1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <sound/core.h> 27 #include <sound/control.h> 28 #include <sound/info.h> 29 #include <sound/pcm.h> 30 #include <sound/pcm_params.h> 31 #include <sound/timer.h> 32 33 /* 34 * fill ring buffer with silence 35 * runtime->silence_start: starting pointer to silence area 36 * runtime->silence_filled: size filled with silence 37 * runtime->silence_threshold: threshold from application 38 * runtime->silence_size: maximal size from application 39 * 40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 41 */ 42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 43 { 44 struct snd_pcm_runtime *runtime = substream->runtime; 45 snd_pcm_uframes_t frames, ofs, transfer; 46 47 if (runtime->silence_size < runtime->boundary) { 48 snd_pcm_sframes_t noise_dist, n; 49 if (runtime->silence_start != runtime->control->appl_ptr) { 50 n = runtime->control->appl_ptr - runtime->silence_start; 51 if (n < 0) 52 n += runtime->boundary; 53 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 54 runtime->silence_filled -= n; 55 else 56 runtime->silence_filled = 0; 57 runtime->silence_start = runtime->control->appl_ptr; 58 } 59 if (runtime->silence_filled >= runtime->buffer_size) 60 return; 61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 63 return; 64 frames = runtime->silence_threshold - noise_dist; 65 if (frames > runtime->silence_size) 66 frames = runtime->silence_size; 67 } else { 68 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 70 runtime->silence_filled = avail > 0 ? avail : 0; 71 runtime->silence_start = (runtime->status->hw_ptr + 72 runtime->silence_filled) % 73 runtime->boundary; 74 } else { 75 ofs = runtime->status->hw_ptr; 76 frames = new_hw_ptr - ofs; 77 if ((snd_pcm_sframes_t)frames < 0) 78 frames += runtime->boundary; 79 runtime->silence_filled -= frames; 80 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 81 runtime->silence_filled = 0; 82 runtime->silence_start = new_hw_ptr; 83 } else { 84 runtime->silence_start = ofs; 85 } 86 } 87 frames = runtime->buffer_size - runtime->silence_filled; 88 } 89 if (snd_BUG_ON(frames > runtime->buffer_size)) 90 return; 91 if (frames == 0) 92 return; 93 ofs = runtime->silence_start % runtime->buffer_size; 94 while (frames > 0) { 95 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 96 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 97 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 98 if (substream->ops->silence) { 99 int err; 100 err = substream->ops->silence(substream, -1, ofs, transfer); 101 snd_BUG_ON(err < 0); 102 } else { 103 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 104 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 105 } 106 } else { 107 unsigned int c; 108 unsigned int channels = runtime->channels; 109 if (substream->ops->silence) { 110 for (c = 0; c < channels; ++c) { 111 int err; 112 err = substream->ops->silence(substream, c, ofs, transfer); 113 snd_BUG_ON(err < 0); 114 } 115 } else { 116 size_t dma_csize = runtime->dma_bytes / channels; 117 for (c = 0; c < channels; ++c) { 118 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 119 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 120 } 121 } 122 } 123 runtime->silence_filled += transfer; 124 frames -= transfer; 125 ofs = 0; 126 } 127 } 128 129 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 130 #define xrun_debug(substream, mask) ((substream)->pstr->xrun_debug & (mask)) 131 #else 132 #define xrun_debug(substream, mask) 0 133 #endif 134 135 #define dump_stack_on_xrun(substream) do { \ 136 if (xrun_debug(substream, 2)) \ 137 dump_stack(); \ 138 } while (0) 139 140 static void pcm_debug_name(struct snd_pcm_substream *substream, 141 char *name, size_t len) 142 { 143 snprintf(name, len, "pcmC%dD%d%c:%d", 144 substream->pcm->card->number, 145 substream->pcm->device, 146 substream->stream ? 'c' : 'p', 147 substream->number); 148 } 149 150 static void xrun(struct snd_pcm_substream *substream) 151 { 152 struct snd_pcm_runtime *runtime = substream->runtime; 153 154 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 155 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 156 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 157 if (xrun_debug(substream, 1)) { 158 char name[16]; 159 pcm_debug_name(substream, name, sizeof(name)); 160 snd_printd(KERN_DEBUG "XRUN: %s\n", name); 161 dump_stack_on_xrun(substream); 162 } 163 } 164 165 static snd_pcm_uframes_t 166 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream, 167 struct snd_pcm_runtime *runtime) 168 { 169 snd_pcm_uframes_t pos; 170 171 pos = substream->ops->pointer(substream); 172 if (pos == SNDRV_PCM_POS_XRUN) 173 return pos; /* XRUN */ 174 if (pos >= runtime->buffer_size) { 175 if (printk_ratelimit()) { 176 char name[16]; 177 pcm_debug_name(substream, name, sizeof(name)); 178 snd_printd(KERN_ERR "BUG: %s, pos = 0x%lx, " 179 "buffer size = 0x%lx, period size = 0x%lx\n", 180 name, pos, runtime->buffer_size, 181 runtime->period_size); 182 } 183 pos = 0; 184 } 185 pos -= pos % runtime->min_align; 186 return pos; 187 } 188 189 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream, 190 struct snd_pcm_runtime *runtime) 191 { 192 snd_pcm_uframes_t avail; 193 194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 195 avail = snd_pcm_playback_avail(runtime); 196 else 197 avail = snd_pcm_capture_avail(runtime); 198 if (avail > runtime->avail_max) 199 runtime->avail_max = avail; 200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 201 if (avail >= runtime->buffer_size) { 202 snd_pcm_drain_done(substream); 203 return -EPIPE; 204 } 205 } else { 206 if (avail >= runtime->stop_threshold) { 207 xrun(substream); 208 return -EPIPE; 209 } 210 } 211 if (avail >= runtime->control->avail_min) 212 wake_up(&runtime->sleep); 213 return 0; 214 } 215 216 #define hw_ptr_error(substream, fmt, args...) \ 217 do { \ 218 if (xrun_debug(substream, 1)) { \ 219 if (printk_ratelimit()) { \ 220 snd_printd("PCM: " fmt, ##args); \ 221 } \ 222 dump_stack_on_xrun(substream); \ 223 } \ 224 } while (0) 225 226 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream) 227 { 228 struct snd_pcm_runtime *runtime = substream->runtime; 229 snd_pcm_uframes_t pos; 230 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base; 231 snd_pcm_sframes_t hdelta, delta; 232 unsigned long jdelta; 233 234 old_hw_ptr = runtime->status->hw_ptr; 235 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 236 if (pos == SNDRV_PCM_POS_XRUN) { 237 xrun(substream); 238 return -EPIPE; 239 } 240 if (xrun_debug(substream, 8)) { 241 char name[16]; 242 pcm_debug_name(substream, name, sizeof(name)); 243 snd_printd("period_update: %s: pos=0x%x/0x%x/0x%x, " 244 "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n", 245 name, (unsigned int)pos, 246 (unsigned int)runtime->period_size, 247 (unsigned int)runtime->buffer_size, 248 (unsigned long)old_hw_ptr, 249 (unsigned long)runtime->hw_ptr_base, 250 (unsigned long)runtime->hw_ptr_interrupt); 251 } 252 hw_base = runtime->hw_ptr_base; 253 new_hw_ptr = hw_base + pos; 254 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size; 255 delta = new_hw_ptr - hw_ptr_interrupt; 256 if (hw_ptr_interrupt >= runtime->boundary) { 257 hw_ptr_interrupt -= runtime->boundary; 258 if (hw_base < runtime->boundary / 2) 259 /* hw_base was already lapped; recalc delta */ 260 delta = new_hw_ptr - hw_ptr_interrupt; 261 } 262 if (delta < 0) { 263 if (runtime->periods == 1 || new_hw_ptr < old_hw_ptr) 264 delta += runtime->buffer_size; 265 if (delta < 0) { 266 hw_ptr_error(substream, 267 "Unexpected hw_pointer value " 268 "(stream=%i, pos=%ld, intr_ptr=%ld)\n", 269 substream->stream, (long)pos, 270 (long)hw_ptr_interrupt); 271 #if 1 272 /* simply skipping the hwptr update seems more 273 * robust in some cases, e.g. on VMware with 274 * inaccurate timer source 275 */ 276 return 0; /* skip this update */ 277 #else 278 /* rebase to interrupt position */ 279 hw_base = new_hw_ptr = hw_ptr_interrupt; 280 /* align hw_base to buffer_size */ 281 hw_base -= hw_base % runtime->buffer_size; 282 delta = 0; 283 #endif 284 } else { 285 hw_base += runtime->buffer_size; 286 if (hw_base >= runtime->boundary) 287 hw_base = 0; 288 new_hw_ptr = hw_base + pos; 289 } 290 } 291 292 /* Do jiffies check only in xrun_debug mode */ 293 if (!xrun_debug(substream, 4)) 294 goto no_jiffies_check; 295 296 /* Skip the jiffies check for hardwares with BATCH flag. 297 * Such hardware usually just increases the position at each IRQ, 298 * thus it can't give any strange position. 