xref: /openbmc/linux/sound/core/pcm_lib.c (revision 78c99ba1)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31 
32 /*
33  * fill ring buffer with silence
34  * runtime->silence_start: starting pointer to silence area
35  * runtime->silence_filled: size filled with silence
36  * runtime->silence_threshold: threshold from application
37  * runtime->silence_size: maximal size from application
38  *
39  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40  */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43 	struct snd_pcm_runtime *runtime = substream->runtime;
44 	snd_pcm_uframes_t frames, ofs, transfer;
45 
46 	if (runtime->silence_size < runtime->boundary) {
47 		snd_pcm_sframes_t noise_dist, n;
48 		if (runtime->silence_start != runtime->control->appl_ptr) {
49 			n = runtime->control->appl_ptr - runtime->silence_start;
50 			if (n < 0)
51 				n += runtime->boundary;
52 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53 				runtime->silence_filled -= n;
54 			else
55 				runtime->silence_filled = 0;
56 			runtime->silence_start = runtime->control->appl_ptr;
57 		}
58 		if (runtime->silence_filled >= runtime->buffer_size)
59 			return;
60 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62 			return;
63 		frames = runtime->silence_threshold - noise_dist;
64 		if (frames > runtime->silence_size)
65 			frames = runtime->silence_size;
66 	} else {
67 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
68 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69 			runtime->silence_filled = avail > 0 ? avail : 0;
70 			runtime->silence_start = (runtime->status->hw_ptr +
71 						  runtime->silence_filled) %
72 						 runtime->boundary;
73 		} else {
74 			ofs = runtime->status->hw_ptr;
75 			frames = new_hw_ptr - ofs;
76 			if ((snd_pcm_sframes_t)frames < 0)
77 				frames += runtime->boundary;
78 			runtime->silence_filled -= frames;
79 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80 				runtime->silence_filled = 0;
81 				runtime->silence_start = new_hw_ptr;
82 			} else {
83 				runtime->silence_start = ofs;
84 			}
85 		}
86 		frames = runtime->buffer_size - runtime->silence_filled;
87 	}
88 	if (snd_BUG_ON(frames > runtime->buffer_size))
89 		return;
90 	if (frames == 0)
91 		return;
92 	ofs = runtime->silence_start % runtime->buffer_size;
93 	while (frames > 0) {
94 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97 			if (substream->ops->silence) {
98 				int err;
99 				err = substream->ops->silence(substream, -1, ofs, transfer);
100 				snd_BUG_ON(err < 0);
101 			} else {
102 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104 			}
105 		} else {
106 			unsigned int c;
107 			unsigned int channels = runtime->channels;
108 			if (substream->ops->silence) {
109 				for (c = 0; c < channels; ++c) {
110 					int err;
111 					err = substream->ops->silence(substream, c, ofs, transfer);
112 					snd_BUG_ON(err < 0);
113 				}
114 			} else {
115 				size_t dma_csize = runtime->dma_bytes / channels;
116 				for (c = 0; c < channels; ++c) {
117 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119 				}
120 			}
121 		}
122 		runtime->silence_filled += transfer;
123 		frames -= transfer;
124 		ofs = 0;
125 	}
126 }
127 
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 #define xrun_debug(substream)	((substream)->pstr->xrun_debug)
130 #else
131 #define xrun_debug(substream)	0
132 #endif
133 
134 #define dump_stack_on_xrun(substream) do {	\
135 		if (xrun_debug(substream) > 1)	\
136 			dump_stack();		\
137 	} while (0)
138 
139 static void xrun(struct snd_pcm_substream *substream)
140 {
141 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
142 	if (xrun_debug(substream)) {
143 		snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
144 			   substream->pcm->card->number,
145 			   substream->pcm->device,
146 			   substream->stream ? 'c' : 'p');
147 		dump_stack_on_xrun(substream);
148 	}
149 }
150 
151 static snd_pcm_uframes_t
152 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
153 			  struct snd_pcm_runtime *runtime)
154 {
155 	snd_pcm_uframes_t pos;
156 
157 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
158 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
159 	pos = substream->ops->pointer(substream);
160 	if (pos == SNDRV_PCM_POS_XRUN)
161 		return pos; /* XRUN */
162 	if (pos >= runtime->buffer_size) {
163 		if (printk_ratelimit()) {
164 			snd_printd(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, "
165 				   "buffer size = 0x%lx, period size = 0x%lx\n",
166 				   substream->stream, pos, runtime->buffer_size,
167 				   runtime->period_size);
168 		}
169 		pos = 0;
170 	}
171 	pos -= pos % runtime->min_align;
172 	return pos;
173 }
174 
175 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
176 				      struct snd_pcm_runtime *runtime)
177 {
178 	snd_pcm_uframes_t avail;
179 
180 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
181 		avail = snd_pcm_playback_avail(runtime);
182 	else
183 		avail = snd_pcm_capture_avail(runtime);
184 	if (avail > runtime->avail_max)
185 		runtime->avail_max = avail;
186 	if (avail >= runtime->stop_threshold) {
187 		if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
188 			snd_pcm_drain_done(substream);
189 		else
190 			xrun(substream);
191 		return -EPIPE;
192 	}
193 	if (avail >= runtime->control->avail_min)
194 		wake_up(&runtime->sleep);
195 	return 0;
196 }
197 
198 #define hw_ptr_error(substream, fmt, args...)				\
199 	do {								\
200 		if (xrun_debug(substream)) {				\
201 			if (printk_ratelimit()) {			\
202 				snd_printd("PCM: " fmt, ##args);	\
203 			}						\
204 			dump_stack_on_xrun(substream);			\
205 		}							\
206 	} while (0)
207 
208 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
209 {
210 	struct snd_pcm_runtime *runtime = substream->runtime;
211 	snd_pcm_uframes_t pos;
212 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
213 	snd_pcm_sframes_t hdelta, delta;
214 	unsigned long jdelta;
215 
216 	old_hw_ptr = runtime->status->hw_ptr;
217 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
218 	if (pos == SNDRV_PCM_POS_XRUN) {
219 		xrun(substream);
220 		return -EPIPE;
221 	}
222 	hw_base = runtime->hw_ptr_base;
223 	new_hw_ptr = hw_base + pos;
224 	hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
225 	delta = new_hw_ptr - hw_ptr_interrupt;
226 	if (hw_ptr_interrupt >= runtime->boundary) {
227 		hw_ptr_interrupt -= runtime->boundary;
228 		if (hw_base < runtime->boundary / 2)
229 			/* hw_base was already lapped; recalc delta */
230 			delta = new_hw_ptr - hw_ptr_interrupt;
231 	}
232 	if (delta < 0) {
233 		delta += runtime->buffer_size;
234 		if (delta < 0) {
235 			hw_ptr_error(substream,
236 				     "Unexpected hw_pointer value "
237 				     "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
238 				     substream->stream, (long)pos,
239 				     (long)hw_ptr_interrupt);
240 			/* rebase to interrupt position */
241 			hw_base = new_hw_ptr = hw_ptr_interrupt;
242 			/* align hw_base to buffer_size */
243 			hw_base -= hw_base % runtime->buffer_size;
244 			delta = 0;
245 		} else {
246 			hw_base += runtime->buffer_size;
247 			if (hw_base >= runtime->boundary)
248 				hw_base = 0;
249 			new_hw_ptr = hw_base + pos;
250 		}
251 	}
252 
253 	/* Do jiffies check only in xrun_debug mode */
254 	if (!xrun_debug(substream))
255 		goto no_jiffies_check;
256 
257 	/* Skip the jiffies check for hardwares with BATCH flag.
258 	 * Such hardware usually just increases the position at each IRQ,
259 	 * thus it can't give any strange position.
