1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <sound/core.h> 26 #include <sound/control.h> 27 #include <sound/info.h> 28 #include <sound/pcm.h> 29 #include <sound/pcm_params.h> 30 #include <sound/timer.h> 31 32 /* 33 * fill ring buffer with silence 34 * runtime->silence_start: starting pointer to silence area 35 * runtime->silence_filled: size filled with silence 36 * runtime->silence_threshold: threshold from application 37 * runtime->silence_size: maximal size from application 38 * 39 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 40 */ 41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 42 { 43 struct snd_pcm_runtime *runtime = substream->runtime; 44 snd_pcm_uframes_t frames, ofs, transfer; 45 46 if (runtime->silence_size < runtime->boundary) { 47 snd_pcm_sframes_t noise_dist, n; 48 if (runtime->silence_start != runtime->control->appl_ptr) { 49 n = runtime->control->appl_ptr - runtime->silence_start; 50 if (n < 0) 51 n += runtime->boundary; 52 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 53 runtime->silence_filled -= n; 54 else 55 runtime->silence_filled = 0; 56 runtime->silence_start = runtime->control->appl_ptr; 57 } 58 if (runtime->silence_filled >= runtime->buffer_size) 59 return; 60 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 61 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 62 return; 63 frames = runtime->silence_threshold - noise_dist; 64 if (frames > runtime->silence_size) 65 frames = runtime->silence_size; 66 } else { 67 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 68 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 69 runtime->silence_filled = avail > 0 ? avail : 0; 70 runtime->silence_start = (runtime->status->hw_ptr + 71 runtime->silence_filled) % 72 runtime->boundary; 73 } else { 74 ofs = runtime->status->hw_ptr; 75 frames = new_hw_ptr - ofs; 76 if ((snd_pcm_sframes_t)frames < 0) 77 frames += runtime->boundary; 78 runtime->silence_filled -= frames; 79 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 80 runtime->silence_filled = 0; 81 runtime->silence_start = new_hw_ptr; 82 } else { 83 runtime->silence_start = ofs; 84 } 85 } 86 frames = runtime->buffer_size - runtime->silence_filled; 87 } 88 snd_assert(frames <= runtime->buffer_size, return); 89 if (frames == 0) 90 return; 91 ofs = runtime->silence_start % runtime->buffer_size; 92 while (frames > 0) { 93 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 94 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 95 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 96 if (substream->ops->silence) { 97 int err; 98 err = substream->ops->silence(substream, -1, ofs, transfer); 99 snd_assert(err >= 0, ); 100 } else { 101 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 102 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 103 } 104 } else { 105 unsigned int c; 106 unsigned int channels = runtime->channels; 107 if (substream->ops->silence) { 108 for (c = 0; c < channels; ++c) { 109 int err; 110 err = substream->ops->silence(substream, c, ofs, transfer); 111 snd_assert(err >= 0, ); 112 } 113 } else { 114 size_t dma_csize = runtime->dma_bytes / channels; 115 for (c = 0; c < channels; ++c) { 116 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 118 } 119 } 120 } 121 runtime->silence_filled += transfer; 122 frames -= transfer; 123 ofs = 0; 124 } 125 } 126 127 static void xrun(struct snd_pcm_substream *substream) 128 { 129 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 130 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 131 if (substream->pstr->xrun_debug) { 132 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n", 133 substream->pcm->card->number, 134 substream->pcm->device, 135 substream->stream ? 'c' : 'p'); 136 if (substream->pstr->xrun_debug > 1) 137 dump_stack(); 138 } 139 #endif 140 } 141 142 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream, 143 struct snd_pcm_runtime *runtime) 144 { 145 snd_pcm_uframes_t pos; 146 147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 148 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 149 pos = substream->ops->pointer(substream); 150 if (pos == SNDRV_PCM_POS_XRUN) 151 return pos; /* XRUN */ 152 #ifdef CONFIG_SND_DEBUG 153 if (pos >= runtime->buffer_size) { 154 snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size); 155 } 156 #endif 157 pos -= pos % runtime->min_align; 158 return pos; 159 } 160 161 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream, 162 struct snd_pcm_runtime *runtime) 163 { 164 snd_pcm_uframes_t avail; 165 166 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 167 avail = snd_pcm_playback_avail(runtime); 168 else 169 avail = snd_pcm_capture_avail(runtime); 170 if (avail > runtime->avail_max) 171 runtime->avail_max = avail; 172 if (avail >= runtime->stop_threshold) { 173 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING) 174 snd_pcm_drain_done(substream); 175 else 176 xrun(substream); 177 return -EPIPE; 178 } 179 if (avail >= runtime->control->avail_min) 180 wake_up(&runtime->sleep); 181 return 0; 182 } 183 184 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream) 185 { 186 struct snd_pcm_runtime *runtime = substream->runtime; 187 snd_pcm_uframes_t pos; 188 snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt; 189 snd_pcm_sframes_t delta; 190 191 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 192 if (pos == SNDRV_PCM_POS_XRUN) { 193 xrun(substream); 194 return -EPIPE; 195 } 196 if (runtime->period_size == runtime->buffer_size) 197 goto __next_buf; 198 new_hw_ptr = runtime->hw_ptr_base + pos; 199 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size; 200 201 delta = hw_ptr_interrupt - new_hw_ptr; 202 if (delta > 0) { 203 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { 204 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 205 if (runtime->periods > 1 && substream->pstr->xrun_debug) { 206 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); 207 if (substream->pstr->xrun_debug > 1) 208 dump_stack(); 209 } 210 #endif 211 return 0; 212 } 213 __next_buf: 214 runtime->hw_ptr_base += runtime->buffer_size; 215 if (runtime->hw_ptr_base == runtime->boundary) 216 runtime->hw_ptr_base = 0; 217 new_hw_ptr = runtime->hw_ptr_base + pos; 218 } 219 220 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 221 runtime->silence_size > 0) 222 snd_pcm_playback_silence(substream, new_hw_ptr); 223 224 runtime->status->hw_ptr = new_hw_ptr; 225 runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size; 226 227 return snd_pcm_update_hw_ptr_post(substream, runtime); 228 } 229 230 /* CAUTION: call it with irq disabled */ 231 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 232 { 233 struct snd_pcm_runtime *runtime = substream->runtime; 234 snd_pcm_uframes_t pos; 235 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr; 236 snd_pcm_sframes_t delta; 237 238 old_hw_ptr = runtime->status->hw_ptr; 239 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 240 if (pos == SNDRV_PCM_POS_XRUN) { 241 xrun(substream); 242 return -EPIPE; 243 } 244 new_hw_ptr = runtime->hw_ptr_base + pos; 245 246 delta = old_hw_ptr - new_hw_ptr; 247 if (delta > 0) { 248 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { 249 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 250 if (runtime->periods > 2 && substream->pstr->xrun_debug) { 251 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); 252 if (substream->pstr->xrun_debug > 1) 253 dump_stack(); 254 } 255 #endif 256 return 0; 257 } 258 runtime->hw_ptr_base += runtime->buffer_size; 259 if (runtime->hw_ptr_base == runtime->boundary) 260 runtime->hw_ptr_base = 0; 261 new_hw_ptr = runtime->hw_ptr_base + pos; 262 } 263 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 264 runtime->silence_size > 0) 265 snd_pcm_playback_silence(substream, new_hw_ptr); 266 267 runtime->status->hw_ptr = new_hw_ptr; 268 269 return snd_pcm_update_hw_ptr_post(substream, runtime); 270 } 271 272 /** 273 * snd_pcm_set_ops - set the PCM operators 274 * @pcm: the pcm instance 275 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 276 * @ops: the operator table 277 * 278 * Sets the given PCM operators to the pcm instance. 279 */ 280 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 281 { 282 struct snd_pcm_str *stream = &pcm->streams[direction]; 283 struct snd_pcm_substream *substream; 284 285 for (substream = stream->substream; substream != NULL; substream = substream->next) 286 substream->ops = ops; 287 } 288 289 EXPORT_SYMBOL(snd_pcm_set_ops); 290 291 /** 292 * snd_pcm_sync - set the PCM sync id 293 * @substream: the pcm substream 294 * 295 * Sets the PCM sync identifier for the card. 296 */ 297 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 298 { 299 struct snd_pcm_runtime *runtime = substream->runtime; 300 301 runtime->sync.id32[0] = substream->pcm->card->number; 302 runtime->sync.id32[1] = -1; 303 runtime->sync.id32[2] = -1; 304 runtime->sync.id32[3] = -1; 305 } 306 307 EXPORT_SYMBOL(snd_pcm_set_sync); 308 309 /* 310 * Standard ioctl routine 311 */ 312 313 static inline unsigned int div32(unsigned int a, unsigned int b, 314 unsigned int *r) 315 { 316 if (b == 0) { 317 *r = 0; 318 return UINT_MAX; 319 } 320 *r = a % b; 321 return a / b; 322 } 323 324 static inline unsigned int div_down(unsigned int a, unsigned int b) 325 { 326 if (b == 0) 327 return UINT_MAX; 328 return a / b; 329 } 330 331 static inline unsigned int div_up(unsigned int a, unsigned int b) 332 { 333 unsigned int r; 334 unsigned int q; 335 if (b == 0) 336 return UINT_MAX; 337 q = div32(a, b, &r); 338 if (r) 339 ++q; 340 return q; 341 } 342 343 static inline unsigned int mul(unsigned int a, unsigned int b) 344 { 345 if (a == 0) 346 return 0; 347 if (div_down(UINT_MAX, a) < b) 348 return UINT_MAX; 349 return a * b; 350 } 351 352 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 353 unsigned int c, unsigned int *r) 354 { 355 u_int64_t n = (u_int64_t) a * b; 356 if (c == 0) { 357 snd_assert(n > 0, ); 358 *r = 0; 359 return UINT_MAX; 360 } 361 div64_32(&n, c, r); 362 if (n >= UINT_MAX) { 363 *r = 0; 364 return UINT_MAX; 365 } 366 return n; 367 } 368 369 /** 370 * snd_interval_refine - refine the interval value of configurator 371 * @i: the interval value to refine 372 * @v: the interval value to refer to 373 * 374 * Refines the interval value with the reference value. 375 * The interval is changed to the range satisfying both intervals. 376 * The interval status (min, max, integer, etc.) are evaluated. 377 * 378 * Returns non-zero if the value is changed, zero if not changed. 379 */ 380 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 381 { 382 int changed = 0; 383 snd_assert(!snd_interval_empty(i), return -EINVAL); 384 if (i->min < v->min) { 385 i->min = v->min; 386 i->openmin = v->openmin; 387 changed = 1; 388 } else if (i->min == v->min && !i->openmin && v->openmin) { 389 i->openmin = 1; 390 changed = 1; 391 } 392 if (i->max > v->max) { 393 i->max = v->max; 394 i->openmax = v->openmax; 395 changed = 1; 396 } else if (i->max == v->max && !i->openmax && v->openmax) { 397 i->openmax = 1; 398 changed = 1; 399 } 400 if (!i->integer && v->integer) { 401 i->integer = 1; 402 changed = 1; 403 } 404 if (i->integer) { 405 if (i->openmin) { 406 i->min++; 407 i->openmin = 0; 408 } 409 if (i->openmax) { 410 i->max--; 411 i->openmax = 0; 412 } 413 } else if (!i->openmin && !i->openmax && i->min == i->max) 414 i->integer = 1; 415 if (snd_interval_checkempty(i)) { 416 snd_interval_none(i); 417 return -EINVAL; 418 } 419 return changed; 420 } 421 422 EXPORT_SYMBOL(snd_interval_refine); 423 424 static int snd_interval_refine_first(struct snd_interval *i) 425 { 426 snd_assert(!snd_interval_empty(i), return -EINVAL); 427 if (snd_interval_single(i)) 428 return 0; 429 i->max = i->min; 430 i->openmax = i->openmin; 431 if (i->openmax) 432 i->max++; 433 return 1; 434 } 435 436 static int snd_interval_refine_last(struct snd_interval *i) 437 { 438 snd_assert(!snd_interval_empty(i), return -EINVAL); 439 if (snd_interval_single(i)) 440 return 0; 441 i->min = i->max; 442 i->openmin = i->openmax; 443 if (i->openmin) 444 i->min--; 445 return 1; 446 } 447 448 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 449 { 450 if (a->empty || b->empty) { 451 snd_interval_none(c); 452 return; 453 } 454 c->empty = 0; 455 c->min = mul(a->min, b->min); 456 c->openmin = (a->openmin || b->openmin); 457 c->max = mul(a->max, b->max); 458 c->openmax = (a->openmax || b->openmax); 459 c->integer = (a->integer && b->integer); 460 } 461 462 /** 463 * snd_interval_div - refine the interval value with division 464 * @a: dividend 465 * @b: divisor 466 * @c: quotient 467 * 468 * c = a / b 469 * 470 * Returns non-zero if the value is changed, zero if not changed. 471 */ 472 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 473 { 474 unsigned int r; 475 if (a->empty || b->empty) { 476 snd_interval_none(c); 477 return; 478 } 479 c->empty = 0; 480 c->min = div32(a->min, b->max, &r); 481 c->openmin = (r || a->openmin || b->openmax); 482 if (b->min > 0) { 483 c->max = div32(a->max, b->min, &r); 484 if (r) { 485 c->max++; 486 c->openmax = 1; 487 } else 488 c->openmax = (a->openmax || b->openmin); 489 } else { 490 c->max = UINT_MAX; 491 c->openmax = 0; 492 } 493 c->integer = 0; 494 } 495 496 /** 497 * snd_interval_muldivk - refine the interval value 498 * @a: dividend 1 499 * @b: dividend 2 500 * @k: divisor (as integer) 501 * @c: result 502 * 503 * c = a * b / k 504 * 505 * Returns non-zero if the value is changed, zero if not changed. 