299 */ 300 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 301 goto no_jiffies_check; 302 hdelta = new_hw_ptr - old_hw_ptr; 303 if (hdelta < runtime->delay) 304 goto no_jiffies_check; 305 hdelta -= runtime->delay; 306 jdelta = jiffies - runtime->hw_ptr_jiffies; 307 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 308 delta = jdelta / 309 (((runtime->period_size * HZ) / runtime->rate) 310 + HZ/100); 311 hw_ptr_error(substream, 312 "hw_ptr skipping! [Q] " 313 "(pos=%ld, delta=%ld, period=%ld, " 314 "jdelta=%lu/%lu/%lu)\n", 315 (long)pos, (long)hdelta, 316 (long)runtime->period_size, jdelta, 317 ((hdelta * HZ) / runtime->rate), delta); 318 hw_ptr_interrupt = runtime->hw_ptr_interrupt + 319 runtime->period_size * delta; 320 if (hw_ptr_interrupt >= runtime->boundary) 321 hw_ptr_interrupt -= runtime->boundary; 322 /* rebase to interrupt position */ 323 hw_base = new_hw_ptr = hw_ptr_interrupt; 324 /* align hw_base to buffer_size */ 325 hw_base -= hw_base % runtime->buffer_size; 326 delta = 0; 327 } 328 no_jiffies_check: 329 if (delta > runtime->period_size + runtime->period_size / 2) { 330 hw_ptr_error(substream, 331 "Lost interrupts? " 332 "(stream=%i, delta=%ld, intr_ptr=%ld)\n", 333 substream->stream, (long)delta, 334 (long)hw_ptr_interrupt); 335 /* rebase hw_ptr_interrupt */ 336 hw_ptr_interrupt = 337 new_hw_ptr - new_hw_ptr % runtime->period_size; 338 } 339 runtime->hw_ptr_interrupt = hw_ptr_interrupt; 340 341 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 342 runtime->silence_size > 0) 343 snd_pcm_playback_silence(substream, new_hw_ptr); 344 345 if (runtime->status->hw_ptr == new_hw_ptr) 346 return 0; 347 348 runtime->hw_ptr_base = hw_base; 349 runtime->status->hw_ptr = new_hw_ptr; 350 runtime->hw_ptr_jiffies = jiffies; 351 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 352 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 353 354 return snd_pcm_update_hw_ptr_post(substream, runtime); 355 } 356 357 /* CAUTION: call it with irq disabled */ 358 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 359 { 360 struct snd_pcm_runtime *runtime = substream->runtime; 361 snd_pcm_uframes_t pos; 362 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 363 snd_pcm_sframes_t delta; 364 unsigned long jdelta; 365 366 old_hw_ptr = runtime->status->hw_ptr; 367 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 368 if (pos == SNDRV_PCM_POS_XRUN) { 369 xrun(substream); 370 return -EPIPE; 371 } 372 if (xrun_debug(substream, 16)) { 373 char name[16]; 374 pcm_debug_name(substream, name, sizeof(name)); 375 snd_printd("hw_update: %s: pos=0x%x/0x%x/0x%x, " 376 "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n", 377 name, (unsigned int)pos, 378 (unsigned int)runtime->period_size, 379 (unsigned int)runtime->buffer_size, 380 (unsigned long)old_hw_ptr, 381 (unsigned long)runtime->hw_ptr_base, 382 (unsigned long)runtime->hw_ptr_interrupt); 383 } 384 385 hw_base = runtime->hw_ptr_base; 386 new_hw_ptr = hw_base + pos; 387 388 delta = new_hw_ptr - old_hw_ptr; 389 jdelta = jiffies - runtime->hw_ptr_jiffies; 390 if (delta < 0) { 391 delta += runtime->buffer_size; 392 if (delta < 0) { 393 hw_ptr_error(substream, 394 "Unexpected hw_pointer value [2] " 395 "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n", 396 substream->stream, (long)pos, 397 (long)old_hw_ptr, jdelta); 398 return 0; 399 } 400 hw_base += runtime->buffer_size; 401 if (hw_base >= runtime->boundary) 402 hw_base = 0; 403 new_hw_ptr = hw_base + pos; 404 } 405 /* Do jiffies check only in xrun_debug mode */ 406 if (!xrun_debug(substream, 4)) 407 goto no_jiffies_check; 408 if (delta < runtime->delay) 409 goto no_jiffies_check; 410 delta -= runtime->delay; 411 if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) { 412 hw_ptr_error(substream, 413 "hw_ptr skipping! " 414 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n", 415 (long)pos, (long)delta, 416 (long)runtime->period_size, jdelta, 417 ((delta * HZ) / runtime->rate)); 418 return 0; 419 } 420 no_jiffies_check: 421 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 422 runtime->silence_size > 0) 423 snd_pcm_playback_silence(substream, new_hw_ptr); 424 425 if (runtime->status->hw_ptr == new_hw_ptr) 426 return 0; 427 428 runtime->hw_ptr_base = hw_base; 429 runtime->status->hw_ptr = new_hw_ptr; 430 runtime->hw_ptr_jiffies = jiffies; 431 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 432 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 433 434 return snd_pcm_update_hw_ptr_post(substream, runtime); 435 } 436 437 /** 438 * snd_pcm_set_ops - set the PCM operators 439 * @pcm: the pcm instance 440 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 441 * @ops: the operator table 442 * 443 * Sets the given PCM operators to the pcm instance. 444 */ 445 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 446 { 447 struct snd_pcm_str *stream = &pcm->streams[direction]; 448 struct snd_pcm_substream *substream; 449 450 for (substream = stream->substream; substream != NULL; substream = substream->next) 451 substream->ops = ops; 452 } 453 454 EXPORT_SYMBOL(snd_pcm_set_ops); 455 456 /** 457 * snd_pcm_sync - set the PCM sync id 458 * @substream: the pcm substream 459 * 460 * Sets the PCM sync identifier for the card. 461 */ 462 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 463 { 464 struct snd_pcm_runtime *runtime = substream->runtime; 465 466 runtime->sync.id32[0] = substream->pcm->card->number; 467 runtime->sync.id32[1] = -1; 468 runtime->sync.id32[2] = -1; 469 runtime->sync.id32[3] = -1; 470 } 471 472 EXPORT_SYMBOL(snd_pcm_set_sync); 473 474 /* 475 * Standard ioctl routine 476 */ 477 478 static inline unsigned int div32(unsigned int a, unsigned int b, 479 unsigned int *r) 480 { 481 if (b == 0) { 482 *r = 0; 483 return UINT_MAX; 484 } 485 *r = a % b; 486 return a / b; 487 } 488 489 static inline unsigned int div_down(unsigned int a, unsigned int b) 490 { 491 if (b == 0) 492 return UINT_MAX; 493 return a / b; 494 } 495 496 static inline unsigned int div_up(unsigned int a, unsigned int b) 497 { 498 unsigned int r; 499 unsigned int q; 500 if (b == 0) 501 return UINT_MAX; 502 q = div32(a, b, &r); 503 if (r) 504 ++q; 505 return q; 506 } 507 508 static inline unsigned int mul(unsigned int a, unsigned int b) 509 { 510 if (a == 0) 511 return 0; 512 if (div_down(UINT_MAX, a) < b) 513 return UINT_MAX; 514 return a * b; 515 } 516 517 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 518 unsigned int c, unsigned int *r) 519 { 520 u_int64_t n = (u_int64_t) a * b; 521 if (c == 0) { 522 snd_BUG_ON(!n); 523 *r = 0; 524 return UINT_MAX; 525 } 526 n = div_u64_rem(n, c, r); 527 if (n >= UINT_MAX) { 528 *r = 0; 529 return UINT_MAX; 530 } 531 return n; 532 } 533 534 /** 535 * snd_interval_refine - refine the interval value of configurator 536 * @i: the interval value to refine 537 * @v: the interval value to refer to 538 * 539 * Refines the interval value with the reference value. 