1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <sound/core.h> 26 #include <sound/control.h> 27 #include <sound/info.h> 28 #include <sound/pcm.h> 29 #include <sound/pcm_params.h> 30 #include <sound/timer.h> 31 32 /* 33 * fill ring buffer with silence 34 * runtime->silence_start: starting pointer to silence area 35 * runtime->silence_filled: size filled with silence 36 * runtime->silence_threshold: threshold from application 37 * runtime->silence_size: maximal size from application 38 * 39 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 40 */ 41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 42 { 43 struct snd_pcm_runtime *runtime = substream->runtime; 44 snd_pcm_uframes_t frames, ofs, transfer; 45 46 if (runtime->silence_size < runtime->boundary) { 47 snd_pcm_sframes_t noise_dist, n; 48 if (runtime->silence_start != runtime->control->appl_ptr) { 49 n = runtime->control->appl_ptr - runtime->silence_start; 50 if (n < 0) 51 n += runtime->boundary; 52 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 53 runtime->silence_filled -= n; 54 else 55 runtime->silence_filled = 0; 56 runtime->silence_start = runtime->control->appl_ptr; 57 } 58 if (runtime->silence_filled >= runtime->buffer_size) 59 return; 60 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 61 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 62 return; 63 frames = runtime->silence_threshold - noise_dist; 64 if (frames > runtime->silence_size) 65 frames = runtime->silence_size; 66 } else { 67 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 68 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 69 runtime->silence_filled = avail > 0 ? avail : 0; 70 runtime->silence_start = (runtime->status->hw_ptr + 71 runtime->silence_filled) % 72 runtime->boundary; 73 } else { 74 ofs = runtime->status->hw_ptr; 75 frames = new_hw_ptr - ofs; 76 if ((snd_pcm_sframes_t)frames < 0) 77 frames += runtime->boundary; 78 runtime->silence_filled -= frames; 79 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 80 runtime->silence_filled = 0; 81 runtime->silence_start = new_hw_ptr; 82 } else { 83 runtime->silence_start = ofs; 84 } 85 } 86 frames = runtime->buffer_size - runtime->silence_filled; 87 } 88 if (snd_BUG_ON(frames > runtime->buffer_size)) 89 return; 90 if (frames == 0) 91 return; 92 ofs = runtime->silence_start % runtime->buffer_size; 93 while (frames > 0) { 94 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 95 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 96 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 97 if (substream->ops->silence) { 98 int err; 99 err = substream->ops->silence(substream, -1, ofs, transfer); 100 snd_BUG_ON(err < 0); 101 } else { 102 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 103 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 104 } 105 } else { 106 unsigned int c; 107 unsigned int channels = runtime->channels; 108 if (substream->ops->silence) { 109 for (c = 0; c < channels; ++c) { 110 int err; 111 err = substream->ops->silence(substream, c, ofs, transfer); 112 snd_BUG_ON(err < 0); 113 } 114 } else { 115 size_t dma_csize = runtime->dma_bytes / channels; 116 for (c = 0; c < channels; ++c) { 117 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 118 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 119 } 120 } 121 } 122 runtime->silence_filled += transfer; 123 frames -= transfer; 124 ofs = 0; 125 } 126 } 127 128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 129 #define xrun_debug(substream) ((substream)->pstr->xrun_debug) 130 #else 131 #define xrun_debug(substream) 0 132 #endif 133 134 #define dump_stack_on_xrun(substream) do { \ 135 if (xrun_debug(substream) > 1) \ 136 dump_stack(); \ 137 } while (0) 138 139 static void xrun(struct snd_pcm_substream *substream) 140 { 141 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 142 if (xrun_debug(substream)) { 143 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n", 144 substream->pcm->card->number, 145 substream->pcm->device, 146 substream->stream ? 'c' : 'p'); 147 dump_stack_on_xrun(substream); 148 } 149 } 150 151 static snd_pcm_uframes_t 152 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream, 153 struct snd_pcm_runtime *runtime) 154 { 155 snd_pcm_uframes_t pos; 156 157 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 158 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 159 pos = substream->ops->pointer(substream); 160 if (pos == SNDRV_PCM_POS_XRUN) 161 return pos; /* XRUN */ 162 if (pos >= runtime->buffer_size) { 163 if (printk_ratelimit()) { 164 snd_printd(KERN_ERR "BUG: stream = %i, pos = 0x%lx, " 165 "buffer size = 0x%lx, period size = 0x%lx\n", 166 substream->stream, pos, runtime->buffer_size, 167 runtime->period_size); 168 } 169 pos = 0; 170 } 171 pos -= pos % runtime->min_align; 172 return pos; 173 } 174 175 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream, 176 struct snd_pcm_runtime *runtime) 177 { 178 snd_pcm_uframes_t avail; 179 180 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 181 avail = snd_pcm_playback_avail(runtime); 182 else 183 avail = snd_pcm_capture_avail(runtime); 184 if (avail > runtime->avail_max) 185 runtime->avail_max = avail; 186 if (avail >= runtime->stop_threshold) { 187 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING) 188 snd_pcm_drain_done(substream); 189 else 190 xrun(substream); 191 return -EPIPE; 192 } 193 if (avail >= runtime->control->avail_min) 194 wake_up(&runtime->sleep); 195 return 0; 196 } 197 198 #define hw_ptr_error(substream, fmt, args...) \ 199 do { \ 200 if (xrun_debug(substream)) { \ 201 if (printk_ratelimit()) { \ 202 snd_printd("PCM: " fmt, ##args); \ 203 } \ 204 dump_stack_on_xrun(substream); \ 205 } \ 206 } while (0) 207 208 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream) 209 { 210 struct snd_pcm_runtime *runtime = substream->runtime; 211 snd_pcm_uframes_t pos; 212 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base; 213 snd_pcm_sframes_t hdelta, delta; 214 unsigned long jdelta; 215 216 old_hw_ptr = runtime->status->hw_ptr; 217 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 218 if (pos == SNDRV_PCM_POS_XRUN) { 219 xrun(substream); 220 return -EPIPE; 221 } 222 hw_base = runtime->hw_ptr_base; 223 new_hw_ptr = hw_base + pos; 224 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size; 225 delta = new_hw_ptr - hw_ptr_interrupt; 226 if (hw_ptr_interrupt >= runtime->boundary) { 227 hw_ptr_interrupt -= runtime->boundary; 228 if (hw_base < runtime->boundary / 2) 229 /* hw_base was already lapped; recalc delta */ 230 delta = new_hw_ptr - hw_ptr_interrupt; 231 } 232 if (delta < 0) { 233 delta += runtime->buffer_size; 234 if (delta < 0) { 235 hw_ptr_error(substream, 236 "Unexpected hw_pointer value " 237 "(stream=%i, pos=%ld, intr_ptr=%ld)\n", 238 substream->stream, (long)pos, 239 (long)hw_ptr_interrupt); 240 /* rebase to interrupt position */ 241 hw_base = new_hw_ptr = hw_ptr_interrupt; 242 /* align hw_base to buffer_size */ 243 hw_base -= hw_base % runtime->buffer_size; 244 delta = 0; 245 } else { 246 hw_base += runtime->buffer_size; 247 if (hw_base >= runtime->boundary) 248 hw_base = 0; 249 new_hw_ptr = hw_base + pos; 250 } 251 } 252 253 /* Do jiffies check only in xrun_debug mode */ 254 if (!xrun_debug(substream)) 255 goto no_jiffies_check; 256 257 /* Skip the jiffies check for hardwares with BATCH flag. 258 * Such hardware usually just increases the position at each IRQ, 259 * thus it can't give any strange position. 