1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 #include <linux/time.h> 26 #include <linux/math64.h> 27 #include <linux/export.h> 28 #include <sound/core.h> 29 #include <sound/control.h> 30 #include <sound/tlv.h> 31 #include <sound/info.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/timer.h> 35 36 #include "pcm_local.h" 37 38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 39 #define CREATE_TRACE_POINTS 40 #include "pcm_trace.h" 41 #else 42 #define trace_hwptr(substream, pos, in_interrupt) 43 #define trace_xrun(substream) 44 #define trace_hw_ptr_error(substream, reason) 45 #define trace_applptr(substream, prev, curr) 46 #endif 47 48 static int fill_silence_frames(struct snd_pcm_substream *substream, 49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames); 50 51 /* 52 * fill ring buffer with silence 53 * runtime->silence_start: starting pointer to silence area 54 * runtime->silence_filled: size filled with silence 55 * runtime->silence_threshold: threshold from application 56 * runtime->silence_size: maximal size from application 57 * 58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 59 */ 60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 61 { 62 struct snd_pcm_runtime *runtime = substream->runtime; 63 snd_pcm_uframes_t frames, ofs, transfer; 64 int err; 65 66 if (runtime->silence_size < runtime->boundary) { 67 snd_pcm_sframes_t noise_dist, n; 68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr); 69 if (runtime->silence_start != appl_ptr) { 70 n = appl_ptr - runtime->silence_start; 71 if (n < 0) 72 n += runtime->boundary; 73 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 74 runtime->silence_filled -= n; 75 else 76 runtime->silence_filled = 0; 77 runtime->silence_start = appl_ptr; 78 } 79 if (runtime->silence_filled >= runtime->buffer_size) 80 return; 81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 83 return; 84 frames = runtime->silence_threshold - noise_dist; 85 if (frames > runtime->silence_size) 86 frames = runtime->silence_size; 87 } else { 88 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 90 if (avail > runtime->buffer_size) 91 avail = runtime->buffer_size; 92 runtime->silence_filled = avail > 0 ? avail : 0; 93 runtime->silence_start = (runtime->status->hw_ptr + 94 runtime->silence_filled) % 95 runtime->boundary; 96 } else { 97 ofs = runtime->status->hw_ptr; 98 frames = new_hw_ptr - ofs; 99 if ((snd_pcm_sframes_t)frames < 0) 100 frames += runtime->boundary; 101 runtime->silence_filled -= frames; 102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 103 runtime->silence_filled = 0; 104 runtime->silence_start = new_hw_ptr; 105 } else { 106 runtime->silence_start = ofs; 107 } 108 } 109 frames = runtime->buffer_size - runtime->silence_filled; 110 } 111 if (snd_BUG_ON(frames > runtime->buffer_size)) 112 return; 113 if (frames == 0) 114 return; 115 ofs = runtime->silence_start % runtime->buffer_size; 116 while (frames > 0) { 117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 118 err = fill_silence_frames(substream, ofs, transfer); 119 snd_BUG_ON(err < 0); 120 runtime->silence_filled += transfer; 121 frames -= transfer; 122 ofs = 0; 123 } 124 } 125 126 #ifdef CONFIG_SND_DEBUG 127 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 128 char *name, size_t len) 129 { 130 snprintf(name, len, "pcmC%dD%d%c:%d", 131 substream->pcm->card->number, 132 substream->pcm->device, 133 substream->stream ? 'c' : 'p', 134 substream->number); 135 } 136 EXPORT_SYMBOL(snd_pcm_debug_name); 137 #endif 138 139 #define XRUN_DEBUG_BASIC (1<<0) 140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 142 143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 144 145 #define xrun_debug(substream, mask) \ 146 ((substream)->pstr->xrun_debug & (mask)) 147 #else 148 #define xrun_debug(substream, mask) 0 149 #endif 150 151 #define dump_stack_on_xrun(substream) do { \ 152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 153 dump_stack(); \ 154 } while (0) 155 156 /* call with stream lock held */ 157 void __snd_pcm_xrun(struct snd_pcm_substream *substream) 158 { 159 struct snd_pcm_runtime *runtime = substream->runtime; 160 161 trace_xrun(substream); 162 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 163 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 164 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 165 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 166 char name[16]; 167 snd_pcm_debug_name(substream, name, sizeof(name)); 168 pcm_warn(substream->pcm, "XRUN: %s\n", name); 169 dump_stack_on_xrun(substream); 170 } 171 } 172 173 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 174 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 175 do { \ 176 trace_hw_ptr_error(substream, reason); \ 177 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 178 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 179 (in_interrupt) ? 'Q' : 'P', ##args); \ 180 dump_stack_on_xrun(substream); \ 181 } \ 182 } while (0) 183 184 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 185 186 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 187 188 #endif 189 190 int snd_pcm_update_state(struct snd_pcm_substream *substream, 191 struct snd_pcm_runtime *runtime) 192 { 193 snd_pcm_uframes_t avail; 194 195 avail = snd_pcm_avail(substream); 196 if (avail > runtime->avail_max) 197 runtime->avail_max = avail; 198 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 199 if (avail >= runtime->buffer_size) { 200 snd_pcm_drain_done(substream); 201 return -EPIPE; 202 } 203 } else { 204 if (avail >= runtime->stop_threshold) { 205 __snd_pcm_xrun(substream); 206 return -EPIPE; 207 } 208 } 209 if (runtime->twake) { 210 if (avail >= runtime->twake) 211 wake_up(&runtime->tsleep); 212 } else if (avail >= runtime->control->avail_min) 213 wake_up(&runtime->sleep); 214 return 0; 215 } 216 217 static void update_audio_tstamp(struct snd_pcm_substream *substream, 218 struct timespec *curr_tstamp, 219 struct timespec *audio_tstamp) 220 { 221 struct snd_pcm_runtime *runtime = substream->runtime; 222 u64 audio_frames, audio_nsecs; 223 struct timespec driver_tstamp; 224 225 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 226 return; 227 228 if (!