540 * The interval is changed to the range satisfying both intervals. 541 * The interval status (min, max, integer, etc.) are evaluated. 542 * 543 * Returns non-zero if the value is changed, zero if not changed. 544 */ 545 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 546 { 547 int changed = 0; 548 if (snd_BUG_ON(snd_interval_empty(i))) 549 return -EINVAL; 550 if (i->min < v->min) { 551 i->min = v->min; 552 i->openmin = v->openmin; 553 changed = 1; 554 } else if (i->min == v->min && !i->openmin && v->openmin) { 555 i->openmin = 1; 556 changed = 1; 557 } 558 if (i->max > v->max) { 559 i->max = v->max; 560 i->openmax = v->openmax; 561 changed = 1; 562 } else if (i->max == v->max && !i->openmax && v->openmax) { 563 i->openmax = 1; 564 changed = 1; 565 } 566 if (!i->integer && v->integer) { 567 i->integer = 1; 568 changed = 1; 569 } 570 if (i->integer) { 571 if (i->openmin) { 572 i->min++; 573 i->openmin = 0; 574 } 575 if (i->openmax) { 576 i->max--; 577 i->openmax = 0; 578 } 579 } else if (!i->openmin && !i->openmax && i->min == i->max) 580 i->integer = 1; 581 if (snd_interval_checkempty(i)) { 582 snd_interval_none(i); 583 return -EINVAL; 584 } 585 return changed; 586 } 587 588 EXPORT_SYMBOL(snd_interval_refine); 589 590 static int snd_interval_refine_first(struct snd_interval *i) 591 { 592 if (snd_BUG_ON(snd_interval_empty(i))) 593 return -EINVAL; 594 if (snd_interval_single(i)) 595 return 0; 596 i->max = i->min; 597 i->openmax = i->openmin; 598 if (i->openmax) 599 i->max++; 600 return 1; 601 } 602 603 static int snd_interval_refine_last(struct snd_interval *i) 604 { 605 if (snd_BUG_ON(snd_interval_empty(i))) 606 return -EINVAL; 607 if (snd_interval_single(i)) 608 return 0; 609 i->min = i->max; 610 i->openmin = i->openmax; 611 if (i->openmin) 612 i->min--; 613 return 1; 614 } 615 616 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 617 { 618 if (a->empty || b->empty) { 619 snd_interval_none(c); 620 return; 621 } 622 c->empty = 0; 623 c->min = mul(a->min, b->min); 624 c->openmin = (a->openmin || b->openmin); 625 c->max = mul(a->max, b->max); 626 c->openmax = (a->openmax || b->openmax); 627 c->integer = (a->integer && b->integer); 628 } 629 630 /** 631 * snd_interval_div - refine the interval value with division 632 * @a: dividend 633 * @b: divisor 634 * @c: quotient 635 * 636 * c = a / b 637 * 638 * Returns non-zero if the value is changed, zero if not changed. 639 */ 640 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 641 { 642 unsigned int r; 643 if (a->empty || b->empty) { 644 snd_interval_none(c); 645 return; 646 } 647 c->empty = 0; 648 c->min = div32(a->min, b->max, &r); 649 c->openmin = (r || a->openmin || b->openmax); 650 if (b->min > 0) { 651 c->max = div32(a->max, b->min, &r); 652 if (r) { 653 c->max++; 654 c->openmax = 1; 655 } else 656 c->openmax = (a->openmax || b->openmin); 657 } else { 658 c->max = UINT_MAX; 659 c->openmax = 0; 660 } 661 c->integer = 0; 662 } 663 664 /** 665 * snd_interval_muldivk - refine the interval value 666 * @a: dividend 1 667 * @b: dividend 2 668 * @k: divisor (as integer) 669 * @c: result 670 * 671 * c = a * b / k 672 * 673 * Returns non-zero if the value is changed, zero if not changed. 674 */ 675 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 676 unsigned int k, struct snd_interval *c) 677 { 678 unsigned int r; 679 if (a->empty || b->empty) { 680 snd_interval_none(c); 681 return; 682 } 683 c->empty = 0; 684 c->min = muldiv32(a->min, b->min, k, &r); 685 c->openmin = (r || a->openmin || b->openmin); 686 c->max = muldiv32(a->max, b->max, k, &r); 687 if (r) { 688 c->max++; 689 c->openmax = 1; 690 } else 691 c->openmax = (a->openmax || b->openmax); 692 c->integer = 0; 693 } 694 695 /** 696 * snd_interval_mulkdiv - refine the interval value 697 * @a: dividend 1 698 * @k: dividend 2 (as integer) 699 * @b: divisor 700 * @c: result 701 * 702 * c = a * k / b 703 * 704 * Returns non-zero if the value is changed, zero if not changed. 705 */ 706 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 707 const struct snd_interval *b, struct snd_interval *c) 708 { 709 unsigned int r; 710 if (a->empty || b->empty) { 711 snd_interval_none(c); 712 return; 713 } 714 c->empty = 0; 715 c->min = muldiv32(a->min, k, b->max, &r); 716 c->openmin = (r || a->openmin || b->openmax); 717 if (b->min > 0) { 718 c->max = muldiv32(a->max, k, b->min, &r); 719 if (r) { 720 c->max++; 721 c->openmax = 1; 722 } else 723 c->openmax = (a->openmax || b->openmin); 724 } else { 725 c->max = UINT_MAX; 726 c->openmax = 0; 727 } 728 c->integer = 0; 729 } 730 731 /* ---- */ 732 733 734 /** 735 * snd_interval_ratnum - refine the interval value 736 * @i: interval to refine 737 * @rats_count: number of ratnum_t 738 * @rats: ratnum_t array 739 * @nump: pointer to store the resultant numerator 740 * @denp: pointer to store the resultant denominator 741 * 742 * Returns non-zero if the value is changed, zero if not changed. 743 */ 744 int snd_interval_ratnum(struct snd_interval *i, 745 unsigned int rats_count, struct snd_ratnum *rats, 746 unsigned int *nump, unsigned int *denp) 747 { 748 unsigned int best_num, best_diff, best_den; 749 unsigned int k; 750 struct snd_interval t; 751 int err; 752 753 best_num = best_den = best_diff = 0; 754 for (k = 0; k < rats_count; ++k) { 755 unsigned int num = rats[k].num; 756 unsigned int den; 757 unsigned int q = i->min; 758 int diff; 759 if (q == 0) 760 q = 1; 761 den = div_up(num, q); 762 if (den < rats[k].den_min) 763 continue; 764 if (den > rats[k].den_max) 765 den = rats[k].den_max; 766 else { 767 unsigned int r; 768 r = (den - rats[k].den_min) % rats[k].den_step; 769 if (r != 0) 770 den -= r; 771 } 772 diff = num - q * den; 773 if (best_num == 0 || 774 diff * best_den < best_diff * den) { 775 best_diff = diff; 776 best_den = den; 777 best_num = num; 778 } 779 } 780 if (best_den == 0) { 781 i->empty = 1; 782 return -EINVAL; 783 } 784 t.min = div_down(best_num, best_den); 785 t.openmin = !!(best_num % best_den); 786 787 best_num = best_den = best_diff = 0; 788 for (k = 0; k < rats_count; ++k) { 789 unsigned int num = rats[k].num; 790 unsigned int den; 791 unsigned int q = i->max; 792 int diff; 793 if (q == 0) { 794 i->empty = 1; 795 return -EINVAL; 796 } 797 den = div_down(num, q); 798 if (den > rats[k].den_max) 799 continue; 800 if (den < rats[k].den_min) 801 den = rats[k].den_min; 802 else { 803 unsigned int r; 804 r = (den - rats[k].den_min) % rats[k].den_step; 805 if (r != 0) 806 den += rats[k].den_step - r; 807 } 808 diff = q * den - num; 809 if (best_num == 0 || 810 diff * best_den < best_diff * den) { 811 best_diff = diff; 812 best_den = den; 813 best_num = num; 814 } 815 } 816 if (best_den == 0) { 817 i->empty = 1; 818 return -EINVAL; 819 } 820 t.max = div_up(best_num, best_den); 821 t.openmax = !!(best_num % best_den); 822 t.integer = 0; 823 err = snd_interval_refine(i, &t); 824 if (err < 0) 825 return err; 826 827 if (snd_interval_single(i)) { 828 if (nump) 829 *nump = best_num; 830 if (denp) 831 *denp = best_den; 832 } 833 return err; 834 } 835 836 EXPORT_SYMBOL(snd_interval_ratnum); 837 838 /** 839 * snd_interval_ratden - refine the interval value 840 * @i: interval to refine 841 * @rats_count: number of struct ratden 842 * @rats: struct ratden array 843 * @nump: pointer to store the resultant numerator 844 * @denp: pointer to store the resultant denominator 845 * 846 * Returns non-zero if the value is changed, zero if not changed. 