xref: /openbmc/linux/sound/core/pcm_lib.c (revision 643d1f7f)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31 
32 /*
33  * fill ring buffer with silence
34  * runtime->silence_start: starting pointer to silence area
35  * runtime->silence_filled: size filled with silence
36  * runtime->silence_threshold: threshold from application
37  * runtime->silence_size: maximal size from application
38  *
39  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40  */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43 	struct snd_pcm_runtime *runtime = substream->runtime;
44 	snd_pcm_uframes_t frames, ofs, transfer;
45 
46 	if (runtime->silence_size < runtime->boundary) {
47 		snd_pcm_sframes_t noise_dist, n;
48 		if (runtime->silence_start != runtime->control->appl_ptr) {
49 			n = runtime->control->appl_ptr - runtime->silence_start;
50 			if (n < 0)
51 				n += runtime->boundary;
52 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53 				runtime->silence_filled -= n;
54 			else
55 				runtime->silence_filled = 0;
56 			runtime->silence_start = runtime->control->appl_ptr;
57 		}
58 		if (runtime->silence_filled >= runtime->buffer_size)
59 			return;
60 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62 			return;
63 		frames = runtime->silence_threshold - noise_dist;
64 		if (frames > runtime->silence_size)
65 			frames = runtime->silence_size;
66 	} else {
67 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
68 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69 			runtime->silence_filled = avail > 0 ? avail : 0;
70 			runtime->silence_start = (runtime->status->hw_ptr +
71 						  runtime->silence_filled) %
72 						 runtime->boundary;
73 		} else {
74 			ofs = runtime->status->hw_ptr;
75 			frames = new_hw_ptr - ofs;
76 			if ((snd_pcm_sframes_t)frames < 0)
77 				frames += runtime->boundary;
78 			runtime->silence_filled -= frames;
79 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80 				runtime->silence_filled = 0;
81 				runtime->silence_start = new_hw_ptr;
82 			} else {
83 				runtime->silence_start = ofs;
84 			}
85 		}
86 		frames = runtime->buffer_size - runtime->silence_filled;
87 	}
88 	snd_assert(frames <= runtime->buffer_size, return);
89 	if (frames == 0)
90 		return;
91 	ofs = runtime->silence_start % runtime->buffer_size;
92 	while (frames > 0) {
93 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
94 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
95 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
96 			if (substream->ops->silence) {
97 				int err;
98 				err = substream->ops->silence(substream, -1, ofs, transfer);
99 				snd_assert(err >= 0, );
100 			} else {
101 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
102 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
103 			}
104 		} else {
105 			unsigned int c;
106 			unsigned int channels = runtime->channels;
107 			if (substream->ops->silence) {
108 				for (c = 0; c < channels; ++c) {
109 					int err;
110 					err = substream->ops->silence(substream, c, ofs, transfer);
111 					snd_assert(err >= 0, );
112 				}
113 			} else {
114 				size_t dma_csize = runtime->dma_bytes / channels;
115 				for (c = 0; c < channels; ++c) {
116 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
117 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
118 				}
119 			}
120 		}
121 		runtime->silence_filled += transfer;
122 		frames -= transfer;
123 		ofs = 0;
124 	}
125 }
126 
127 static void xrun(struct snd_pcm_substream *substream)
128 {
129 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
130 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
131 	if (substream->pstr->xrun_debug) {
132 		snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
133 			   substream->pcm->card->number,
134 			   substream->pcm->device,
135 			   substream->stream ? 'c' : 'p');
136 		if (substream->pstr->xrun_debug > 1)
137 			dump_stack();
138 	}
139 #endif
140 }
141 
142 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
143 							  struct snd_pcm_runtime *runtime)
144 {
145 	snd_pcm_uframes_t pos;
146 
147 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
148 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
149 	pos = substream->ops->pointer(substream);
150 	if (pos == SNDRV_PCM_POS_XRUN)
151 		return pos; /* XRUN */
152 #ifdef CONFIG_SND_DEBUG
153 	if (pos >= runtime->buffer_size) {
154 		snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
155 	}
156 #endif
157 	pos -= pos % runtime->min_align;
158 	return pos;
159 }
160 
161 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
162 					     struct snd_pcm_runtime *runtime)
163 {
164 	snd_pcm_uframes_t avail;
165 
166 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
167 		avail = snd_pcm_playback_avail(runtime);
168 	else
169 		avail = snd_pcm_capture_avail(runtime);
170 	if (avail > runtime->avail_max)
171 		runtime->avail_max = avail;
172 	if (avail >= runtime->stop_threshold) {
173 		if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
174 			snd_pcm_drain_done(substream);
175 		else
176 			xrun(substream);
177 		return -EPIPE;
178 	}
179 	if (avail >= runtime->control->avail_min)
180 		wake_up(&runtime->sleep);
181 	return 0;
182 }
183 
184 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
185 {
186 	struct snd_pcm_runtime *runtime = substream->runtime;
187 	snd_pcm_uframes_t pos;
188 	snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
189 	snd_pcm_sframes_t delta;
190 
191 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
192 	if (pos == SNDRV_PCM_POS_XRUN) {
193 		xrun(substream);
194 		return -EPIPE;
195 	}
196 	if (runtime->period_size == runtime->buffer_size)
197 		goto __next_buf;
198 	new_hw_ptr = runtime->hw_ptr_base + pos;
199 	hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
200 
201 	delta = hw_ptr_interrupt - new_hw_ptr;
202 	if (delta > 0) {
203 		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
204 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
205 			if (runtime->periods > 1 && substream->pstr->xrun_debug) {
206 				snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
207 				if (substream->pstr->xrun_debug > 1)
208 					dump_stack();
209 			}
210 #endif
211 			return 0;
212 		}
213 	      __next_buf:
214 		runtime->hw_ptr_base += runtime->buffer_size;
215 		if (runtime->hw_ptr_base == runtime->boundary)
216 			runtime->hw_ptr_base = 0;
217 		new_hw_ptr = runtime->hw_ptr_base + pos;
218 	}
219 
220 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
221 	    runtime->silence_size > 0)
222 		snd_pcm_playback_silence(substream, new_hw_ptr);
223 
224 	runtime->status->hw_ptr = new_hw_ptr;
225 	runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
226 
227 	return snd_pcm_update_hw_ptr_post(substream, runtime);
228 }
229 
230 /* CAUTION: call it with irq disabled */
231 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
232 {
233 	struct snd_pcm_runtime *runtime = substream->runtime;
234 	snd_pcm_uframes_t pos;
235 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
236 	snd_pcm_sframes_t delta;
237 
238 	old_hw_ptr = runtime->status->hw_ptr;
239 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
240 	if (pos == SNDRV_PCM_POS_XRUN) {
241 		xrun(substream);
242 		return -EPIPE;
243 	}
244 	new_hw_ptr = runtime->hw_ptr_base + pos;
245 
246 	delta = old_hw_ptr - new_hw_ptr;
247 	if (delta > 0) {
248 		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
249 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
250 			if (runtime->periods > 2 && substream->pstr->xrun_debug) {
251 				snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
252 				if (substream->pstr->xrun_debug > 1)
253 					dump_stack();
254 			}
255 #endif
256 			return 0;
257 		}
258 		runtime->hw_ptr_base += runtime->buffer_size;
259 		if (runtime->hw_ptr_base == runtime->boundary)
260 			runtime->hw_ptr_base = 0;
261 		new_hw_ptr = runtime->hw_ptr_base + pos;
262 	}
263 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
264 	    runtime->silence_size > 0)
265 		snd_pcm_playback_silence(substream, new_hw_ptr);
266 
267 	runtime->status->hw_ptr = new_hw_ptr;
268 
269 	return snd_pcm_update_hw_ptr_post(substream, runtime);
270 }
271 
272 /**
273  * snd_pcm_set_ops - set the PCM operators
274  * @pcm: the pcm instance
275  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
276  * @ops: the operator table
277  *
278  * Sets the given PCM operators to the pcm instance.
