;) {
1599 		if (signal_pending(current)) {
1600 			err = -ERESTARTSYS;
1601 			break;
1602 		}
1603 		set_current_state(TASK_INTERRUPTIBLE);
1604 		snd_pcm_stream_unlock_irq(substream);
1605 		tout = schedule_timeout(msecs_to_jiffies(10000));
1606 		snd_pcm_stream_lock_irq(substream);
1607 		switch (runtime->status->state) {
1608 		case SNDRV_PCM_STATE_SUSPENDED:
1609 			err = -ESTRPIPE;
1610 			goto _endloop;
1611 		case SNDRV_PCM_STATE_XRUN:
1612 			err = -EPIPE;
1613 			goto _endloop;
1614 		case SNDRV_PCM_STATE_DRAINING:
1615 			if (is_playback)
1616 				err = -EPIPE;
1617 			else
1618 				avail = 0; /* indicate draining */
1619 			goto _endloop;
1620 		case SNDRV_PCM_STATE_OPEN:
1621 		case SNDRV_PCM_STATE_SETUP:
1622 		case SNDRV_PCM_STATE_DISCONNECTED:
1623 			err = -EBADFD;
1624 			goto _endloop;
1625 		}
1626 		if (!tout) {
1627 			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1628 				   is_playback ? "playback" : "capture");
1629 			err = -EIO;
1630 			break;
1631 		}
1632 		if (is_playback)
1633 			avail = snd_pcm_playback_avail(runtime);
1634 		else
1635 			avail = snd_pcm_capture_avail(runtime);
1636 		if (avail >= runtime->control->avail_min)
1637 			break;
1638 	}
1639  _endloop:
1640 	remove_wait_queue(&runtime->sleep, &wait);
1641 	*availp = avail;
1642 	return err;
1643 }
1644 
1645 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1646 				      unsigned int hwoff,
1647 				      unsigned long data, unsigned int off,
1648 				      snd_pcm_uframes_t frames)
1649 {
1650 	struct snd_pcm_runtime *runtime = substream->runtime;
1651 	int err;
1652 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1653 	if (substream->ops->copy) {
1654 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1655 			return err;
1656 	} else {
1657 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1658 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1659 			return -EFAULT;
1660 	}
1661 	return 0;
1662 }
1663 
1664 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1665 			  unsigned long data, unsigned int off,
1666 			  snd_pcm_uframes_t size);
1667 
1668 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1669 					    unsigned long data,
1670 					    snd_pcm_uframes_t size,
1671 					    int nonblock,
1672 					    transfer_f transfer)
1673 {
1674 	struct snd_pcm_runtime *runtime = substream->runtime;
1675 	snd_pcm_uframes_t xfer = 0;
1676 	snd_pcm_uframes_t offset = 0;
1677 	int err = 0;
1678 
1679 	if (size == 0)
1680 		return 0;
1681 
1682 	snd_pcm_stream_lock_irq(substream);
1683 	switch (runtime->status->state) {
1684 	case SNDRV_PCM_STATE_PREPARED:
1685 	case SNDRV_PCM_STATE_RUNNING:
1686 	case SNDRV_PCM_STATE_PAUSED:
1687 		break;
1688 	case SNDRV_PCM_STATE_XRUN:
1689 		err = -EPIPE;
1690 		goto _end_unlock;
1691 	case SNDRV_PCM_STATE_SUSPENDED:
1692 		err = -ESTRPIPE;
1693 		goto _end_unlock;
1694 	default:
1695 		err = -EBADFD;
1696 		goto _end_unlock;
1697 	}
1698 
1699 	while (size > 0) {
1700 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1701 		snd_pcm_uframes_t avail;
1702 		snd_pcm_uframes_t cont;
1703 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1704 			snd_pcm_update_hw_ptr(substream);
1705 		avail = snd_pcm_playback_avail(runtime);
1706 		if (!avail) {
1707 			if (nonblock) {
1708 				err = -EAGAIN;
1709 				goto _end_unlock;
1710 			}
1711 			err = wait_for_avail_min(substream, &avail);
1712 			if (err < 0)
1713 				goto _end_unlock;
1714 		}
1715 		frames = size > avail ? avail : size;
1716 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1717 		if (frames > cont)
1718 			frames = cont;
1719 		if (snd_BUG_ON(!frames)) {
1720 			snd_pcm_stream_unlock_irq(substream);
1721 			return -EINVAL;
1722 		}
1723 		appl_ptr = runtime->control->appl_ptr;
1724 		appl_ofs = appl_ptr % runtime->buffer_size;
1725 		snd_pcm_stream_unlock_irq(substream);
1726 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1727 			goto _end;
1728 		snd_pcm_stream_lock_irq(substream);
1729 		switch (runtime->status->state) {
1730 		case SNDRV_PCM_STATE_XRUN:
1731 			err = -EPIPE;
1732 			goto _end_unlock;
1733 		case SNDRV_PCM_STATE_SUSPENDED:
1734 			err = -ESTRPIPE;
1735 			goto _end_unlock;
1736 		default:
1737 			break;
1738 		}
1739 		appl_ptr += frames;
1740 		if (appl_ptr >= runtime->boundary)
1741 			appl_ptr -= runtime->boundary;
1742 		runtime->control->appl_ptr = appl_ptr;
1743 		if (substream->ops->ack)
1744 			substream->ops->ack(substream);
1745 
1746 		offset += frames;
1747 		size -= frames;
1748 		xfer += frames;
1749 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1750 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1751 			err = snd_pcm_start(substream);