847 */ 848 static int snd_interval_ratden(struct snd_interval *i, 849 unsigned int rats_count, struct snd_ratden *rats, 850 unsigned int *nump, unsigned int *denp) 851 { 852 unsigned int best_num, best_diff, best_den; 853 unsigned int k; 854 struct snd_interval t; 855 int err; 856 857 best_num = best_den = best_diff = 0; 858 for (k = 0; k < rats_count; ++k) { 859 unsigned int num; 860 unsigned int den = rats[k].den; 861 unsigned int q = i->min; 862 int diff; 863 num = mul(q, den); 864 if (num > rats[k].num_max) 865 continue; 866 if (num < rats[k].num_min) 867 num = rats[k].num_max; 868 else { 869 unsigned int r; 870 r = (num - rats[k].num_min) % rats[k].num_step; 871 if (r != 0) 872 num += rats[k].num_step - r; 873 } 874 diff = num - q * den; 875 if (best_num == 0 || 876 diff * best_den < best_diff * den) { 877 best_diff = diff; 878 best_den = den; 879 best_num = num; 880 } 881 } 882 if (best_den == 0) { 883 i->empty = 1; 884 return -EINVAL; 885 } 886 t.min = div_down(best_num, best_den); 887 t.openmin = !!(best_num % best_den); 888 889 best_num = best_den = best_diff = 0; 890 for (k = 0; k < rats_count; ++k) { 891 unsigned int num; 892 unsigned int den = rats[k].den; 893 unsigned int q = i->max; 894 int diff; 895 num = mul(q, den); 896 if (num < rats[k].num_min) 897 continue; 898 if (num > rats[k].num_max) 899 num = rats[k].num_max; 900 else { 901 unsigned int r; 902 r = (num - rats[k].num_min) % rats[k].num_step; 903 if (r != 0) 904 num -= r; 905 } 906 diff = q * den - num; 907 if (best_num == 0 || 908 diff * best_den < best_diff * den) { 909 best_diff = diff; 910 best_den = den; 911 best_num = num; 912 } 913 } 914 if (best_den == 0) { 915 i->empty = 1; 916 return -EINVAL; 917 } 918 t.max = div_up(best_num, best_den); 919 t.openmax = !!(best_num % best_den); 920 t.integer = 0; 921 err = snd_interval_refine(i, &t); 922 if (err < 0) 923 return err; 924 925 if (snd_interval_single(i)) { 926 if (nump) 927 *nump = best_num; 928 if (denp) 929 *denp = best_den; 930 } 931 return err; 932 } 933 934 /** 935 * snd_interval_list - refine the interval value from the list 936 * @i: the interval value to refine 937 * @count: the number of elements in the list 938 * @list: the value list 939 * @mask: the bit-mask to evaluate 940 * 941 * Refines the interval value from the list. 942 * When mask is non-zero, only the elements corresponding to bit 1 are 943 * evaluated. 944 * 945 * Returns non-zero if the value is changed, zero if not changed. 946 */ 947 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 948 { 949 unsigned int k; 950 struct snd_interval list_range; 951 952 if (!count) { 953 i->empty = 1; 954 return -EINVAL; 955 } 956 snd_interval_any(&list_range); 957 list_range.min = UINT_MAX; 958 list_range.max = 0; 959 for (k = 0; k < count; k++) { 960 if (mask && !(mask & (1 << k))) 961 continue; 962 if (!snd_interval_test(i, list[k])) 963 continue; 964 list_range.min = min(list_range.min, list[k]); 965 list_range.max = max(list_range.max, list[k]); 966 } 967 return snd_interval_refine(i, &list_range); 968 } 969 970 EXPORT_SYMBOL(snd_interval_list); 971 972 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 973 { 974 unsigned int n; 975 int changed = 0; 976 n = (i->min - min) % step; 977 if (n != 0 || i->openmin) { 978 i->min += step - n; 979 changed = 1; 980 } 981 n = (i->max - min) % step; 982 if (n != 0 || i->openmax) { 983 i->max -= n; 984 changed = 1; 985 } 986 if (snd_interval_checkempty(i)) { 987 i->empty = 1; 988 return -EINVAL; 989 } 990 return changed; 991 } 992 993 /* Info constraints helpers */ 994 995 /** 996 * snd_pcm_hw_rule_add - add the hw-constraint rule 997 * @runtime: the pcm runtime instance 998 * @cond: condition bits 999 * @var: the variable to evaluate 1000 * @func: the evaluation function 1001 * @private: the private data pointer passed to function 1002 * @dep: the dependent variables 1003 * 1004 * Returns zero if successful, or a negative error code on failure. 1005 */ 1006 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1007 int var, 1008 snd_pcm_hw_rule_func_t func, void *private, 1009 int dep, ...) 1010 { 1011 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1012 struct snd_pcm_hw_rule *c; 1013 unsigned int k; 1014 va_list args; 1015 va_start(args, dep); 1016 if (constrs->rules_num >= constrs->rules_all) { 1017 struct snd_pcm_hw_rule *new; 1018 unsigned int new_rules = constrs->rules_all + 16; 1019 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1020 if (!new) 1021 return -ENOMEM; 1022 if (constrs->rules) { 1023 memcpy(new, constrs->rules, 1024 constrs->rules_num * sizeof(*c)); 1025 kfree(constrs->rules); 1026 } 1027 constrs->rules = new; 1028 constrs->rules_all = new_rules; 1029 } 1030 c = &constrs->rules[constrs->rules_num]; 1031 c->cond = cond; 1032 c->func = func; 1033 c->var = var; 1034 c->private = private; 1035 k = 0; 1036 while (1) { 1037 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) 1038 return -EINVAL; 1039 c->deps[k++] = dep; 1040 if (dep < 0) 1041 break; 1042 dep = va_arg(args, int); 1043 } 1044 constrs->rules_num++; 1045 va_end(args); 1046 return 0; 1047 } 1048 1049 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1050 1051 /** 1052 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1053 * @runtime: PCM runtime instance 1054 * @var: hw_params variable to apply the mask 1055 * @mask: the bitmap mask 1056 * 1057 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1058 */ 1059 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1060 u_int32_t mask) 1061 { 1062 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1063 struct snd_mask *maskp = constrs_mask(constrs, var); 1064 *maskp->bits &= mask; 1065 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1066 if (*maskp->bits == 0) 1067 return -EINVAL; 1068 return 0; 1069 } 1070 1071 /** 1072 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1073 * @runtime: PCM runtime instance 1074 * @var: hw_params variable to apply the mask 1075 * @mask: the 64bit bitmap mask 1076 * 1077 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1078 */ 1079 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1080 u_int64_t mask) 1081 { 1082 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1083 struct snd_mask *maskp = constrs_mask(constrs, var); 1084 maskp->bits[0] &= (u_int32_t)mask; 1085 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1086 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1087 if (! maskp->bits[0] && ! maskp->bits[1]) 1088 return -EINVAL; 1089 return 0; 1090 } 1091 1092 /** 1093 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1094 * @runtime: PCM runtime instance 1095 * @var: hw_params variable to apply the integer constraint 1096 * 1097 * Apply the constraint of integer to an interval parameter. 1098 */ 1099 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1100 { 1101 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1102 return snd_interval_setinteger(constrs_interval(constrs, var)); 1103 } 1104 1105 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1106 1107 /** 1108 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1109 * @runtime: PCM runtime instance 1110 * @var: hw_params variable to apply the range 1111 * @min: the minimal value 1112 * @max: the maximal value 1113 * 1114 * Apply the min/max range constraint to an interval parameter. 