506 */ 507 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 508 unsigned int k, struct snd_interval *c) 509 { 510 unsigned int r; 511 if (a->empty || b->empty) { 512 snd_interval_none(c); 513 return; 514 } 515 c->empty = 0; 516 c->min = muldiv32(a->min, b->min, k, &r); 517 c->openmin = (r || a->openmin || b->openmin); 518 c->max = muldiv32(a->max, b->max, k, &r); 519 if (r) { 520 c->max++; 521 c->openmax = 1; 522 } else 523 c->openmax = (a->openmax || b->openmax); 524 c->integer = 0; 525 } 526 527 /** 528 * snd_interval_mulkdiv - refine the interval value 529 * @a: dividend 1 530 * @k: dividend 2 (as integer) 531 * @b: divisor 532 * @c: result 533 * 534 * c = a * k / b 535 * 536 * Returns non-zero if the value is changed, zero if not changed. 537 */ 538 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 539 const struct snd_interval *b, struct snd_interval *c) 540 { 541 unsigned int r; 542 if (a->empty || b->empty) { 543 snd_interval_none(c); 544 return; 545 } 546 c->empty = 0; 547 c->min = muldiv32(a->min, k, b->max, &r); 548 c->openmin = (r || a->openmin || b->openmax); 549 if (b->min > 0) { 550 c->max = muldiv32(a->max, k, b->min, &r); 551 if (r) { 552 c->max++; 553 c->openmax = 1; 554 } else 555 c->openmax = (a->openmax || b->openmin); 556 } else { 557 c->max = UINT_MAX; 558 c->openmax = 0; 559 } 560 c->integer = 0; 561 } 562 563 /* ---- */ 564 565 566 /** 567 * snd_interval_ratnum - refine the interval value 568 * @i: interval to refine 569 * @rats_count: number of ratnum_t 570 * @rats: ratnum_t array 571 * @nump: pointer to store the resultant numerator 572 * @denp: pointer to store the resultant denominator 573 * 574 * Returns non-zero if the value is changed, zero if not changed. 575 */ 576 int snd_interval_ratnum(struct snd_interval *i, 577 unsigned int rats_count, struct snd_ratnum *rats, 578 unsigned int *nump, unsigned int *denp) 579 { 580 unsigned int best_num, best_diff, best_den; 581 unsigned int k; 582 struct snd_interval t; 583 int err; 584 585 best_num = best_den = best_diff = 0; 586 for (k = 0; k < rats_count; ++k) { 587 unsigned int num = rats[k].num; 588 unsigned int den; 589 unsigned int q = i->min; 590 int diff; 591 if (q == 0) 592 q = 1; 593 den = div_down(num, q); 594 if (den < rats[k].den_min) 595 continue; 596 if (den > rats[k].den_max) 597 den = rats[k].den_max; 598 else { 599 unsigned int r; 600 r = (den - rats[k].den_min) % rats[k].den_step; 601 if (r != 0) 602 den -= r; 603 } 604 diff = num - q * den; 605 if (best_num == 0 || 606 diff * best_den < best_diff * den) { 607 best_diff = diff; 608 best_den = den; 609 best_num = num; 610 } 611 } 612 if (best_den == 0) { 613 i->empty = 1; 614 return -EINVAL; 615 } 616 t.min = div_down(best_num, best_den); 617 t.openmin = !!(best_num % best_den); 618 619 best_num = best_den = best_diff = 0; 620 for (k = 0; k < rats_count; ++k) { 621 unsigned int num = rats[k].num; 622 unsigned int den; 623 unsigned int q = i->max; 624 int diff; 625 if (q == 0) { 626 i->empty = 1; 627 return -EINVAL; 628 } 629 den = div_up(num, q); 630 if (den > rats[k].den_max) 631 continue; 632 if (den < rats[k].den_min) 633 den = rats[k].den_min; 634 else { 635 unsigned int r; 636 r = (den - rats[k].den_min) % rats[k].den_step; 637 if (r != 0) 638 den += rats[k].den_step - r; 639 } 640 diff = q * den - num; 641 if (best_num == 0 || 642 diff * best_den < best_diff * den) { 643 best_diff = diff; 644 best_den = den; 645 best_num = num; 646 } 647 } 648 if (best_den == 0) { 649 i->empty = 1; 650 return -EINVAL; 651 } 652 t.max = div_up(best_num, best_den); 653 t.openmax = !!(best_num % best_den); 654 t.integer = 0; 655 err = snd_interval_refine(i, &t); 656 if (err < 0) 657 return err; 658 659 if (snd_interval_single(i)) { 660 if (nump) 661 *nump = best_num; 662 if (denp) 663 *denp = best_den; 664 } 665 return err; 666 } 667 668 EXPORT_SYMBOL(snd_interval_ratnum); 669 670 /** 671 * snd_interval_ratden - refine the interval value 672 * @i: interval to refine 673 * @rats_count: number of struct ratden 674 * @rats: struct ratden array 675 * @nump: pointer to store the resultant numerator 676 * @denp: pointer to store the resultant denominator 677 * 678 * Returns non-zero if the value is changed, zero if not changed. 679 */ 680 static int snd_interval_ratden(struct snd_interval *i, 681 unsigned int rats_count, struct snd_ratden *rats, 682 unsigned int *nump, unsigned int *denp) 683 { 684 unsigned int best_num, best_diff, best_den; 685 unsigned int k; 686 struct snd_interval t; 687 int err; 688 689 best_num = best_den = best_diff = 0; 690 for (k = 0; k < rats_count; ++k) { 691 unsigned int num; 692 unsigned int den = rats[k].den; 693 unsigned int q = i->min; 694 int diff; 695 num = mul(q, den); 696 if (num > rats[k].num_max) 697 continue; 698 if (num < rats[k].num_min) 699 num = rats[k].num_max; 700 else { 701 unsigned int r; 702 r = (num - rats[k].num_min) % rats[k].num_step; 703 if (r != 0) 704 num += rats[k].num_step - r; 705 } 706 diff = num - q * den; 707 if (best_num == 0 || 708 diff * best_den < best_diff * den) { 709 best_diff = diff; 710 best_den = den; 711 best_num = num; 712 } 713 } 714 if (best_den == 0) { 715 i->empty = 1; 716 return -EINVAL; 717 } 718 t.min = div_down(best_num, best_den); 719 t.openmin = !!(best_num % best_den); 720 721 best_num = best_den = best_diff = 0; 722 for (k = 0; k < rats_count; ++k) { 723 unsigned int num; 724 unsigned int den = rats[k].den; 725 unsigned int q = i->max; 726 int diff; 727 num = mul(q, den); 728 if (num < rats[k].num_min) 729 continue; 730 if (num > rats[k].num_max) 731 num = rats[k].num_max; 732 else { 733 unsigned int r; 734 r = (num - rats[k].num_min) % rats[k].num_step; 735 if (r != 0) 736 num -= r; 737 } 738 diff = q * den - num; 739 if (best_num == 0 || 740 diff * best_den < best_diff * den) { 741 best_diff = diff; 742 best_den = den; 743 best_num = num; 744 } 745 } 746 if (best_den == 0) { 747 i->empty = 1; 748 return -EINVAL; 749 } 750 t.max = div_up(best_num, best_den); 751 t.openmax = !!(best_num % best_den); 752 t.integer = 0; 753 err = snd_interval_refine(i, &t); 754 if (err < 0) 755 return err; 756 757 if (snd_interval_single(i)) { 758 if (nump) 759 *nump = best_num; 760 if (denp) 761 *denp = best_den; 762 } 763 return err; 764 } 765 766 /** 767 * snd_interval_list - refine the interval value from the list 768 * @i: the interval value to refine 769 * @count: the number of elements in the list 770 * @list: the value list 771 * @mask: the bit-mask to evaluate 772 * 773 * Refines the interval value from the list. 774 * When mask is non-zero, only the elements corresponding to bit 1 are 775 * evaluated. 776 * 777 * Returns non-zero if the value is changed, zero if not changed. 778 */ 779 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 780 { 781 unsigned int k; 782 int changed = 0; 783 784 if (!count) { 785 i->empty = 1; 786 return -EINVAL; 787 } 788 for (k = 0; k < count; k++) { 789 if (mask && !(mask & (1 << k))) 790 continue; 791 if (i->min == list[k] && !i->openmin) 792 goto _l1; 793 if (i->min < list[k]) { 794 i->min = list[k]; 795 i->openmin = 0; 796 changed = 1; 797 goto _l1; 798 } 799 } 800 i->empty = 1; 801 return -EINVAL; 802 _l1: 803 for (k = count; k-- > 0;) { 804 if (mask && !