260 */ 261 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 262 goto no_jiffies_check; 263 hdelta = new_hw_ptr - old_hw_ptr; 264 jdelta = jiffies - runtime->hw_ptr_jiffies; 265 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 266 delta = jdelta / 267 (((runtime->period_size * HZ) / runtime->rate) 268 + HZ/100); 269 hw_ptr_error(substream, 270 "hw_ptr skipping! [Q] " 271 "(pos=%ld, delta=%ld, period=%ld, " 272 "jdelta=%lu/%lu/%lu)\n", 273 (long)pos, (long)hdelta, 274 (long)runtime->period_size, jdelta, 275 ((hdelta * HZ) / runtime->rate), delta); 276 hw_ptr_interrupt = runtime->hw_ptr_interrupt + 277 runtime->period_size * delta; 278 if (hw_ptr_interrupt >= runtime->boundary) 279 hw_ptr_interrupt -= runtime->boundary; 280 /* rebase to interrupt position */ 281 hw_base = new_hw_ptr = hw_ptr_interrupt; 282 /* align hw_base to buffer_size */ 283 hw_base -= hw_base % runtime->buffer_size; 284 delta = 0; 285 } 286 no_jiffies_check: 287 if (delta > runtime->period_size + runtime->period_size / 2) { 288 hw_ptr_error(substream, 289 "Lost interrupts? " 290 "(stream=%i, delta=%ld, intr_ptr=%ld)\n", 291 substream->stream, (long)delta, 292 (long)hw_ptr_interrupt); 293 /* rebase hw_ptr_interrupt */ 294 hw_ptr_interrupt = 295 new_hw_ptr - new_hw_ptr % runtime->period_size; 296 } 297 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 298 runtime->silence_size > 0) 299 snd_pcm_playback_silence(substream, new_hw_ptr); 300 301 runtime->hw_ptr_base = hw_base; 302 runtime->status->hw_ptr = new_hw_ptr; 303 runtime->hw_ptr_jiffies = jiffies; 304 runtime->hw_ptr_interrupt = hw_ptr_interrupt; 305 306 return snd_pcm_update_hw_ptr_post(substream, runtime); 307 } 308 309 /* CAUTION: call it with irq disabled */ 310 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 311 { 312 struct snd_pcm_runtime *runtime = substream->runtime; 313 snd_pcm_uframes_t pos; 314 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 315 snd_pcm_sframes_t delta; 316 unsigned long jdelta; 317 318 old_hw_ptr = runtime->status->hw_ptr; 319 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 320 if (pos == SNDRV_PCM_POS_XRUN) { 321 xrun(substream); 322 return -EPIPE; 323 } 324 hw_base = runtime->hw_ptr_base; 325 new_hw_ptr = hw_base + pos; 326 327 delta = new_hw_ptr - old_hw_ptr; 328 jdelta = jiffies - runtime->hw_ptr_jiffies; 329 if (delta < 0) { 330 delta += runtime->buffer_size; 331 if (delta < 0) { 332 hw_ptr_error(substream, 333 "Unexpected hw_pointer value [2] " 334 "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n", 335 substream->stream, (long)pos, 336 (long)old_hw_ptr, jdelta); 337 return 0; 338 } 339 hw_base += runtime->buffer_size; 340 if (hw_base >= runtime->boundary) 341 hw_base = 0; 342 new_hw_ptr = hw_base + pos; 343 } 344 /* Do jiffies check only in xrun_debug mode */ 345 if (xrun_debug(substream) && 346 ((delta * HZ) / runtime->rate) > jdelta + HZ/100) { 347 hw_ptr_error(substream, 348 "hw_ptr skipping! " 349 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n", 350 (long)pos, (long)delta, 351 (long)runtime->period_size, jdelta, 352 ((delta * HZ) / runtime->rate)); 353 return 0; 354 } 355 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 356 runtime->silence_size > 0) 357 snd_pcm_playback_silence(substream, new_hw_ptr); 358 359 runtime->hw_ptr_base = hw_base; 360 runtime->status->hw_ptr = new_hw_ptr; 361 runtime->hw_ptr_jiffies = jiffies; 362 363 return snd_pcm_update_hw_ptr_post(substream, runtime); 364 } 365 366 /** 367 * snd_pcm_set_ops - set the PCM operators 368 * @pcm: the pcm instance 369 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 370 * @ops: the operator table 371 * 372 * Sets the given PCM operators to the pcm instance. 373 */ 374 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 375 { 376 struct snd_pcm_str *stream = &pcm->streams[direction]; 377 struct snd_pcm_substream *substream; 378 379 for (substream = stream->substream; substream != NULL; substream = substream->next) 380 substream->ops = ops; 381 } 382 383 EXPORT_SYMBOL(snd_pcm_set_ops); 384 385 /** 386 * snd_pcm_sync - set the PCM sync id 387 * @substream: the pcm substream 388 * 389 * Sets the PCM sync identifier for the card. 390 */ 391 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 392 { 393 struct snd_pcm_runtime *runtime = substream->runtime; 394 395 runtime->sync.id32[0] = substream->pcm->card->number; 396 runtime->sync.id32[1] = -1; 397 runtime->sync.id32[2] = -1; 398 runtime->sync.id32[3] = -1; 399 } 400 401 EXPORT_SYMBOL(snd_pcm_set_sync); 402 403 /* 404 * Standard ioctl routine 405 */ 406 407 static inline unsigned int div32(unsigned int a, unsigned int b, 408 unsigned int *r) 409 { 410 if (b == 0) { 411 *r = 0; 412 return UINT_MAX; 413 } 414 *r = a % b; 415 return a / b; 416 } 417 418 static inline unsigned int div_down(unsigned int a, unsigned int b) 419 { 420 if (b == 0) 421 return UINT_MAX; 422 return a / b; 423 } 424 425 static inline unsigned int div_up(unsigned int a, unsigned int b) 426 { 427 unsigned int r; 428 unsigned int q; 429 if (b == 0) 430 return UINT_MAX; 431 q = div32(a, b, &r); 432 if (r) 433 ++q; 434 return q; 435 } 436 437 static inline unsigned int mul(unsigned int a, unsigned int b) 438 { 439 if (a == 0) 440 return 0; 441 if (div_down(UINT_MAX, a) < b) 442 return UINT_MAX; 443 return a * b; 444 } 445 446 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 447 unsigned int c, unsigned int *r) 448 { 449 u_int64_t n = (u_int64_t) a * b; 450 if (c == 0) { 451 snd_BUG_ON(!n); 452 *r = 0; 453 return UINT_MAX; 454 } 455 div64_32(&n, c, r); 456 if (n >= UINT_MAX) { 457 *r = 0; 458 return UINT_MAX; 459 } 460 return n; 461 } 462 463 /** 464 * snd_interval_refine - refine the interval value of configurator 465 * @i: the interval value to refine 466 * @v: the interval value to refer to 467 * 468 * Refines the interval value with the reference value. 469 * The interval is changed to the range satisfying both intervals. 470 * The interval status (min, max, integer, etc.) are evaluated. 471 * 472 * Returns non-zero if the value is changed, zero if not changed. 