1115 */ 1116 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1117 unsigned int min, unsigned int max) 1118 { 1119 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1120 struct snd_interval t; 1121 t.min = min; 1122 t.max = max; 1123 t.openmin = t.openmax = 0; 1124 t.integer = 0; 1125 return snd_interval_refine(constrs_interval(constrs, var), &t); 1126 } 1127 1128 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1129 1130 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1131 struct snd_pcm_hw_rule *rule) 1132 { 1133 struct snd_pcm_hw_constraint_list *list = rule->private; 1134 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1135 } 1136 1137 1138 /** 1139 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1140 * @runtime: PCM runtime instance 1141 * @cond: condition bits 1142 * @var: hw_params variable to apply the list constraint 1143 * @l: list 1144 * 1145 * Apply the list of constraints to an interval parameter. 1146 */ 1147 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1148 unsigned int cond, 1149 snd_pcm_hw_param_t var, 1150 struct snd_pcm_hw_constraint_list *l) 1151 { 1152 return snd_pcm_hw_rule_add(runtime, cond, var, 1153 snd_pcm_hw_rule_list, l, 1154 var, -1); 1155 } 1156 1157 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1158 1159 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1160 struct snd_pcm_hw_rule *rule) 1161 { 1162 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1163 unsigned int num = 0, den = 0; 1164 int err; 1165 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1166 r->nrats, r->rats, &num, &den); 1167 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1168 params->rate_num = num; 1169 params->rate_den = den; 1170 } 1171 return err; 1172 } 1173 1174 /** 1175 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1176 * @runtime: PCM runtime instance 1177 * @cond: condition bits 1178 * @var: hw_params variable to apply the ratnums constraint 1179 * @r: struct snd_ratnums constriants 1180 */ 1181 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1182 unsigned int cond, 1183 snd_pcm_hw_param_t var, 1184 struct snd_pcm_hw_constraint_ratnums *r) 1185 { 1186 return snd_pcm_hw_rule_add(runtime, cond, var, 1187 snd_pcm_hw_rule_ratnums, r, 1188 var, -1); 1189 } 1190 1191 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1192 1193 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1194 struct snd_pcm_hw_rule *rule) 1195 { 1196 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1197 unsigned int num = 0, den = 0; 1198 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1199 r->nrats, r->rats, &num, &den); 1200 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1201 params->rate_num = num; 1202 params->rate_den = den; 1203 } 1204 return err; 1205 } 1206 1207 /** 1208 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1209 * @runtime: PCM runtime instance 1210 * @cond: condition bits 1211 * @var: hw_params variable to apply the ratdens constraint 1212 * @r: struct snd_ratdens constriants 1213 */ 1214 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1215 unsigned int cond, 1216 snd_pcm_hw_param_t var, 1217 struct snd_pcm_hw_constraint_ratdens *r) 1218 { 1219 return snd_pcm_hw_rule_add(runtime, cond, var, 1220 snd_pcm_hw_rule_ratdens, r, 1221 var, -1); 1222 } 1223 1224 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1225 1226 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1227 struct snd_pcm_hw_rule *rule) 1228 { 1229 unsigned int l = (unsigned long) rule->private; 1230 int width = l & 0xffff; 1231 unsigned int msbits = l >> 16; 1232 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1233 if (snd_interval_single(i) && snd_interval_value(i) == width) 1234 params->msbits = msbits; 1235 return 0; 1236 } 1237 1238 /** 1239 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1240 * @runtime: PCM runtime instance 1241 * @cond: condition bits 1242 * @width: sample bits width 1243 * @msbits: msbits width 1244 */ 1245 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1246 unsigned int cond, 1247 unsigned int width, 1248 unsigned int msbits) 1249 { 1250 unsigned long l = (msbits << 16) | width; 1251 return snd_pcm_hw_rule_add(runtime, cond, -1, 1252 snd_pcm_hw_rule_msbits, 1253 (void*) l, 1254 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1255 } 1256 1257 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1258 1259 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1260 struct snd_pcm_hw_rule *rule) 1261 { 1262 unsigned long step = (unsigned long) rule->private; 1263 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1264 } 1265 1266 /** 1267 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1268 * @runtime: PCM runtime instance 1269 * @cond: condition bits 1270 * @var: hw_params variable to apply the step constraint 1271 * @step: step size 1272 */ 1273 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1274 unsigned int cond, 1275 snd_pcm_hw_param_t var, 1276 unsigned long step) 1277 { 1278 return snd_pcm_hw_rule_add(runtime, cond, var, 1279 snd_pcm_hw_rule_step, (void *) step, 1280 var, -1); 1281 } 1282 1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1284 1285 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1286 { 1287 static unsigned int pow2_sizes[] = { 1288 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1289 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1290 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1291 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1292 }; 1293 return snd_interval_list(hw_param_interval(params, rule->var), 1294 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1295 } 1296 1297 /** 1298 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1299 * @runtime: PCM runtime instance 1300 * @cond: condition bits 1301 * @var: hw_params variable to apply the power-of-2 constraint 1302 */ 1303 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1304 unsigned int cond, 1305 snd_pcm_hw_param_t var) 1306 { 1307 return snd_pcm_hw_rule_add(runtime, cond, var, 1308 snd_pcm_hw_rule_pow2, NULL, 1309 var, -1); 1310 } 1311 1312 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1313 1314 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1315 snd_pcm_hw_param_t var) 1316 { 1317 if (hw_is_mask(var)) { 1318 snd_mask_any(hw_param_mask(params, var)); 1319 params->cmask |= 1 << var; 1320 params->rmask |= 1 << var; 1321 return; 1322 } 1323 if (hw_is_interval(var)) { 1324 snd_interval_any(hw_param_interval(params, var)); 1325 params->cmask |= 1 << var; 1326 params->rmask |= 1 << var; 1327 return; 1328 } 1329 snd_BUG(); 1330 } 1331 1332 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1333 { 1334 unsigned int k; 1335 memset(params, 0, sizeof(*params)); 1336 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1337 _snd_pcm_hw_param_any(params, k); 1338 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1339 _snd_pcm_hw_param_any(params, k); 1340 params->info = ~0U; 1341 } 1342 1343 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1344 1345 /** 1346 * snd_pcm_hw_param_value - return @params field @var value 1347 * @params: the hw_params instance 1348 * @var: parameter to retrieve 1349 * @dir: pointer to the direction (-1,0,1) or %NULL 1350 * 1351 * Return the value for field @var if it's fixed in configuration space 1352 * defined by @params. Return -%EINVAL otherwise. 