(mask & (1 << k))) 805 continue; 806 if (i->max == list[k] && !i->openmax) 807 goto _l2; 808 if (i->max > list[k]) { 809 i->max = list[k]; 810 i->openmax = 0; 811 changed = 1; 812 goto _l2; 813 } 814 } 815 i->empty = 1; 816 return -EINVAL; 817 _l2: 818 if (snd_interval_checkempty(i)) { 819 i->empty = 1; 820 return -EINVAL; 821 } 822 return changed; 823 } 824 825 EXPORT_SYMBOL(snd_interval_list); 826 827 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 828 { 829 unsigned int n; 830 int changed = 0; 831 n = (i->min - min) % step; 832 if (n != 0 || i->openmin) { 833 i->min += step - n; 834 changed = 1; 835 } 836 n = (i->max - min) % step; 837 if (n != 0 || i->openmax) { 838 i->max -= n; 839 changed = 1; 840 } 841 if (snd_interval_checkempty(i)) { 842 i->empty = 1; 843 return -EINVAL; 844 } 845 return changed; 846 } 847 848 /* Info constraints helpers */ 849 850 /** 851 * snd_pcm_hw_rule_add - add the hw-constraint rule 852 * @runtime: the pcm runtime instance 853 * @cond: condition bits 854 * @var: the variable to evaluate 855 * @func: the evaluation function 856 * @private: the private data pointer passed to function 857 * @dep: the dependent variables 858 * 859 * Returns zero if successful, or a negative error code on failure. 860 */ 861 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 862 int var, 863 snd_pcm_hw_rule_func_t func, void *private, 864 int dep, ...) 865 { 866 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 867 struct snd_pcm_hw_rule *c; 868 unsigned int k; 869 va_list args; 870 va_start(args, dep); 871 if (constrs->rules_num >= constrs->rules_all) { 872 struct snd_pcm_hw_rule *new; 873 unsigned int new_rules = constrs->rules_all + 16; 874 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 875 if (!new) 876 return -ENOMEM; 877 if (constrs->rules) { 878 memcpy(new, constrs->rules, 879 constrs->rules_num * sizeof(*c)); 880 kfree(constrs->rules); 881 } 882 constrs->rules = new; 883 constrs->rules_all = new_rules; 884 } 885 c = &constrs->rules[constrs->rules_num]; 886 c->cond = cond; 887 c->func = func; 888 c->var = var; 889 c->private = private; 890 k = 0; 891 while (1) { 892 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL); 893 c->deps[k++] = dep; 894 if (dep < 0) 895 break; 896 dep = va_arg(args, int); 897 } 898 constrs->rules_num++; 899 va_end(args); 900 return 0; 901 } 902 903 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 904 905 /** 906 * snd_pcm_hw_constraint_mask 907 * @runtime: PCM runtime instance 908 * @var: hw_params variable to apply the mask 909 * @mask: the bitmap mask 910 * 911 * Apply the constraint of the given bitmap mask to a mask parameter. 912 */ 913 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 914 u_int32_t mask) 915 { 916 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 917 struct snd_mask *maskp = constrs_mask(constrs, var); 918 *maskp->bits &= mask; 919 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 920 if (*maskp->bits == 0) 921 return -EINVAL; 922 return 0; 923 } 924 925 /** 926 * snd_pcm_hw_constraint_mask64 927 * @runtime: PCM runtime instance 928 * @var: hw_params variable to apply the mask 929 * @mask: the 64bit bitmap mask 930 * 931 * Apply the constraint of the given bitmap mask to a mask parameter. 932 */ 933 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 934 u_int64_t mask) 935 { 936 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 937 struct snd_mask *maskp = constrs_mask(constrs, var); 938 maskp->bits[0] &= (u_int32_t)mask; 939 maskp->bits[1] &= (u_int32_t)(mask >> 32); 940 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 941 if (! maskp->bits[0] && ! maskp->bits[1]) 942 return -EINVAL; 943 return 0; 944 } 945 946 /** 947 * snd_pcm_hw_constraint_integer 948 * @runtime: PCM runtime instance 949 * @var: hw_params variable to apply the integer constraint 950 * 951 * Apply the constraint of integer to an interval parameter. 952 */ 953 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 954 { 955 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 956 return snd_interval_setinteger(constrs_interval(constrs, var)); 957 } 958 959 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 960 961 /** 962 * snd_pcm_hw_constraint_minmax 963 * @runtime: PCM runtime instance 964 * @var: hw_params variable to apply the range 965 * @min: the minimal value 966 * @max: the maximal value 967 * 968 * Apply the min/max range constraint to an interval parameter. 969 */ 970 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 971 unsigned int min, unsigned int max) 972 { 973 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 974 struct snd_interval t; 975 t.min = min; 976 t.max = max; 977 t.openmin = t.openmax = 0; 978 t.integer = 0; 979 return snd_interval_refine(constrs_interval(constrs, var), &t); 980 } 981 982 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 983 984 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 985 struct snd_pcm_hw_rule *rule) 986 { 987 struct snd_pcm_hw_constraint_list *list = rule->private; 988 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 989 } 990 991 992 /** 993 * snd_pcm_hw_constraint_list 994 * @runtime: PCM runtime instance 995 * @cond: condition bits 996 * @var: hw_params variable to apply the list constraint 997 * @l: list 998 * 999 * Apply the list of constraints to an interval parameter. 1000 */ 1001 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1002 unsigned int cond, 1003 snd_pcm_hw_param_t var, 1004 struct snd_pcm_hw_constraint_list *l) 1005 { 1006 return snd_pcm_hw_rule_add(runtime, cond, var, 1007 snd_pcm_hw_rule_list, l, 1008 var, -1); 1009 } 1010 1011 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1012 1013 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1014 struct snd_pcm_hw_rule *rule) 1015 { 1016 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1017 unsigned int num = 0, den = 0; 1018 int err; 1019 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1020 r->nrats, r->rats, &num, &den); 1021 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1022 params->rate_num = num; 1023 params->rate_den = den; 1024 } 1025 return err; 1026 } 1027 1028 /** 1029 * snd_pcm_hw_constraint_ratnums 1030 * @runtime: PCM runtime instance 1031 * @cond: condition bits 1032 * @var: hw_params variable to apply the ratnums constraint 1033 * @r: struct snd_ratnums constriants 1034 */ 1035 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1036 unsigned int cond, 1037 snd_pcm_hw_param_t var, 1038 struct snd_pcm_hw_constraint_ratnums *r) 1039 { 1040 return snd_pcm_hw_rule_add(runtime, cond, var, 1041 snd_pcm_hw_rule_ratnums, r, 1042 var, -1); 1043 } 1044 1045 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1046 1047 