279  */
280 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
281 {
282 	struct snd_pcm_str *stream = &pcm->streams[direction];
283 	struct snd_pcm_substream *substream;
284 
285 	for (substream = stream->substream; substream != NULL; substream = substream->next)
286 		substream->ops = ops;
287 }
288 
289 EXPORT_SYMBOL(snd_pcm_set_ops);
290 
291 /**
292  * snd_pcm_sync - set the PCM sync id
293  * @substream: the pcm substream
294  *
295  * Sets the PCM sync identifier for the card.
296  */
297 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
298 {
299 	struct snd_pcm_runtime *runtime = substream->runtime;
300 
301 	runtime->sync.id32[0] = substream->pcm->card->number;
302 	runtime->sync.id32[1] = -1;
303 	runtime->sync.id32[2] = -1;
304 	runtime->sync.id32[3] = -1;
305 }
306 
307 EXPORT_SYMBOL(snd_pcm_set_sync);
308 
309 /*
310  *  Standard ioctl routine
311  */
312 
313 static inline unsigned int div32(unsigned int a, unsigned int b,
314 				 unsigned int *r)
315 {
316 	if (b == 0) {
317 		*r = 0;
318 		return UINT_MAX;
319 	}
320 	*r = a % b;
321 	return a / b;
322 }
323 
324 static inline unsigned int div_down(unsigned int a, unsigned int b)
325 {
326 	if (b == 0)
327 		return UINT_MAX;
328 	return a / b;
329 }
330 
331 static inline unsigned int div_up(unsigned int a, unsigned int b)
332 {
333 	unsigned int r;
334 	unsigned int q;
335 	if (b == 0)
336 		return UINT_MAX;
337 	q = div32(a, b, &r);
338 	if (r)
339 		++q;
340 	return q;
341 }
342 
343 static inline unsigned int mul(unsigned int a, unsigned int b)
344 {
345 	if (a == 0)
346 		return 0;
347 	if (div_down(UINT_MAX, a) < b)
348 		return UINT_MAX;
349 	return a * b;
350 }
351 
352 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
353 				    unsigned int c, unsigned int *r)
354 {
355 	u_int64_t n = (u_int64_t) a * b;
356 	if (c == 0) {
357 		snd_assert(n > 0, );
358 		*r = 0;
359 		return UINT_MAX;
360 	}
361 	div64_32(&n, c, r);
362 	if (n >= UINT_MAX) {
363 		*r = 0;
364 		return UINT_MAX;
365 	}
366 	return n;
367 }
368 
369 /**
370  * snd_interval_refine - refine the interval value of configurator
371  * @i: the interval value to refine
372  * @v: the interval value to refer to
373  *
374  * Refines the interval value with the reference value.
375  * The interval is changed to the range satisfying both intervals.
376  * The interval status (min, max, integer, etc.) are evaluated.
377  *
378  * Returns non-zero if the value is changed, zero if not changed.
379  */
380 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
381 {
382 	int changed = 0;
383 	snd_assert(!snd_interval_empty(i), return -EINVAL);
384 	if (i->min < v->min) {
385 		i->min = v->min;
386 		i->openmin = v->openmin;
387 		changed = 1;
388 	} else if (i->min == v->min && !i->openmin && v->openmin) {
389 		i->openmin = 1;
390 		changed = 1;
391 	}
392 	if (i->max > v->max) {
393 		i->max = v->max;
394 		i->openmax = v->openmax;
395 		changed = 1;
396 	} else if (i->max == v->max && !i->openmax && v->openmax) {
397 		i->openmax = 1;
398 		changed = 1;
399 	}
400 	if (!i->integer && v->integer) {
401 		i->integer = 1;
402 		changed = 1;
403 	}
404 	if (i->integer) {
405 		if (i->openmin) {
406 			i->min++;
407 			i->openmin = 0;
408 		}
409 		if (i->openmax) {
410 			i->max--;
411 			i->openmax = 0;
412 		}
413 	} else if (!i->openmin && !i->openmax && i->min == i->max)
414 		i->integer = 1;
415 	if (snd_interval_checkempty(i)) {
416 		snd_interval_none(i);
417 		return -EINVAL;
418 	}
419 	return changed;
420 }
421 
422 EXPORT_SYMBOL(snd_interval_refine);
423 
424 static int snd_interval_refine_first(struct snd_interval *i)
425 {
426 	snd_assert(!snd_interval_empty(i), return -EINVAL);
427 	if (snd_interval_single(i))
428 		return 0;
429 	i->max = i->min;
430 	i->openmax = i->openmin;
431 	if (i->openmax)
432 		i->max++;
433 	return 1;
434 }
435 
436 static int snd_interval_refine_last(struct snd_interval *i)
437 {
438 	snd_assert(!snd_interval_empty(i), return -EINVAL);
439 	if (snd_interval_single(i))
440 		return 0;
441 	i->min = i->max;
442 	i->openmin = i->openmax;
443 	if (i->openmin)
444 		i->min--;
445 	return 1;
446 }
447 
448 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
449 {
450 	if (a->empty || b->empty) {
451 		snd_interval_none(c);
452 		return;
453 	}
454 	c->empty = 0;
455 	c->min = mul(a->min, b->min);
456 	c->openmin = (a->openmin || b->openmin);
457 	c->max = mul(a->max,  b->max);
458 	c->openmax = (a->openmax || b->openmax);
459 	c->integer = (a->integer && b->integer);
460 }
461 
462 /**
463  * snd_interval_div - refine the interval value with division
464  * @a: dividend
465  * @b: divisor
466  * @c: quotient
467  *
468  * c = a / b
469  *
470  * Returns non-zero if the value is changed, zero if not changed.
471  */
472 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
473 {
474 	unsigned int r;
475 	if (a->empty || b->empty) {
476 		snd_interval_none(c);
477 		return;
478 	}
479 	c->empty = 0;
480 	c->min = div32(a->min, b->max, &r);
481 	c->openmin = (r || a->openmin || b->openmax);
482 	if (b->min > 0) {
483 		c->max = div32(a->max, b->min, &r);
484 		if (r) {
485 			c->max++;
486 			c->openmax = 1;
487 		} else
488 			c->openmax = (a->openmax || b->openmin);
489 	} else {
490 		c->max = UINT_MAX;
491 		c->openmax = 0;
492 	}
493 	c->integer = 0;
494 }
495 
496 /**
497  * snd_interval_muldivk - refine the interval value
498  * @a: dividend 1
499  * @b: dividend 2
500  * @k: divisor (as integer)
501  * @c: result
502   *
503  * c = a * b / k
504  *
505  * Returns non-zero if the value is changed, zero if not changed.