1353 */ 1354 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1355 snd_pcm_hw_param_t var, int *dir) 1356 { 1357 if (hw_is_mask(var)) { 1358 const struct snd_mask *mask = hw_param_mask_c(params, var); 1359 if (!snd_mask_single(mask)) 1360 return -EINVAL; 1361 if (dir) 1362 *dir = 0; 1363 return snd_mask_value(mask); 1364 } 1365 if (hw_is_interval(var)) { 1366 const struct snd_interval *i = hw_param_interval_c(params, var); 1367 if (!snd_interval_single(i)) 1368 return -EINVAL; 1369 if (dir) 1370 *dir = i->openmin; 1371 return snd_interval_value(i); 1372 } 1373 return -EINVAL; 1374 } 1375 1376 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1377 1378 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1379 snd_pcm_hw_param_t var) 1380 { 1381 if (hw_is_mask(var)) { 1382 snd_mask_none(hw_param_mask(params, var)); 1383 params->cmask |= 1 << var; 1384 params->rmask |= 1 << var; 1385 } else if (hw_is_interval(var)) { 1386 snd_interval_none(hw_param_interval(params, var)); 1387 params->cmask |= 1 << var; 1388 params->rmask |= 1 << var; 1389 } else { 1390 snd_BUG(); 1391 } 1392 } 1393 1394 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1395 1396 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1397 snd_pcm_hw_param_t var) 1398 { 1399 int changed; 1400 if (hw_is_mask(var)) 1401 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1402 else if (hw_is_interval(var)) 1403 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1404 else 1405 return -EINVAL; 1406 if (changed) { 1407 params->cmask |= 1 << var; 1408 params->rmask |= 1 << var; 1409 } 1410 return changed; 1411 } 1412 1413 1414 /** 1415 * snd_pcm_hw_param_first - refine config space and return minimum value 1416 * @pcm: PCM instance 1417 * @params: the hw_params instance 1418 * @var: parameter to retrieve 1419 * @dir: pointer to the direction (-1,0,1) or %NULL 1420 * 1421 * Inside configuration space defined by @params remove from @var all 1422 * values > minimum. Reduce configuration space accordingly. 1423 * Return the minimum. 1424 */ 1425 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1426 struct snd_pcm_hw_params *params, 1427 snd_pcm_hw_param_t var, int *dir) 1428 { 1429 int changed = _snd_pcm_hw_param_first(params, var); 1430 if (changed < 0) 1431 return changed; 1432 if (params->rmask) { 1433 int err = snd_pcm_hw_refine(pcm, params); 1434 if (snd_BUG_ON(err < 0)) 1435 return err; 1436 } 1437 return snd_pcm_hw_param_value(params, var, dir); 1438 } 1439 1440 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1441 1442 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1443 snd_pcm_hw_param_t var) 1444 { 1445 int changed; 1446 if (hw_is_mask(var)) 1447 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1448 else if (hw_is_interval(var)) 1449 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1450 else 1451 return -EINVAL; 1452 if (changed) { 1453 params->cmask |= 1 << var; 1454 params->rmask |= 1 << var; 1455 } 1456 return changed; 1457 } 1458 1459 1460 /** 1461 * snd_pcm_hw_param_last - refine config space and return maximum value 1462 * @pcm: PCM instance 1463 * @params: the hw_params instance 1464 * @var: parameter to retrieve 1465 * @dir: pointer to the direction (-1,0,1) or %NULL 1466 * 1467 * Inside configuration space defined by @params remove from @var all 1468 * values < maximum. Reduce configuration space accordingly. 1469 * Return the maximum. 1470 */ 1471 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1472 struct snd_pcm_hw_params *params, 1473 snd_pcm_hw_param_t var, int *dir) 1474 { 1475 int changed = _snd_pcm_hw_param_last(params, var); 1476 if (changed < 0) 1477 return changed; 1478 if (params->rmask) { 1479 int err = snd_pcm_hw_refine(pcm, params); 1480 if (snd_BUG_ON(err < 0)) 1481 return err; 1482 } 1483 return snd_pcm_hw_param_value(params, var, dir); 1484 } 1485 1486 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1487 1488 /** 1489 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1490 * @pcm: PCM instance 1491 * @params: the hw_params instance 1492 * 1493 * Choose one configuration from configuration space defined by @params. 1494 * The configuration chosen is that obtained fixing in this order: 1495 * first access, first format, first subformat, min channels, 1496 * min rate, min period time, max buffer size, min tick time 1497 */ 1498 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1499 struct snd_pcm_hw_params *params) 1500 { 1501 static int vars[] = { 1502 SNDRV_PCM_HW_PARAM_ACCESS, 1503 SNDRV_PCM_HW_PARAM_FORMAT, 1504 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1505 SNDRV_PCM_HW_PARAM_CHANNELS, 1506 SNDRV_PCM_HW_PARAM_RATE, 1507 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1508 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1509 SNDRV_PCM_HW_PARAM_TICK_TIME, 1510 -1 1511 }; 1512 int err, *v; 1513 1514 for (v = vars; *v != -1; v++) { 1515 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1516 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1517 else 1518 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1519 if (snd_BUG_ON(err < 0)) 1520 return err; 1521 } 1522 return 0; 1523 } 1524 1525 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1526 void *arg) 1527 { 1528 struct snd_pcm_runtime *runtime = substream->runtime; 1529 unsigned long flags; 1530 snd_pcm_stream_lock_irqsave(substream, flags); 1531 if (snd_pcm_running(substream) && 1532 snd_pcm_update_hw_ptr(substream) >= 0) 1533 runtime->status->hw_ptr %= runtime->buffer_size; 1534 else 1535 runtime->status->hw_ptr = 0; 1536 snd_pcm_stream_unlock_irqrestore(substream, flags); 1537 return 0; 1538 } 1539 1540 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1541 void *arg) 1542 { 1543 struct snd_pcm_channel_info *info = arg; 1544 struct snd_pcm_runtime *runtime = substream->runtime; 1545 int width; 1546 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1547 info->offset = -1; 1548 return 0; 1549 } 1550 width = snd_pcm_format_physical_width(runtime->format); 1551 if (width < 0) 1552 return width; 1553 info->offset = 0; 1554 switch (runtime->access) { 1555 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1556 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1557 info->first = info->channel * width; 1558 info->step = runtime->channels * width; 1559 break; 1560 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1561 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1562 { 1563 size_t size = runtime->dma_bytes / runtime->channels; 1564 info->first = info->channel * size * 8; 1565 info->step = width; 1566 break; 1567 } 1568 default: 1569 snd_BUG(); 1570 break; 1571 } 1572 return 0; 1573 } 1574 1575 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1576 void *arg) 1577 { 1578 struct snd_pcm_hw_params *params = arg; 1579 snd_pcm_format_t format; 1580 int channels, width; 1581 1582 params->fifo_size = substream->runtime->hw.fifo_size; 1583 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1584 format = params_format(params); 1585 channels = params_channels(params); 1586 width = snd_pcm_format_physical_width(format); 1587 params->fifo_size /= width * channels; 1588 } 1589 return 0; 1590 } 1591 1592 /** 1593 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1594 * @substream: the pcm substream instance 1595 * @cmd: ioctl command 1596 * @arg: ioctl argument 1597 * 1598 * Processes the generic ioctl commands for PCM. 1599 * Can be passed as the ioctl callback for PCM ops. 1600 * 1601 * Returns zero if successful, or a negative error code on failure. 