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1048 struct snd_pcm_hw_rule *rule) 1049 { 1050 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1051 unsigned int num = 0, den = 0; 1052 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1053 r->nrats, r->rats, &num, &den); 1054 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1055 params->rate_num = num; 1056 params->rate_den = den; 1057 } 1058 return err; 1059 } 1060 1061 /** 1062 * snd_pcm_hw_constraint_ratdens 1063 * @runtime: PCM runtime instance 1064 * @cond: condition bits 1065 * @var: hw_params variable to apply the ratdens constraint 1066 * @r: struct snd_ratdens constriants 1067 */ 1068 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1069 unsigned int cond, 1070 snd_pcm_hw_param_t var, 1071 struct snd_pcm_hw_constraint_ratdens *r) 1072 { 1073 return snd_pcm_hw_rule_add(runtime, cond, var, 1074 snd_pcm_hw_rule_ratdens, r, 1075 var, -1); 1076 } 1077 1078 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1079 1080 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1081 struct snd_pcm_hw_rule *rule) 1082 { 1083 unsigned int l = (unsigned long) rule->private; 1084 int width = l & 0xffff; 1085 unsigned int msbits = l >> 16; 1086 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1087 if (snd_interval_single(i) && snd_interval_value(i) == width) 1088 params->msbits = msbits; 1089 return 0; 1090 } 1091 1092 /** 1093 * snd_pcm_hw_constraint_msbits 1094 * @runtime: PCM runtime instance 1095 * @cond: condition bits 1096 * @width: sample bits width 1097 * @msbits: msbits width 1098 */ 1099 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1100 unsigned int cond, 1101 unsigned int width, 1102 unsigned int msbits) 1103 { 1104 unsigned long l = (msbits << 16) | width; 1105 return snd_pcm_hw_rule_add(runtime, cond, -1, 1106 snd_pcm_hw_rule_msbits, 1107 (void*) l, 1108 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1109 } 1110 1111 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1112 1113 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1114 struct snd_pcm_hw_rule *rule) 1115 { 1116 unsigned long step = (unsigned long) rule->private; 1117 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1118 } 1119 1120 /** 1121 * snd_pcm_hw_constraint_step 1122 * @runtime: PCM runtime instance 1123 * @cond: condition bits 1124 * @var: hw_params variable to apply the step constraint 1125 * @step: step size 1126 */ 1127 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1128 unsigned int cond, 1129 snd_pcm_hw_param_t var, 1130 unsigned long step) 1131 { 1132 return snd_pcm_hw_rule_add(runtime, cond, var, 1133 snd_pcm_hw_rule_step, (void *) step, 1134 var, -1); 1135 } 1136 1137 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1138 1139 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1140 { 1141 static unsigned int pow2_sizes[] = { 1142 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1143 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1144 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1145 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1146 }; 1147 return snd_interval_list(hw_param_interval(params, rule->var), 1148 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1149 } 1150 1151 /** 1152 * snd_pcm_hw_constraint_pow2 1153 * @runtime: PCM runtime instance 1154 * @cond: condition bits 1155 * @var: hw_params variable to apply the power-of-2 constraint 1156 */ 1157 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1158 unsigned int cond, 1159 snd_pcm_hw_param_t var) 1160 { 1161 return snd_pcm_hw_rule_add(runtime, cond, var, 1162 snd_pcm_hw_rule_pow2, NULL, 1163 var, -1); 1164 } 1165 1166 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1167 1168 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1169 snd_pcm_hw_param_t var) 1170 { 1171 if (hw_is_mask(var)) { 1172 snd_mask_any(hw_param_mask(params, var)); 1173 params->cmask |= 1 << var; 1174 params->rmask |= 1 << var; 1175 return; 1176 } 1177 if (hw_is_interval(var)) { 1178 snd_interval_any(hw_param_interval(params, var)); 1179 params->cmask |= 1 << var; 1180 params->rmask |= 1 << var; 1181 return; 1182 } 1183 snd_BUG(); 1184 } 1185 1186 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1187 { 1188 unsigned int k; 1189 memset(params, 0, sizeof(*params)); 1190 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1191 _snd_pcm_hw_param_any(params, k); 1192 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1193 _snd_pcm_hw_param_any(params, k); 1194 params->info = ~0U; 1195 } 1196 1197 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1198 1199 /** 1200 * snd_pcm_hw_param_value 1201 * @params: the hw_params instance 1202 * @var: parameter to retrieve 1203 * @dir: pointer to the direction (-1,0,1) or NULL 1204 * 1205 * Return the value for field PAR if it's fixed in configuration space 1206 * defined by PARAMS. Return -EINVAL otherwise 1207 */ 1208 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1209 snd_pcm_hw_param_t var, int *dir) 1210 { 1211 if (hw_is_mask(var)) { 1212 const struct snd_mask *mask = hw_param_mask_c(params, var); 1213 if (!snd_mask_single(mask)) 1214 return -EINVAL; 1215 if (dir) 1216 *dir = 0; 1217 return snd_mask_value(mask); 1218 } 1219 if (hw_is_interval(var)) { 1220 const struct snd_interval *i = hw_param_interval_c(params, var); 1221 if (!snd_interval_single(i)) 1222 return -EINVAL; 1223 if (dir) 1224 *dir = i->openmin; 1225 return snd_interval_value(i); 1226 } 1227 return -EINVAL; 1228 } 1229 1230 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1231 1232 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1233 snd_pcm_hw_param_t var) 1234 { 1235 if (hw_is_mask(var)) { 1236 snd_mask_none(hw_param_mask(params, var)); 1237 params->cmask |= 1 << var; 1238 params->rmask |= 1 << var; 1239 } else if (hw_is_interval(var)) { 1240 snd_interval_none(hw_param_interval(params, var)); 1241 params->cmask |= 1 << var; 1242 params->rmask |= 1 << var; 1243 } else { 1244 snd_BUG(); 1245 } 1246 } 1247 1248 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1249 1250 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1251 snd_pcm_hw_param_t var) 1252 { 1253 int changed; 1254 if (hw_is_mask(var)) 1255 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1256 else if (hw_is_interval(var)) 1257 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1258 else 1259 return -EINVAL; 1260 if (changed) { 1261 params->cmask |= 1 << var; 1262 params->rmask |= 1 << var; 1263 } 1264 return changed; 1265 } 1266 1267 1268 /** 1269 * snd_pcm_hw_param_first 1270 * @pcm: PCM instance 1271 * @params: the hw_params instance 1272 * @var: parameter to retrieve 1273 * @dir: pointer to the direction (-1,0,1) or NULL 1274 * 1275 * Inside configuration space defined by PARAMS remove from PAR all 1276 * values > minimum. Reduce configuration space accordingly. 1277 * Return the minimum. 