(substream->ops->get_time_info) || 229 (runtime->audio_tstamp_report.actual_type == 230 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 231 232 /* 233 * provide audio timestamp derived from pointer position 234 * add delay only if requested 235 */ 236 237 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 238 239 if (runtime->audio_tstamp_config.report_delay) { 240 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 241 audio_frames -= runtime->delay; 242 else 243 audio_frames += runtime->delay; 244 } 245 audio_nsecs = div_u64(audio_frames * 1000000000LL, 246 runtime->rate); 247 *audio_tstamp = ns_to_timespec(audio_nsecs); 248 } 249 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) { 250 runtime->status->audio_tstamp = *audio_tstamp; 251 runtime->status->tstamp = *curr_tstamp; 252 } 253 254 /* 255 * re-take a driver timestamp to let apps detect if the reference tstamp 256 * read by low-level hardware was provided with a delay 257 */ 258 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp); 259 runtime->driver_tstamp = driver_tstamp; 260 } 261 262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 263 unsigned int in_interrupt) 264 { 265 struct snd_pcm_runtime *runtime = substream->runtime; 266 snd_pcm_uframes_t pos; 267 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 268 snd_pcm_sframes_t hdelta, delta; 269 unsigned long jdelta; 270 unsigned long curr_jiffies; 271 struct timespec curr_tstamp; 272 struct timespec audio_tstamp; 273 int crossed_boundary = 0; 274 275 old_hw_ptr = runtime->status->hw_ptr; 276 277 /* 278 * group pointer, time and jiffies reads to allow for more 279 * accurate correlations/corrections. 280 * The values are stored at the end of this routine after 281 * corrections for hw_ptr position 282 */ 283 pos = substream->ops->pointer(substream); 284 curr_jiffies = jiffies; 285 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 286 if ((substream->ops->get_time_info) && 287 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 288 substream->ops->get_time_info(substream, &curr_tstamp, 289 &audio_tstamp, 290 &runtime->audio_tstamp_config, 291 &runtime->audio_tstamp_report); 292 293 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 294 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 295 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 296 } else 297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 298 } 299 300 if (pos == SNDRV_PCM_POS_XRUN) { 301 __snd_pcm_xrun(substream); 302 return -EPIPE; 303 } 304 if (pos >= runtime->buffer_size) { 305 if (printk_ratelimit()) { 306 char name[16]; 307 snd_pcm_debug_name(substream, name, sizeof(name)); 308 pcm_err(substream->pcm, 309 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 310 name, pos, runtime->buffer_size, 311 runtime->period_size); 312 } 313 pos = 0; 314 } 315 pos -= pos % runtime->min_align; 316 trace_hwptr(substream, pos, in_interrupt); 317 hw_base = runtime->hw_ptr_base; 318 new_hw_ptr = hw_base + pos; 319 if (in_interrupt) { 320 /* we know that one period was processed */ 321 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 322 delta = runtime->hw_ptr_interrupt + runtime->period_size; 323 if (delta > new_hw_ptr) { 324 /* check for double acknowledged interrupts */ 325 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 326 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { 327 hw_base += runtime->buffer_size; 328 if (hw_base >= runtime->boundary) { 329 hw_base = 0; 330 crossed_boundary++; 331 } 332 new_hw_ptr = hw_base + pos; 333 goto __delta; 334 } 335 } 336 } 337 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 338 /* pointer crosses the end of the ring buffer */ 339 if (new_hw_ptr < old_hw_ptr) { 340 hw_base += runtime->buffer_size; 341 if (hw_base >= runtime->boundary) { 342 hw_base = 0; 343 crossed_boundary++; 344 } 345 new_hw_ptr = hw_base + pos; 346 } 347 __delta: 348 delta = new_hw_ptr - old_hw_ptr; 349 if (delta < 0) 350 delta += runtime->boundary; 351 352 if (runtime->no_period_wakeup) { 353 snd_pcm_sframes_t xrun_threshold; 354 /* 355 * Without regular period interrupts, we have to check 356 * the elapsed time to detect xruns. 357 */ 358 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 359 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 360 goto no_delta_check; 361 hdelta = jdelta - delta * HZ / runtime->rate; 362 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 363 while (hdelta > xrun_threshold) { 364 delta += runtime->buffer_size; 365 hw_base += runtime->buffer_size; 366 if (hw_base >= runtime->boundary) { 367 hw_base = 0; 368 crossed_boundary++; 369 } 370 new_hw_ptr = hw_base + pos; 371 hdelta -= runtime->hw_ptr_buffer_jiffies; 372 } 373 goto no_delta_check; 374 } 375 376 /* something must be really wrong */ 377 if (delta >= runtime->buffer_size + runtime->period_size) { 378 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 379 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 380 substream->stream, (long)pos, 381 (long)new_hw_ptr, (long)old_hw_ptr); 382 return 0; 383 } 384 385 /* Do jiffies check only in xrun_debug mode */ 386 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 387 goto no_jiffies_check; 388 389 /* Skip the jiffies check for hardwares with BATCH flag. 390 * Such hardware usually just increases the position at each IRQ, 391 * thus it can't give any strange position. 