260 	 */
261 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
262 		goto no_jiffies_check;
263 	hdelta = new_hw_ptr - old_hw_ptr;
264 	jdelta = jiffies - runtime->hw_ptr_jiffies;
265 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
266 		delta = jdelta /
267 			(((runtime->period_size * HZ) / runtime->rate)
268 								+ HZ/100);
269 		hw_ptr_error(substream,
270 			     "hw_ptr skipping! [Q] "
271 			     "(pos=%ld, delta=%ld, period=%ld, "
272 			     "jdelta=%lu/%lu/%lu)\n",
273 			     (long)pos, (long)hdelta,
274 			     (long)runtime->period_size, jdelta,
275 			     ((hdelta * HZ) / runtime->rate), delta);
276 		hw_ptr_interrupt = runtime->hw_ptr_interrupt +
277 				   runtime->period_size * delta;
278 		if (hw_ptr_interrupt >= runtime->boundary)
279 			hw_ptr_interrupt -= runtime->boundary;
280 		/* rebase to interrupt position */
281 		hw_base = new_hw_ptr = hw_ptr_interrupt;
282 		/* align hw_base to buffer_size */
283 		hw_base -= hw_base % runtime->buffer_size;
284 		delta = 0;
285 	}
286  no_jiffies_check:
287 	if (delta > runtime->period_size + runtime->period_size / 2) {
288 		hw_ptr_error(substream,
289 			     "Lost interrupts? "
290 			     "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
291 			     substream->stream, (long)delta,
292 			     (long)hw_ptr_interrupt);
293 		/* rebase hw_ptr_interrupt */
294 		hw_ptr_interrupt =
295 			new_hw_ptr - new_hw_ptr % runtime->period_size;
296 	}
297 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
298 	    runtime->silence_size > 0)
299 		snd_pcm_playback_silence(substream, new_hw_ptr);
300 
301 	runtime->hw_ptr_base = hw_base;
302 	runtime->status->hw_ptr = new_hw_ptr;
303 	runtime->hw_ptr_jiffies = jiffies;
304 	runtime->hw_ptr_interrupt = hw_ptr_interrupt;
305 
306 	return snd_pcm_update_hw_ptr_post(substream, runtime);
307 }
308 
309 /* CAUTION: call it with irq disabled */
310 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
311 {
312 	struct snd_pcm_runtime *runtime = substream->runtime;
313 	snd_pcm_uframes_t pos;
314 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
315 	snd_pcm_sframes_t delta;
316 	unsigned long jdelta;
317 
318 	old_hw_ptr = runtime->status->hw_ptr;
319 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
320 	if (pos == SNDRV_PCM_POS_XRUN) {
321 		xrun(substream);
322 		return -EPIPE;
323 	}
324 	hw_base = runtime->hw_ptr_base;
325 	new_hw_ptr = hw_base + pos;
326 
327 	delta = new_hw_ptr - old_hw_ptr;
328 	jdelta = jiffies - runtime->hw_ptr_jiffies;
329 	if (delta < 0) {
330 		delta += runtime->buffer_size;
331 		if (delta < 0) {
332 			hw_ptr_error(substream,
333 				     "Unexpected hw_pointer value [2] "
334 				     "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
335 				     substream->stream, (long)pos,
336 				     (long)old_hw_ptr, jdelta);
337 			return 0;
338 		}
339 		hw_base += runtime->buffer_size;
340 		if (hw_base >= runtime->boundary)
341 			hw_base = 0;
342 		new_hw_ptr = hw_base + pos;
343 	}
344 	/* Do jiffies check only in xrun_debug mode */
345 	if (xrun_debug(substream) &&
346 	    ((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
347 		hw_ptr_error(substream,
348 			     "hw_ptr skipping! "
349 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
350 			     (long)pos, (long)delta,
351 			     (long)runtime->period_size, jdelta,
352 			     ((delta * HZ) / runtime->rate));
353 		return 0;
354 	}
355 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
356 	    runtime->silence_size > 0)
357 		snd_pcm_playback_silence(substream, new_hw_ptr);
358 
359 	runtime->hw_ptr_base = hw_base;
360 	runtime->status->hw_ptr = new_hw_ptr;
361 	runtime->hw_ptr_jiffies = jiffies;
362 
363 	return snd_pcm_update_hw_ptr_post(substream, runtime);
364 }
365 
366 /**
367  * snd_pcm_set_ops - set the PCM operators
368  * @pcm: the pcm instance
369  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
370  * @ops: the operator table
371  *
372  * Sets the given PCM operators to the pcm instance.
373  */
374 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
375 {
376 	struct snd_pcm_str *stream = &pcm->streams[direction];
377 	struct snd_pcm_substream *substream;
378 
379 	for (substream = stream->substream; substream != NULL; substream = substream->next)
380 		substream->ops = ops;
381 }
382 
383 EXPORT_SYMBOL(snd_pcm_set_ops);
384 
385 /**
386  * snd_pcm_sync - set the PCM sync id
387  * @substream: the pcm substream
388  *
389  * Sets the PCM sync identifier for the card.
390  */
391 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
392 {
393 	struct snd_pcm_runtime *runtime = substream->runtime;
394 
395 	runtime->sync.id32[0] = substream->pcm->card->number;
396 	runtime->sync.id32[1] = -1;
397 	runtime->sync.id32[2] = -1;
398 	runtime->sync.id32[3] = -1;
399 }
400 
401 EXPORT_SYMBOL(snd_pcm_set_sync);
402 
403 /*
404  *  Standard ioctl routine
405  */
406 
407 static inline unsigned int div32(unsigned int a, unsigned int b,
408 				 unsigned int *r)
409 {
410 	if (b == 0) {
411 		*r = 0;
412 		return UINT_MAX;
413 	}
414 	*r = a % b;
415 	return a / b;
416 }
417 
418 static inline unsigned int div_down(unsigned int a, unsigned int b)
419 {
420 	if (b == 0)
421 		return UINT_MAX;
422 	return a / b;
423 }
424 
425 static inline unsigned int div_up(unsigned int a, unsigned int b)
426 {
427 	unsigned int r;
428 	unsigned int q;
429 	if (b == 0)
430 		return UINT_MAX;
431 	q = div32(a, b, &r);
432 	if (r)
433 		++q;
434 	return q;
435 }
436 
437 static inline unsigned int mul(unsigned int a, unsigned int b)
438 {
439 	if (a == 0)
440 		return 0;
441 	if (div_down(UINT_MAX, a) < b)
442 		return UINT_MAX;
443 	return a * b;
444 }
445 
446 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
447 				    unsigned int c, unsigned int *r)
448 {
449 	u_int64_t n = (u_int64_t) a * b;
450 	if (c == 0) {
451 		snd_BUG_ON(!n);
452 		*r = 0;
453 		return UINT_MAX;
454 	}
455 	div64_32(&n, c, r);
456 	if (n >= UINT_MAX) {
457 		*r = 0;
458 		return UINT_MAX;
459 	}
460 	return n;
461 }
462 
463 /**
464  * snd_interval_refine - refine the interval value of configurator
465  * @i: the interval value to refine
466  * @v: the interval value to refer to
467  *
468  * Refines the interval value with the reference value.
469  * The interval is changed to the range satisfying both intervals.
470  * The interval status (min, max, integer, etc.) are evaluated.
471  *
472  * Returns non-zero if the value is changed, zero if not changed.