1278 */ 1279 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1280 struct snd_pcm_hw_params *params, 1281 snd_pcm_hw_param_t var, int *dir) 1282 { 1283 int changed = _snd_pcm_hw_param_first(params, var); 1284 if (changed < 0) 1285 return changed; 1286 if (params->rmask) { 1287 int err = snd_pcm_hw_refine(pcm, params); 1288 snd_assert(err >= 0, return err); 1289 } 1290 return snd_pcm_hw_param_value(params, var, dir); 1291 } 1292 1293 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1294 1295 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1296 snd_pcm_hw_param_t var) 1297 { 1298 int changed; 1299 if (hw_is_mask(var)) 1300 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1301 else if (hw_is_interval(var)) 1302 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1303 else 1304 return -EINVAL; 1305 if (changed) { 1306 params->cmask |= 1 << var; 1307 params->rmask |= 1 << var; 1308 } 1309 return changed; 1310 } 1311 1312 1313 /** 1314 * snd_pcm_hw_param_last 1315 * @pcm: PCM instance 1316 * @params: the hw_params instance 1317 * @var: parameter to retrieve 1318 * @dir: pointer to the direction (-1,0,1) or NULL 1319 * 1320 * Inside configuration space defined by PARAMS remove from PAR all 1321 * values < maximum. Reduce configuration space accordingly. 1322 * Return the maximum. 1323 */ 1324 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1325 struct snd_pcm_hw_params *params, 1326 snd_pcm_hw_param_t var, int *dir) 1327 { 1328 int changed = _snd_pcm_hw_param_last(params, var); 1329 if (changed < 0) 1330 return changed; 1331 if (params->rmask) { 1332 int err = snd_pcm_hw_refine(pcm, params); 1333 snd_assert(err >= 0, return err); 1334 } 1335 return snd_pcm_hw_param_value(params, var, dir); 1336 } 1337 1338 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1339 1340 /** 1341 * snd_pcm_hw_param_choose 1342 * @pcm: PCM instance 1343 * @params: the hw_params instance 1344 * 1345 * Choose one configuration from configuration space defined by PARAMS 1346 * The configuration chosen is that obtained fixing in this order: 1347 * first access, first format, first subformat, min channels, 1348 * min rate, min period time, max buffer size, min tick time 1349 */ 1350 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1351 struct snd_pcm_hw_params *params) 1352 { 1353 static int vars[] = { 1354 SNDRV_PCM_HW_PARAM_ACCESS, 1355 SNDRV_PCM_HW_PARAM_FORMAT, 1356 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1357 SNDRV_PCM_HW_PARAM_CHANNELS, 1358 SNDRV_PCM_HW_PARAM_RATE, 1359 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1360 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1361 SNDRV_PCM_HW_PARAM_TICK_TIME, 1362 -1 1363 }; 1364 int err, *v; 1365 1366 for (v = vars; *v != -1; v++) { 1367 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1368 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1369 else 1370 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1371 snd_assert(err >= 0, return err); 1372 } 1373 return 0; 1374 } 1375 1376 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1377 void *arg) 1378 { 1379 struct snd_pcm_runtime *runtime = substream->runtime; 1380 unsigned long flags; 1381 snd_pcm_stream_lock_irqsave(substream, flags); 1382 if (snd_pcm_running(substream) && 1383 snd_pcm_update_hw_ptr(substream) >= 0) 1384 runtime->status->hw_ptr %= runtime->buffer_size; 1385 else 1386 runtime->status->hw_ptr = 0; 1387 snd_pcm_stream_unlock_irqrestore(substream, flags); 1388 return 0; 1389 } 1390 1391 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1392 void *arg) 1393 { 1394 struct snd_pcm_channel_info *info = arg; 1395 struct snd_pcm_runtime *runtime = substream->runtime; 1396 int width; 1397 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1398 info->offset = -1; 1399 return 0; 1400 } 1401 width = snd_pcm_format_physical_width(runtime->format); 1402 if (width < 0) 1403 return width; 1404 info->offset = 0; 1405 switch (runtime->access) { 1406 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1407 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1408 info->first = info->channel * width; 1409 info->step = runtime->channels * width; 1410 break; 1411 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1412 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1413 { 1414 size_t size = runtime->dma_bytes / runtime->channels; 1415 info->first = info->channel * size * 8; 1416 info->step = width; 1417 break; 1418 } 1419 default: 1420 snd_BUG(); 1421 break; 1422 } 1423 return 0; 1424 } 1425 1426 /** 1427 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1428 * @substream: the pcm substream instance 1429 * @cmd: ioctl command 1430 * @arg: ioctl argument 1431 * 1432 * Processes the generic ioctl commands for PCM. 1433 * Can be passed as the ioctl callback for PCM ops. 1434 * 1435 * Returns zero if successful, or a negative error code on failure. 1436 */ 1437 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1438 unsigned int cmd, void *arg) 1439 { 1440 switch (cmd) { 1441 case SNDRV_PCM_IOCTL1_INFO: 1442 return 0; 1443 case SNDRV_PCM_IOCTL1_RESET: 1444 return snd_pcm_lib_ioctl_reset(substream, arg); 1445 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1446 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1447 } 1448 return -ENXIO; 1449 } 1450 1451 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1452 1453 /** 1454 * snd_pcm_period_elapsed - update the pcm status for the next period 1455 * @substream: the pcm substream instance 1456 * 1457 * This function is called from the interrupt handler when the 1458 * PCM has processed the period size. It will update the current 1459 * pointer, wake up sleepers, etc. 1460 * 1461 * Even if more than one periods have elapsed since the last call, you 1462 * have to call this only once. 1463 */ 1464 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1465 { 1466 struct snd_pcm_runtime *runtime; 1467 unsigned long flags; 1468 1469 snd_assert(substream != NULL, return); 1470 runtime = substream->runtime; 1471 snd_assert(runtime != NULL, return); 1472 1473 if (runtime->transfer_ack_begin) 1474 runtime->transfer_ack_begin(substream); 1475 1476 snd_pcm_stream_lock_irqsave(substream, flags); 1477 if (!snd_pcm_running(substream) || 1478 snd_pcm_update_hw_ptr_interrupt(substream) < 0) 1479 goto _end; 1480 1481 if (substream->timer_running) 1482 snd_timer_interrupt(substream->timer, 1); 1483 _end: 1484 snd_pcm_stream_unlock_irqrestore(substream, flags); 1485 if (runtime->transfer_ack_end) 1486 runtime->transfer_ack_end(substream); 1487 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1488 } 1489 1490 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1491 1492 /* 1493 * Wait until avail_min data becomes available 1494 * Returns a negative error code if any error occurs during operation. 