392 */ 393 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 394 goto no_jiffies_check; 395 hdelta = delta; 396 if (hdelta < runtime->delay) 397 goto no_jiffies_check; 398 hdelta -= runtime->delay; 399 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 400 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 401 delta = jdelta / 402 (((runtime->period_size * HZ) / runtime->rate) 403 + HZ/100); 404 /* move new_hw_ptr according jiffies not pos variable */ 405 new_hw_ptr = old_hw_ptr; 406 hw_base = delta; 407 /* use loop to avoid checks for delta overflows */ 408 /* the delta value is small or zero in most cases */ 409 while (delta > 0) { 410 new_hw_ptr += runtime->period_size; 411 if (new_hw_ptr >= runtime->boundary) { 412 new_hw_ptr -= runtime->boundary; 413 crossed_boundary--; 414 } 415 delta--; 416 } 417 /* align hw_base to buffer_size */ 418 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 419 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 420 (long)pos, (long)hdelta, 421 (long)runtime->period_size, jdelta, 422 ((hdelta * HZ) / runtime->rate), hw_base, 423 (unsigned long)old_hw_ptr, 424 (unsigned long)new_hw_ptr); 425 /* reset values to proper state */ 426 delta = 0; 427 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 428 } 429 no_jiffies_check: 430 if (delta > runtime->period_size + runtime->period_size / 2) { 431 hw_ptr_error(substream, in_interrupt, 432 "Lost interrupts?", 433 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 434 substream->stream, (long)delta, 435 (long)new_hw_ptr, 436 (long)old_hw_ptr); 437 } 438 439 no_delta_check: 440 if (runtime->status->hw_ptr == new_hw_ptr) { 441 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 442 return 0; 443 } 444 445 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 446 runtime->silence_size > 0) 447 snd_pcm_playback_silence(substream, new_hw_ptr); 448 449 if (in_interrupt) { 450 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 451 if (delta < 0) 452 delta += runtime->boundary; 453 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 454 runtime->hw_ptr_interrupt += delta; 455 if (runtime->hw_ptr_interrupt >= runtime->boundary) 456 runtime->hw_ptr_interrupt -= runtime->boundary; 457 } 458 runtime->hw_ptr_base = hw_base; 459 runtime->status->hw_ptr = new_hw_ptr; 460 runtime->hw_ptr_jiffies = curr_jiffies; 461 if (crossed_boundary) { 462 snd_BUG_ON(crossed_boundary != 1); 463 runtime->hw_ptr_wrap += runtime->boundary; 464 } 465 466 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 467 468 return snd_pcm_update_state(substream, runtime); 469 } 470 471 /* CAUTION: call it with irq disabled */ 472 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 473 { 474 return snd_pcm_update_hw_ptr0(substream, 0); 475 } 476 477 /** 478 * snd_pcm_set_ops - set the PCM operators 479 * @pcm: the pcm instance 480 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 481 * @ops: the operator table 482 * 483 * Sets the given PCM operators to the pcm instance. 484 */ 485 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 486 const struct snd_pcm_ops *ops) 487 { 488 struct snd_pcm_str *stream = &pcm->streams[direction]; 489 struct snd_pcm_substream *substream; 490 491 for (substream = stream->substream; substream != NULL; substream = substream->next) 492 substream->ops = ops; 493 } 494 EXPORT_SYMBOL(snd_pcm_set_ops); 495 496 /** 497 * snd_pcm_sync - set the PCM sync id 498 * @substream: the pcm substream 499 * 500 * Sets the PCM sync identifier for the card. 501 */ 502 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 503 { 504 struct snd_pcm_runtime *runtime = substream->runtime; 505 506 runtime->sync.id32[0] = substream->pcm->card->number; 507 runtime->sync.id32[1] = -1; 508 runtime->sync.id32[2] = -1; 509 runtime->sync.id32[3] = -1; 510 } 511 EXPORT_SYMBOL(snd_pcm_set_sync); 512 513 /* 514 * Standard ioctl routine 515 */ 516 517 static inline unsigned int div32(unsigned int a, unsigned int b, 518 unsigned int *r) 519 { 520 if (b == 0) { 521 *r = 0; 522 return UINT_MAX; 523 } 524 *r = a % b; 525 return a / b; 526 } 527 528 static inline unsigned int div_down(unsigned int a, unsigned int b) 529 { 530 if (b == 0) 531 return UINT_MAX; 532 return a / b; 533 } 534 535 static inline unsigned int div_up(unsigned int a, unsigned int b) 536 { 537 unsigned int r; 538 unsigned int q; 539 if (b == 0) 540 return UINT_MAX; 541 q = div32(a, b, &r); 542 if (r) 543 ++q; 544 return q; 545 } 546 547 static inline unsigned int mul(unsigned int a, unsigned int b) 548 { 549 if (a == 0) 550 return 0; 551 if (div_down(UINT_MAX, a) < b) 552 return UINT_MAX; 553 return a * b; 554 } 555 556 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 557 unsigned int c, unsigned int *r) 558 { 559 u_int64_t n = (u_int64_t) a * b; 560 if (c == 0) { 561 *r = 0; 562 return UINT_MAX; 563 } 564 n = div_u64_rem(n, c, r); 565 if (n >= UINT_MAX) { 566 *r = 0; 567 return UINT_MAX; 568 } 569 return n; 570 } 571 572 /** 573 * snd_interval_refine - refine the interval value of configurator 574 * @i: the interval value to refine 575 * @v: the interval value to refer to 576 * 577 * Refines the interval value with the reference value. 578 * The interval is changed to the range satisfying both intervals. 579 * The interval status (min, max, integer, etc.) are evaluated. 