1602 */ 1603 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1604 unsigned int cmd, void *arg) 1605 { 1606 switch (cmd) { 1607 case SNDRV_PCM_IOCTL1_INFO: 1608 return 0; 1609 case SNDRV_PCM_IOCTL1_RESET: 1610 return snd_pcm_lib_ioctl_reset(substream, arg); 1611 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1612 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1613 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1614 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1615 } 1616 return -ENXIO; 1617 } 1618 1619 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1620 1621 /** 1622 * snd_pcm_period_elapsed - update the pcm status for the next period 1623 * @substream: the pcm substream instance 1624 * 1625 * This function is called from the interrupt handler when the 1626 * PCM has processed the period size. It will update the current 1627 * pointer, wake up sleepers, etc. 1628 * 1629 * Even if more than one periods have elapsed since the last call, you 1630 * have to call this only once. 1631 */ 1632 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1633 { 1634 struct snd_pcm_runtime *runtime; 1635 unsigned long flags; 1636 1637 if (PCM_RUNTIME_CHECK(substream)) 1638 return; 1639 runtime = substream->runtime; 1640 1641 if (runtime->transfer_ack_begin) 1642 runtime->transfer_ack_begin(substream); 1643 1644 snd_pcm_stream_lock_irqsave(substream, flags); 1645 if (!snd_pcm_running(substream) || 1646 snd_pcm_update_hw_ptr_interrupt(substream) < 0) 1647 goto _end; 1648 1649 if (substream->timer_running) 1650 snd_timer_interrupt(substream->timer, 1); 1651 _end: 1652 snd_pcm_stream_unlock_irqrestore(substream, flags); 1653 if (runtime->transfer_ack_end) 1654 runtime->transfer_ack_end(substream); 1655 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1656 } 1657 1658 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1659 1660 /* 1661 * Wait until avail_min data becomes available 1662 * Returns a negative error code if any error occurs during operation. 1663 * The available space is stored on availp. When err = 0 and avail = 0 1664 * on the capture stream, it indicates the stream is in DRAINING state. 1665 */ 1666 static int wait_for_avail_min(struct snd_pcm_substream *substream, 1667 snd_pcm_uframes_t *availp) 1668 { 1669 struct snd_pcm_runtime *runtime = substream->runtime; 1670 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1671 wait_queue_t wait; 1672 int err = 0; 1673 snd_pcm_uframes_t avail = 0; 1674 long tout; 1675 1676 init_waitqueue_entry(&wait, current); 1677 add_wait_queue(&runtime->sleep, &wait); 1678 for (;;) { 1679 if (signal_pending(current)) { 1680 err = -ERESTARTSYS; 1681 break; 1682 } 1683 set_current_state(TASK_INTERRUPTIBLE); 1684 snd_pcm_stream_unlock_irq(substream); 1685 tout = schedule_timeout(msecs_to_jiffies(10000)); 1686 snd_pcm_stream_lock_irq(substream); 1687 switch (runtime->status->state) { 1688 case SNDRV_PCM_STATE_SUSPENDED: 1689 err = -ESTRPIPE; 1690 goto _endloop; 1691 case SNDRV_PCM_STATE_XRUN: 1692 err = -EPIPE; 1693 goto _endloop; 1694 case SNDRV_PCM_STATE_DRAINING: 1695 if (is_playback) 1696 err = -EPIPE; 1697 else 1698 avail = 0; /* indicate draining */ 1699 goto _endloop; 1700 case SNDRV_PCM_STATE_OPEN: 1701 case SNDRV_PCM_STATE_SETUP: 1702 case SNDRV_PCM_STATE_DISCONNECTED: 1703 err = -EBADFD; 1704 goto _endloop; 1705 } 1706 if (!tout) { 1707 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1708 is_playback ? "playback" : "capture"); 1709 err = -EIO; 1710 break; 1711 } 1712 if (is_playback) 1713 avail = snd_pcm_playback_avail(runtime); 1714 else 1715 avail = snd_pcm_capture_avail(runtime); 1716 if (avail >= runtime->control->avail_min) 1717 break; 1718 } 1719 _endloop: 1720 remove_wait_queue(&runtime->sleep, &wait); 1721 *availp = avail; 1722 return err; 1723 } 1724 1725 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1726 unsigned int hwoff, 1727 unsigned long data, unsigned int off, 1728 snd_pcm_uframes_t frames) 1729 { 1730 struct snd_pcm_runtime *runtime = substream->runtime; 1731 int err; 1732 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1733 if (substream->ops->copy) { 1734 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1735 return err; 1736 } else { 1737 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1738 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1739 return -EFAULT; 1740 } 1741 return 0; 1742 } 1743 1744 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1745 unsigned long data, unsigned int off, 1746 snd_pcm_uframes_t size); 1747 1748 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1749 unsigned long data, 1750 snd_pcm_uframes_t size, 1751 int nonblock, 1752 transfer_f transfer) 1753 { 1754 struct snd_pcm_runtime *runtime = substream->runtime; 1755 snd_pcm_uframes_t xfer = 0; 1756 snd_pcm_uframes_t offset = 0; 1757 int err = 0; 1758 1759 if (size == 0) 1760 return 0; 1761 1762 snd_pcm_stream_lock_irq(substream); 1763 switch (runtime->status->state) { 1764 case SNDRV_PCM_STATE_PREPARED: 1765 case SNDRV_PCM_STATE_RUNNING: 1766 case SNDRV_PCM_STATE_PAUSED: 1767 break; 1768 case SNDRV_PCM_STATE_XRUN: 1769 err = -EPIPE; 1770 goto _end_unlock; 1771 case SNDRV_PCM_STATE_SUSPENDED: 1772 err = -ESTRPIPE; 1773 goto _end_unlock; 1774 default: 1775 err = -EBADFD; 1776 goto _end_unlock; 1777 } 1778 1779 while (size > 0) { 1780 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1781 snd_pcm_uframes_t avail; 1782 snd_pcm_uframes_t cont; 1783 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1784 snd_pcm_update_hw_ptr(substream); 1785 avail = snd_pcm_playback_avail(runtime); 1786 if (!avail) { 1787 if (nonblock) { 1788 err = -EAGAIN; 1789 goto _end_unlock; 1790 } 1791 err = wait_for_avail_min(substream, &avail); 1792 if (err < 0) 1793 goto _end_unlock; 1794 } 1795 frames = size > avail ? avail : size; 1796 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1797 if (frames > cont) 1798 frames = cont; 1799 if (snd_BUG_ON(!frames)) { 1800 snd_pcm_stream_unlock_irq(substream); 1801 return -EINVAL; 1802 } 1803 appl_ptr = runtime->control->appl_ptr; 1804 appl_ofs = appl_ptr % runtime->buffer_size; 1805 snd_pcm_stream_unlock_irq(substream); 1806 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 1807 goto _end; 1808 snd_pcm_stream_lock_irq(substream); 1809 switch (runtime->status->state) { 1810 case SNDRV_PCM_STATE_XRUN: 1811 err = -EPIPE; 1812 goto _end_unlock; 1813 case SNDRV_PCM_STATE_SUSPENDED: 1814 err = -ESTRPIPE; 1815 goto _end_unlock; 1816 default: 1817 break; 1818 } 1819 appl_ptr += frames; 1820 if (appl_ptr >= runtime->boundary) 1821 appl_ptr -= runtime->boundary; 1822 runtime->control->appl_ptr = appl_ptr; 1823 if (substream->ops->ack) 1824 substream->ops->ack(substream); 1825 1826 offset += frames; 1827 size -= frames; 1828 xfer += frames; 1829 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1830 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1831 err = snd_pcm_start(substream); 1832 if (err < 0) 1833 goto _end_unlock; 1834 } 1835 } 1836 _end_unlock: 1837 snd_pcm_stream_unlock_irq(substream); 1838 _end: 1839 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1840 } 1841 1842 /* sanity-check for read/write methods */ 1843 static int pcm_sanity_check(struct snd_pcm_substream *substream) 1844 { 1845 struct snd_pcm_runtime *runtime; 1846 if (PCM_RUNTIME_CHECK(substream)) 1847 return -ENXIO; 1848 runtime = substream->runtime; 1849 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 1850 return -EINVAL; 1851 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1852 return -EBADFD; 1853 return 0; 1854 } 1855 1856 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 1857 { 1858 struct snd_pcm_runtime *runtime; 1859 int nonblock; 1860 int err; 1861 1862 err = pcm_sanity_check(substream); 1863 if (err < 0) 1864 return err; 1865 runtime = substream->runtime; 1866 nonblock = !!