506  */
507 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
508 		      unsigned int k, struct snd_interval *c)
509 {
510 	unsigned int r;
511 	if (a->empty || b->empty) {
512 		snd_interval_none(c);
513 		return;
514 	}
515 	c->empty = 0;
516 	c->min = muldiv32(a->min, b->min, k, &r);
517 	c->openmin = (r || a->openmin || b->openmin);
518 	c->max = muldiv32(a->max, b->max, k, &r);
519 	if (r) {
520 		c->max++;
521 		c->openmax = 1;
522 	} else
523 		c->openmax = (a->openmax || b->openmax);
524 	c->integer = 0;
525 }
526 
527 /**
528  * snd_interval_mulkdiv - refine the interval value
529  * @a: dividend 1
530  * @k: dividend 2 (as integer)
531  * @b: divisor
532  * @c: result
533  *
534  * c = a * k / b
535  *
536  * Returns non-zero if the value is changed, zero if not changed.
537  */
538 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
539 		      const struct snd_interval *b, struct snd_interval *c)
540 {
541 	unsigned int r;
542 	if (a->empty || b->empty) {
543 		snd_interval_none(c);
544 		return;
545 	}
546 	c->empty = 0;
547 	c->min = muldiv32(a->min, k, b->max, &r);
548 	c->openmin = (r || a->openmin || b->openmax);
549 	if (b->min > 0) {
550 		c->max = muldiv32(a->max, k, b->min, &r);
551 		if (r) {
552 			c->max++;
553 			c->openmax = 1;
554 		} else
555 			c->openmax = (a->openmax || b->openmin);
556 	} else {
557 		c->max = UINT_MAX;
558 		c->openmax = 0;
559 	}
560 	c->integer = 0;
561 }
562 
563 /* ---- */
564 
565 
566 /**
567  * snd_interval_ratnum - refine the interval value
568  * @i: interval to refine
569  * @rats_count: number of ratnum_t
570  * @rats: ratnum_t array
571  * @nump: pointer to store the resultant numerator
572  * @denp: pointer to store the resultant denominator
573  *
574  * Returns non-zero if the value is changed, zero if not changed.
575  */
576 int snd_interval_ratnum(struct snd_interval *i,
577 			unsigned int rats_count, struct snd_ratnum *rats,
578 			unsigned int *nump, unsigned int *denp)
579 {
580 	unsigned int best_num, best_diff, best_den;
581 	unsigned int k;
582 	struct snd_interval t;
583 	int err;
584 
585 	best_num = best_den = best_diff = 0;
586 	for (k = 0; k < rats_count; ++k) {
587 		unsigned int num = rats[k].num;
588 		unsigned int den;
589 		unsigned int q = i->min;
590 		int diff;
591 		if (q == 0)
592 			q = 1;
593 		den = div_down(num, q);
594 		if (den < rats[k].den_min)
595 			continue;
596 		if (den > rats[k].den_max)
597 			den = rats[k].den_max;
598 		else {
599 			unsigned int r;
600 			r = (den - rats[k].den_min) % rats[k].den_step;
601 			if (r != 0)
602 				den -= r;
603 		}
604 		diff = num - q * den;
605 		if (best_num == 0 ||
606 		    diff * best_den < best_diff * den) {
607 			best_diff = diff;
608 			best_den = den;
609 			best_num = num;
610 		}
611 	}
612 	if (best_den == 0) {
613 		i->empty = 1;
614 		return -EINVAL;
615 	}
616 	t.min = div_down(best_num, best_den);
617 	t.openmin = !!(best_num % best_den);
618 
619 	best_num = best_den = best_diff = 0;
620 	for (k = 0; k < rats_count; ++k) {
621 		unsigned int num = rats[k].num;
622 		unsigned int den;
623 		unsigned int q = i->max;
624 		int diff;
625 		if (q == 0) {
626 			i->empty = 1;
627 			return -EINVAL;
628 		}
629 		den = div_up(num, q);
630 		if (den > rats[k].den_max)
631 			continue;
632 		if (den < rats[k].den_min)
633 			den = rats[k].den_min;
634 		else {
635 			unsigned int r;
636 			r = (den - rats[k].den_min) % rats[k].den_step;
637 			if (r != 0)
638 				den += rats[k].den_step - r;
639 		}
640 		diff = q * den - num;
641 		if (best_num == 0 ||
642 		    diff * best_den < best_diff * den) {
643 			best_diff = diff;
644 			best_den = den;
645 			best_num = num;
646 		}
647 	}
648 	if (best_den == 0) {
649 		i->empty = 1;
650 		return -EINVAL;
651 	}
652 	t.max = div_up(best_num, best_den);
653 	t.openmax = !!(best_num % best_den);
654 	t.integer = 0;
655 	err = snd_interval_refine(i, &t);
656 	if (err < 0)
657 		return err;
658 
659 	if (snd_interval_single(i)) {
660 		if (nump)
661 			*nump = best_num;
662 		if (denp)
663 			*denp = best_den;
664 	}
665 	return err;
666 }
667 
668 EXPORT_SYMBOL(snd_interval_ratnum);
669 
670 /**
671  * snd_interval_ratden - refine the interval value
672  * @i: interval to refine
673  * @rats_count: number of struct ratden
674  * @rats: struct ratden array
675  * @nump: pointer to store the resultant numerator
676  * @denp: pointer to store the resultant denominator
677  *
678  * Returns non-zero if the value is changed, zero if not changed.
679  */
680 static int snd_interval_ratden(struct snd_interval *i,
681 			       unsigned int rats_count, struct snd_ratden *rats,
682 			       unsigned int *nump, unsigned int *denp)
683 {
684 	unsigned int best_num, best_diff, best_den;
685 	unsigned int k;
686 	struct snd_interval t;
687 	int err;
688 
689 	best_num = best_den = best_diff = 0;
690 	for (k = 0; k < rats_count; ++k) {
691 		unsigned int num;
692 		unsigned int den = rats[k].den;
693 		unsigned int q = i->min;
694 		int diff;
695 		num = mul(q, den);
696 		if (num > rats[k].num_max)
697 			continue;
698 		if (num < rats[k].num_min)
699 			num = rats[k].num_max;
700 		else {
701 			unsigned int r;
702 			r = (num - rats[k].num_min) % rats[k].num_step;
703 			if (r != 0)
704 				num += rats[k].num_step - r;
705 		}
706 		diff = num - q * den;
707 		if (best_num == 0 ||
708 		    diff * best_den < best_diff * den) {
709 			best_diff = diff;
710 			best_den = den;
711 			best_num = num;
712 		}
713 	}
714 	if (best_den == 0) {
715 		i->empty = 1;
716 		return -EINVAL;
717 	}
718 	t.min = div_down(best_num, best_den);
719 	t.openmin = !!(best_num % best_den);
720 
721 	best_num = best_den = best_diff = 0;
722 	for (k = 0; k < rats_count; ++k) {
723 		unsigned int num;
724 		unsigned int den = rats[k].den;
725 		unsigned int q = i->max;
726 		int diff;
727 		num = mul(q, den);
728 		if (num < rats[k].num_min)
729 			continue;
730 		if (num > rats[k].num_max)
731 			num = rats[k].num_max;
732 		else {
733 			unsigned int r;
734 			r = (num - rats[k].num_min) % rats[k].num_step;
735 			if (r != 0)
736 				num -= r;
737 		}
738 		diff = q * den - num;
739 		if (best_num == 0 ||
740 		    diff * best_den < best_diff * den) {
741 			best_diff = diff;
742 			best_den = den;
743 			best_num = num;
744 		}
745 	}
746 	if (best_den == 0) {
747 		i->empty = 1;
748 		return -EINVAL;
749 	}
750 	t.max = div_up(best_num, best_den);
751 	t.openmax = !!(best_num % best_den);
752 	t.integer = 0;
753 	err = snd_interval_refine(i, &t);
754 	if (err < 0)
755 		return err;
756 
757 	if (snd_interval_single(i)) {
758 		if (nump)
759 			*nump = best_num;
760 		if (denp)
761 			*denp = best_den;
762 	}
763 	return err;
764 }
765 
766 /**
767  * snd_interval_list - refine the interval value from the list
768  * @i: the interval value to refine
769  * @count: the number of elements in the list
770  * @list: the value list
771  * @mask: the bit-mask to evaluate
772  *
773  * Refines the interval value from the list.