580 * 581 * Return: Positive if the value is changed, zero if it's not changed, or a 582 * negative error code. 583 */ 584 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 585 { 586 int changed = 0; 587 if (snd_BUG_ON(snd_interval_empty(i))) 588 return -EINVAL; 589 if (i->min < v->min) { 590 i->min = v->min; 591 i->openmin = v->openmin; 592 changed = 1; 593 } else if (i->min == v->min && !i->openmin && v->openmin) { 594 i->openmin = 1; 595 changed = 1; 596 } 597 if (i->max > v->max) { 598 i->max = v->max; 599 i->openmax = v->openmax; 600 changed = 1; 601 } else if (i->max == v->max && !i->openmax && v->openmax) { 602 i->openmax = 1; 603 changed = 1; 604 } 605 if (!i->integer && v->integer) { 606 i->integer = 1; 607 changed = 1; 608 } 609 if (i->integer) { 610 if (i->openmin) { 611 i->min++; 612 i->openmin = 0; 613 } 614 if (i->openmax) { 615 i->max--; 616 i->openmax = 0; 617 } 618 } else if (!i->openmin && !i->openmax && i->min == i->max) 619 i->integer = 1; 620 if (snd_interval_checkempty(i)) { 621 snd_interval_none(i); 622 return -EINVAL; 623 } 624 return changed; 625 } 626 EXPORT_SYMBOL(snd_interval_refine); 627 628 static int snd_interval_refine_first(struct snd_interval *i) 629 { 630 const unsigned int last_max = i->max; 631 632 if (snd_BUG_ON(snd_interval_empty(i))) 633 return -EINVAL; 634 if (snd_interval_single(i)) 635 return 0; 636 i->max = i->min; 637 if (i->openmin) 638 i->max++; 639 /* only exclude max value if also excluded before refine */ 640 i->openmax = (i->openmax && i->max >= last_max); 641 return 1; 642 } 643 644 static int snd_interval_refine_last(struct snd_interval *i) 645 { 646 const unsigned int last_min = i->min; 647 648 if (snd_BUG_ON(snd_interval_empty(i))) 649 return -EINVAL; 650 if (snd_interval_single(i)) 651 return 0; 652 i->min = i->max; 653 if (i->openmax) 654 i->min--; 655 /* only exclude min value if also excluded before refine */ 656 i->openmin = (i->openmin && i->min <= last_min); 657 return 1; 658 } 659 660 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 661 { 662 if (a->empty || b->empty) { 663 snd_interval_none(c); 664 return; 665 } 666 c->empty = 0; 667 c->min = mul(a->min, b->min); 668 c->openmin = (a->openmin || b->openmin); 669 c->max = mul(a->max, b->max); 670 c->openmax = (a->openmax || b->openmax); 671 c->integer = (a->integer && b->integer); 672 } 673 674 /** 675 * snd_interval_div - refine the interval value with division 676 * @a: dividend 677 * @b: divisor 678 * @c: quotient 679 * 680 * c = a / b 681 * 682 * Returns non-zero if the value is changed, zero if not changed. 683 */ 684 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 685 { 686 unsigned int r; 687 if (a->empty || b->empty) { 688 snd_interval_none(c); 689 return; 690 } 691 c->empty = 0; 692 c->min = div32(a->min, b->max, &r); 693 c->openmin = (r || a->openmin || b->openmax); 694 if (b->min > 0) { 695 c->max = div32(a->max, b->min, &r); 696 if (r) { 697 c->max++; 698 c->openmax = 1; 699 } else 700 c->openmax = (a->openmax || b->openmin); 701 } else { 702 c->max = UINT_MAX; 703 c->openmax = 0; 704 } 705 c->integer = 0; 706 } 707 708 /** 709 * snd_interval_muldivk - refine the interval value 710 * @a: dividend 1 711 * @b: dividend 2 712 * @k: divisor (as integer) 713 * @c: result 714 * 715 * c = a * b / k 716 * 717 * Returns non-zero if the value is changed, zero if not changed. 718 */ 719 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 720 unsigned int k, struct snd_interval *c) 721 { 722 unsigned int r; 723 if (a->empty || b->empty) { 724 snd_interval_none(c); 725 return; 726 } 727 c->empty = 0; 728 c->min = muldiv32(a->min, b->min, k, &r); 729 c->openmin = (r || a->openmin || b->openmin); 730 c->max = muldiv32(a->max, b->max, k, &r); 731 if (r) { 732 c->max++; 733 c->openmax = 1; 734 } else 735 c->openmax = (a->openmax || b->openmax); 736 c->integer = 0; 737 } 738 739 /** 740 * snd_interval_mulkdiv - refine the interval value 741 * @a: dividend 1 742 * @k: dividend 2 (as integer) 743 * @b: divisor 744 * @c: result 745 * 746 * c = a * k / b 747 * 748 * Returns non-zero if the value is changed, zero if not changed. 749 */ 750 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 751 const struct snd_interval *b, struct snd_interval *c) 752 { 753 unsigned int r; 754 if (a->empty || b->empty) { 755 snd_interval_none(c); 756 return; 757 } 758 c->empty = 0; 759 c->min = muldiv32(a->min, k, b->max, &r); 760 c->openmin = (r || a->openmin || b->openmax); 761 if (b->min > 0) { 762 c->max = muldiv32(a->max, k, b->min, &r); 763 if (r) { 764 c->max++; 765 c->openmax = 1; 766 } else 767 c->openmax = (a->openmax || b->openmin); 768 } else { 769 c->max = UINT_MAX; 770 c->openmax = 0; 771 } 772 c->integer = 0; 773 } 774 775 /* ---- */ 776 777 778 /** 779 * snd_interval_ratnum - refine the interval value 780 * @i: interval to refine 781 * @rats_count: number of ratnum_t 782 * @rats: ratnum_t array 783 * @nump: pointer to store the resultant numerator 784 * @denp: pointer to store the resultant denominator 785 * 786 * Return: Positive if the value is changed, zero if it's not changed, or a 787 * negative error code. 788 */ 789 int snd_interval_ratnum(struct snd_interval *i, 790 unsigned int rats_count, const struct snd_ratnum *rats, 791 unsigned int *nump, unsigned int *denp) 792 { 793 unsigned int best_num, best_den; 794 int best_diff; 795 unsigned int k; 796 struct snd_interval t; 797 int err; 798 unsigned int result_num, result_den; 799 int result_diff; 800 801 best_num = best_den = best_diff = 0; 802 for (k = 0; k < rats_count; ++k) { 803 unsigned int num = rats[k].num; 804 unsigned int den; 805 unsigned int q = i->min; 806 int diff; 807 if (q == 0) 808 q = 1; 809 den = div_up(num, q); 810 if (den < rats[k].den_min) 811 continue; 812 if (den > rats[k].den_max) 813 den = rats[k].den_max; 814 else { 815 unsigned int r; 816 r = (den - rats[k].den_min) % rats[k].den_step; 817 if (r != 0) 818 den -= r; 819 } 820 diff = num - q * den; 821 if (diff < 0) 822 diff = -diff; 823 if (best_num == 0 || 824 diff * best_den < best_diff * den) { 825 best_diff = diff; 826 best_den = den; 827 best_num = num; 828 } 829 } 830 if (best_den == 0) { 831 i->empty = 1; 832 return -EINVAL; 833 } 834 t.min = div_down(best_num, best_den); 835 t.openmin = !!