473 */ 474 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 475 { 476 int changed = 0; 477 if (snd_BUG_ON(snd_interval_empty(i))) 478 return -EINVAL; 479 if (i->min < v->min) { 480 i->min = v->min; 481 i->openmin = v->openmin; 482 changed = 1; 483 } else if (i->min == v->min && !i->openmin && v->openmin) { 484 i->openmin = 1; 485 changed = 1; 486 } 487 if (i->max > v->max) { 488 i->max = v->max; 489 i->openmax = v->openmax; 490 changed = 1; 491 } else if (i->max == v->max && !i->openmax && v->openmax) { 492 i->openmax = 1; 493 changed = 1; 494 } 495 if (!i->integer && v->integer) { 496 i->integer = 1; 497 changed = 1; 498 } 499 if (i->integer) { 500 if (i->openmin) { 501 i->min++; 502 i->openmin = 0; 503 } 504 if (i->openmax) { 505 i->max--; 506 i->openmax = 0; 507 } 508 } else if (!i->openmin && !i->openmax && i->min == i->max) 509 i->integer = 1; 510 if (snd_interval_checkempty(i)) { 511 snd_interval_none(i); 512 return -EINVAL; 513 } 514 return changed; 515 } 516 517 EXPORT_SYMBOL(snd_interval_refine); 518 519 static int snd_interval_refine_first(struct snd_interval *i) 520 { 521 if (snd_BUG_ON(snd_interval_empty(i))) 522 return -EINVAL; 523 if (snd_interval_single(i)) 524 return 0; 525 i->max = i->min; 526 i->openmax = i->openmin; 527 if (i->openmax) 528 i->max++; 529 return 1; 530 } 531 532 static int snd_interval_refine_last(struct snd_interval *i) 533 { 534 if (snd_BUG_ON(snd_interval_empty(i))) 535 return -EINVAL; 536 if (snd_interval_single(i)) 537 return 0; 538 i->min = i->max; 539 i->openmin = i->openmax; 540 if (i->openmin) 541 i->min--; 542 return 1; 543 } 544 545 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 546 { 547 if (a->empty || b->empty) { 548 snd_interval_none(c); 549 return; 550 } 551 c->empty = 0; 552 c->min = mul(a->min, b->min); 553 c->openmin = (a->openmin || b->openmin); 554 c->max = mul(a->max, b->max); 555 c->openmax = (a->openmax || b->openmax); 556 c->integer = (a->integer && b->integer); 557 } 558 559 /** 560 * snd_interval_div - refine the interval value with division 561 * @a: dividend 562 * @b: divisor 563 * @c: quotient 564 * 565 * c = a / b 566 * 567 * Returns non-zero if the value is changed, zero if not changed. 568 */ 569 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 570 { 571 unsigned int r; 572 if (a->empty || b->empty) { 573 snd_interval_none(c); 574 return; 575 } 576 c->empty = 0; 577 c->min = div32(a->min, b->max, &r); 578 c->openmin = (r || a->openmin || b->openmax); 579 if (b->min > 0) { 580 c->max = div32(a->max, b->min, &r); 581 if (r) { 582 c->max++; 583 c->openmax = 1; 584 } else 585 c->openmax = (a->openmax || b->openmin); 586 } else { 587 c->max = UINT_MAX; 588 c->openmax = 0; 589 } 590 c->integer = 0; 591 } 592 593 /** 594 * snd_interval_muldivk - refine the interval value 595 * @a: dividend 1 596 * @b: dividend 2 597 * @k: divisor (as integer) 598 * @c: result 599 * 600 * c = a * b / k 601 * 602 * Returns non-zero if the value is changed, zero if not changed. 603 */ 604 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 605 unsigned int k, struct snd_interval *c) 606 { 607 unsigned int r; 608 if (a->empty || b->empty) { 609 snd_interval_none(c); 610 return; 611 } 612 c->empty = 0; 613 c->min = muldiv32(a->min, b->min, k, &r); 614 c->openmin = (r || a->openmin || b->openmin); 615 c->max = muldiv32(a->max, b->max, k, &r); 616 if (r) { 617 c->max++; 618 c->openmax = 1; 619 } else 620 c->openmax = (a->openmax || b->openmax); 621 c->integer = 0; 622 } 623 624 /** 625 * snd_interval_mulkdiv - refine the interval value 626 * @a: dividend 1 627 * @k: dividend 2 (as integer) 628 * @b: divisor 629 * @c: result 630 * 631 * c = a * k / b 632 * 633 * Returns non-zero if the value is changed, zero if not changed. 634 */ 635 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 636 const struct snd_interval *b, struct snd_interval *c) 637 { 638 unsigned int r; 639 if (a->empty || b->empty) { 640 snd_interval_none(c); 641 return; 642 } 643 c->empty = 0; 644 c->min = muldiv32(a->min, k, b->max, &r); 645 c->openmin = (r || a->openmin || b->openmax); 646 if (b->min > 0) { 647 c->max = muldiv32(a->max, k, b->min, &r); 648 if (r) { 649 c->max++; 650 c->openmax = 1; 651 } else 652 c->openmax = (a->openmax || b->openmin); 653 } else { 654 c->max = UINT_MAX; 655 c->openmax = 0; 656 } 657 c->integer = 0; 658 } 659 660 /* ---- */ 661 662 663 /** 664 * snd_interval_ratnum - refine the interval value 665 * @i: interval to refine 666 * @rats_count: number of ratnum_t 667 * @rats: ratnum_t array 668 * @nump: pointer to store the resultant numerator 669 * @denp: pointer to store the resultant denominator 670 * 671 * Returns non-zero if the value is changed, zero if not changed. 672 */ 673 int snd_interval_ratnum(struct snd_interval *i, 674 unsigned int rats_count, struct snd_ratnum *rats, 675 unsigned int *nump, unsigned int *denp) 676 { 677 unsigned int best_num, best_diff, best_den; 678 unsigned int k; 679 struct snd_interval t; 680 int err; 681 682 best_num = best_den = best_diff = 0; 683 for (k = 0; k < rats_count; ++k) { 684 unsigned int num = rats[k].num; 685 unsigned int den; 686 unsigned int q = i->min; 687 int diff; 688 if (q == 0) 689 q = 1; 690 den = div_down(num, q); 691 if (den < rats[k].den_min) 692 continue; 693 if (den > rats[k].den_max) 694 den = rats[k].den_max; 695 else { 696 unsigned int r; 697 r = (den - rats[k].den_min) % rats[k].den_step; 698 if (r != 0) 699 den -= r; 700 } 701 diff = num - q * den; 702 if (best_num == 0 || 703 diff * best_den < best_diff * den) { 704 best_diff = diff; 705 best_den = den; 706 best_num = num; 707 } 708 } 709 if (best_den == 0) { 710 i->empty = 1; 711 return -EINVAL; 712 } 713 t.min = div_down(best_num, best_den); 714 t.openmin = !!(best_num % best_den); 715 716 best_num = best_den = best_diff = 0; 717 for (k = 0; k < rats_count; ++k) { 718 unsigned int num = rats[k].num; 719 unsigned int den; 720 unsigned int q = i->max; 721 int diff; 722 if (q == 0) { 723 i->empty = 1; 724 return -EINVAL; 725 } 726 den = div_up(num, q); 727 if (den > rats[k].den_max) 728 continue; 729 if (den < rats[k].den_min) 730 den = rats[k].den_min; 731 else { 732 unsigned int r; 733 r = (den - rats[k].den_min) % rats[k].den_step; 734 if (r != 0) 735 den += rats[k].den_step - r; 736 } 737 diff = q * den - num; 738 if (best_num == 0 || 739 diff * best_den < best_diff * den) { 740 best_diff = diff; 741 best_den = den; 742 best_num = num; 743 } 744 } 745 if (best_den == 0) { 746 i->empty = 1; 747 return -EINVAL; 748 } 749 t.max = div_up(best_num, best_den); 750 t.openmax = !!(best_num % best_den); 751 t.integer = 0; 752 err = snd_interval_refine(i, &t); 753 if (err < 0) 754 return err; 755 756 if (snd_interval_single(i)) { 757 if (nump) 758 *nump = best_num; 759 if (denp) 760 *denp = best_den; 761 } 762 return err; 763 } 764 765 EXPORT_SYMBOL(snd_interval_ratnum); 766 767 /** 768 * snd_interval_ratden - refine the interval value 769 * @i: interval to refine 770 * @rats_count: number of struct ratden 771 * @rats: struct ratden array 772 * @nump: pointer to store the resultant numerator 773 * @denp: pointer to store the resultant denominator 774 * 775 * Returns non-zero if the value is changed, zero if not changed. 776 */ 777 static int snd_interval_ratden(struct snd_interval *i, 778 unsigned int rats_count, struct snd_ratden *rats, 779 unsigned int *nump, unsigned int *denp) 780 { 781 unsigned int best_num, best_diff, best_den; 782 unsigned int k; 783 struct snd_interval t; 784 int err; 785 786 best_num = best_den = best_diff = 0; 787 for (k = 0; k < rats_count; ++k) { 788 unsigned int num; 789 unsigned int den = rats[k].den; 790 unsigned int q = i->min; 791 int diff; 792 num = mul(q, den); 793 if (num > rats[k].num_max) 794 continue; 795 if (num < rats[k].num_min) 796 num = rats[k].num_max; 797 else { 798 unsigned int r; 799 r = (num - rats[k].num_min) % rats[k].num_step; 800 if (r != 0) 801 num += rats[k].num_step - r; 802 } 803 diff = num - q * den; 804 if (best_num == 0 || 805 diff * best_den < best_diff * den) { 806 best_diff = diff; 807 best_den = den; 808 best_num = num; 809 } 810 } 811 if (best_den == 0) { 812 i->empty = 1; 813 return -EINVAL; 814 } 815 t.min = div_down(best_num, best_den); 816 t.openmin = !!