774  * When mask is non-zero, only the elements corresponding to bit 1 are
775  * evaluated.
776  *
777  * Returns non-zero if the value is changed, zero if not changed.
778  */
779 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
780 {
781         unsigned int k;
782 	int changed = 0;
783 
784 	if (!count) {
785 		i->empty = 1;
786 		return -EINVAL;
787 	}
788         for (k = 0; k < count; k++) {
789 		if (mask && !(mask & (1 << k)))
790 			continue;
791                 if (i->min == list[k] && !i->openmin)
792                         goto _l1;
793                 if (i->min < list[k]) {
794                         i->min = list[k];
795 			i->openmin = 0;
796 			changed = 1;
797                         goto _l1;
798                 }
799         }
800         i->empty = 1;
801         return -EINVAL;
802  _l1:
803         for (k = count; k-- > 0;) {
804 		if (mask && !(mask & (1 << k)))
805 			continue;
806                 if (i->max == list[k] && !i->openmax)
807                         goto _l2;
808                 if (i->max > list[k]) {
809                         i->max = list[k];
810 			i->openmax = 0;
811 			changed = 1;
812                         goto _l2;
813                 }
814         }
815         i->empty = 1;
816         return -EINVAL;
817  _l2:
818 	if (snd_interval_checkempty(i)) {
819 		i->empty = 1;
820 		return -EINVAL;
821 	}
822         return changed;
823 }
824 
825 EXPORT_SYMBOL(snd_interval_list);
826 
827 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
828 {
829 	unsigned int n;
830 	int changed = 0;
831 	n = (i->min - min) % step;
832 	if (n != 0 || i->openmin) {
833 		i->min += step - n;
834 		changed = 1;
835 	}
836 	n = (i->max - min) % step;
837 	if (n != 0 || i->openmax) {
838 		i->max -= n;
839 		changed = 1;
840 	}
841 	if (snd_interval_checkempty(i)) {
842 		i->empty = 1;
843 		return -EINVAL;
844 	}
845 	return changed;
846 }
847 
848 /* Info constraints helpers */
849 
850 /**
851  * snd_pcm_hw_rule_add - add the hw-constraint rule
852  * @runtime: the pcm runtime instance
853  * @cond: condition bits
854  * @var: the variable to evaluate
855  * @func: the evaluation function
856  * @private: the private data pointer passed to function
857  * @dep: the dependent variables
858  *
859  * Returns zero if successful, or a negative error code on failure.
860  */
861 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
862 			int var,
863 			snd_pcm_hw_rule_func_t func, void *private,
864 			int dep, ...)
865 {
866 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
867 	struct snd_pcm_hw_rule *c;
868 	unsigned int k;
869 	va_list args;
870 	va_start(args, dep);
871 	if (constrs->rules_num >= constrs->rules_all) {
872 		struct snd_pcm_hw_rule *new;
873 		unsigned int new_rules = constrs->rules_all + 16;
874 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
875 		if (!new)
876 			return -ENOMEM;
877 		if (constrs->rules) {
878 			memcpy(new, constrs->rules,
879 			       constrs->rules_num * sizeof(*c));
880 			kfree(constrs->rules);
881 		}
882 		constrs->rules = new;
883 		constrs->rules_all = new_rules;
884 	}
885 	c = &constrs->rules[constrs->rules_num];
886 	c->cond = cond;
887 	c->func = func;
888 	c->var = var;
889 	c->private = private;
890 	k = 0;
891 	while (1) {
892 		snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
893 		c->deps[k++] = dep;
894 		if (dep < 0)
895 			break;
896 		dep = va_arg(args, int);
897 	}
898 	constrs->rules_num++;
899 	va_end(args);
900 	return 0;
901 }
902 
903 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
904 
905 /**
906  * snd_pcm_hw_constraint_mask
907  * @runtime: PCM runtime instance
908  * @var: hw_params variable to apply the mask
909  * @mask: the bitmap mask
910  *
911  * Apply the constraint of the given bitmap mask to a mask parameter.
912  */
913 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
914 			       u_int32_t mask)
915 {
916 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
917 	struct snd_mask *maskp = constrs_mask(constrs, var);
918 	*maskp->bits &= mask;
919 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
920 	if (*maskp->bits == 0)
921 		return -EINVAL;
922 	return 0;
923 }
924 
925 /**
926  * snd_pcm_hw_constraint_mask64
927  * @runtime: PCM runtime instance
928  * @var: hw_params variable to apply the mask
929  * @mask: the 64bit bitmap mask
930  *
931  * Apply the constraint of the given bitmap mask to a mask parameter.
932  */
933 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
934 				 u_int64_t mask)
935 {
936 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
937 	struct snd_mask *maskp = constrs_mask(constrs, var);
938 	maskp->bits[0] &= (u_int32_t)mask;
939 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
940 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
941 	if (! maskp->bits[0] && ! maskp->bits[1])
942 		return -EINVAL;
943 	return 0;
944 }
945 
946 /**
947  * snd_pcm_hw_constraint_integer
948  * @runtime: PCM runtime instance
949  * @var: hw_params variable to apply the integer constraint
950  *
951  * Apply the constraint of integer to an interval parameter.
952  */
953 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
954 {
955 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
956 	return snd_interval_setinteger(constrs_interval(constrs, var));
957 }
958 
959 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
960 
961 /**
962  * snd_pcm_hw_constraint_minmax
963  * @runtime: PCM runtime instance
964  * @var: hw_params variable to apply the range
965  * @min: the minimal value
966  * @max: the maximal value
967  *
968  * Apply the min/max range constraint to an interval parameter.
969  */
970 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
971 				 unsigned int min, unsigned int max)
972 {
973 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
974 	struct snd_interval t;
975 	t.min = min;
976 	t.max = max;
977 	t.openmin = t.openmax = 0;
978 	t.integer = 0;
979 	return snd_interval_refine(constrs_interval(constrs, var), &t);
980 }
981 
982 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
983 
984 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
985 				struct snd_pcm_hw_rule *rule)
986 {
987 	struct snd_pcm_hw_constraint_list *list = rule->private;
988 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
989 }
990 
991 
992 /**
993  * snd_pcm_hw_constraint_list
994  * @runtime: PCM runtime instance
995  * @cond: condition bits
996  * @var: hw_params variable to apply the list constraint
997  * @l: list
998  *
999  * Apply the list of constraints to an interval parameter.