1495 * The available space is stored on availp. When err = 0 and avail = 0 1496 * on the capture stream, it indicates the stream is in DRAINING state. 1497 */ 1498 static int wait_for_avail_min(struct snd_pcm_substream *substream, 1499 snd_pcm_uframes_t *availp) 1500 { 1501 struct snd_pcm_runtime *runtime = substream->runtime; 1502 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1503 wait_queue_t wait; 1504 int err = 0; 1505 snd_pcm_uframes_t avail = 0; 1506 long tout; 1507 1508 init_waitqueue_entry(&wait, current); 1509 add_wait_queue(&runtime->sleep, &wait); 1510 for (;;) { 1511 if (signal_pending(current)) { 1512 err = -ERESTARTSYS; 1513 break; 1514 } 1515 set_current_state(TASK_INTERRUPTIBLE); 1516 snd_pcm_stream_unlock_irq(substream); 1517 tout = schedule_timeout(msecs_to_jiffies(10000)); 1518 snd_pcm_stream_lock_irq(substream); 1519 switch (runtime->status->state) { 1520 case SNDRV_PCM_STATE_SUSPENDED: 1521 err = -ESTRPIPE; 1522 goto _endloop; 1523 case SNDRV_PCM_STATE_XRUN: 1524 err = -EPIPE; 1525 goto _endloop; 1526 case SNDRV_PCM_STATE_DRAINING: 1527 if (is_playback) 1528 err = -EPIPE; 1529 else 1530 avail = 0; /* indicate draining */ 1531 goto _endloop; 1532 case SNDRV_PCM_STATE_OPEN: 1533 case SNDRV_PCM_STATE_SETUP: 1534 case SNDRV_PCM_STATE_DISCONNECTED: 1535 err = -EBADFD; 1536 goto _endloop; 1537 } 1538 if (!tout) { 1539 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1540 is_playback ? "playback" : "capture"); 1541 err = -EIO; 1542 break; 1543 } 1544 if (is_playback) 1545 avail = snd_pcm_playback_avail(runtime); 1546 else 1547 avail = snd_pcm_capture_avail(runtime); 1548 if (avail >= runtime->control->avail_min) 1549 break; 1550 } 1551 _endloop: 1552 remove_wait_queue(&runtime->sleep, &wait); 1553 *availp = avail; 1554 return err; 1555 } 1556 1557 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1558 unsigned int hwoff, 1559 unsigned long data, unsigned int off, 1560 snd_pcm_uframes_t frames) 1561 { 1562 struct snd_pcm_runtime *runtime = substream->runtime; 1563 int err; 1564 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1565 if (substream->ops->copy) { 1566 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1567 return err; 1568 } else { 1569 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1570 snd_assert(runtime->dma_area, return -EFAULT); 1571 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1572 return -EFAULT; 1573 } 1574 return 0; 1575 } 1576 1577 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1578 unsigned long data, unsigned int off, 1579 snd_pcm_uframes_t size); 1580 1581 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1582 unsigned long data, 1583 snd_pcm_uframes_t size, 1584 int nonblock, 1585 transfer_f transfer) 1586 { 1587 struct snd_pcm_runtime *runtime = substream->runtime; 1588 snd_pcm_uframes_t xfer = 0; 1589 snd_pcm_uframes_t offset = 0; 1590 int err = 0; 1591 1592 if (size == 0) 1593 return 0; 1594 1595 snd_pcm_stream_lock_irq(substream); 1596 switch (runtime->status->state) { 1597 case SNDRV_PCM_STATE_PREPARED: 1598 case SNDRV_PCM_STATE_RUNNING: 1599 case SNDRV_PCM_STATE_PAUSED: 1600 break; 1601 case SNDRV_PCM_STATE_XRUN: 1602 err = -EPIPE; 1603 goto _end_unlock; 1604 case SNDRV_PCM_STATE_SUSPENDED: 1605 err = -ESTRPIPE; 1606 goto _end_unlock; 1607 default: 1608 err = -EBADFD; 1609 goto _end_unlock; 1610 } 1611 1612 while (size > 0) { 1613 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1614 snd_pcm_uframes_t avail; 1615 snd_pcm_uframes_t cont; 1616 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1617 snd_pcm_update_hw_ptr(substream); 1618 avail = snd_pcm_playback_avail(runtime); 1619 if (!avail) { 1620 if (nonblock) { 1621 err = -EAGAIN; 1622 goto _end_unlock; 1623 } 1624 err = wait_for_avail_min(substream, &avail); 1625 if (err < 0) 1626 goto _end_unlock; 1627 } 1628 frames = size > avail ? avail : size; 1629 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1630 if (frames > cont) 1631 frames = cont; 1632 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); 1633 appl_ptr = runtime->control->appl_ptr; 1634 appl_ofs = appl_ptr % runtime->buffer_size; 1635 snd_pcm_stream_unlock_irq(substream); 1636 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 1637 goto _end; 1638 snd_pcm_stream_lock_irq(substream); 1639 switch (runtime->status->state) { 1640 case SNDRV_PCM_STATE_XRUN: 1641 err = -EPIPE; 1642 goto _end_unlock; 1643 case SNDRV_PCM_STATE_SUSPENDED: 1644 err = -ESTRPIPE; 1645 goto _end_unlock; 1646 default: 1647 break; 1648 } 1649 appl_ptr += frames; 1650 if (appl_ptr >= runtime->boundary) 1651 appl_ptr -= runtime->boundary; 1652 runtime->control->appl_ptr = appl_ptr; 1653 if (substream->ops->ack) 1654 substream->ops->ack(substream); 1655 1656 offset += frames; 1657 size -= frames; 1658 xfer += frames; 1659 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1660 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1661 err = snd_pcm_start(substream); 1662 if (err < 0) 1663 goto _end_unlock; 1664 } 1665 } 1666 _end_unlock: 1667 snd_pcm_stream_unlock_irq(substream); 1668 _end: 1669 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1670 } 1671 1672 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 1673 { 1674 struct snd_pcm_runtime *runtime; 1675 int nonblock; 1676 1677 snd_assert(substream != NULL, return -ENXIO); 1678 runtime = substream->runtime; 1679 snd_assert(runtime != NULL, return -ENXIO); 1680 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 1681 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1682 return -EBADFD; 1683 1684 nonblock = !!(substream->f_flags & O_NONBLOCK); 1685 1686 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 1687 runtime->channels > 1) 1688 return -EINVAL; 1689 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 1690 snd_pcm_lib_write_transfer); 1691 } 1692 1693 EXPORT_SYMBOL(snd_pcm_lib_write); 1694 1695 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 1696 unsigned int hwoff, 1697 unsigned long data, unsigned int off, 1698 snd_pcm_uframes_t frames) 1699 { 1700 struct snd_pcm_runtime *runtime = substream->runtime; 1701 int err; 1702 void __user **bufs = (void __user **)data; 1703 int channels = runtime->channels; 1704 int c; 1705 if (substream->ops->copy) { 1706 snd_assert(substream->ops->silence != NULL, return -EINVAL); 1707 for (c = 0; c < channels; ++c, ++bufs) { 1708 if (*bufs == NULL) { 1709 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 1710 return err; 1711 } else { 1712 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1713 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 1714 return err; 1715 } 1716 } 1717 } else { 1718 /* default transfer behaviour */ 1719 size_t dma_csize = runtime->dma_bytes / channels; 1720 snd_assert(runtime->dma_area, return -EFAULT); 1721 for (c = 0; c < channels; ++c, ++bufs) { 1722 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 1723 if (*bufs == NULL) { 1724 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 1725 } else { 1726 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1727 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 1728 return -EFAULT; 1729 } 1730 } 1731 } 1732 return 0; 1733 } 1734 1735 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 1736 void __user **bufs, 1737 snd_pcm_uframes_t frames) 1738 { 1739 struct snd_pcm_runtime *runtime; 1740 int nonblock; 1741 1742 snd_assert(substream != NULL, return -ENXIO); 1743 runtime = substream->runtime; 1744 snd_assert(runtime != NULL, return -ENXIO); 1745 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 1746 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1747 return -EBADFD; 1748 1749 nonblock = !!