(best_num % best_den); 836 837 result_num = best_num; 838 result_diff = best_diff; 839 result_den = best_den; 840 best_num = best_den = best_diff = 0; 841 for (k = 0; k < rats_count; ++k) { 842 unsigned int num = rats[k].num; 843 unsigned int den; 844 unsigned int q = i->max; 845 int diff; 846 if (q == 0) { 847 i->empty = 1; 848 return -EINVAL; 849 } 850 den = div_down(num, q); 851 if (den > rats[k].den_max) 852 continue; 853 if (den < rats[k].den_min) 854 den = rats[k].den_min; 855 else { 856 unsigned int r; 857 r = (den - rats[k].den_min) % rats[k].den_step; 858 if (r != 0) 859 den += rats[k].den_step - r; 860 } 861 diff = q * den - num; 862 if (diff < 0) 863 diff = -diff; 864 if (best_num == 0 || 865 diff * best_den < best_diff * den) { 866 best_diff = diff; 867 best_den = den; 868 best_num = num; 869 } 870 } 871 if (best_den == 0) { 872 i->empty = 1; 873 return -EINVAL; 874 } 875 t.max = div_up(best_num, best_den); 876 t.openmax = !!(best_num % best_den); 877 t.integer = 0; 878 err = snd_interval_refine(i, &t); 879 if (err < 0) 880 return err; 881 882 if (snd_interval_single(i)) { 883 if (best_diff * result_den < result_diff * best_den) { 884 result_num = best_num; 885 result_den = best_den; 886 } 887 if (nump) 888 *nump = result_num; 889 if (denp) 890 *denp = result_den; 891 } 892 return err; 893 } 894 EXPORT_SYMBOL(snd_interval_ratnum); 895 896 /** 897 * snd_interval_ratden - refine the interval value 898 * @i: interval to refine 899 * @rats_count: number of struct ratden 900 * @rats: struct ratden array 901 * @nump: pointer to store the resultant numerator 902 * @denp: pointer to store the resultant denominator 903 * 904 * Return: Positive if the value is changed, zero if it's not changed, or a 905 * negative error code. 906 */ 907 static int snd_interval_ratden(struct snd_interval *i, 908 unsigned int rats_count, 909 const struct snd_ratden *rats, 910 unsigned int *nump, unsigned int *denp) 911 { 912 unsigned int best_num, best_diff, best_den; 913 unsigned int k; 914 struct snd_interval t; 915 int err; 916 917 best_num = best_den = best_diff = 0; 918 for (k = 0; k < rats_count; ++k) { 919 unsigned int num; 920 unsigned int den = rats[k].den; 921 unsigned int q = i->min; 922 int diff; 923 num = mul(q, den); 924 if (num > rats[k].num_max) 925 continue; 926 if (num < rats[k].num_min) 927 num = rats[k].num_max; 928 else { 929 unsigned int r; 930 r = (num - rats[k].num_min) % rats[k].num_step; 931 if (r != 0) 932 num += rats[k].num_step - r; 933 } 934 diff = num - q * den; 935 if (best_num == 0 || 936 diff * best_den < best_diff * den) { 937 best_diff = diff; 938 best_den = den; 939 best_num = num; 940 } 941 } 942 if (best_den == 0) { 943 i->empty = 1; 944 return -EINVAL; 945 } 946 t.min = div_down(best_num, best_den); 947 t.openmin = !!(best_num % best_den); 948 949 best_num = best_den = best_diff = 0; 950 for (k = 0; k < rats_count; ++k) { 951 unsigned int num; 952 unsigned int den = rats[k].den; 953 unsigned int q = i->max; 954 int diff; 955 num = mul(q, den); 956 if (num < rats[k].num_min) 957 continue; 958 if (num > rats[k].num_max) 959 num = rats[k].num_max; 960 else { 961 unsigned int r; 962 r = (num - rats[k].num_min) % rats[k].num_step; 963 if (r != 0) 964 num -= r; 965 } 966 diff = q * den - num; 967 if (best_num == 0 || 968 diff * best_den < best_diff * den) { 969 best_diff = diff; 970 best_den = den; 971 best_num = num; 972 } 973 } 974 if (best_den == 0) { 975 i->empty = 1; 976 return -EINVAL; 977 } 978 t.max = div_up(best_num, best_den); 979 t.openmax = !!(best_num % best_den); 980 t.integer = 0; 981 err = snd_interval_refine(i, &t); 982 if (err < 0) 983 return err; 984 985 if (snd_interval_single(i)) { 986 if (nump) 987 *nump = best_num; 988 if (denp) 989 *denp = best_den; 990 } 991 return err; 992 } 993 994 /** 995 * snd_interval_list - refine the interval value from the list 996 * @i: the interval value to refine 997 * @count: the number of elements in the list 998 * @list: the value list 999 * @mask: the bit-mask to evaluate 1000 * 1001 * Refines the interval value from the list. 1002 * When mask is non-zero, only the elements corresponding to bit 1 are 1003 * evaluated. 1004 * 1005 * Return: Positive if the value is changed, zero if it's not changed, or a 1006 * negative error code. 1007 */ 1008 int snd_interval_list(struct snd_interval *i, unsigned int count, 1009 const unsigned int *list, unsigned int mask) 1010 { 1011 unsigned int k; 1012 struct snd_interval list_range; 1013 1014 if (!count) { 1015 i->empty = 1; 1016 return -EINVAL; 1017 } 1018 snd_interval_any(&list_range); 1019 list_range.min = UINT_MAX; 1020 list_range.max = 0; 1021 for (k = 0; k < count; k++) { 1022 if (mask && !(mask & (1 << k))) 1023 continue; 1024 if (!snd_interval_test(i, list[k])) 1025 continue; 1026 list_range.min = min(list_range.min, list[k]); 1027 list_range.max = max(list_range.max, list[k]); 1028 } 1029 return snd_interval_refine(i, &list_range); 1030 } 1031 EXPORT_SYMBOL(snd_interval_list); 1032 1033 /** 1034 * snd_interval_ranges - refine the interval value from the list of ranges 1035 * @i: the interval value to refine 1036 * @count: the number of elements in the list of ranges 1037 * @ranges: the ranges list 1038 * @mask: the bit-mask to evaluate 1039 * 1040 * Refines the interval value from the list of ranges. 1041 * When mask is non-zero, only the elements corresponding to bit 1 are 1042 * evaluated. 1043 * 1044 * Return: Positive if the value is changed, zero if it's not changed, or a 1045 * negative error code. 1046 */ 1047 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1048 const struct snd_interval *ranges, unsigned int mask) 1049 { 1050 unsigned int k; 1051 struct snd_interval range_union; 1052 struct snd_interval range; 1053 1054 if (!count) { 1055 snd_interval_none(i); 1056 return -EINVAL; 1057 } 1058 snd_interval_any(&range_union); 1059 range_union.min = UINT_MAX; 1060 range_union.max = 0; 1061 for (k = 0; k < count; k++) { 1062 if (mask && !