(best_num % best_den); 817 818 best_num = best_den = best_diff = 0; 819 for (k = 0; k < rats_count; ++k) { 820 unsigned int num; 821 unsigned int den = rats[k].den; 822 unsigned int q = i->max; 823 int diff; 824 num = mul(q, den); 825 if (num < rats[k].num_min) 826 continue; 827 if (num > rats[k].num_max) 828 num = rats[k].num_max; 829 else { 830 unsigned int r; 831 r = (num - rats[k].num_min) % rats[k].num_step; 832 if (r != 0) 833 num -= r; 834 } 835 diff = q * den - num; 836 if (best_num == 0 || 837 diff * best_den < best_diff * den) { 838 best_diff = diff; 839 best_den = den; 840 best_num = num; 841 } 842 } 843 if (best_den == 0) { 844 i->empty = 1; 845 return -EINVAL; 846 } 847 t.max = div_up(best_num, best_den); 848 t.openmax = !!(best_num % best_den); 849 t.integer = 0; 850 err = snd_interval_refine(i, &t); 851 if (err < 0) 852 return err; 853 854 if (snd_interval_single(i)) { 855 if (nump) 856 *nump = best_num; 857 if (denp) 858 *denp = best_den; 859 } 860 return err; 861 } 862 863 /** 864 * snd_interval_list - refine the interval value from the list 865 * @i: the interval value to refine 866 * @count: the number of elements in the list 867 * @list: the value list 868 * @mask: the bit-mask to evaluate 869 * 870 * Refines the interval value from the list. 871 * When mask is non-zero, only the elements corresponding to bit 1 are 872 * evaluated. 873 * 874 * Returns non-zero if the value is changed, zero if not changed. 875 */ 876 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 877 { 878 unsigned int k; 879 int changed = 0; 880 881 if (!count) { 882 i->empty = 1; 883 return -EINVAL; 884 } 885 for (k = 0; k < count; k++) { 886 if (mask && !(mask & (1 << k))) 887 continue; 888 if (i->min == list[k] && !i->openmin) 889 goto _l1; 890 if (i->min < list[k]) { 891 i->min = list[k]; 892 i->openmin = 0; 893 changed = 1; 894 goto _l1; 895 } 896 } 897 i->empty = 1; 898 return -EINVAL; 899 _l1: 900 for (k = count; k-- > 0;) { 901 if (mask && !(mask & (1 << k))) 902 continue; 903 if (i->max == list[k] && !i->openmax) 904 goto _l2; 905 if (i->max > list[k]) { 906 i->max = list[k]; 907 i->openmax = 0; 908 changed = 1; 909 goto _l2; 910 } 911 } 912 i->empty = 1; 913 return -EINVAL; 914 _l2: 915 if (snd_interval_checkempty(i)) { 916 i->empty = 1; 917 return -EINVAL; 918 } 919 return changed; 920 } 921 922 EXPORT_SYMBOL(snd_interval_list); 923 924 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 925 { 926 unsigned int n; 927 int changed = 0; 928 n = (i->min - min) % step; 929 if (n != 0 || i->openmin) { 930 i->min += step - n; 931 changed = 1; 932 } 933 n = (i->max - min) % step; 934 if (n != 0 || i->openmax) { 935 i->max -= n; 936 changed = 1; 937 } 938 if (snd_interval_checkempty(i)) { 939 i->empty = 1; 940 return -EINVAL; 941 } 942 return changed; 943 } 944 945 /* Info constraints helpers */ 946 947 /** 948 * snd_pcm_hw_rule_add - add the hw-constraint rule 949 * @runtime: the pcm runtime instance 950 * @cond: condition bits 951 * @var: the variable to evaluate 952 * @func: the evaluation function 953 * @private: the private data pointer passed to function 954 * @dep: the dependent variables 955 * 956 * Returns zero if successful, or a negative error code on failure. 957 */ 958 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 959 int var, 960 snd_pcm_hw_rule_func_t func, void *private, 961 int dep, ...) 962 { 963 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 964 struct snd_pcm_hw_rule *c; 965 unsigned int k; 966 va_list args; 967 va_start(args, dep); 968 if (constrs->rules_num >= constrs->rules_all) { 969 struct snd_pcm_hw_rule *new; 970 unsigned int new_rules = constrs->rules_all + 16; 971 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 972 if (!new) 973 return -ENOMEM; 974 if (constrs->rules) { 975 memcpy(new, constrs->rules, 976 constrs->rules_num * sizeof(*c)); 977 kfree(constrs->rules); 978 } 979 constrs->rules = new; 980 constrs->rules_all = new_rules; 981 } 982 c = &constrs->rules[constrs->rules_num]; 983 c->cond = cond; 984 c->func = func; 985 c->var = var; 986 c->private = private; 987 k = 0; 988 while (1) { 989 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) 990 return -EINVAL; 991 c->deps[k++] = dep; 992 if (dep < 0) 993 break; 994 dep = va_arg(args, int); 995 } 996 constrs->rules_num++; 997 va_end(args); 998 return 0; 999 } 1000 1001 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1002 1003 /** 1004 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1005 * @runtime: PCM runtime instance 1006 * @var: hw_params variable to apply the mask 1007 * @mask: the bitmap mask 1008 * 1009 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1010 */ 1011 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1012 u_int32_t mask) 1013 { 1014 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1015 struct snd_mask *maskp = constrs_mask(constrs, var); 1016 *maskp->bits &= mask; 1017 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1018 if (*maskp->bits == 0) 1019 return -EINVAL; 1020 return 0; 1021 } 1022 1023 /** 1024 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1025 * @runtime: PCM runtime instance 1026 * @var: hw_params variable to apply the mask 1027 * @mask: the 64bit bitmap mask 1028 * 1029 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1030 */ 1031 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1032 u_int64_t mask) 1033 { 1034 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1035 struct snd_mask *maskp = constrs_mask(constrs, var); 1036 maskp->bits[0] &= (u_int32_t)mask; 1037 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1038 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1039 if (! maskp->bits[0] && ! maskp->bits[1]) 1040 return -EINVAL; 1041 return 0; 1042 } 1043 1044 /** 1045 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1046 * @runtime: PCM runtime instance 1047 * @var: hw_params variable to apply the integer constraint 1048 * 1049 * Apply the constraint of integer to an interval parameter. 1050 */ 1051 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1052 { 1053 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1054 return snd_interval_setinteger(constrs_interval(constrs, var)); 1055 } 1056 1057 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1058 1059 /** 1060 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1061 * @runtime: PCM runtime instance 1062 * @var: hw_params variable to apply the range 1063 * @min: the minimal value 1064 * @max: the maximal value 1065 * 1066 * Apply the min/max range constraint to an interval parameter. 1067 */ 1068 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1069 unsigned int min, unsigned int max) 1070 { 1071 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1072 struct snd_interval t; 1073 t.min = min; 1074 t.max = max; 1075 t.openmin = t.openmax = 0; 1076 t.integer = 0; 1077 return snd_interval_refine(constrs_interval(constrs, var), &t); 1078 } 1079 1080 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1081 1082 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1083 struct snd_pcm_hw_rule *rule) 1084 { 1085 struct snd_pcm_hw_constraint_list *list = rule->private; 1086 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1087 } 1088 1089 1090 /** 1091 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1092 * @runtime: PCM runtime instance 1093 * @cond: condition bits 1094 * @var: hw_params variable to apply the list constraint 1095 * @l: list 1096 * 1097 * Apply the list of constraints to an interval parameter. 