473  */
474 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
475 {
476 	int changed = 0;
477 	if (snd_BUG_ON(snd_interval_empty(i)))
478 		return -EINVAL;
479 	if (i->min < v->min) {
480 		i->min = v->min;
481 		i->openmin = v->openmin;
482 		changed = 1;
483 	} else if (i->min == v->min && !i->openmin && v->openmin) {
484 		i->openmin = 1;
485 		changed = 1;
486 	}
487 	if (i->max > v->max) {
488 		i->max = v->max;
489 		i->openmax = v->openmax;
490 		changed = 1;
491 	} else if (i->max == v->max && !i->openmax && v->openmax) {
492 		i->openmax = 1;
493 		changed = 1;
494 	}
495 	if (!i->integer && v->integer) {
496 		i->integer = 1;
497 		changed = 1;
498 	}
499 	if (i->integer) {
500 		if (i->openmin) {
501 			i->min++;
502 			i->openmin = 0;
503 		}
504 		if (i->openmax) {
505 			i->max--;
506 			i->openmax = 0;
507 		}
508 	} else if (!i->openmin && !i->openmax && i->min == i->max)
509 		i->integer = 1;
510 	if (snd_interval_checkempty(i)) {
511 		snd_interval_none(i);
512 		return -EINVAL;
513 	}
514 	return changed;
515 }
516 
517 EXPORT_SYMBOL(snd_interval_refine);
518 
519 static int snd_interval_refine_first(struct snd_interval *i)
520 {
521 	if (snd_BUG_ON(snd_interval_empty(i)))
522 		return -EINVAL;
523 	if (snd_interval_single(i))
524 		return 0;
525 	i->max = i->min;
526 	i->openmax = i->openmin;
527 	if (i->openmax)
528 		i->max++;
529 	return 1;
530 }
531 
532 static int snd_interval_refine_last(struct snd_interval *i)
533 {
534 	if (snd_BUG_ON(snd_interval_empty(i)))
535 		return -EINVAL;
536 	if (snd_interval_single(i))
537 		return 0;
538 	i->min = i->max;
539 	i->openmin = i->openmax;
540 	if (i->openmin)
541 		i->min--;
542 	return 1;
543 }
544 
545 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
546 {
547 	if (a->empty || b->empty) {
548 		snd_interval_none(c);
549 		return;
550 	}
551 	c->empty = 0;
552 	c->min = mul(a->min, b->min);
553 	c->openmin = (a->openmin || b->openmin);
554 	c->max = mul(a->max,  b->max);
555 	c->openmax = (a->openmax || b->openmax);
556 	c->integer = (a->integer && b->integer);
557 }
558 
559 /**
560  * snd_interval_div - refine the interval value with division
561  * @a: dividend
562  * @b: divisor
563  * @c: quotient
564  *
565  * c = a / b
566  *
567  * Returns non-zero if the value is changed, zero if not changed.
568  */
569 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
570 {
571 	unsigned int r;
572 	if (a->empty || b->empty) {
573 		snd_interval_none(c);
574 		return;
575 	}
576 	c->empty = 0;
577 	c->min = div32(a->min, b->max, &r);
578 	c->openmin = (r || a->openmin || b->openmax);
579 	if (b->min > 0) {
580 		c->max = div32(a->max, b->min, &r);
581 		if (r) {
582 			c->max++;
583 			c->openmax = 1;
584 		} else
585 			c->openmax = (a->openmax || b->openmin);
586 	} else {
587 		c->max = UINT_MAX;
588 		c->openmax = 0;
589 	}
590 	c->integer = 0;
591 }
592 
593 /**
594  * snd_interval_muldivk - refine the interval value
595  * @a: dividend 1
596  * @b: dividend 2
597  * @k: divisor (as integer)
598  * @c: result
599   *
600  * c = a * b / k
601  *
602  * Returns non-zero if the value is changed, zero if not changed.
603  */
604 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
605 		      unsigned int k, struct snd_interval *c)
606 {
607 	unsigned int r;
608 	if (a->empty || b->empty) {
609 		snd_interval_none(c);
610 		return;
611 	}
612 	c->empty = 0;
613 	c->min = muldiv32(a->min, b->min, k, &r);
614 	c->openmin = (r || a->openmin || b->openmin);
615 	c->max = muldiv32(a->max, b->max, k, &r);
616 	if (r) {
617 		c->max++;
618 		c->openmax = 1;
619 	} else
620 		c->openmax = (a->openmax || b->openmax);
621 	c->integer = 0;
622 }
623 
624 /**
625  * snd_interval_mulkdiv - refine the interval value
626  * @a: dividend 1
627  * @k: dividend 2 (as integer)
628  * @b: divisor
629  * @c: result
630  *
631  * c = a * k / b
632  *
633  * Returns non-zero if the value is changed, zero if not changed.
634  */
635 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
636 		      const struct snd_interval *b, struct snd_interval *c)
637 {
638 	unsigned int r;
639 	if (a->empty || b->empty) {
640 		snd_interval_none(c);
641 		return;
642 	}
643 	c->empty = 0;
644 	c->min = muldiv32(a->min, k, b->max, &r);
645 	c->openmin = (r || a->openmin || b->openmax);
646 	if (b->min > 0) {
647 		c->max = muldiv32(a->max, k, b->min, &r);
648 		if (r) {
649 			c->max++;
650 			c->openmax = 1;
651 		} else
652 			c->openmax = (a->openmax || b->openmin);
653 	} else {
654 		c->max = UINT_MAX;
655 		c->openmax = 0;
656 	}
657 	c->integer = 0;
658 }
659 
660 /* ---- */
661 
662 
663 /**
664  * snd_interval_ratnum - refine the interval value
665  * @i: interval to refine
666  * @rats_count: number of ratnum_t
667  * @rats: ratnum_t array
668  * @nump: pointer to store the resultant numerator
669  * @denp: pointer to store the resultant denominator
670  *
671  * Returns non-zero if the value is changed, zero if not changed.
672  */
673 int snd_interval_ratnum(struct snd_interval *i,
674 			unsigned int rats_count, struct snd_ratnum *rats,
675 			unsigned int *nump, unsigned int *denp)
676 {
677 	unsigned int best_num, best_diff, best_den;
678 	unsigned int k;
679 	struct snd_interval t;
680 	int err;
681 
682 	best_num = best_den = best_diff = 0;
683 	for (k = 0; k < rats_count; ++k) {
684 		unsigned int num = rats[k].num;
685 		unsigned int den;
686 		unsigned int q = i->min;
687 		int diff;
688 		if (q == 0)
689 			q = 1;
690 		den = div_down(num, q);
691 		if (den < rats[k].den_min)
692 			continue;
693 		if (den > rats[k].den_max)
694 			den = rats[k].den_max;
695 		else {
696 			unsigned int r;
697 			r = (den - rats[k].den_min) % rats[k].den_step;
698 			if (r != 0)
699 				den -= r;
700 		}
701 		diff = num - q * den;
702 		if (best_num == 0 ||
703 		    diff * best_den < best_diff * den) {
704 			best_diff = diff;
705 			best_den = den;
706 			best_num = num;
707 		}
708 	}
709 	if (best_den == 0) {
710 		i->empty = 1;
711 		return -EINVAL;
712 	}
713 	t.min = div_down(best_num, best_den);
714 	t.openmin = !!(best_num % best_den);
715 
716 	best_num = best_den = best_diff = 0;
717 	for (k = 0; k < rats_count; ++k) {
718 		unsigned int num = rats[k].num;
719 		unsigned int den;
720 		unsigned int q = i->max;
721 		int diff;
722 		if (q == 0) {
723 			i->empty = 1;
724 			return -EINVAL;
725 		}
726 		den = div_up(num, q);
727 		if (den > rats[k].den_max)
728 			continue;
729 		if (den < rats[k].den_min)
730 			den = rats[k].den_min;
731 		else {
732 			unsigned int r;
733 			r = (den - rats[k].den_min) % rats[k].den_step;
734 			if (r != 0)
735 				den += rats[k].den_step - r;
736 		}
737 		diff = q * den - num;
738 		if (best_num == 0 ||
739 		    diff * best_den < best_diff * den) {
740 			best_diff = diff;
741 			best_den = den;
742 			best_num = num;
743 		}
744 	}
745 	if (best_den == 0) {
746 		i->empty = 1;
747 		return -EINVAL;
748 	}
749 	t.max = div_up(best_num, best_den);
750 	t.openmax = !!(best_num % best_den);
751 	t.integer = 0;
752 	err = snd_interval_refine(i, &t);
753 	if (err < 0)
754 		return err;
755 
756 	if (snd_interval_single(i)) {
757 		if (nump)
758 			*nump = best_num;
759 		if (denp)
760 			*denp = best_den;
761 	}
762 	return err;
763 }
764 
765 EXPORT_SYMBOL(snd_interval_ratnum);
766 
767 /**
768  * snd_interval_ratden - refine the interval value
769  * @i: interval to refine
770  * @rats_count: number of struct ratden
771  * @rats: struct ratden array
772  * @nump: pointer to store the resultant numerator
773  * @denp: pointer to store the resultant denominator
774  *
775  * Returns non-zero if the value is changed, zero if not changed.