1000  */
1001 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1002 			       unsigned int cond,
1003 			       snd_pcm_hw_param_t var,
1004 			       struct snd_pcm_hw_constraint_list *l)
1005 {
1006 	return snd_pcm_hw_rule_add(runtime, cond, var,
1007 				   snd_pcm_hw_rule_list, l,
1008 				   var, -1);
1009 }
1010 
1011 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1012 
1013 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1014 				   struct snd_pcm_hw_rule *rule)
1015 {
1016 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1017 	unsigned int num = 0, den = 0;
1018 	int err;
1019 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1020 				  r->nrats, r->rats, &num, &den);
1021 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1022 		params->rate_num = num;
1023 		params->rate_den = den;
1024 	}
1025 	return err;
1026 }
1027 
1028 /**
1029  * snd_pcm_hw_constraint_ratnums
1030  * @runtime: PCM runtime instance
1031  * @cond: condition bits
1032  * @var: hw_params variable to apply the ratnums constraint
1033  * @r: struct snd_ratnums constriants
1034  */
1035 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1036 				  unsigned int cond,
1037 				  snd_pcm_hw_param_t var,
1038 				  struct snd_pcm_hw_constraint_ratnums *r)
1039 {
1040 	return snd_pcm_hw_rule_add(runtime, cond, var,
1041 				   snd_pcm_hw_rule_ratnums, r,
1042 				   var, -1);
1043 }
1044 
1045 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1046 
1047 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1048 				   struct snd_pcm_hw_rule *rule)
1049 {
1050 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1051 	unsigned int num = 0, den = 0;
1052 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1053 				  r->nrats, r->rats, &num, &den);
1054 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1055 		params->rate_num = num;
1056 		params->rate_den = den;
1057 	}
1058 	return err;
1059 }
1060 
1061 /**
1062  * snd_pcm_hw_constraint_ratdens
1063  * @runtime: PCM runtime instance
1064  * @cond: condition bits
1065  * @var: hw_params variable to apply the ratdens constraint
1066  * @r: struct snd_ratdens constriants
1067  */
1068 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1069 				  unsigned int cond,
1070 				  snd_pcm_hw_param_t var,
1071 				  struct snd_pcm_hw_constraint_ratdens *r)
1072 {
1073 	return snd_pcm_hw_rule_add(runtime, cond, var,
1074 				   snd_pcm_hw_rule_ratdens, r,
1075 				   var, -1);
1076 }
1077 
1078 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1079 
1080 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1081 				  struct snd_pcm_hw_rule *rule)
1082 {
1083 	unsigned int l = (unsigned long) rule->private;
1084 	int width = l & 0xffff;
1085 	unsigned int msbits = l >> 16;
1086 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1087 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1088 		params->msbits = msbits;
1089 	return 0;
1090 }
1091 
1092 /**
1093  * snd_pcm_hw_constraint_msbits
1094  * @runtime: PCM runtime instance
1095  * @cond: condition bits
1096  * @width: sample bits width
1097  * @msbits: msbits width
1098  */
1099 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1100 				 unsigned int cond,
1101 				 unsigned int width,
1102 				 unsigned int msbits)
1103 {
1104 	unsigned long l = (msbits << 16) | width;
1105 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1106 				    snd_pcm_hw_rule_msbits,
1107 				    (void*) l,
1108 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1109 }
1110 
1111 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1112 
1113 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1114 				struct snd_pcm_hw_rule *rule)
1115 {
1116 	unsigned long step = (unsigned long) rule->private;
1117 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1118 }
1119 
1120 /**
1121  * snd_pcm_hw_constraint_step
1122  * @runtime: PCM runtime instance
1123  * @cond: condition bits
1124  * @var: hw_params variable to apply the step constraint
1125  * @step: step size
1126  */
1127 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1128 			       unsigned int cond,
1129 			       snd_pcm_hw_param_t var,
1130 			       unsigned long step)
1131 {
1132 	return snd_pcm_hw_rule_add(runtime, cond, var,
1133 				   snd_pcm_hw_rule_step, (void *) step,
1134 				   var, -1);
1135 }
1136 
1137 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1138 
1139 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1140 {
1141 	static unsigned int pow2_sizes[] = {
1142 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1143 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1144 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1145 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1146 	};
1147 	return snd_interval_list(hw_param_interval(params, rule->var),
1148 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1149 }
1150 
1151 /**
1152  * snd_pcm_hw_constraint_pow2
1153  * @runtime: PCM runtime instance
1154  * @cond: condition bits
1155  * @var: hw_params variable to apply the power-of-2 constraint
1156  */
1157 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1158 			       unsigned int cond,
1159 			       snd_pcm_hw_param_t var)
1160 {
1161 	return snd_pcm_hw_rule_add(runtime, cond, var,
1162 				   snd_pcm_hw_rule_pow2, NULL,
1163 				   var, -1);
1164 }
1165 
1166 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1167 
1168 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1169 				  snd_pcm_hw_param_t var)
1170 {
1171 	if (hw_is_mask(var)) {
1172 		snd_mask_any(hw_param_mask(params, var));
1173 		params->cmask |= 1 << var;
1174 		params->rmask |= 1 << var;
1175 		return;
1176 	}
1177 	if (hw_is_interval(var)) {
1178 		snd_interval_any(hw_param_interval(params, var));
1179 		params->cmask |= 1 << var;
1180 		params->rmask |= 1 << var;
1181 		return;
1182 	}
1183 	snd_BUG();
1184 }
1185 
1186 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1187 {
1188 	unsigned int k;
1189 	memset(params, 0, sizeof(*params));
1190 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1191 		_snd_pcm_hw_param_any(params, k);
1192 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1193 		_snd_pcm_hw_param_any(params, k);
1194 	params->info = ~0U;
1195 }
1196 
1197 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1198 
1199 /**
1200  * snd_pcm_hw_param_value
1201  * @params: the hw_params instance
1202  * @var: parameter to retrieve
1203  * @dir: pointer to the direction (-1,0,1) or NULL
1204  *
1205  * Return the value for field PAR if it's fixed in configuration space
1206  *  defined by PARAMS. Return -EINVAL otherwise
1207  */
1208 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1209 			   snd_pcm_hw_param_t var, int *dir)
1210 {
1211 	if (hw_is_mask(var)) {
1212 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1213 		if (!snd_mask_single(mask))
1214 			return -EINVAL;
1215 		if (dir)
1216 			*dir = 0;
1217 		return snd_mask_value(mask);
1218 	}
1219 	if (hw_is_interval(var)) {
1220 		const struct snd_interval *i = hw_param_interval_c(params, var);
1221 		if (!snd_interval_single(i))
1222 			return -EINVAL;
1223 		if (dir)
1224 			*dir = i->openmin;
1225 		return snd_interval_value(i);
1226 	}
1227 	return -EINVAL;
1228 }
1229 
1230 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1231 
1232 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1233 				snd_pcm_hw_param_t var)
1234 {
1235 	if (hw_is_mask(var)) {
1236 		snd_mask_none(hw_param_mask(params, var));
1237 		params->cmask |= 1 << var;
1238 		params->rmask |= 1 << var;
1239 	} else if (hw_is_interval(var)) {
1240 		snd_interval_none(hw_param_interval(params, var));
1241 		params->cmask |= 1 << var;
1242 		params->rmask |= 1 << var;
1243 	} else {
1244 		snd_BUG();
1245 	}
1246 }
1247 
1248 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1249 
1250 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1251 				   snd_pcm_hw_param_t var)
1252 {
1253 	int changed;
1254 	if (hw_is_mask(var))
1255 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1256 	else if (hw_is_interval(var))
1257 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1258 	else
1259 		return -EINVAL;
1260 	if (changed) {
1261 		params->cmask |= 1 << var;
1262 		params->rmask |= 1 << var;
1263 	}
1264 	return changed;
1265 }
1266 
1267 
1268 /**
1269  * snd_pcm_hw_param_first
1270  * @pcm: PCM instance
1271  * @params: the hw_params instance
1272  * @var: parameter to retrieve
1273  * @dir: pointer to the direction (-1,0,1) or NULL
1274  *
1275  * Inside configuration space defined by PARAMS remove from PAR all
1276  * values > minimum. Reduce configuration space accordingly.