1098 */ 1099 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1100 unsigned int cond, 1101 snd_pcm_hw_param_t var, 1102 struct snd_pcm_hw_constraint_list *l) 1103 { 1104 return snd_pcm_hw_rule_add(runtime, cond, var, 1105 snd_pcm_hw_rule_list, l, 1106 var, -1); 1107 } 1108 1109 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1110 1111 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1112 struct snd_pcm_hw_rule *rule) 1113 { 1114 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1115 unsigned int num = 0, den = 0; 1116 int err; 1117 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1118 r->nrats, r->rats, &num, &den); 1119 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1120 params->rate_num = num; 1121 params->rate_den = den; 1122 } 1123 return err; 1124 } 1125 1126 /** 1127 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1128 * @runtime: PCM runtime instance 1129 * @cond: condition bits 1130 * @var: hw_params variable to apply the ratnums constraint 1131 * @r: struct snd_ratnums constriants 1132 */ 1133 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1134 unsigned int cond, 1135 snd_pcm_hw_param_t var, 1136 struct snd_pcm_hw_constraint_ratnums *r) 1137 { 1138 return snd_pcm_hw_rule_add(runtime, cond, var, 1139 snd_pcm_hw_rule_ratnums, r, 1140 var, -1); 1141 } 1142 1143 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1144 1145 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1146 struct snd_pcm_hw_rule *rule) 1147 { 1148 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1149 unsigned int num = 0, den = 0; 1150 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1151 r->nrats, r->rats, &num, &den); 1152 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1153 params->rate_num = num; 1154 params->rate_den = den; 1155 } 1156 return err; 1157 } 1158 1159 /** 1160 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1161 * @runtime: PCM runtime instance 1162 * @cond: condition bits 1163 * @var: hw_params variable to apply the ratdens constraint 1164 * @r: struct snd_ratdens constriants 1165 */ 1166 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1167 unsigned int cond, 1168 snd_pcm_hw_param_t var, 1169 struct snd_pcm_hw_constraint_ratdens *r) 1170 { 1171 return snd_pcm_hw_rule_add(runtime, cond, var, 1172 snd_pcm_hw_rule_ratdens, r, 1173 var, -1); 1174 } 1175 1176 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1177 1178 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1179 struct snd_pcm_hw_rule *rule) 1180 { 1181 unsigned int l = (unsigned long) rule->private; 1182 int width = l & 0xffff; 1183 unsigned int msbits = l >> 16; 1184 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1185 if (snd_interval_single(i) && snd_interval_value(i) == width) 1186 params->msbits = msbits; 1187 return 0; 1188 } 1189 1190 /** 1191 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1192 * @runtime: PCM runtime instance 1193 * @cond: condition bits 1194 * @width: sample bits width 1195 * @msbits: msbits width 1196 */ 1197 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1198 unsigned int cond, 1199 unsigned int width, 1200 unsigned int msbits) 1201 { 1202 unsigned long l = (msbits << 16) | width; 1203 return snd_pcm_hw_rule_add(runtime, cond, -1, 1204 snd_pcm_hw_rule_msbits, 1205 (void*) l, 1206 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1207 } 1208 1209 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1210 1211 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1212 struct snd_pcm_hw_rule *rule) 1213 { 1214 unsigned long step = (unsigned long) rule->private; 1215 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1216 } 1217 1218 /** 1219 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1220 * @runtime: PCM runtime instance 1221 * @cond: condition bits 1222 * @var: hw_params variable to apply the step constraint 1223 * @step: step size 1224 */ 1225 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1226 unsigned int cond, 1227 snd_pcm_hw_param_t var, 1228 unsigned long step) 1229 { 1230 return snd_pcm_hw_rule_add(runtime, cond, var, 1231 snd_pcm_hw_rule_step, (void *) step, 1232 var, -1); 1233 } 1234 1235 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1236 1237 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1238 { 1239 static unsigned int pow2_sizes[] = { 1240 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1241 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1242 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1243 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1244 }; 1245 return snd_interval_list(hw_param_interval(params, rule->var), 1246 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1247 } 1248 1249 /** 1250 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1251 * @runtime: PCM runtime instance 1252 * @cond: condition bits 1253 * @var: hw_params variable to apply the power-of-2 constraint 1254 */ 1255 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1256 unsigned int cond, 1257 snd_pcm_hw_param_t var) 1258 { 1259 return snd_pcm_hw_rule_add(runtime, cond, var, 1260 snd_pcm_hw_rule_pow2, NULL, 1261 var, -1); 1262 } 1263 1264 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1265 1266 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1267 snd_pcm_hw_param_t var) 1268 { 1269 if (hw_is_mask(var)) { 1270 snd_mask_any(hw_param_mask(params, var)); 1271 params->cmask |= 1 << var; 1272 params->rmask |= 1 << var; 1273 return; 1274 } 1275 if (hw_is_interval(var)) { 1276 snd_interval_any(hw_param_interval(params, var)); 1277 params->cmask |= 1 << var; 1278 params->rmask |= 1 << var; 1279 return; 1280 } 1281 snd_BUG(); 1282 } 1283 1284 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1285 { 1286 unsigned int k; 1287 memset(params, 0, sizeof(*params)); 1288 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1289 _snd_pcm_hw_param_any(params, k); 1290 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1291 _snd_pcm_hw_param_any(params, k); 1292 params->info = ~0U; 1293 } 1294 1295 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1296 1297 /** 1298 * snd_pcm_hw_param_value - return @params field @var value 1299 * @params: the hw_params instance 1300 * @var: parameter to retrieve 1301 * @dir: pointer to the direction (-1,0,1) or %NULL 1302 * 1303 * Return the value for field @var if it's fixed in configuration space 1304 * defined by @params. Return -%EINVAL otherwise. 