776  */
777 static int snd_interval_ratden(struct snd_interval *i,
778 			       unsigned int rats_count, struct snd_ratden *rats,
779 			       unsigned int *nump, unsigned int *denp)
780 {
781 	unsigned int best_num, best_diff, best_den;
782 	unsigned int k;
783 	struct snd_interval t;
784 	int err;
785 
786 	best_num = best_den = best_diff = 0;
787 	for (k = 0; k < rats_count; ++k) {
788 		unsigned int num;
789 		unsigned int den = rats[k].den;
790 		unsigned int q = i->min;
791 		int diff;
792 		num = mul(q, den);
793 		if (num > rats[k].num_max)
794 			continue;
795 		if (num < rats[k].num_min)
796 			num = rats[k].num_max;
797 		else {
798 			unsigned int r;
799 			r = (num - rats[k].num_min) % rats[k].num_step;
800 			if (r != 0)
801 				num += rats[k].num_step - r;
802 		}
803 		diff = num - q * den;
804 		if (best_num == 0 ||
805 		    diff * best_den < best_diff * den) {
806 			best_diff = diff;
807 			best_den = den;
808 			best_num = num;
809 		}
810 	}
811 	if (best_den == 0) {
812 		i->empty = 1;
813 		return -EINVAL;
814 	}
815 	t.min = div_down(best_num, best_den);
816 	t.openmin = !!(best_num % best_den);
817 
818 	best_num = best_den = best_diff = 0;
819 	for (k = 0; k < rats_count; ++k) {
820 		unsigned int num;
821 		unsigned int den = rats[k].den;
822 		unsigned int q = i->max;
823 		int diff;
824 		num = mul(q, den);
825 		if (num < rats[k].num_min)
826 			continue;
827 		if (num > rats[k].num_max)
828 			num = rats[k].num_max;
829 		else {
830 			unsigned int r;
831 			r = (num - rats[k].num_min) % rats[k].num_step;
832 			if (r != 0)
833 				num -= r;
834 		}
835 		diff = q * den - num;
836 		if (best_num == 0 ||
837 		    diff * best_den < best_diff * den) {
838 			best_diff = diff;
839 			best_den = den;
840 			best_num = num;
841 		}
842 	}
843 	if (best_den == 0) {
844 		i->empty = 1;
845 		return -EINVAL;
846 	}
847 	t.max = div_up(best_num, best_den);
848 	t.openmax = !!(best_num % best_den);
849 	t.integer = 0;
850 	err = snd_interval_refine(i, &t);
851 	if (err < 0)
852 		return err;
853 
854 	if (snd_interval_single(i)) {
855 		if (nump)
856 			*nump = best_num;
857 		if (denp)
858 			*denp = best_den;
859 	}
860 	return err;
861 }
862 
863 /**
864  * snd_interval_list - refine the interval value from the list
865  * @i: the interval value to refine
866  * @count: the number of elements in the list
867  * @list: the value list
868  * @mask: the bit-mask to evaluate
869  *
870  * Refines the interval value from the list.
871  * When mask is non-zero, only the elements corresponding to bit 1 are
872  * evaluated.
873  *
874  * Returns non-zero if the value is changed, zero if not changed.
875  */
876 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
877 {
878         unsigned int k;
879 	int changed = 0;
880 
881 	if (!count) {
882 		i->empty = 1;
883 		return -EINVAL;
884 	}
885         for (k = 0; k < count; k++) {
886 		if (mask && !(mask & (1 << k)))
887 			continue;
888                 if (i->min == list[k] && !i->openmin)
889                         goto _l1;
890                 if (i->min < list[k]) {
891                         i->min = list[k];
892 			i->openmin = 0;
893 			changed = 1;
894                         goto _l1;
895                 }
896         }
897         i->empty = 1;
898         return -EINVAL;
899  _l1:
900         for (k = count; k-- > 0;) {
901 		if (mask && !(mask & (1 << k)))
902 			continue;
903                 if (i->max == list[k] && !i->openmax)
904                         goto _l2;
905                 if (i->max > list[k]) {
906                         i->max = list[k];
907 			i->openmax = 0;
908 			changed = 1;
909                         goto _l2;
910                 }
911         }
912         i->empty = 1;
913         return -EINVAL;
914  _l2:
915 	if (snd_interval_checkempty(i)) {
916 		i->empty = 1;
917 		return -EINVAL;
918 	}
919         return changed;
920 }
921 
922 EXPORT_SYMBOL(snd_interval_list);
923 
924 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
925 {
926 	unsigned int n;
927 	int changed = 0;
928 	n = (i->min - min) % step;
929 	if (n != 0 || i->openmin) {
930 		i->min += step - n;
931 		changed = 1;
932 	}
933 	n = (i->max - min) % step;
934 	if (n != 0 || i->openmax) {
935 		i->max -= n;
936 		changed = 1;
937 	}
938 	if (snd_interval_checkempty(i)) {
939 		i->empty = 1;
940 		return -EINVAL;
941 	}
942 	return changed;
943 }
944 
945 /* Info constraints helpers */
946 
947 /**
948  * snd_pcm_hw_rule_add - add the hw-constraint rule
949  * @runtime: the pcm runtime instance
950  * @cond: condition bits
951  * @var: the variable to evaluate
952  * @func: the evaluation function
953  * @private: the private data pointer passed to function
954  * @dep: the dependent variables
955  *
956  * Returns zero if successful, or a negative error code on failure.
957  */
958 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
959 			int var,
960 			snd_pcm_hw_rule_func_t func, void *private,
961 			int dep, ...)
962 {
963 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
964 	struct snd_pcm_hw_rule *c;
965 	unsigned int k;
966 	va_list args;
967 	va_start(args, dep);
968 	if (constrs->rules_num >= constrs->rules_all) {
969 		struct snd_pcm_hw_rule *new;
970 		unsigned int new_rules = constrs->rules_all + 16;
971 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
972 		if (!new)
973 			return -ENOMEM;
974 		if (constrs->rules) {
975 			memcpy(new, constrs->rules,
976 			       constrs->rules_num * sizeof(*c));
977 			kfree(constrs->rules);
978 		}
979 		constrs->rules = new;
980 		constrs->rules_all = new_rules;
981 	}
982 	c = &constrs->rules[constrs->rules_num];
983 	c->cond = cond;
984 	c->func = func;
985 	c->var = var;
986 	c->private = private;
987 	k = 0;
988 	while (1) {
989 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
990 			return -EINVAL;
991 		c->deps[k++] = dep;
992 		if (dep < 0)
993 			break;
994 		dep = va_arg(args, int);
995 	}
996 	constrs->rules_num++;
997 	va_end(args);
998 	return 0;
999 }
1000 
1001 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1002 
1003 /**
1004  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1005  * @runtime: PCM runtime instance
1006  * @var: hw_params variable to apply the mask
1007  * @mask: the bitmap mask
1008  *
1009  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1010  */
1011 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1012 			       u_int32_t mask)
1013 {
1014 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1015 	struct snd_mask *maskp = constrs_mask(constrs, var);
1016 	*maskp->bits &= mask;
1017 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1018 	if (*maskp->bits == 0)
1019 		return -EINVAL;
1020 	return 0;
1021 }
1022 
1023 /**
1024  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1025  * @runtime: PCM runtime instance
1026  * @var: hw_params variable to apply the mask
1027  * @mask: the 64bit bitmap mask
1028  *
1029  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1030  */
1031 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1032 				 u_int64_t mask)
1033 {
1034 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1035 	struct snd_mask *maskp = constrs_mask(constrs, var);
1036 	maskp->bits[0] &= (u_int32_t)mask;
1037 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1038 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1039 	if (! maskp->bits[0] && ! maskp->bits[1])
1040 		return -EINVAL;
1041 	return 0;
1042 }
1043 
1044 /**
1045  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1046  * @runtime: PCM runtime instance
1047  * @var: hw_params variable to apply the integer constraint
1048  *
1049  * Apply the constraint of integer to an interval parameter.