(mask & (1 << k))) 1063 continue; 1064 snd_interval_copy(&range, &ranges[k]); 1065 if (snd_interval_refine(&range, i) < 0) 1066 continue; 1067 if (snd_interval_empty(&range)) 1068 continue; 1069 1070 if (range.min < range_union.min) { 1071 range_union.min = range.min; 1072 range_union.openmin = 1; 1073 } 1074 if (range.min == range_union.min && !range.openmin) 1075 range_union.openmin = 0; 1076 if (range.max > range_union.max) { 1077 range_union.max = range.max; 1078 range_union.openmax = 1; 1079 } 1080 if (range.max == range_union.max && !range.openmax) 1081 range_union.openmax = 0; 1082 } 1083 return snd_interval_refine(i, &range_union); 1084 } 1085 EXPORT_SYMBOL(snd_interval_ranges); 1086 1087 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1088 { 1089 unsigned int n; 1090 int changed = 0; 1091 n = i->min % step; 1092 if (n != 0 || i->openmin) { 1093 i->min += step - n; 1094 i->openmin = 0; 1095 changed = 1; 1096 } 1097 n = i->max % step; 1098 if (n != 0 || i->openmax) { 1099 i->max -= n; 1100 i->openmax = 0; 1101 changed = 1; 1102 } 1103 if (snd_interval_checkempty(i)) { 1104 i->empty = 1; 1105 return -EINVAL; 1106 } 1107 return changed; 1108 } 1109 1110 /* Info constraints helpers */ 1111 1112 /** 1113 * snd_pcm_hw_rule_add - add the hw-constraint rule 1114 * @runtime: the pcm runtime instance 1115 * @cond: condition bits 1116 * @var: the variable to evaluate 1117 * @func: the evaluation function 1118 * @private: the private data pointer passed to function 1119 * @dep: the dependent variables 1120 * 1121 * Return: Zero if successful, or a negative error code on failure. 1122 */ 1123 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1124 int var, 1125 snd_pcm_hw_rule_func_t func, void *private, 1126 int dep, ...) 1127 { 1128 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1129 struct snd_pcm_hw_rule *c; 1130 unsigned int k; 1131 va_list args; 1132 va_start(args, dep); 1133 if (constrs->rules_num >= constrs->rules_all) { 1134 struct snd_pcm_hw_rule *new; 1135 unsigned int new_rules = constrs->rules_all + 16; 1136 new = krealloc(constrs->rules, new_rules * sizeof(*c), 1137 GFP_KERNEL); 1138 if (!new) { 1139 va_end(args); 1140 return -ENOMEM; 1141 } 1142 constrs->rules = new; 1143 constrs->rules_all = new_rules; 1144 } 1145 c = &constrs->rules[constrs->rules_num]; 1146 c->cond = cond; 1147 c->func = func; 1148 c->var = var; 1149 c->private = private; 1150 k = 0; 1151 while (1) { 1152 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1153 va_end(args); 1154 return -EINVAL; 1155 } 1156 c->deps[k++] = dep; 1157 if (dep < 0) 1158 break; 1159 dep = va_arg(args, int); 1160 } 1161 constrs->rules_num++; 1162 va_end(args); 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1166 1167 /** 1168 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1169 * @runtime: PCM runtime instance 1170 * @var: hw_params variable to apply the mask 1171 * @mask: the bitmap mask 1172 * 1173 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1174 * 1175 * Return: Zero if successful, or a negative error code on failure. 1176 */ 1177 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1178 u_int32_t mask) 1179 { 1180 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1181 struct snd_mask *maskp = constrs_mask(constrs, var); 1182 *maskp->bits &= mask; 1183 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1184 if (*maskp->bits == 0) 1185 return -EINVAL; 1186 return 0; 1187 } 1188 1189 /** 1190 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1191 * @runtime: PCM runtime instance 1192 * @var: hw_params variable to apply the mask 1193 * @mask: the 64bit bitmap mask 1194 * 1195 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1196 * 1197 * Return: Zero if successful, or a negative error code on failure. 1198 */ 1199 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1200 u_int64_t mask) 1201 { 1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1203 struct snd_mask *maskp = constrs_mask(constrs, var); 1204 maskp->bits[0] &= (u_int32_t)mask; 1205 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1206 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1207 if (! maskp->bits[0] && ! maskp->bits[1]) 1208 return -EINVAL; 1209 return 0; 1210 } 1211 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1212 1213 /** 1214 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1215 * @runtime: PCM runtime instance 1216 * @var: hw_params variable to apply the integer constraint 1217 * 1218 * Apply the constraint of integer to an interval parameter. 1219 * 1220 * Return: Positive if the value is changed, zero if it's not changed, or a 1221 * negative error code. 1222 */ 1223 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1224 { 1225 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1226 return snd_interval_setinteger(constrs_interval(constrs, var)); 1227 } 1228 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1229 1230 /** 1231 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1232 * @runtime: PCM runtime instance 1233 * @var: hw_params variable to apply the range 1234 * @min: the minimal value 1235 * @max: the maximal value 1236 * 1237 * Apply the min/max range constraint to an interval parameter. 1238 * 1239 * Return: Positive if the value is changed, zero if it's not changed, or a 1240 * negative error code. 1241 */ 1242 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1243 unsigned int min, unsigned int max) 1244 { 1245 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1246 struct snd_interval t; 1247 t.min = min; 1248 t.max = max; 1249 t.openmin = t.openmax = 0; 1250 t.integer = 0; 1251 return snd_interval_refine(constrs_interval(constrs, var), &t); 1252 } 1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1254 1255 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1256 struct snd_pcm_hw_rule *rule) 1257 { 1258 struct snd_pcm_hw_constraint_list *list = rule->private; 1259 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1260 } 1261 1262 1263 /** 1264 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1265 * @runtime: PCM runtime instance 1266 * @cond: condition bits 1267 * @var: hw_params variable to apply the list constraint 1268 * @l: list 1269 * 1270 * Apply the list of constraints to an interval parameter. 