(substream->f_flags & O_NONBLOCK); 1867 1868 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 1869 runtime->channels > 1) 1870 return -EINVAL; 1871 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 1872 snd_pcm_lib_write_transfer); 1873 } 1874 1875 EXPORT_SYMBOL(snd_pcm_lib_write); 1876 1877 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 1878 unsigned int hwoff, 1879 unsigned long data, unsigned int off, 1880 snd_pcm_uframes_t frames) 1881 { 1882 struct snd_pcm_runtime *runtime = substream->runtime; 1883 int err; 1884 void __user **bufs = (void __user **)data; 1885 int channels = runtime->channels; 1886 int c; 1887 if (substream->ops->copy) { 1888 if (snd_BUG_ON(!substream->ops->silence)) 1889 return -EINVAL; 1890 for (c = 0; c < channels; ++c, ++bufs) { 1891 if (*bufs == NULL) { 1892 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 1893 return err; 1894 } else { 1895 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1896 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 1897 return err; 1898 } 1899 } 1900 } else { 1901 /* default transfer behaviour */ 1902 size_t dma_csize = runtime->dma_bytes / channels; 1903 for (c = 0; c < channels; ++c, ++bufs) { 1904 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 1905 if (*bufs == NULL) { 1906 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 1907 } else { 1908 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1909 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 1910 return -EFAULT; 1911 } 1912 } 1913 } 1914 return 0; 1915 } 1916 1917 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 1918 void __user **bufs, 1919 snd_pcm_uframes_t frames) 1920 { 1921 struct snd_pcm_runtime *runtime; 1922 int nonblock; 1923 int err; 1924 1925 err = pcm_sanity_check(substream); 1926 if (err < 0) 1927 return err; 1928 runtime = substream->runtime; 1929 nonblock = !!(substream->f_flags & O_NONBLOCK); 1930 1931 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 1932 return -EINVAL; 1933 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 1934 nonblock, snd_pcm_lib_writev_transfer); 1935 } 1936 1937 EXPORT_SYMBOL(snd_pcm_lib_writev); 1938 1939 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 1940 unsigned int hwoff, 1941 unsigned long data, unsigned int off, 1942 snd_pcm_uframes_t frames) 1943 { 1944 struct snd_pcm_runtime *runtime = substream->runtime; 1945 int err; 1946 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1947 if (substream->ops->copy) { 1948 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1949 return err; 1950 } else { 1951 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1952 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 1953 return -EFAULT; 1954 } 1955 return 0; 1956 } 1957 1958 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 1959 unsigned long data, 1960 snd_pcm_uframes_t size, 1961 int nonblock, 1962 transfer_f transfer) 1963 { 1964 struct snd_pcm_runtime *runtime = substream->runtime; 1965 snd_pcm_uframes_t xfer = 0; 1966 snd_pcm_uframes_t offset = 0; 1967 int err = 0; 1968 1969 if (size == 0) 1970 return 0; 1971 1972 snd_pcm_stream_lock_irq(substream); 1973 switch (runtime->status->state) { 1974 case SNDRV_PCM_STATE_PREPARED: 1975 if (size >= runtime->start_threshold) { 1976 err = snd_pcm_start(substream); 1977 if (err < 0) 1978 goto _end_unlock; 1979 } 1980 break; 1981 case SNDRV_PCM_STATE_DRAINING: 1982 case SNDRV_PCM_STATE_RUNNING: 1983 case SNDRV_PCM_STATE_PAUSED: 1984 break; 1985 case SNDRV_PCM_STATE_XRUN: 1986 err = -EPIPE; 1987 goto _end_unlock; 1988 case SNDRV_PCM_STATE_SUSPENDED: 1989 err = -ESTRPIPE; 1990 goto _end_unlock; 1991 default: 1992 err = -EBADFD; 1993 goto _end_unlock; 1994 } 1995 1996 while (size > 0) { 1997 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1998 snd_pcm_uframes_t avail; 1999 snd_pcm_uframes_t cont; 2000 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2001 snd_pcm_update_hw_ptr(substream); 2002 avail = snd_pcm_capture_avail(runtime); 2003 if (!avail) { 2004 if (runtime->status->state == 2005 SNDRV_PCM_STATE_DRAINING) { 2006 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2007 goto _end_unlock; 2008 } 2009 if (nonblock) { 2010 err = -EAGAIN; 2011 goto _end_unlock; 2012 } 2013 err = wait_for_avail_min(substream, &avail); 2014 if (err < 0) 2015 goto _end_unlock; 2016 if (!avail) 2017 continue; /* draining */ 2018 } 2019 frames = size > avail ? avail : size; 2020 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2021 if (frames > cont) 2022 frames = cont; 2023 if (snd_BUG_ON(!frames)) { 2024 snd_pcm_stream_unlock_irq(substream); 2025 return -EINVAL; 2026 } 2027 appl_ptr = runtime->control->appl_ptr; 2028 appl_ofs = appl_ptr % runtime->buffer_size; 2029 snd_pcm_stream_unlock_irq(substream); 2030 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 2031 goto _end; 2032 snd_pcm_stream_lock_irq(substream); 2033 switch (runtime->status->state) { 2034 case SNDRV_PCM_STATE_XRUN: 2035 err = -EPIPE; 2036 goto _end_unlock; 2037 case SNDRV_PCM_STATE_SUSPENDED: 2038 err = -ESTRPIPE; 2039 goto _end_unlock; 2040 default: 2041 break; 2042 } 2043 appl_ptr += frames; 2044 if (appl_ptr >= runtime->boundary) 2045 appl_ptr -= runtime->boundary; 2046 runtime->control->appl_ptr = appl_ptr; 2047 if (substream->ops->ack) 2048 substream->ops->ack(substream); 2049 2050 offset += frames; 2051 size -= frames; 2052 xfer += frames; 2053 } 2054 _end_unlock: 2055 snd_pcm_stream_unlock_irq(substream); 2056 _end: 2057 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2058 } 2059 2060 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2061 { 2062 struct snd_pcm_runtime *runtime; 2063 int nonblock; 2064 int err; 2065 2066 err = pcm_sanity_check(substream); 2067 if (err < 0) 2068 return err; 2069 runtime = substream->runtime; 2070 nonblock = !!(substream->f_flags & O_NONBLOCK); 2071 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2072 return -EINVAL; 2073 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2074 } 2075 2076 EXPORT_SYMBOL(snd_pcm_lib_read); 2077 2078 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2079 unsigned int hwoff, 2080 unsigned long data, unsigned int off, 2081 snd_pcm_uframes_t frames) 2082 { 2083 struct snd_pcm_runtime *runtime = substream->runtime; 2084 int err; 2085 void __user **bufs = (void __user **)data; 2086 int channels = runtime->channels; 2087 int c; 2088 if (substream->ops->copy) { 2089 for (c = 0; c < channels; ++c, ++bufs) { 2090 char __user *buf; 2091 if (*bufs == NULL) 2092 continue; 2093 buf = *bufs + samples_to_bytes(runtime, off); 2094 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2095 return err; 2096 } 2097 } else { 2098 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2099 for (c = 0; c < channels; ++c, ++bufs) { 2100 char *hwbuf; 2101 char __user *buf; 2102 if (*bufs == NULL) 2103 continue; 2104 2105 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2106 buf = *bufs + samples_to_bytes(runtime, off); 2107 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2108 return -EFAULT; 2109 } 2110 } 2111 return 0; 2112 } 2113 2114 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2115 void __user **bufs, 2116 snd_pcm_uframes_t frames) 2117 { 2118 struct snd_pcm_runtime *runtime; 2119 int nonblock; 2120 int err; 2121 2122 err = pcm_sanity_check(substream); 2123 if (err < 0) 2124 return err; 2125 runtime = substream->runtime; 2126 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2127 return -EBADFD; 2128 2129 nonblock = !!(substream->f_flags & O_NONBLOCK); 2130 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2131 return -EINVAL; 2132 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2133 } 2134 2135 EXPORT_SYMBOL(snd_pcm_lib_readv); 2136