1050  */
1051 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1052 {
1053 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1054 	return snd_interval_setinteger(constrs_interval(constrs, var));
1055 }
1056 
1057 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1058 
1059 /**
1060  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1061  * @runtime: PCM runtime instance
1062  * @var: hw_params variable to apply the range
1063  * @min: the minimal value
1064  * @max: the maximal value
1065  *
1066  * Apply the min/max range constraint to an interval parameter.
1067  */
1068 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1069 				 unsigned int min, unsigned int max)
1070 {
1071 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1072 	struct snd_interval t;
1073 	t.min = min;
1074 	t.max = max;
1075 	t.openmin = t.openmax = 0;
1076 	t.integer = 0;
1077 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1078 }
1079 
1080 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1081 
1082 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1083 				struct snd_pcm_hw_rule *rule)
1084 {
1085 	struct snd_pcm_hw_constraint_list *list = rule->private;
1086 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1087 }
1088 
1089 
1090 /**
1091  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1092  * @runtime: PCM runtime instance
1093  * @cond: condition bits
1094  * @var: hw_params variable to apply the list constraint
1095  * @l: list
1096  *
1097  * Apply the list of constraints to an interval parameter.
1098  */
1099 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1100 			       unsigned int cond,
1101 			       snd_pcm_hw_param_t var,
1102 			       struct snd_pcm_hw_constraint_list *l)
1103 {
1104 	return snd_pcm_hw_rule_add(runtime, cond, var,
1105 				   snd_pcm_hw_rule_list, l,
1106 				   var, -1);
1107 }
1108 
1109 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1110 
1111 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1112 				   struct snd_pcm_hw_rule *rule)
1113 {
1114 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1115 	unsigned int num = 0, den = 0;
1116 	int err;
1117 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1118 				  r->nrats, r->rats, &num, &den);
1119 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1120 		params->rate_num = num;
1121 		params->rate_den = den;
1122 	}
1123 	return err;
1124 }
1125 
1126 /**
1127  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1128  * @runtime: PCM runtime instance
1129  * @cond: condition bits
1130  * @var: hw_params variable to apply the ratnums constraint
1131  * @r: struct snd_ratnums constriants
1132  */
1133 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1134 				  unsigned int cond,
1135 				  snd_pcm_hw_param_t var,
1136 				  struct snd_pcm_hw_constraint_ratnums *r)
1137 {
1138 	return snd_pcm_hw_rule_add(runtime, cond, var,
1139 				   snd_pcm_hw_rule_ratnums, r,
1140 				   var, -1);
1141 }
1142 
1143 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1144 
1145 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1146 				   struct snd_pcm_hw_rule *rule)
1147 {
1148 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1149 	unsigned int num = 0, den = 0;
1150 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1151 				  r->nrats, r->rats, &num, &den);
1152 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1153 		params->rate_num = num;
1154 		params->rate_den = den;
1155 	}
1156 	return err;
1157 }
1158 
1159 /**
1160  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1161  * @runtime: PCM runtime instance
1162  * @cond: condition bits
1163  * @var: hw_params variable to apply the ratdens constraint
1164  * @r: struct snd_ratdens constriants
1165  */
1166 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1167 				  unsigned int cond,
1168 				  snd_pcm_hw_param_t var,
1169 				  struct snd_pcm_hw_constraint_ratdens *r)
1170 {
1171 	return snd_pcm_hw_rule_add(runtime, cond, var,
1172 				   snd_pcm_hw_rule_ratdens, r,
1173 				   var, -1);
1174 }
1175 
1176 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1177 
1178 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1179 				  struct snd_pcm_hw_rule *rule)
1180 {
1181 	unsigned int l = (unsigned long) rule->private;
1182 	int width = l & 0xffff;
1183 	unsigned int msbits = l >> 16;
1184 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1185 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1186 		params->msbits = msbits;
1187 	return 0;
1188 }
1189 
1190 /**
1191  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1192  * @runtime: PCM runtime instance
1193  * @cond: condition bits
1194  * @width: sample bits width
1195  * @msbits: msbits width
1196  */
1197 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1198 				 unsigned int cond,
1199 				 unsigned int width,
1200 				 unsigned int msbits)
1201 {
1202 	unsigned long l = (msbits << 16) | width;
1203 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1204 				    snd_pcm_hw_rule_msbits,
1205 				    (void*) l,
1206 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1207 }
1208 
1209 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1210 
1211 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1212 				struct snd_pcm_hw_rule *rule)
1213 {
1214 	unsigned long step = (unsigned long) rule->private;
1215 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1216 }
1217 
1218 /**
1219  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1220  * @runtime: PCM runtime instance
1221  * @cond: condition bits
1222  * @var: hw_params variable to apply the step constraint
1223  * @step: step size
1224  */
1225 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1226 			       unsigned int cond,
1227 			       snd_pcm_hw_param_t var,
1228 			       unsigned long step)
1229 {
1230 	return snd_pcm_hw_rule_add(runtime, cond, var,
1231 				   snd_pcm_hw_rule_step, (void *) step,
1232 				   var, -1);
1233 }
1234 
1235 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1236 
1237 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1238 {
1239 	static unsigned int pow2_sizes[] = {
1240 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1241 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1242 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1243 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1244 	};
1245 	return snd_interval_list(hw_param_interval(params, rule->var),
1246 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1247 }
1248 
1249 /**
1250  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1251  * @runtime: PCM runtime instance
1252  * @cond: condition bits
1253  * @var: hw_params variable to apply the power-of-2 constraint
1254  */
1255 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1256 			       unsigned int cond,
1257 			       snd_pcm_hw_param_t var)
1258 {
1259 	return snd_pcm_hw_rule_add(runtime, cond, var,
1260 				   snd_pcm_hw_rule_pow2, NULL,
1261 				   var, -1);
1262 }
1263 
1264 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1265 
1266 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1267 				  snd_pcm_hw_param_t var)
1268 {
1269 	if (hw_is_mask(var)) {
1270 		snd_mask_any(hw_param_mask(params, var));
1271 		params->cmask |= 1 << var;
1272 		params->rmask |= 1 << var;
1273 		return;
1274 	}
1275 	if (hw_is_interval(var)) {
1276 		snd_interval_any(hw_param_interval(params, var));
1277 		params->cmask |= 1 << var;
1278 		params->rmask |= 1 << var;
1279 		return;
1280 	}
1281 	snd_BUG();
1282 }
1283 
1284 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1285 {
1286 	unsigned int k;
1287 	memset(params, 0, sizeof(*params));
1288 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1289 		_snd_pcm_hw_param_any(params, k);
1290 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1291 		_snd_pcm_hw_param_any(params, k);
1292 	params->info = ~0U;
1293 }
1294 
1295 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1296 
1297 /**
1298  * snd_pcm_hw_param_value - return @params field @var value
1299  * @params: the hw_params instance
1300  * @var: parameter to retrieve
1301  * @dir: pointer to the direction (-1,0,1) or %NULL
1302  *
1303  * Return the value for field @var if it's fixed in configuration space
1304  * defined by @params. Return -%EINVAL otherwise.