1271 * 1272 * Return: Zero if successful, or a negative error code on failure. 1273 */ 1274 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1275 unsigned int cond, 1276 snd_pcm_hw_param_t var, 1277 const struct snd_pcm_hw_constraint_list *l) 1278 { 1279 return snd_pcm_hw_rule_add(runtime, cond, var, 1280 snd_pcm_hw_rule_list, (void *)l, 1281 var, -1); 1282 } 1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1284 1285 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1286 struct snd_pcm_hw_rule *rule) 1287 { 1288 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1289 return snd_interval_ranges(hw_param_interval(params, rule->var), 1290 r->count, r->ranges, r->mask); 1291 } 1292 1293 1294 /** 1295 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1296 * @runtime: PCM runtime instance 1297 * @cond: condition bits 1298 * @var: hw_params variable to apply the list of range constraints 1299 * @r: ranges 1300 * 1301 * Apply the list of range constraints to an interval parameter. 1302 * 1303 * Return: Zero if successful, or a negative error code on failure. 1304 */ 1305 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1306 unsigned int cond, 1307 snd_pcm_hw_param_t var, 1308 const struct snd_pcm_hw_constraint_ranges *r) 1309 { 1310 return snd_pcm_hw_rule_add(runtime, cond, var, 1311 snd_pcm_hw_rule_ranges, (void *)r, 1312 var, -1); 1313 } 1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1315 1316 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1317 struct snd_pcm_hw_rule *rule) 1318 { 1319 const struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1320 unsigned int num = 0, den = 0; 1321 int err; 1322 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1323 r->nrats, r->rats, &num, &den); 1324 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1325 params->rate_num = num; 1326 params->rate_den = den; 1327 } 1328 return err; 1329 } 1330 1331 /** 1332 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1333 * @runtime: PCM runtime instance 1334 * @cond: condition bits 1335 * @var: hw_params variable to apply the ratnums constraint 1336 * @r: struct snd_ratnums constriants 1337 * 1338 * Return: Zero if successful, or a negative error code on failure. 1339 */ 1340 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1341 unsigned int cond, 1342 snd_pcm_hw_param_t var, 1343 const struct snd_pcm_hw_constraint_ratnums *r) 1344 { 1345 return snd_pcm_hw_rule_add(runtime, cond, var, 1346 snd_pcm_hw_rule_ratnums, (void *)r, 1347 var, -1); 1348 } 1349 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1350 1351 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1352 struct snd_pcm_hw_rule *rule) 1353 { 1354 const struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1355 unsigned int num = 0, den = 0; 1356 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1357 r->nrats, r->rats, &num, &den); 1358 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1359 params->rate_num = num; 1360 params->rate_den = den; 1361 } 1362 return err; 1363 } 1364 1365 /** 1366 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1367 * @runtime: PCM runtime instance 1368 * @cond: condition bits 1369 * @var: hw_params variable to apply the ratdens constraint 1370 * @r: struct snd_ratdens constriants 1371 * 1372 * Return: Zero if successful, or a negative error code on failure. 1373 */ 1374 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1375 unsigned int cond, 1376 snd_pcm_hw_param_t var, 1377 const struct snd_pcm_hw_constraint_ratdens *r) 1378 { 1379 return snd_pcm_hw_rule_add(runtime, cond, var, 1380 snd_pcm_hw_rule_ratdens, (void *)r, 1381 var, -1); 1382 } 1383 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1384 1385 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1386 struct snd_pcm_hw_rule *rule) 1387 { 1388 unsigned int l = (unsigned long) rule->private; 1389 int width = l & 0xffff; 1390 unsigned int msbits = l >> 16; 1391 const struct snd_interval *i = 1392 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1393 1394 if (!snd_interval_single(i)) 1395 return 0; 1396 1397 if ((snd_interval_value(i) == width) || 1398 (width == 0 && snd_interval_value(i) > msbits)) 1399 params->msbits = min_not_zero(params->msbits, msbits); 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1406 * @runtime: PCM runtime instance 1407 * @cond: condition bits 1408 * @width: sample bits width 1409 * @msbits: msbits width 1410 * 1411 * This constraint will set the number of most significant bits (msbits) if a 1412 * sample format with the specified width has been select. If width is set to 0 1413 * the msbits will be set for any sample format with a width larger than the 1414 * specified msbits. 1415 * 1416 * Return: Zero if successful, or a negative error code on failure. 1417 */ 1418 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1419 unsigned int cond, 1420 unsigned int width, 1421 unsigned int msbits) 1422 { 1423 unsigned long l = (msbits << 16) | width; 1424 return snd_pcm_hw_rule_add(runtime, cond, -1, 1425 snd_pcm_hw_rule_msbits, 1426 (void*) l, 1427 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1428 } 1429 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1430 1431 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1432 struct snd_pcm_hw_rule *rule) 1433 { 1434 unsigned long step = (unsigned long) rule->private; 1435 return snd_interval_step(hw_param_interval(params, rule->var), step); 1436 } 1437 1438 /** 1439 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1440 * @runtime: PCM runtime instance 1441 * @cond: condition bits 1442 * @var: hw_params variable to apply the step constraint 1443 * @step: step size 1444 * 1445 * Return: Zero if successful, or a negative error code on failure. 