1277  * Return the minimum.
1278  */
1279 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1280 			   struct snd_pcm_hw_params *params,
1281 			   snd_pcm_hw_param_t var, int *dir)
1282 {
1283 	int changed = _snd_pcm_hw_param_first(params, var);
1284 	if (changed < 0)
1285 		return changed;
1286 	if (params->rmask) {
1287 		int err = snd_pcm_hw_refine(pcm, params);
1288 		snd_assert(err >= 0, return err);
1289 	}
1290 	return snd_pcm_hw_param_value(params, var, dir);
1291 }
1292 
1293 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1294 
1295 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1296 				  snd_pcm_hw_param_t var)
1297 {
1298 	int changed;
1299 	if (hw_is_mask(var))
1300 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1301 	else if (hw_is_interval(var))
1302 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1303 	else
1304 		return -EINVAL;
1305 	if (changed) {
1306 		params->cmask |= 1 << var;
1307 		params->rmask |= 1 << var;
1308 	}
1309 	return changed;
1310 }
1311 
1312 
1313 /**
1314  * snd_pcm_hw_param_last
1315  * @pcm: PCM instance
1316  * @params: the hw_params instance
1317  * @var: parameter to retrieve
1318  * @dir: pointer to the direction (-1,0,1) or NULL
1319  *
1320  * Inside configuration space defined by PARAMS remove from PAR all
1321  * values < maximum. Reduce configuration space accordingly.
1322  * Return the maximum.
1323  */
1324 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1325 			  struct snd_pcm_hw_params *params,
1326 			  snd_pcm_hw_param_t var, int *dir)
1327 {
1328 	int changed = _snd_pcm_hw_param_last(params, var);
1329 	if (changed < 0)
1330 		return changed;
1331 	if (params->rmask) {
1332 		int err = snd_pcm_hw_refine(pcm, params);
1333 		snd_assert(err >= 0, return err);
1334 	}
1335 	return snd_pcm_hw_param_value(params, var, dir);
1336 }
1337 
1338 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1339 
1340 /**
1341  * snd_pcm_hw_param_choose
1342  * @pcm: PCM instance
1343  * @params: the hw_params instance
1344  *
1345  * Choose one configuration from configuration space defined by PARAMS
1346  * The configuration chosen is that obtained fixing in this order:
1347  * first access, first format, first subformat, min channels,
1348  * min rate, min period time, max buffer size, min tick time
1349  */
1350 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1351 			     struct snd_pcm_hw_params *params)
1352 {
1353 	static int vars[] = {
1354 		SNDRV_PCM_HW_PARAM_ACCESS,
1355 		SNDRV_PCM_HW_PARAM_FORMAT,
1356 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1357 		SNDRV_PCM_HW_PARAM_CHANNELS,
1358 		SNDRV_PCM_HW_PARAM_RATE,
1359 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1360 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1361 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1362 		-1
1363 	};
1364 	int err, *v;
1365 
1366 	for (v = vars; *v != -1; v++) {
1367 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1368 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1369 		else
1370 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1371 		snd_assert(err >= 0, return err);
1372 	}
1373 	return 0;
1374 }
1375 
1376 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1377 				   void *arg)
1378 {
1379 	struct snd_pcm_runtime *runtime = substream->runtime;
1380 	unsigned long flags;
1381 	snd_pcm_stream_lock_irqsave(substream, flags);
1382 	if (snd_pcm_running(substream) &&
1383 	    snd_pcm_update_hw_ptr(substream) >= 0)
1384 		runtime->status->hw_ptr %= runtime->buffer_size;
1385 	else
1386 		runtime->status->hw_ptr = 0;
1387 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1388 	return 0;
1389 }
1390 
1391 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1392 					  void *arg)
1393 {
1394 	struct snd_pcm_channel_info *info = arg;
1395 	struct snd_pcm_runtime *runtime = substream->runtime;
1396 	int width;
1397 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1398 		info->offset = -1;
1399 		return 0;
1400 	}
1401 	width = snd_pcm_format_physical_width(runtime->format);
1402 	if (width < 0)
1403 		return width;
1404 	info->offset = 0;
1405 	switch (runtime->access) {
1406 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1407 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1408 		info->first = info->channel * width;
1409 		info->step = runtime->channels * width;
1410 		break;
1411 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1412 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1413 	{
1414 		size_t size = runtime->dma_bytes / runtime->channels;
1415 		info->first = info->channel * size * 8;
1416 		info->step = width;
1417 		break;
1418 	}
1419 	default:
1420 		snd_BUG();
1421 		break;
1422 	}
1423 	return 0;
1424 }
1425 
1426 /**
1427  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1428  * @substream: the pcm substream instance
1429  * @cmd: ioctl command
1430  * @arg: ioctl argument
1431  *
1432  * Processes the generic ioctl commands for PCM.
1433  * Can be passed as the ioctl callback for PCM ops.
1434  *
1435  * Returns zero if successful, or a negative error code on failure.
1436  */
1437 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1438 		      unsigned int cmd, void *arg)
1439 {
1440 	switch (cmd) {
1441 	case SNDRV_PCM_IOCTL1_INFO:
1442 		return 0;
1443 	case SNDRV_PCM_IOCTL1_RESET:
1444 		return snd_pcm_lib_ioctl_reset(substream, arg);
1445 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1446 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1447 	}
1448 	return -ENXIO;
1449 }
1450 
1451 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1452 
1453 /**
1454  * snd_pcm_period_elapsed - update the pcm status for the next period
1455  * @substream: the pcm substream instance
1456  *
1457  * This function is called from the interrupt handler when the
1458  * PCM has processed the period size.  It will update the current
1459  * pointer, wake up sleepers, etc.
1460  *
1461  * Even if more than one periods have elapsed since the last call, you
1462  * have to call this only once.
1463  */
1464 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1465 {
1466 	struct snd_pcm_runtime *runtime;
1467 	unsigned long flags;
1468 
1469 	snd_assert(substream != NULL, return);
1470 	runtime = substream->runtime;
1471 	snd_assert(runtime != NULL, return);
1472 
1473 	if (runtime->transfer_ack_begin)
1474 		runtime->transfer_ack_begin(substream);
1475 
1476 	snd_pcm_stream_lock_irqsave(substream, flags);
1477 	if (!snd_pcm_running(substream) ||
1478 	    snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1479 		goto _end;
1480 
1481 	if (substream->timer_running)
1482 		snd_timer_interrupt(substream->timer, 1);
1483  _end:
1484 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1485 	if (runtime->transfer_ack_end)
1486 		runtime->transfer_ack_end(substream);
1487 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1488 }
1489 
1490 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1491 
1492 /*
1493  * Wait until avail_min data becomes available
1494  * Returns a negative error code if any error occurs during operation.
1495  * The available space is stored on availp.  When err = 0 and avail = 0
1496  * on the capture stream, it indicates the stream is in DRAINING state.