1305  */
1306 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1307 			   snd_pcm_hw_param_t var, int *dir)
1308 {
1309 	if (hw_is_mask(var)) {
1310 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1311 		if (!snd_mask_single(mask))
1312 			return -EINVAL;
1313 		if (dir)
1314 			*dir = 0;
1315 		return snd_mask_value(mask);
1316 	}
1317 	if (hw_is_interval(var)) {
1318 		const struct snd_interval *i = hw_param_interval_c(params, var);
1319 		if (!snd_interval_single(i))
1320 			return -EINVAL;
1321 		if (dir)
1322 			*dir = i->openmin;
1323 		return snd_interval_value(i);
1324 	}
1325 	return -EINVAL;
1326 }
1327 
1328 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1329 
1330 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1331 				snd_pcm_hw_param_t var)
1332 {
1333 	if (hw_is_mask(var)) {
1334 		snd_mask_none(hw_param_mask(params, var));
1335 		params->cmask |= 1 << var;
1336 		params->rmask |= 1 << var;
1337 	} else if (hw_is_interval(var)) {
1338 		snd_interval_none(hw_param_interval(params, var));
1339 		params->cmask |= 1 << var;
1340 		params->rmask |= 1 << var;
1341 	} else {
1342 		snd_BUG();
1343 	}
1344 }
1345 
1346 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1347 
1348 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1349 				   snd_pcm_hw_param_t var)
1350 {
1351 	int changed;
1352 	if (hw_is_mask(var))
1353 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1354 	else if (hw_is_interval(var))
1355 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1356 	else
1357 		return -EINVAL;
1358 	if (changed) {
1359 		params->cmask |= 1 << var;
1360 		params->rmask |= 1 << var;
1361 	}
1362 	return changed;
1363 }
1364 
1365 
1366 /**
1367  * snd_pcm_hw_param_first - refine config space and return minimum value
1368  * @pcm: PCM instance
1369  * @params: the hw_params instance
1370  * @var: parameter to retrieve
1371  * @dir: pointer to the direction (-1,0,1) or %NULL
1372  *
1373  * Inside configuration space defined by @params remove from @var all
1374  * values > minimum. Reduce configuration space accordingly.
1375  * Return the minimum.
1376  */
1377 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1378 			   struct snd_pcm_hw_params *params,
1379 			   snd_pcm_hw_param_t var, int *dir)
1380 {
1381 	int changed = _snd_pcm_hw_param_first(params, var);
1382 	if (changed < 0)
1383 		return changed;
1384 	if (params->rmask) {
1385 		int err = snd_pcm_hw_refine(pcm, params);
1386 		if (snd_BUG_ON(err < 0))
1387 			return err;
1388 	}
1389 	return snd_pcm_hw_param_value(params, var, dir);
1390 }
1391 
1392 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1393 
1394 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1395 				  snd_pcm_hw_param_t var)
1396 {
1397 	int changed;
1398 	if (hw_is_mask(var))
1399 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1400 	else if (hw_is_interval(var))
1401 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1402 	else
1403 		return -EINVAL;
1404 	if (changed) {
1405 		params->cmask |= 1 << var;
1406 		params->rmask |= 1 << var;
1407 	}
1408 	return changed;
1409 }
1410 
1411 
1412 /**
1413  * snd_pcm_hw_param_last - refine config space and return maximum value
1414  * @pcm: PCM instance
1415  * @params: the hw_params instance
1416  * @var: parameter to retrieve
1417  * @dir: pointer to the direction (-1,0,1) or %NULL
1418  *
1419  * Inside configuration space defined by @params remove from @var all
1420  * values < maximum. Reduce configuration space accordingly.
1421  * Return the maximum.
1422  */
1423 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1424 			  struct snd_pcm_hw_params *params,
1425 			  snd_pcm_hw_param_t var, int *dir)
1426 {
1427 	int changed = _snd_pcm_hw_param_last(params, var);
1428 	if (changed < 0)
1429 		return changed;
1430 	if (params->rmask) {
1431 		int err = snd_pcm_hw_refine(pcm, params);
1432 		if (snd_BUG_ON(err < 0))
1433 			return err;
1434 	}
1435 	return snd_pcm_hw_param_value(params, var, dir);
1436 }
1437 
1438 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1439 
1440 /**
1441  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1442  * @pcm: PCM instance
1443  * @params: the hw_params instance
1444  *
1445  * Choose one configuration from configuration space defined by @params.
1446  * The configuration chosen is that obtained fixing in this order:
1447  * first access, first format, first subformat, min channels,
1448  * min rate, min period time, max buffer size, min tick time
1449  */
1450 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1451 			     struct snd_pcm_hw_params *params)
1452 {
1453 	static int vars[] = {
1454 		SNDRV_PCM_HW_PARAM_ACCESS,
1455 		SNDRV_PCM_HW_PARAM_FORMAT,
1456 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1457 		SNDRV_PCM_HW_PARAM_CHANNELS,
1458 		SNDRV_PCM_HW_PARAM_RATE,
1459 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1460 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1461 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1462 		-1
1463 	};
1464 	int err, *v;
1465 
1466 	for (v = vars; *v != -1; v++) {
1467 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1468 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1469 		else
1470 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1471 		if (snd_BUG_ON(err < 0))
1472 			return err;
1473 	}
1474 	return 0;
1475 }
1476 
1477 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1478 				   void *arg)
1479 {
1480 	struct snd_pcm_runtime *runtime = substream->runtime;
1481 	unsigned long flags;
1482 	snd_pcm_stream_lock_irqsave(substream, flags);
1483 	if (snd_pcm_running(substream) &&
1484 	    snd_pcm_update_hw_ptr(substream) >= 0)
1485 		runtime->status->hw_ptr %= runtime->buffer_size;
1486 	else
1487 		runtime->status->hw_ptr = 0;
1488 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1489 	return 0;
1490 }
1491 
1492 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1493 					  void *arg)
1494 {
1495 	struct snd_pcm_channel_info *info = arg;
1496 	struct snd_pcm_runtime *runtime = substream->runtime;
1497 	int width;
1498 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1499 		info->offset = -1;
1500 		return 0;
1501 	}
1502 	width = snd_pcm_format_physical_width(runtime->format);
1503 	if (width < 0)
1504 		return width;
1505 	info->offset = 0;
1506 	switch (runtime->access) {
1507 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1508 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1509 		info->first = info->channel * width;
1510 		info->step = runtime->channels * width;
1511 		break;
1512 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1513 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1514 	{
1515 		size_t size = runtime->dma_bytes / runtime->channels;
1516 		info->first = info->channel * size * 8;
1517 		info->step = width;
1518 		break;
1519 	}
1520 	default:
1521 		snd_BUG();
1522 		break;
1523 	}
1524 	return 0;
1525 }
1526 
1527 /**
1528  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1529  * @substream: the pcm substream instance
1530  * @cmd: ioctl command
1531  * @arg: ioctl argument
1532  *
1533  * Processes the generic ioctl commands for PCM.
1534  * Can be passed as the ioctl callback for PCM ops.
1535  *
1536  * Returns zero if successful, or a negative error code on failure.
1537  */
1538 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1539 		      unsigned int cmd, void *arg)
1540 {
1541 	switch (cmd) {
1542 	case SNDRV_PCM_IOCTL1_INFO:
1543 		return 0;
1544 	case SNDRV_PCM_IOCTL1_RESET:
1545 		return snd_pcm_lib_ioctl_reset(substream, arg);
1546 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1547 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1548 	}
1549 	return -ENXIO;
1550 }
1551 
1552 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1553 
1554 /**
1555  * snd_pcm_period_elapsed - update the pcm status for the next period
1556  * @substream: the pcm substream instance
1557  *
1558  * This function is called from the interrupt handler when the
1559  * PCM has processed the period size.  It will update the current
1560  * pointer, wake up sleepers, etc.
1561  *
1562  * Even if more than one periods have elapsed since the last call, you
1563  * have to call this only once.