1305 */ 1306 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1307 snd_pcm_hw_param_t var, int *dir) 1308 { 1309 if (hw_is_mask(var)) { 1310 const struct snd_mask *mask = hw_param_mask_c(params, var); 1311 if (!snd_mask_single(mask)) 1312 return -EINVAL; 1313 if (dir) 1314 *dir = 0; 1315 return snd_mask_value(mask); 1316 } 1317 if (hw_is_interval(var)) { 1318 const struct snd_interval *i = hw_param_interval_c(params, var); 1319 if (!snd_interval_single(i)) 1320 return -EINVAL; 1321 if (dir) 1322 *dir = i->openmin; 1323 return snd_interval_value(i); 1324 } 1325 return -EINVAL; 1326 } 1327 1328 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1329 1330 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1331 snd_pcm_hw_param_t var) 1332 { 1333 if (hw_is_mask(var)) { 1334 snd_mask_none(hw_param_mask(params, var)); 1335 params->cmask |= 1 << var; 1336 params->rmask |= 1 << var; 1337 } else if (hw_is_interval(var)) { 1338 snd_interval_none(hw_param_interval(params, var)); 1339 params->cmask |= 1 << var; 1340 params->rmask |= 1 << var; 1341 } else { 1342 snd_BUG(); 1343 } 1344 } 1345 1346 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1347 1348 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1349 snd_pcm_hw_param_t var) 1350 { 1351 int changed; 1352 if (hw_is_mask(var)) 1353 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1354 else if (hw_is_interval(var)) 1355 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1356 else 1357 return -EINVAL; 1358 if (changed) { 1359 params->cmask |= 1 << var; 1360 params->rmask |= 1 << var; 1361 } 1362 return changed; 1363 } 1364 1365 1366 /** 1367 * snd_pcm_hw_param_first - refine config space and return minimum value 1368 * @pcm: PCM instance 1369 * @params: the hw_params instance 1370 * @var: parameter to retrieve 1371 * @dir: pointer to the direction (-1,0,1) or %NULL 1372 * 1373 * Inside configuration space defined by @params remove from @var all 1374 * values > minimum. Reduce configuration space accordingly. 1375 * Return the minimum. 1376 */ 1377 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1378 struct snd_pcm_hw_params *params, 1379 snd_pcm_hw_param_t var, int *dir) 1380 { 1381 int changed = _snd_pcm_hw_param_first(params, var); 1382 if (changed < 0) 1383 return changed; 1384 if (params->rmask) { 1385 int err = snd_pcm_hw_refine(pcm, params); 1386 if (snd_BUG_ON(err < 0)) 1387 return err; 1388 } 1389 return snd_pcm_hw_param_value(params, var, dir); 1390 } 1391 1392 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1393 1394 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1395 snd_pcm_hw_param_t var) 1396 { 1397 int changed; 1398 if (hw_is_mask(var)) 1399 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1400 else if (hw_is_interval(var)) 1401 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1402 else 1403 return -EINVAL; 1404 if (changed) { 1405 params->cmask |= 1 << var; 1406 params->rmask |= 1 << var; 1407 } 1408 return changed; 1409 } 1410 1411 1412 /** 1413 * snd_pcm_hw_param_last - refine config space and return maximum value 1414 * @pcm: PCM instance 1415 * @params: the hw_params instance 1416 * @var: parameter to retrieve 1417 * @dir: pointer to the direction (-1,0,1) or %NULL 1418 * 1419 * Inside configuration space defined by @params remove from @var all 1420 * values < maximum. Reduce configuration space accordingly. 1421 * Return the maximum. 1422 */ 1423 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1424 struct snd_pcm_hw_params *params, 1425 snd_pcm_hw_param_t var, int *dir) 1426 { 1427 int changed = _snd_pcm_hw_param_last(params, var); 1428 if (changed < 0) 1429 return changed; 1430 if (params->rmask) { 1431 int err = snd_pcm_hw_refine(pcm, params); 1432 if (snd_BUG_ON(err < 0)) 1433 return err; 1434 } 1435 return snd_pcm_hw_param_value(params, var, dir); 1436 } 1437 1438 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1439 1440 /** 1441 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1442 * @pcm: PCM instance 1443 * @params: the hw_params instance 1444 * 1445 * Choose one configuration from configuration space defined by @params. 1446 * The configuration chosen is that obtained fixing in this order: 1447 * first access, first format, first subformat, min channels, 1448 * min rate, min period time, max buffer size, min tick time 1449 */ 1450 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1451 struct snd_pcm_hw_params *params) 1452 { 1453 static int vars[] = { 1454 SNDRV_PCM_HW_PARAM_ACCESS, 1455 SNDRV_PCM_HW_PARAM_FORMAT, 1456 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1457 SNDRV_PCM_HW_PARAM_CHANNELS, 1458 SNDRV_PCM_HW_PARAM_RATE, 1459 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1460 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1461 SNDRV_PCM_HW_PARAM_TICK_TIME, 1462 -1 1463 }; 1464 int err, *v; 1465 1466 for (v = vars; *v != -1; v++) { 1467 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1468 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1469 else 1470 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1471 if (snd_BUG_ON(err < 0)) 1472 return err; 1473 } 1474 return 0; 1475 } 1476 1477 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1478 void *arg) 1479 { 1480 struct snd_pcm_runtime *runtime = substream->runtime; 1481 unsigned long flags; 1482 snd_pcm_stream_lock_irqsave(substream, flags); 1483 if (snd_pcm_running(substream) && 1484 snd_pcm_update_hw_ptr(substream) >= 0) 1485 runtime->status->hw_ptr %= runtime->buffer_size; 1486 else 1487 runtime->status->hw_ptr = 0; 1488 snd_pcm_stream_unlock_irqrestore(substream, flags); 1489 return 0; 1490 } 1491 1492 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1493 void *arg) 1494 { 1495 struct snd_pcm_channel_info *info = arg; 1496 struct snd_pcm_runtime *runtime = substream->runtime; 1497 int width; 1498 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1499 info->offset = -1; 1500 return 0; 1501 } 1502 width = snd_pcm_format_physical_width(runtime->format); 1503 if (width < 0) 1504 return width; 1505 info->offset = 0; 1506 switch (runtime->access) { 1507 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1508 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1509 info->first = info->channel * width; 1510 info->step = runtime->channels * width; 1511 break; 1512 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1513 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1514 { 1515 size_t size = runtime->dma_bytes / runtime->channels; 1516 info->first = info->channel * size * 8; 1517 info->step = width; 1518 break; 1519 } 1520 default: 1521 snd_BUG(); 1522 break; 1523 } 1524 return 0; 1525 } 1526 1527 /** 1528 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1529 * @substream: the pcm substream instance 1530 * @cmd: ioctl command 1531 * @arg: ioctl argument 1532 * 1533 * Processes the generic ioctl commands for PCM. 1534 * Can be passed as the ioctl callback for PCM ops. 1535 * 1536 * Returns zero if successful, or a negative error code on failure. 