1497  */
1498 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1499 			      snd_pcm_uframes_t *availp)
1500 {
1501 	struct snd_pcm_runtime *runtime = substream->runtime;
1502 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1503 	wait_queue_t wait;
1504 	int err = 0;
1505 	snd_pcm_uframes_t avail = 0;
1506 	long tout;
1507 
1508 	init_waitqueue_entry(&wait, current);
1509 	add_wait_queue(&runtime->sleep, &wait);
1510 	for (;;) {
1511 		if (signal_pending(current)) {
1512 			err = -ERESTARTSYS;
1513 			break;
1514 		}
1515 		set_current_state(TASK_INTERRUPTIBLE);
1516 		snd_pcm_stream_unlock_irq(substream);
1517 		tout = schedule_timeout(msecs_to_jiffies(10000));
1518 		snd_pcm_stream_lock_irq(substream);
1519 		switch (runtime->status->state) {
1520 		case SNDRV_PCM_STATE_SUSPENDED:
1521 			err = -ESTRPIPE;
1522 			goto _endloop;
1523 		case SNDRV_PCM_STATE_XRUN:
1524 			err = -EPIPE;
1525 			goto _endloop;
1526 		case SNDRV_PCM_STATE_DRAINING:
1527 			if (is_playback)
1528 				err = -EPIPE;
1529 			else
1530 				avail = 0; /* indicate draining */
1531 			goto _endloop;
1532 		case SNDRV_PCM_STATE_OPEN:
1533 		case SNDRV_PCM_STATE_SETUP:
1534 		case SNDRV_PCM_STATE_DISCONNECTED:
1535 			err = -EBADFD;
1536 			goto _endloop;
1537 		}
1538 		if (!tout) {
1539 			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1540 				   is_playback ? "playback" : "capture");
1541 			err = -EIO;
1542 			break;
1543 		}
1544 		if (is_playback)
1545 			avail = snd_pcm_playback_avail(runtime);
1546 		else
1547 			avail = snd_pcm_capture_avail(runtime);
1548 		if (avail >= runtime->control->avail_min)
1549 			break;
1550 	}
1551  _endloop:
1552 	remove_wait_queue(&runtime->sleep, &wait);
1553 	*availp = avail;
1554 	return err;
1555 }
1556 
1557 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1558 				      unsigned int hwoff,
1559 				      unsigned long data, unsigned int off,
1560 				      snd_pcm_uframes_t frames)
1561 {
1562 	struct snd_pcm_runtime *runtime = substream->runtime;
1563 	int err;
1564 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1565 	if (substream->ops->copy) {
1566 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1567 			return err;
1568 	} else {
1569 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1570 		snd_assert(runtime->dma_area, return -EFAULT);
1571 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1572 			return -EFAULT;
1573 	}
1574 	return 0;
1575 }
1576 
1577 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1578 			  unsigned long data, unsigned int off,
1579 			  snd_pcm_uframes_t size);
1580 
1581 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1582 					    unsigned long data,
1583 					    snd_pcm_uframes_t size,
1584 					    int nonblock,
1585 					    transfer_f transfer)
1586 {
1587 	struct snd_pcm_runtime *runtime = substream->runtime;
1588 	snd_pcm_uframes_t xfer = 0;
1589 	snd_pcm_uframes_t offset = 0;
1590 	int err = 0;
1591 
1592 	if (size == 0)
1593 		return 0;
1594 
1595 	snd_pcm_stream_lock_irq(substream);
1596 	switch (runtime->status->state) {
1597 	case SNDRV_PCM_STATE_PREPARED:
1598 	case SNDRV_PCM_STATE_RUNNING:
1599 	case SNDRV_PCM_STATE_PAUSED:
1600 		break;
1601 	case SNDRV_PCM_STATE_XRUN:
1602 		err = -EPIPE;
1603 		goto _end_unlock;
1604 	case SNDRV_PCM_STATE_SUSPENDED:
1605 		err = -ESTRPIPE;
1606 		goto _end_unlock;
1607 	default:
1608 		err = -EBADFD;
1609 		goto _end_unlock;
1610 	}
1611 
1612 	while (size > 0) {
1613 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1614 		snd_pcm_uframes_t avail;
1615 		snd_pcm_uframes_t cont;
1616 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1617 			snd_pcm_update_hw_ptr(substream);
1618 		avail = snd_pcm_playback_avail(runtime);
1619 		if (!avail) {
1620 			if (nonblock) {
1621 				err = -EAGAIN;
1622 				goto _end_unlock;
1623 			}
1624 			err = wait_for_avail_min(substream, &avail);
1625 			if (err < 0)
1626 				goto _end_unlock;
1627 		}
1628 		frames = size > avail ? avail : size;
1629 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1630 		if (frames > cont)
1631 			frames = cont;
1632 		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
1633 		appl_ptr = runtime->control->appl_ptr;
1634 		appl_ofs = appl_ptr % runtime->buffer_size;
1635 		snd_pcm_stream_unlock_irq(substream);
1636 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1637 			goto _end;
1638 		snd_pcm_stream_lock_irq(substream);
1639 		switch (runtime->status->state) {
1640 		case SNDRV_PCM_STATE_XRUN:
1641 			err = -EPIPE;
1642 			goto _end_unlock;
1643 		case SNDRV_PCM_STATE_SUSPENDED:
1644 			err = -ESTRPIPE;
1645 			goto _end_unlock;
1646 		default:
1647 			break;
1648 		}
1649 		appl_ptr += frames;
1650 		if (appl_ptr >= runtime->boundary)
1651 			appl_ptr -= runtime->boundary;
1652 		runtime->control->appl_ptr = appl_ptr;
1653 		if (substream->ops->ack)
1654 			substream->ops->ack(substream);
1655 
1656 		offset += frames;
1657 		size -= frames;
1658 		xfer += frames;
1659 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1660 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1661 			err = snd_pcm_start(substream);
1662 			if (err < 0)
1663 				goto _end_unlock;
1664 		}
1665 	}
1666  _end_unlock:
1667 	snd_pcm_stream_unlock_irq(substream);
1668  _end:
1669 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1670 }
1671 
1672 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1673 {
1674 	struct snd_pcm_runtime *runtime;
1675 	int nonblock;
1676 
1677 	snd_assert(substream != NULL, return -ENXIO);
1678 	runtime = substream->runtime;
1679 	snd_assert(runtime != NULL, return -ENXIO);
1680 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1681 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1682 		return -EBADFD;
1683 
1684 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1685 
1686 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1687 	    runtime->channels > 1)
1688 		return -EINVAL;
1689 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1690 				  snd_pcm_lib_write_transfer);
1691 }
1692 
1693 EXPORT_SYMBOL(snd_pcm_lib_write);
1694 
1695 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1696 				       unsigned int hwoff,
1697 				       unsigned long data, unsigned int off,
1698 				       snd_pcm_uframes_t frames)
1699 {
1700 	struct snd_pcm_runtime *runtime = substream->runtime;
1701 	int err;
1702 	void __user **bufs = (void __user **)data;
1703 	int channels = runtime->channels;
1704 	int c;
1705 	if (substream->ops->copy) {
1706 		snd_assert(substream->ops->silence != NULL, return -EINVAL);
1707 		for (c = 0; c < channels; ++c, ++bufs) {
1708 			if (*bufs == NULL) {
1709 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1710 					return err;
1711 			} else {
1712 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
1713 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1714 					return err;
1715 			}
1716 		}
1717 	} else {
1718 		/* default transfer behaviour */
1719 		size_t dma_csize = runtime->dma_bytes / channels;
1720 		snd_assert(runtime->dma_area, return -EFAULT);
1721 		for (c = 0; c < channels; ++c, ++bufs) {
1722 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1723 			if (*bufs == NULL) {
1724 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1725 			} else {