1564  */
1565 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1566 {
1567 	struct snd_pcm_runtime *runtime;
1568 	unsigned long flags;
1569 
1570 	if (PCM_RUNTIME_CHECK(substream))
1571 		return;
1572 	runtime = substream->runtime;
1573 
1574 	if (runtime->transfer_ack_begin)
1575 		runtime->transfer_ack_begin(substream);
1576 
1577 	snd_pcm_stream_lock_irqsave(substream, flags);
1578 	if (!snd_pcm_running(substream) ||
1579 	    snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1580 		goto _end;
1581 
1582 	if (substream->timer_running)
1583 		snd_timer_interrupt(substream->timer, 1);
1584  _end:
1585 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1586 	if (runtime->transfer_ack_end)
1587 		runtime->transfer_ack_end(substream);
1588 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1589 }
1590 
1591 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1592 
1593 /*
1594  * Wait until avail_min data becomes available
1595  * Returns a negative error code if any error occurs during operation.
1596  * The available space is stored on availp.  When err = 0 and avail = 0
1597  * on the capture stream, it indicates the stream is in DRAINING state.
1598  */
1599 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1600 			      snd_pcm_uframes_t *availp)
1601 {
1602 	struct snd_pcm_runtime *runtime = substream->runtime;
1603 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1604 	wait_queue_t wait;
1605 	int err = 0;
1606 	snd_pcm_uframes_t avail = 0;
1607 	long tout;
1608 
1609 	init_waitqueue_entry(&wait, current);
1610 	add_wait_queue(&runtime->sleep, &wait);
1611 	for (;;) {
1612 		if (signal_pending(current)) {
1613 			err = -ERESTARTSYS;
1614 			break;
1615 		}
1616 		set_current_state(TASK_INTERRUPTIBLE);
1617 		snd_pcm_stream_unlock_irq(substream);
1618 		tout = schedule_timeout(msecs_to_jiffies(10000));
1619 		snd_pcm_stream_lock_irq(substream);
1620 		switch (runtime->status->state) {
1621 		case SNDRV_PCM_STATE_SUSPENDED:
1622 			err = -ESTRPIPE;
1623 			goto _endloop;
1624 		case SNDRV_PCM_STATE_XRUN:
1625 			err = -EPIPE;
1626 			goto _endloop;
1627 		case SNDRV_PCM_STATE_DRAINING:
1628 			if (is_playback)
1629 				err = -EPIPE;
1630 			else
1631 				avail = 0; /* indicate draining */
1632 			goto _endloop;
1633 		case SNDRV_PCM_STATE_OPEN:
1634 		case SNDRV_PCM_STATE_SETUP:
1635 		case SNDRV_PCM_STATE_DISCONNECTED:
1636 			err = -EBADFD;
1637 			goto _endloop;
1638 		}
1639 		if (!tout) {
1640 			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1641 				   is_playback ? "playback" : "capture");
1642 			err = -EIO;
1643 			break;
1644 		}
1645 		if (is_playback)
1646 			avail = snd_pcm_playback_avail(runtime);
1647 		else
1648 			avail = snd_pcm_capture_avail(runtime);
1649 		if (avail >= runtime->control->avail_min)
1650 			break;
1651 	}
1652  _endloop:
1653 	remove_wait_queue(&runtime->sleep, &wait);
1654 	*availp = avail;
1655 	return err;
1656 }
1657 
1658 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1659 				      unsigned int hwoff,
1660 				      unsigned long data, unsigned int off,
1661 				      snd_pcm_uframes_t frames)
1662 {
1663 	struct snd_pcm_runtime *runtime = substream->runtime;
1664 	int err;
1665 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1666 	if (substream->ops->copy) {
1667 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1668 			return err;
1669 	} else {
1670 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1671 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1672 			return -EFAULT;
1673 	}
1674 	return 0;
1675 }
1676 
1677 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1678 			  unsigned long data, unsigned int off,
1679 			  snd_pcm_uframes_t size);
1680 
1681 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1682 					    unsigned long data,
1683 					    snd_pcm_uframes_t size,
1684 					    int nonblock,
1685 					    transfer_f transfer)
1686 {
1687 	struct snd_pcm_runtime *runtime = substream->runtime;
1688 	snd_pcm_uframes_t xfer = 0;
1689 	snd_pcm_uframes_t offset = 0;
1690 	int err = 0;
1691 
1692 	if (size == 0)
1693 		return 0;
1694 
1695 	snd_pcm_stream_lock_irq(substream);
1696 	switch (runtime->status->state) {
1697 	case SNDRV_PCM_STATE_PREPARED:
1698 	case SNDRV_PCM_STATE_RUNNING:
1699 	case SNDRV_PCM_STATE_PAUSED:
1700 		break;
1701 	case SNDRV_PCM_STATE_XRUN:
1702 		err = -EPIPE;
1703 		goto _end_unlock;
1704 	case SNDRV_PCM_STATE_SUSPENDED:
1705 		err = -ESTRPIPE;
1706 		goto _end_unlock;
1707 	default:
1708 		err = -EBADFD;
1709 		goto _end_unlock;
1710 	}
1711 
1712 	while (size > 0) {
1713 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1714 		snd_pcm_uframes_t avail;
1715 		snd_pcm_uframes_t cont;
1716 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1717 			snd_pcm_update_hw_ptr(substream);
1718 		avail = snd_pcm_playback_avail(runtime);
1719 		if (!avail) {
1720 			if (nonblock) {
1721 				err = -EAGAIN;
1722 				goto _end_unlock;
1723 			}
1724 			err = wait_for_avail_min(substream, &avail);
1725 			if (err < 0)
1726 				goto _end_unlock;
1727 		}
1728 		frames = size > avail ? avail : size;
1729 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1730 		if (frames > cont)
1731 			frames = cont;
1732 		if (snd_BUG_ON(!frames)) {
1733 			snd_pcm_stream_unlock_irq(substream);
1734 			return -EINVAL;
1735 		}
1736 		appl_ptr = runtime->control->appl_ptr;
1737 		appl_ofs = appl_ptr % runtime->buffer_size;
1738 		snd_pcm_stream_unlock_irq(substream);
1739 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1740 			goto _end;
1741 		snd_pcm_stream_lock_irq(substream);
1742 		switch (runtime->status->state) {
1743 		case SNDRV_PCM_STATE_XRUN:
1744 			err = -EPIPE;
1745 			goto _end_unlock;
1746 		case SNDRV_PCM_STATE_SUSPENDED:
1747 			err = -ESTRPIPE;
1748 			goto _end_unlock;
1749 		default:
1750 			break;
1751 		}
1752 		appl_ptr += frames;
1753 		if (appl_ptr >= runtime->boundary)
1754 			appl_ptr -= runtime->boundary;
1755 		runtime->control->appl_ptr = appl_ptr;
1756 		if (substream->ops->ack)
1757 			substream->ops->ack(substream);
1758 
1759 		offset += frames;
1760 		size -= frames;
1761 		xfer += frames;
1762 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1763 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1764 			err = snd_pcm_start(substream);
1765 			if (err < 0)
1766 				goto _end_unlock;
1767 		}
1768 	}
1769  _end_unlock:
1770 	snd_pcm_stream_unlock_irq(substream);
1771  _end:
1772 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1773 }
1774 
1775 /* sanity-check for read/write methods */
1776 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1777 {
1778 	struct snd_pcm_runtime *runtime;
1779 	if (PCM_RUNTIME_CHECK(substream))
1780 		return -ENXIO;
1781 	runtime = substream->runtime;
1782 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1783 		return -EINVAL;
1784 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1785 		return -EBADFD;
1786 	return 0;
1787 }
1788 
1789 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1790 {
1791 	struct snd_pcm_runtime *runtime;
1792 	int nonblock;
1793 	int err;
1794 
1795 	err = pcm_sanity_check(substream);
1796 	if (err < 0)
1797 		return err;
1798 	runtime = substream->runtime;
1799 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1800 
1801 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1802 	    runtime->channels > 1)
1803 		return -EINVAL;
1804 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1805 				  snd_pcm_lib_write_transfer);
1806 }
1807 
1808 EXPORT_SYMBOL(snd_pcm_lib_write);
1809 
1810 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1811 				       unsigned int hwoff,
1812 				       unsigned long data, unsigned int off,
1813 				       snd_pcm_uframes_t frames)