(substream->f_flags & O_NONBLOCK); 1750 1751 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 1752 return -EINVAL; 1753 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 1754 nonblock, snd_pcm_lib_writev_transfer); 1755 } 1756 1757 EXPORT_SYMBOL(snd_pcm_lib_writev); 1758 1759 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 1760 unsigned int hwoff, 1761 unsigned long data, unsigned int off, 1762 snd_pcm_uframes_t frames) 1763 { 1764 struct snd_pcm_runtime *runtime = substream->runtime; 1765 int err; 1766 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1767 if (substream->ops->copy) { 1768 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1769 return err; 1770 } else { 1771 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1772 snd_assert(runtime->dma_area, return -EFAULT); 1773 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 1774 return -EFAULT; 1775 } 1776 return 0; 1777 } 1778 1779 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 1780 unsigned long data, 1781 snd_pcm_uframes_t size, 1782 int nonblock, 1783 transfer_f transfer) 1784 { 1785 struct snd_pcm_runtime *runtime = substream->runtime; 1786 snd_pcm_uframes_t xfer = 0; 1787 snd_pcm_uframes_t offset = 0; 1788 int err = 0; 1789 1790 if (size == 0) 1791 return 0; 1792 1793 snd_pcm_stream_lock_irq(substream); 1794 switch (runtime->status->state) { 1795 case SNDRV_PCM_STATE_PREPARED: 1796 if (size >= runtime->start_threshold) { 1797 err = snd_pcm_start(substream); 1798 if (err < 0) 1799 goto _end_unlock; 1800 } 1801 break; 1802 case SNDRV_PCM_STATE_DRAINING: 1803 case SNDRV_PCM_STATE_RUNNING: 1804 case SNDRV_PCM_STATE_PAUSED: 1805 break; 1806 case SNDRV_PCM_STATE_XRUN: 1807 err = -EPIPE; 1808 goto _end_unlock; 1809 case SNDRV_PCM_STATE_SUSPENDED: 1810 err = -ESTRPIPE; 1811 goto _end_unlock; 1812 default: 1813 err = -EBADFD; 1814 goto _end_unlock; 1815 } 1816 1817 while (size > 0) { 1818 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1819 snd_pcm_uframes_t avail; 1820 snd_pcm_uframes_t cont; 1821 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1822 snd_pcm_update_hw_ptr(substream); 1823 avail = snd_pcm_capture_avail(runtime); 1824 if (!avail) { 1825 if (runtime->status->state == 1826 SNDRV_PCM_STATE_DRAINING) { 1827 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 1828 goto _end_unlock; 1829 } 1830 if (nonblock) { 1831 err = -EAGAIN; 1832 goto _end_unlock; 1833 } 1834 err = wait_for_avail_min(substream, &avail); 1835 if (err < 0) 1836 goto _end_unlock; 1837 if (!avail) 1838 continue; /* draining */ 1839 } 1840 frames = size > avail ? avail : size; 1841 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1842 if (frames > cont) 1843 frames = cont; 1844 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); 1845 appl_ptr = runtime->control->appl_ptr; 1846 appl_ofs = appl_ptr % runtime->buffer_size; 1847 snd_pcm_stream_unlock_irq(substream); 1848 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 1849 goto _end; 1850 snd_pcm_stream_lock_irq(substream); 1851 switch (runtime->status->state) { 1852 case SNDRV_PCM_STATE_XRUN: 1853 err = -EPIPE; 1854 goto _end_unlock; 1855 case SNDRV_PCM_STATE_SUSPENDED: 1856 err = -ESTRPIPE; 1857 goto _end_unlock; 1858 default: 1859 break; 1860 } 1861 appl_ptr += frames; 1862 if (appl_ptr >= runtime->boundary) 1863 appl_ptr -= runtime->boundary; 1864 runtime->control->appl_ptr = appl_ptr; 1865 if (substream->ops->ack) 1866 substream->ops->ack(substream); 1867 1868 offset += frames; 1869 size -= frames; 1870 xfer += frames; 1871 } 1872 _end_unlock: 1873 snd_pcm_stream_unlock_irq(substream); 1874 _end: 1875 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1876 } 1877 1878 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 1879 { 1880 struct snd_pcm_runtime *runtime; 1881 int nonblock; 1882 1883 snd_assert(substream != NULL, return -ENXIO); 1884 runtime = substream->runtime; 1885 snd_assert(runtime != NULL, return -ENXIO); 1886 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 1887 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1888 return -EBADFD; 1889 1890 nonblock = !!(substream->f_flags & O_NONBLOCK); 1891 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 1892 return -EINVAL; 1893 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 1894 } 1895 1896 EXPORT_SYMBOL(snd_pcm_lib_read); 1897 1898 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 1899 unsigned int hwoff, 1900 unsigned long data, unsigned int off, 1901 snd_pcm_uframes_t frames) 1902 { 1903 struct snd_pcm_runtime *runtime = substream->runtime; 1904 int err; 1905 void __user **bufs = (void __user **)data; 1906 int channels = runtime->channels; 1907 int c; 1908 if (substream->ops->copy) { 1909 for (c = 0; c < channels; ++c, ++bufs) { 1910 char __user *buf; 1911 if (*bufs == NULL) 1912 continue; 1913 buf = *bufs + samples_to_bytes(runtime, off); 1914 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 1915 return err; 1916 } 1917 } else { 1918 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 1919 snd_assert(runtime->dma_area, return -EFAULT); 1920 for (c = 0; c < channels; ++c, ++bufs) { 1921 char *hwbuf; 1922 char __user *buf; 1923 if (*bufs == NULL) 1924 continue; 1925 1926 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 1927 buf = *bufs + samples_to_bytes(runtime, off); 1928 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 1929 return -EFAULT; 1930 } 1931 } 1932 return 0; 1933 } 1934 1935 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 1936 void __user **bufs, 1937 snd_pcm_uframes_t frames) 1938 { 1939 struct snd_pcm_runtime *runtime; 1940 int nonblock; 1941 1942 snd_assert(substream != NULL, return -ENXIO); 1943 runtime = substream->runtime; 1944 snd_assert(runtime != NULL, return -ENXIO); 1945 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 1946 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1947 return -EBADFD; 1948 1949 nonblock = !!(substream->f_flags & O_NONBLOCK); 1950 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 1951 return -EINVAL; 1952 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 1953 } 1954 1955 EXPORT_SYMBOL(snd_pcm_lib_readv); 1956