1537 */ 1538 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1539 unsigned int cmd, void *arg) 1540 { 1541 switch (cmd) { 1542 case SNDRV_PCM_IOCTL1_INFO: 1543 return 0; 1544 case SNDRV_PCM_IOCTL1_RESET: 1545 return snd_pcm_lib_ioctl_reset(substream, arg); 1546 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1547 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1548 } 1549 return -ENXIO; 1550 } 1551 1552 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1553 1554 /** 1555 * snd_pcm_period_elapsed - update the pcm status for the next period 1556 * @substream: the pcm substream instance 1557 * 1558 * This function is called from the interrupt handler when the 1559 * PCM has processed the period size. It will update the current 1560 * pointer, wake up sleepers, etc. 1561 * 1562 * Even if more than one periods have elapsed since the last call, you 1563 * have to call this only once. 1564 */ 1565 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1566 { 1567 struct snd_pcm_runtime *runtime; 1568 unsigned long flags; 1569 1570 if (PCM_RUNTIME_CHECK(substream)) 1571 return; 1572 runtime = substream->runtime; 1573 1574 if (runtime->transfer_ack_begin) 1575 runtime->transfer_ack_begin(substream); 1576 1577 snd_pcm_stream_lock_irqsave(substream, flags); 1578 if (!snd_pcm_running(substream) || 1579 snd_pcm_update_hw_ptr_interrupt(substream) < 0) 1580 goto _end; 1581 1582 if (substream->timer_running) 1583 snd_timer_interrupt(substream->timer, 1); 1584 _end: 1585 snd_pcm_stream_unlock_irqrestore(substream, flags); 1586 if (runtime->transfer_ack_end) 1587 runtime->transfer_ack_end(substream); 1588 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1589 } 1590 1591 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1592 1593 /* 1594 * Wait until avail_min data becomes available 1595 * Returns a negative error code if any error occurs during operation. 1596 * The available space is stored on availp. When err = 0 and avail = 0 1597 * on the capture stream, it indicates the stream is in DRAINING state. 1598 */ 1599 static int wait_for_avail_min(struct snd_pcm_substream *substream, 1600 snd_pcm_uframes_t *availp) 1601 { 1602 struct snd_pcm_runtime *runtime = substream->runtime; 1603 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1604 wait_queue_t wait; 1605 int err = 0; 1606 snd_pcm_uframes_t avail = 0; 1607 long tout; 1608 1609 init_waitqueue_entry(&wait, current); 1610 add_wait_queue(&runtime->sleep, &wait); 1611 for (;;) { 1612 if (signal_pending(current)) { 1613 err = -ERESTARTSYS; 1614 break; 1615 } 1616 set_current_state(TASK_INTERRUPTIBLE); 1617 snd_pcm_stream_unlock_irq(substream); 1618 tout = schedule_timeout(msecs_to_jiffies(10000)); 1619 snd_pcm_stream_lock_irq(substream); 1620 switch (runtime->status->state) { 1621 case SNDRV_PCM_STATE_SUSPENDED: 1622 err = -ESTRPIPE; 1623 goto _endloop; 1624 case SNDRV_PCM_STATE_XRUN: 1625 err = -EPIPE; 1626 goto _endloop; 1627 case SNDRV_PCM_STATE_DRAINING: 1628 if (is_playback) 1629 err = -EPIPE; 1630 else 1631 avail = 0; /* indicate draining */ 1632 goto _endloop; 1633 case SNDRV_PCM_STATE_OPEN: 1634 case SNDRV_PCM_STATE_SETUP: 1635 case SNDRV_PCM_STATE_DISCONNECTED: 1636 err = -EBADFD; 1637 goto _endloop; 1638 } 1639 if (!tout) { 1640 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1641 is_playback ? "playback" : "capture"); 1642 err = -EIO; 1643 break; 1644 } 1645 if (is_playback) 1646 avail = snd_pcm_playback_avail(runtime); 1647 else 1648 avail = snd_pcm_capture_avail(runtime); 1649 if (avail >= runtime->control->avail_min) 1650 break; 1651 } 1652 _endloop: 1653 remove_wait_queue(&runtime->sleep, &wait); 1654 *availp = avail; 1655 return err; 1656 } 1657 1658 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1659 unsigned int hwoff, 1660 unsigned long data, unsigned int off, 1661 snd_pcm_uframes_t frames) 1662 { 1663 struct snd_pcm_runtime *runtime = substream->runtime; 1664 int err; 1665 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1666 if (substream->ops->copy) { 1667 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1668 return err; 1669 } else { 1670 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1671 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1672 return -EFAULT; 1673 } 1674 return 0; 1675 } 1676 1677 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1678 unsigned long data, unsigned int off, 1679 snd_pcm_uframes_t size); 1680 1681 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1682 unsigned long data, 1683 snd_pcm_uframes_t size, 1684 int nonblock, 1685 transfer_f transfer) 1686 { 1687 struct snd_pcm_runtime *runtime = substream->runtime; 1688 snd_pcm_uframes_t xfer = 0; 1689 snd_pcm_uframes_t offset = 0; 1690 int err = 0; 1691 1692 if (size == 0) 1693 return 0; 1694 1695 snd_pcm_stream_lock_irq(substream); 1696 switch (runtime->status->state) { 1697 case SNDRV_PCM_STATE_PREPARED: 1698 case SNDRV_PCM_STATE_RUNNING: 1699 case SNDRV_PCM_STATE_PAUSED: 1700 break; 1701 case SNDRV_PCM_STATE_XRUN: 1702 err = -EPIPE; 1703 goto _end_unlock; 1704 case SNDRV_PCM_STATE_SUSPENDED: 1705 err = -ESTRPIPE; 1706 goto _end_unlock; 1707 default: 1708 err = -EBADFD; 1709 goto _end_unlock; 1710 } 1711 1712 while (size > 0) { 1713 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1714 snd_pcm_uframes_t avail; 1715 snd_pcm_uframes_t cont; 1716 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1717 snd_pcm_update_hw_ptr(substream); 1718 avail = snd_pcm_playback_avail(runtime); 1719 if (!avail) { 1720 if (nonblock) { 1721 err = -EAGAIN; 1722 goto _end_unlock; 1723 } 1724 err = wait_for_avail_min(substream, &avail); 1725 if (err < 0) 1726 goto _end_unlock; 1727 } 1728 frames = size > avail ? avail : size; 1729 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1730 if (frames > cont) 1731 frames = cont; 1732 if (snd_BUG_ON(!frames)) { 1733 snd_pcm_stream_unlock_irq(substream); 1734 return -EINVAL; 1735 } 1736 appl_ptr = runtime->control->appl_ptr; 1737 appl_ofs = appl_ptr % runtime->buffer_size; 1738 snd_pcm_stream_unlock_irq(substream); 1739 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 1740 goto _end; 1741 snd_pcm_stream_lock_irq(substream); 1742 switch (runtime->status->state) { 1743 case SNDRV_PCM_STATE_XRUN: 1744 err = -EPIPE; 1745 goto _end_unlock; 1746 case SNDRV_PCM_STATE_SUSPENDED: 1747 err = -ESTRPIPE; 1748 goto _end_unlock; 1749 default: 1750 break; 1751 } 1752 appl_ptr += frames; 1753 if (appl_ptr >= runtime->boundary) 1754 appl_ptr -= runtime->boundary; 1755 runtime->control->appl_ptr = appl_ptr; 1756 if (substream->ops->ack) 1757 substream->ops->ack(substream); 1758 1759 offset += frames; 1760 size -= frames; 1761 xfer += frames; 1762 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1763 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1764 err = snd_pcm_start(substream); 1765 if (err < 0) 1766 goto _end_unlock; 1767 } 1768 } 1769 _end_unlock: 1770 snd_pcm_stream_unlock_irq(substream); 1771 _end: 1772 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1773 } 1774 1775 /* sanity-check for read/write methods */ 1776 static int pcm_sanity_check(struct snd_pcm_substream *substream) 1777 { 1778 struct snd_pcm_runtime *runtime; 1779 if (PCM_RUNTIME_CHECK(substream)) 1780 return -ENXIO; 1781 runtime = substream->runtime; 1782 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 1783 return -EINVAL; 1784 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1785 return -EBADFD; 1786 return 0; 1787 } 1788 1789 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 1790 { 1791 struct snd_pcm_runtime *runtime; 1792 int nonblock; 1793 int err; 1794 1795 err = pcm_sanity_check(substream); 1796 if (err < 0) 1797 return err; 1798 runtime = substream->runtime; 1799 nonblock = !!