1814 {
1815 	struct snd_pcm_runtime *runtime = substream->runtime;
1816 	int err;
1817 	void __user **bufs = (void __user **)data;
1818 	int channels = runtime->channels;
1819 	int c;
1820 	if (substream->ops->copy) {
1821 		if (snd_BUG_ON(!substream->ops->silence))
1822 			return -EINVAL;
1823 		for (c = 0; c < channels; ++c, ++bufs) {
1824 			if (*bufs == NULL) {
1825 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1826 					return err;
1827 			} else {
1828 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
1829 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1830 					return err;
1831 			}
1832 		}
1833 	} else {
1834 		/* default transfer behaviour */
1835 		size_t dma_csize = runtime->dma_bytes / channels;
1836 		for (c = 0; c < channels; ++c, ++bufs) {
1837 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1838 			if (*bufs == NULL) {
1839 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1840 			} else {
1841 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
1842 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1843 					return -EFAULT;
1844 			}
1845 		}
1846 	}
1847 	return 0;
1848 }
1849 
1850 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1851 				     void __user **bufs,
1852 				     snd_pcm_uframes_t frames)
1853 {
1854 	struct snd_pcm_runtime *runtime;
1855 	int nonblock;
1856 	int err;
1857 
1858 	err = pcm_sanity_check(substream);
1859 	if (err < 0)
1860 		return err;
1861 	runtime = substream->runtime;
1862 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1863 
1864 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1865 		return -EINVAL;
1866 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1867 				  nonblock, snd_pcm_lib_writev_transfer);
1868 }
1869 
1870 EXPORT_SYMBOL(snd_pcm_lib_writev);
1871 
1872 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
1873 				     unsigned int hwoff,
1874 				     unsigned long data, unsigned int off,
1875 				     snd_pcm_uframes_t frames)
1876 {
1877 	struct snd_pcm_runtime *runtime = substream->runtime;
1878 	int err;
1879 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1880 	if (substream->ops->copy) {
1881 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1882 			return err;
1883 	} else {
1884 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1885 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1886 			return -EFAULT;
1887 	}
1888 	return 0;
1889 }
1890 
1891 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1892 					   unsigned long data,
1893 					   snd_pcm_uframes_t size,
1894 					   int nonblock,
1895 					   transfer_f transfer)
1896 {
1897 	struct snd_pcm_runtime *runtime = substream->runtime;
1898 	snd_pcm_uframes_t xfer = 0;
1899 	snd_pcm_uframes_t offset = 0;
1900 	int err = 0;
1901 
1902 	if (size == 0)
1903 		return 0;
1904 
1905 	snd_pcm_stream_lock_irq(substream);
1906 	switch (runtime->status->state) {
1907 	case SNDRV_PCM_STATE_PREPARED:
1908 		if (size >= runtime->start_threshold) {
1909 			err = snd_pcm_start(substream);
1910 			if (err < 0)
1911 				goto _end_unlock;
1912 		}
1913 		break;
1914 	case SNDRV_PCM_STATE_DRAINING:
1915 	case SNDRV_PCM_STATE_RUNNING:
1916 	case SNDRV_PCM_STATE_PAUSED:
1917 		break;
1918 	case SNDRV_PCM_STATE_XRUN:
1919 		err = -EPIPE;
1920 		goto _end_unlock;
1921 	case SNDRV_PCM_STATE_SUSPENDED:
1922 		err = -ESTRPIPE;
1923 		goto _end_unlock;
1924 	default:
1925 		err = -EBADFD;
1926 		goto _end_unlock;
1927 	}
1928 
1929 	while (size > 0) {
1930 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1931 		snd_pcm_uframes_t avail;
1932 		snd_pcm_uframes_t cont;
1933 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1934 			snd_pcm_update_hw_ptr(substream);
1935 		avail = snd_pcm_capture_avail(runtime);
1936 		if (!avail) {
1937 			if (runtime->status->state ==
1938 			    SNDRV_PCM_STATE_DRAINING) {
1939 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1940 				goto _end_unlock;
1941 			}
1942 			if (nonblock) {
1943 				err = -EAGAIN;
1944 				goto _end_unlock;
1945 			}
1946 			err = wait_for_avail_min(substream, &avail);
1947 			if (err < 0)
1948 				goto _end_unlock;
1949 			if (!avail)
1950 				continue; /* draining */
1951 		}
1952 		frames = size > avail ? avail : size;
1953 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1954 		if (frames > cont)
1955 			frames = cont;
1956 		if (snd_BUG_ON(!frames)) {
1957 			snd_pcm_stream_unlock_irq(substream);
1958 			return -EINVAL;
1959 		}
1960 		appl_ptr = runtime->control->appl_ptr;
1961 		appl_ofs = appl_ptr % runtime->buffer_size;
1962 		snd_pcm_stream_unlock_irq(substream);
1963 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1964 			goto _end;
1965 		snd_pcm_stream_lock_irq(substream);
1966 		switch (runtime->status->state) {
1967 		case SNDRV_PCM_STATE_XRUN:
1968 			err = -EPIPE;
1969 			goto _end_unlock;
1970 		case SNDRV_PCM_STATE_SUSPENDED:
1971 			err = -ESTRPIPE;
1972 			goto _end_unlock;
1973 		default:
1974 			break;
1975 		}
1976 		appl_ptr += frames;
1977 		if (appl_ptr >= runtime->boundary)
1978 			appl_ptr -= runtime->boundary;
1979 		runtime->control->appl_ptr = appl_ptr;
1980 		if (substream->ops->ack)
1981 			substream->ops->ack(substream);
1982 
1983 		offset += frames;
1984 		size -= frames;
1985 		xfer += frames;
1986 	}
1987  _end_unlock:
1988 	snd_pcm_stream_unlock_irq(substream);
1989  _end:
1990 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1991 }
1992 
1993 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
1994 {
1995 	struct snd_pcm_runtime *runtime;
1996 	int nonblock;
1997 	int err;
1998 
1999 	err = pcm_sanity_check(substream);
2000 	if (err < 0)
2001 		return err;
2002 	runtime = substream->runtime;
2003 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2004 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2005 		return -EINVAL;
2006 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2007 }
2008 
2009 EXPORT_SYMBOL(snd_pcm_lib_read);
2010 
2011 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2012 				      unsigned int hwoff,
2013 				      unsigned long data, unsigned int off,
2014 				      snd_pcm_uframes_t frames)
2015 {
2016 	struct snd_pcm_runtime *runtime = substream->runtime;
2017 	int err;
2018 	void __user **bufs = (void __user **)data;
2019 	int channels = runtime->channels;
2020 	int c;
2021 	if (substream->ops->copy) {
2022 		for (c = 0; c < channels; ++c, ++bufs) {
2023 			char __user *buf;
2024 			if (*bufs == NULL)
2025 				continue;
2026 			buf = *bufs + samples_to_bytes(runtime, off);
2027 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2028 				return err;
2029 		}
2030 	} else {
2031 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2032 		for (c = 0; c < channels; ++c, ++bufs) {
2033 			char *hwbuf;
2034 			char __user *buf;
2035 			if (*bufs == NULL)
2036 				continue;
2037 
2038 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2039 			buf = *bufs + samples_to_bytes(runtime, off);
2040 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2041 				return -EFAULT;
2042 		}
2043 	}
2044 	return 0;
2045 }
2046 
2047 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2048 				    void __user **bufs,
2049 				    snd_pcm_uframes_t frames)
2050 {
2051 	struct snd_pcm_runtime *runtime;
2052 	int nonblock;
2053 	int err;
2054 
2055 	err = pcm_sanity_check(substream);
2056 	if (err < 0)
2057 		return err;
2058 	runtime = substream->runtime;
2059 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2060 		return -EBADFD;
2061 
2062 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2063 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2064 		return -EINVAL;
2065 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2066 }
2067 
2068 EXPORT_SYMBOL(snd_pcm_lib_readv);
2069