1752 			if (err < 0)
1753 				goto _end_unlock;
1754 		}
1755 	}
1756  _end_unlock:
1757 	snd_pcm_stream_unlock_irq(substream);
1758  _end:
1759 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1760 }
1761 
1762 /* sanity-check for read/write methods */
1763 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1764 {
1765 	struct snd_pcm_runtime *runtime;
1766 	if (PCM_RUNTIME_CHECK(substream))
1767 		return -ENXIO;
1768 	runtime = substream->runtime;
1769 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1770 		return -EINVAL;
1771 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1772 		return -EBADFD;
1773 	return 0;
1774 }
1775 
1776 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1777 {
1778 	struct snd_pcm_runtime *runtime;
1779 	int nonblock;
1780 	int err;
1781 
1782 	err = pcm_sanity_check(substream);
1783 	if (err < 0)
1784 		return err;
1785 	runtime = substream->runtime;
1786 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1787 
1788 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1789 	    runtime->channels > 1)
1790 		return -EINVAL;
1791 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1792 				  snd_pcm_lib_write_transfer);
1793 }
1794 
1795 EXPORT_SYMBOL(snd_pcm_lib_write);
1796 
1797 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1798 				       unsigned int hwoff,
1799 				       unsigned long data, unsigned int off,
1800 				       snd_pcm_uframes_t frames)
1801 {
1802 	struct snd_pcm_runtime *runtime = substream->runtime;
1803 	int err;
1804 	void __user **bufs = (void __user **)data;
1805 	int channels = runtime->channels;
1806 	int c;
1807 	if (substream->ops->copy) {
1808 		if (snd_BUG_ON(!substream->ops->silence))
1809 			return -EINVAL;
1810 		for (c = 0; c < channels; ++c, ++bufs) {
1811 			if (*bufs == NULL) {
1812 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1813 					return err;
1814 			} else {
1815 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
1816 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1817 					return err;
1818 			}
1819 		}
1820 	} else {
1821 		/* default transfer behaviour */
1822 		size_t dma_csize = runtime->dma_bytes / channels;
1823 		for (c = 0; c < channels; ++c, ++bufs) {
1824 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1825 			if (*bufs == NULL) {
1826 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1827 			} else {
1828 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
1829 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1830 					return -EFAULT;
1831 			}
1832 		}
1833 	}
1834 	return 0;
1835 }
1836 
1837 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1838 				     void __user **bufs,
1839 				     snd_pcm_uframes_t frames)
1840 {
1841 	struct snd_pcm_runtime *runtime;
1842 	int nonblock;
1843 	int err;
1844 
1845 	err = pcm_sanity_check(substream);
1846 	if (err < 0)
1847 		return err;
1848 	runtime = substream->runtime;
1849 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1850 
1851 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1852 		return -EINVAL;
1853 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1854 				  nonblock, snd_pcm_lib_writev_transfer);
1855 }
1856 
1857 EXPORT_SYMBOL(snd_pcm_lib_writev);
1858 
1859 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
1860 				     unsigned int hwoff,
1861 				     unsigned long data, unsigned int off,
1862 				     snd_pcm_uframes_t frames)
1863 {
1864 	struct snd_pcm_runtime *runtime = substream->runtime;
1865 	int err;
1866 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1867 	if (substream->ops->copy) {
1868 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1869 			return err;
1870 	} else {
1871 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1872 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1873 			return -EFAULT;
1874 	}
1875 	return 0;
1876 }
1877 
1878 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1879 					   unsigned long data,
1880 					   snd_pcm_uframes_t size,
1881 					   int nonblock,
1882 					   transfer_f transfer)
1883 {
1884 	struct snd_pcm_runtime *runtime = substream->runtime;
1885 	snd_pcm_uframes_t xfer = 0;
1886 	snd_pcm_uframes_t offset = 0;
1887 	int err = 0;
1888 
1889 	if (size == 0)
1890 		return 0;
1891 
1892 	snd_pcm_stream_lock_irq(substream);
1893 	switch (runtime->status->state) {
1894 	case SNDRV_PCM_STATE_PREPARED:
1895 		if (size >= runtime->start_threshold) {
1896 			err = snd_pcm_start(substream);
1897 			if (err < 0)
1898 				goto _end_unlock;
1899 		}
1900 		break;
1901 	case SNDRV_PCM_STATE_DRAINING:
1902 	case SNDRV_PCM_STATE_RUNNING:
1903 	case SNDRV_PCM_STATE_PAUSED:
1904 		break;
1905 	case SNDRV_PCM_STATE_XRUN:
1906 		err = -EPIPE;
1907 		goto _end_unlock;
1908 	case SNDRV_PCM_STATE_SUSPENDED:
1909 		err = -ESTRPIPE;
1910 		goto _end_unlock;
1911 	default:
1912 		err = -EBADFD;
1913 		goto _end_unlock;
1914 	}
1915 
1916 	while (size > 0) {
1917 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1918 		snd_pcm_uframes_t avail;
1919 		snd_pcm_uframes_t cont;
1920 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1921 			snd_pcm_update_hw_ptr(substream);
1922 		avail = snd_pcm_capture_avail(runtime);
1923 		if (!avail) {
1924 			if (runtime->status->state ==
1925 			    SNDRV_PCM_STATE_DRAINING) {
1926 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1927 				goto _end_unlock;
1928 			}
1929 			if (nonblock) {
1930 				err = -EAGAIN;
1931 				goto _end_unlock;
1932 			}
1933 			err = wait_for_avail_min(substream, &avail);
1934 			if (err < 0)
1935 				goto _end_unlock;
1936 			if (!avail)
1937 				continue; /* draining */
1938 		}
1939 		frames = size > avail ? avail : size;
1940 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1941 		if (frames > cont)
1942 			frames = cont;
1943 		if (snd_BUG_ON(!frames)) {
1944 			snd_pcm_stream_unlock_irq(substream);
1945 			return -EINVAL;
1946 		}
1947 		appl_ptr = runtime->control->appl_ptr;
1948 		appl_ofs = appl_ptr % runtime->buffer_size;
1949 		snd_pcm_stream_unlock_irq(substream);
1950 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1951 			goto _end;
1952 		snd_pcm_stream_lock_irq(substream);
1953 		switch (runtime->status->state) {
1954 		case SNDRV_PCM_STATE_XRUN:
1955 			err = -EPIPE;
1956 			goto _end_unlock;
1957 		case SNDRV_PCM_STATE_SUSPENDED:
1958 			err = -ESTRPIPE;
1959 			goto _end_unlock;
1960 		default:
1961 			break;
1962 		}
1963 		appl_ptr += frames;
1964 		if (appl_ptr >= runtime->boundary)
1965 			appl_ptr -= runtime->boundary;
1966 		runtime->control->appl_ptr = appl_ptr;
1967 		if (substream->ops->ack)
1968 			substream->ops->ack(substream);
1969 
1970 		offset += frames;
1971 		size -= frames;
1972 		xfer += frames;
1973 	}
1974  _end_unlock:
1975 	snd_pcm_stream_unlock_irq(substream);
1976  _end:
1977 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1978 }
1979 
1980 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
1981 {
1982 	struct snd_pcm_runtime *runtime;
1983 	int nonblock;
1984 	int err;
1985 
1986 	err = pcm_sanity_check(substream);
1987 	if (err < 0)
1988 		return err;
1989 	runtime = substream->runtime;
1990 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1991 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
1992 		return -EINVAL;
1993 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
1994 }
1995 
1996 EXPORT_SYMBOL(snd_pcm_lib_read);
1997 
1998 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
1999 				      unsigned int hwoff,
2000 				      unsigned long data, unsigned int off,
2001 				      snd_pcm_uframes_t frames)
2002 {
2003 	struct snd_pcm_runtime *runtime = substream->runtime;
2004 	int err;
2005 	void __user **bufs = (void __user **)data;
2006 	int channels = runtime->channels;
2007 	int c;
2008 	if (substream->ops->copy) {
2009 		for (c = 0; c < channels; ++c, ++bufs) {
2010 			char __user *buf;
2011 			if (*bufs == NULL)
2012 				continue;
2013 			buf = *bufs + samples_to_bytes(runtime, off);
2014 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2015 				return err;
2016 		}
2017 	} else {
2018 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2019 		for (c = 0; c < channels; ++c, ++bufs) {
2020 			char *hwbuf;
2021 			char __user *buf;
2022 			if (*bufs == NULL)
2023 				continue;
2024 
2025 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2026 			buf = *bufs + samples_to_bytes(runtime, off);
2027 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2028 				return -EFAULT;
2029 		}
2030 	}
2031 	return 0;
2032 }
2033 
2034 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2035 				    void __user **bufs,
2036 				    snd_pcm_uframes_t frames)
2037 {
2038 	struct snd_pcm_runtime *runtime;
2039 	int nonblock;
2040 	int err;
2041 
2042 	err = pcm_sanity_check(substream);
2043 	if (err < 0)
2044 		return err;
2045 	runtime = substream->runtime;
2046 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2047 		return -EBADFD;
2048 
2049 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2050 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2051 		return -EINVAL;
2052 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2053 }
2054 
2055 EXPORT_SYMBOL(snd_pcm_lib_readv);
2056