1726 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
1727 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1728 					return -EFAULT;
1729 			}
1730 		}
1731 	}
1732 	return 0;
1733 }
1734 
1735 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1736 				     void __user **bufs,
1737 				     snd_pcm_uframes_t frames)
1738 {
1739 	struct snd_pcm_runtime *runtime;
1740 	int nonblock;
1741 
1742 	snd_assert(substream != NULL, return -ENXIO);
1743 	runtime = substream->runtime;
1744 	snd_assert(runtime != NULL, return -ENXIO);
1745 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1746 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1747 		return -EBADFD;
1748 
1749 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1750 
1751 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1752 		return -EINVAL;
1753 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1754 				  nonblock, snd_pcm_lib_writev_transfer);
1755 }
1756 
1757 EXPORT_SYMBOL(snd_pcm_lib_writev);
1758 
1759 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
1760 				     unsigned int hwoff,
1761 				     unsigned long data, unsigned int off,
1762 				     snd_pcm_uframes_t frames)
1763 {
1764 	struct snd_pcm_runtime *runtime = substream->runtime;
1765 	int err;
1766 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1767 	if (substream->ops->copy) {
1768 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1769 			return err;
1770 	} else {
1771 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1772 		snd_assert(runtime->dma_area, return -EFAULT);
1773 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1774 			return -EFAULT;
1775 	}
1776 	return 0;
1777 }
1778 
1779 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1780 					   unsigned long data,
1781 					   snd_pcm_uframes_t size,
1782 					   int nonblock,
1783 					   transfer_f transfer)
1784 {
1785 	struct snd_pcm_runtime *runtime = substream->runtime;
1786 	snd_pcm_uframes_t xfer = 0;
1787 	snd_pcm_uframes_t offset = 0;
1788 	int err = 0;
1789 
1790 	if (size == 0)
1791 		return 0;
1792 
1793 	snd_pcm_stream_lock_irq(substream);
1794 	switch (runtime->status->state) {
1795 	case SNDRV_PCM_STATE_PREPARED:
1796 		if (size >= runtime->start_threshold) {
1797 			err = snd_pcm_start(substream);
1798 			if (err < 0)
1799 				goto _end_unlock;
1800 		}
1801 		break;
1802 	case SNDRV_PCM_STATE_DRAINING:
1803 	case SNDRV_PCM_STATE_RUNNING:
1804 	case SNDRV_PCM_STATE_PAUSED:
1805 		break;
1806 	case SNDRV_PCM_STATE_XRUN:
1807 		err = -EPIPE;
1808 		goto _end_unlock;
1809 	case SNDRV_PCM_STATE_SUSPENDED:
1810 		err = -ESTRPIPE;
1811 		goto _end_unlock;
1812 	default:
1813 		err = -EBADFD;
1814 		goto _end_unlock;
1815 	}
1816 
1817 	while (size > 0) {
1818 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1819 		snd_pcm_uframes_t avail;
1820 		snd_pcm_uframes_t cont;
1821 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1822 			snd_pcm_update_hw_ptr(substream);
1823 		avail = snd_pcm_capture_avail(runtime);
1824 		if (!avail) {
1825 			if (runtime->status->state ==
1826 			    SNDRV_PCM_STATE_DRAINING) {
1827 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1828 				goto _end_unlock;
1829 			}
1830 			if (nonblock) {
1831 				err = -EAGAIN;
1832 				goto _end_unlock;
1833 			}
1834 			err = wait_for_avail_min(substream, &avail);
1835 			if (err < 0)
1836 				goto _end_unlock;
1837 			if (!avail)
1838 				continue; /* draining */
1839 		}
1840 		frames = size > avail ? avail : size;
1841 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1842 		if (frames > cont)
1843 			frames = cont;
1844 		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
1845 		appl_ptr = runtime->control->appl_ptr;
1846 		appl_ofs = appl_ptr % runtime->buffer_size;
1847 		snd_pcm_stream_unlock_irq(substream);
1848 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1849 			goto _end;
1850 		snd_pcm_stream_lock_irq(substream);
1851 		switch (runtime->status->state) {
1852 		case SNDRV_PCM_STATE_XRUN:
1853 			err = -EPIPE;
1854 			goto _end_unlock;
1855 		case SNDRV_PCM_STATE_SUSPENDED:
1856 			err = -ESTRPIPE;
1857 			goto _end_unlock;
1858 		default:
1859 			break;
1860 		}
1861 		appl_ptr += frames;
1862 		if (appl_ptr >= runtime->boundary)
1863 			appl_ptr -= runtime->boundary;
1864 		runtime->control->appl_ptr = appl_ptr;
1865 		if (substream->ops->ack)
1866 			substream->ops->ack(substream);
1867 
1868 		offset += frames;
1869 		size -= frames;
1870 		xfer += frames;
1871 	}
1872  _end_unlock:
1873 	snd_pcm_stream_unlock_irq(substream);
1874  _end:
1875 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1876 }
1877 
1878 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
1879 {
1880 	struct snd_pcm_runtime *runtime;
1881 	int nonblock;
1882 
1883 	snd_assert(substream != NULL, return -ENXIO);
1884 	runtime = substream->runtime;
1885 	snd_assert(runtime != NULL, return -ENXIO);
1886 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1887 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1888 		return -EBADFD;
1889 
1890 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1891 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
1892 		return -EINVAL;
1893 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
1894 }
1895 
1896 EXPORT_SYMBOL(snd_pcm_lib_read);
1897 
1898 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
1899 				      unsigned int hwoff,
1900 				      unsigned long data, unsigned int off,
1901 				      snd_pcm_uframes_t frames)
1902 {
1903 	struct snd_pcm_runtime *runtime = substream->runtime;
1904 	int err;
1905 	void __user **bufs = (void __user **)data;
1906 	int channels = runtime->channels;
1907 	int c;
1908 	if (substream->ops->copy) {
1909 		for (c = 0; c < channels; ++c, ++bufs) {
1910 			char __user *buf;
1911 			if (*bufs == NULL)
1912 				continue;
1913 			buf = *bufs + samples_to_bytes(runtime, off);
1914 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1915 				return err;
1916 		}
1917 	} else {
1918 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
1919 		snd_assert(runtime->dma_area, return -EFAULT);
1920 		for (c = 0; c < channels; ++c, ++bufs) {
1921 			char *hwbuf;
1922 			char __user *buf;
1923 			if (*bufs == NULL)
1924 				continue;
1925 
1926 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1927 			buf = *bufs + samples_to_bytes(runtime, off);
1928 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
1929 				return -EFAULT;
1930 		}
1931 	}
1932 	return 0;
1933 }
1934 
1935 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
1936 				    void __user **bufs,
1937 				    snd_pcm_uframes_t frames)
1938 {
1939 	struct snd_pcm_runtime *runtime;
1940 	int nonblock;
1941 
1942 	snd_assert(substream != NULL, return -ENXIO);
1943 	runtime = substream->runtime;
1944 	snd_assert(runtime != NULL, return -ENXIO);
1945 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1946 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1947 		return -EBADFD;
1948 
1949 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1950 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1951 		return -EINVAL;
1952 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
1953 }
1954 
1955 EXPORT_SYMBOL(snd_pcm_lib_readv);
1956