(substream->f_flags & O_NONBLOCK); 1800 1801 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 1802 runtime->channels > 1) 1803 return -EINVAL; 1804 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 1805 snd_pcm_lib_write_transfer); 1806 } 1807 1808 EXPORT_SYMBOL(snd_pcm_lib_write); 1809 1810 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 1811 unsigned int hwoff, 1812 unsigned long data, unsigned int off, 1813 snd_pcm_uframes_t frames) 1814 { 1815 struct snd_pcm_runtime *runtime = substream->runtime; 1816 int err; 1817 void __user **bufs = (void __user **)data; 1818 int channels = runtime->channels; 1819 int c; 1820 if (substream->ops->copy) { 1821 if (snd_BUG_ON(!substream->ops->silence)) 1822 return -EINVAL; 1823 for (c = 0; c < channels; ++c, ++bufs) { 1824 if (*bufs == NULL) { 1825 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 1826 return err; 1827 } else { 1828 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1829 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 1830 return err; 1831 } 1832 } 1833 } else { 1834 /* default transfer behaviour */ 1835 size_t dma_csize = runtime->dma_bytes / channels; 1836 for (c = 0; c < channels; ++c, ++bufs) { 1837 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 1838 if (*bufs == NULL) { 1839 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 1840 } else { 1841 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1842 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 1843 return -EFAULT; 1844 } 1845 } 1846 } 1847 return 0; 1848 } 1849 1850 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 1851 void __user **bufs, 1852 snd_pcm_uframes_t frames) 1853 { 1854 struct snd_pcm_runtime *runtime; 1855 int nonblock; 1856 int err; 1857 1858 err = pcm_sanity_check(substream); 1859 if (err < 0) 1860 return err; 1861 runtime = substream->runtime; 1862 nonblock = !!(substream->f_flags & O_NONBLOCK); 1863 1864 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 1865 return -EINVAL; 1866 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 1867 nonblock, snd_pcm_lib_writev_transfer); 1868 } 1869 1870 EXPORT_SYMBOL(snd_pcm_lib_writev); 1871 1872 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 1873 unsigned int hwoff, 1874 unsigned long data, unsigned int off, 1875 snd_pcm_uframes_t frames) 1876 { 1877 struct snd_pcm_runtime *runtime = substream->runtime; 1878 int err; 1879 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1880 if (substream->ops->copy) { 1881 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1882 return err; 1883 } else { 1884 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1885 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 1886 return -EFAULT; 1887 } 1888 return 0; 1889 } 1890 1891 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 1892 unsigned long data, 1893 snd_pcm_uframes_t size, 1894 int nonblock, 1895 transfer_f transfer) 1896 { 1897 struct snd_pcm_runtime *runtime = substream->runtime; 1898 snd_pcm_uframes_t xfer = 0; 1899 snd_pcm_uframes_t offset = 0; 1900 int err = 0; 1901 1902 if (size == 0) 1903 return 0; 1904 1905 snd_pcm_stream_lock_irq(substream); 1906 switch (runtime->status->state) { 1907 case SNDRV_PCM_STATE_PREPARED: 1908 if (size >= runtime->start_threshold) { 1909 err = snd_pcm_start(substream); 1910 if (err < 0) 1911 goto _end_unlock; 1912 } 1913 break; 1914 case SNDRV_PCM_STATE_DRAINING: 1915 case SNDRV_PCM_STATE_RUNNING: 1916 case SNDRV_PCM_STATE_PAUSED: 1917 break; 1918 case SNDRV_PCM_STATE_XRUN: 1919 err = -EPIPE; 1920 goto _end_unlock; 1921 case SNDRV_PCM_STATE_SUSPENDED: 1922 err = -ESTRPIPE; 1923 goto _end_unlock; 1924 default: 1925 err = -EBADFD; 1926 goto _end_unlock; 1927 } 1928 1929 while (size > 0) { 1930 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1931 snd_pcm_uframes_t avail; 1932 snd_pcm_uframes_t cont; 1933 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1934 snd_pcm_update_hw_ptr(substream); 1935 avail = snd_pcm_capture_avail(runtime); 1936 if (!avail) { 1937 if (runtime->status->state == 1938 SNDRV_PCM_STATE_DRAINING) { 1939 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 1940 goto _end_unlock; 1941 } 1942 if (nonblock) { 1943 err = -EAGAIN; 1944 goto _end_unlock; 1945 } 1946 err = wait_for_avail_min(substream, &avail); 1947 if (err < 0) 1948 goto _end_unlock; 1949 if (!avail) 1950 continue; /* draining */ 1951 } 1952 frames = size > avail ? avail : size; 1953 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1954 if (frames > cont) 1955 frames = cont; 1956 if (snd_BUG_ON(!frames)) { 1957 snd_pcm_stream_unlock_irq(substream); 1958 return -EINVAL; 1959 } 1960 appl_ptr = runtime->control->appl_ptr; 1961 appl_ofs = appl_ptr % runtime->buffer_size; 1962 snd_pcm_stream_unlock_irq(substream); 1963 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 1964 goto _end; 1965 snd_pcm_stream_lock_irq(substream); 1966 switch (runtime->status->state) { 1967 case SNDRV_PCM_STATE_XRUN: 1968 err = -EPIPE; 1969 goto _end_unlock; 1970 case SNDRV_PCM_STATE_SUSPENDED: 1971 err = -ESTRPIPE; 1972 goto _end_unlock; 1973 default: 1974 break; 1975 } 1976 appl_ptr += frames; 1977 if (appl_ptr >= runtime->boundary) 1978 appl_ptr -= runtime->boundary; 1979 runtime->control->appl_ptr = appl_ptr; 1980 if (substream->ops->ack) 1981 substream->ops->ack(substream); 1982 1983 offset += frames; 1984 size -= frames; 1985 xfer += frames; 1986 } 1987 _end_unlock: 1988 snd_pcm_stream_unlock_irq(substream); 1989 _end: 1990 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1991 } 1992 1993 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 1994 { 1995 struct snd_pcm_runtime *runtime; 1996 int nonblock; 1997 int err; 1998 1999 err = pcm_sanity_check(substream); 2000 if (err < 0) 2001 return err; 2002 runtime = substream->runtime; 2003 nonblock = !!(substream->f_flags & O_NONBLOCK); 2004 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2005 return -EINVAL; 2006 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2007 } 2008 2009 EXPORT_SYMBOL(snd_pcm_lib_read); 2010 2011 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2012 unsigned int hwoff, 2013 unsigned long data, unsigned int off, 2014 snd_pcm_uframes_t frames) 2015 { 2016 struct snd_pcm_runtime *runtime = substream->runtime; 2017 int err; 2018 void __user **bufs = (void __user **)data; 2019 int channels = runtime->channels; 2020 int c; 2021 if (substream->ops->copy) { 2022 for (c = 0; c < channels; ++c, ++bufs) { 2023 char __user *buf; 2024 if (*bufs == NULL) 2025 continue; 2026 buf = *bufs + samples_to_bytes(runtime, off); 2027 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2028 return err; 2029 } 2030 } else { 2031 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2032 for (c = 0; c < channels; ++c, ++bufs) { 2033 char *hwbuf; 2034 char __user *buf; 2035 if (*bufs == NULL) 2036 continue; 2037 2038 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2039 buf = *bufs + samples_to_bytes(runtime, off); 2040 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2041 return -EFAULT; 2042 } 2043 } 2044 return 0; 2045 } 2046 2047 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2048 void __user **bufs, 2049 snd_pcm_uframes_t frames) 2050 { 2051 struct snd_pcm_runtime *runtime; 2052 int nonblock; 2053 int err; 2054 2055 err = pcm_sanity_check(substream); 2056 if (err < 0) 2057 return err; 2058 runtime = substream->runtime; 2059 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2060 return -EBADFD; 2061 2062 nonblock = !!(substream->f_flags & O_NONBLOCK); 2063 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2064 return -EINVAL; 2065 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2066 } 2067 2068 EXPORT_SYMBOL(snd_pcm_lib_readv); 2069