1446 */ 1447 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1448 unsigned int cond, 1449 snd_pcm_hw_param_t var, 1450 unsigned long step) 1451 { 1452 return snd_pcm_hw_rule_add(runtime, cond, var, 1453 snd_pcm_hw_rule_step, (void *) step, 1454 var, -1); 1455 } 1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1457 1458 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1459 { 1460 static unsigned int pow2_sizes[] = { 1461 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1462 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1463 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1464 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1465 }; 1466 return snd_interval_list(hw_param_interval(params, rule->var), 1467 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1468 } 1469 1470 /** 1471 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1472 * @runtime: PCM runtime instance 1473 * @cond: condition bits 1474 * @var: hw_params variable to apply the power-of-2 constraint 1475 * 1476 * Return: Zero if successful, or a negative error code on failure. 1477 */ 1478 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1479 unsigned int cond, 1480 snd_pcm_hw_param_t var) 1481 { 1482 return snd_pcm_hw_rule_add(runtime, cond, var, 1483 snd_pcm_hw_rule_pow2, NULL, 1484 var, -1); 1485 } 1486 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1487 1488 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1489 struct snd_pcm_hw_rule *rule) 1490 { 1491 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1492 struct snd_interval *rate; 1493 1494 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1495 return snd_interval_list(rate, 1, &base_rate, 0); 1496 } 1497 1498 /** 1499 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1500 * @runtime: PCM runtime instance 1501 * @base_rate: the rate at which the hardware does not resample 1502 * 1503 * Return: Zero if successful, or a negative error code on failure. 1504 */ 1505 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1506 unsigned int base_rate) 1507 { 1508 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1509 SNDRV_PCM_HW_PARAM_RATE, 1510 snd_pcm_hw_rule_noresample_func, 1511 (void *)(uintptr_t)base_rate, 1512 SNDRV_PCM_HW_PARAM_RATE, -1); 1513 } 1514 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1515 1516 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1517 snd_pcm_hw_param_t var) 1518 { 1519 if (hw_is_mask(var)) { 1520 snd_mask_any(hw_param_mask(params, var)); 1521 params->cmask |= 1 << var; 1522 params->rmask |= 1 << var; 1523 return; 1524 } 1525 if (hw_is_interval(var)) { 1526 snd_interval_any(hw_param_interval(params, var)); 1527 params->cmask |= 1 << var; 1528 params->rmask |= 1 << var; 1529 return; 1530 } 1531 snd_BUG(); 1532 } 1533 1534 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1535 { 1536 unsigned int k; 1537 memset(params, 0, sizeof(*params)); 1538 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1539 _snd_pcm_hw_param_any(params, k); 1540 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1541 _snd_pcm_hw_param_any(params, k); 1542 params->info = ~0U; 1543 } 1544 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1545 1546 /** 1547 * snd_pcm_hw_param_value - return @params field @var value 1548 * @params: the hw_params instance 1549 * @var: parameter to retrieve 1550 * @dir: pointer to the direction (-1,0,1) or %NULL 1551 * 1552 * Return: The value for field @var if it's fixed in configuration space 1553 * defined by @params. -%EINVAL otherwise. 1554 */ 1555 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1556 snd_pcm_hw_param_t var, int *dir) 1557 { 1558 if (hw_is_mask(var)) { 1559 const struct snd_mask *mask = hw_param_mask_c(params, var); 1560 if (!snd_mask_single(mask)) 1561 return -EINVAL; 1562 if (dir) 1563 *dir = 0; 1564 return snd_mask_value(mask); 1565 } 1566 if (hw_is_interval(var)) { 1567 const struct snd_interval *i = hw_param_interval_c(params, var); 1568 if (!snd_interval_single(i)) 1569 return -EINVAL; 1570 if (dir) 1571 *dir = i->openmin; 1572 return snd_interval_value(i); 1573 } 1574 return -EINVAL; 1575 } 1576 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1577 1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1579 snd_pcm_hw_param_t var) 1580 { 1581 if (hw_is_mask(var)) { 1582 snd_mask_none(hw_param_mask(params, var)); 1583 params->cmask |= 1 << var; 1584 params->rmask |= 1 << var; 1585 } else if (hw_is_interval(var)) { 1586 snd_interval_none(hw_param_interval(params, var)); 1587 params->cmask |= 1 << var; 1588 params->rmask |= 1 << var; 1589 } else { 1590 snd_BUG(); 1591 } 1592 } 1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1594 1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1596 snd_pcm_hw_param_t var) 1597 { 1598 int changed; 1599 if (hw_is_mask(var)) 1600 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1601 else if (hw_is_interval(var)) 1602 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1603 else 1604 return -EINVAL; 1605 if (changed > 0) { 1606 params->cmask |= 1 << var; 1607 params->rmask |= 1 << var; 1608 } 1609 return changed; 1610 } 1611 1612 1613 /** 1614 * snd_pcm_hw_param_first - refine config space and return minimum value 1615 * @pcm: PCM instance 1616 * @params: the hw_params instance 1617 * @var: parameter to retrieve 1618 * @dir: pointer to the direction (-1,0,1) or %NULL 1619 * 1620 * Inside configuration space defined by @params remove from @var all 1621 * values > minimum. Reduce configuration space accordingly. 1622 * 1623 * Return: The minimum, or a negative error code on failure. 1624 */ 1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1626 struct snd_pcm_hw_params *params, 1627 snd_pcm_hw_param_t var, int *dir) 1628 { 1629 int changed = _snd_pcm_hw_param_first(params, var); 1630 if (changed < 0) 1631 return changed; 1632 if (params->rmask) { 1633 int err = snd_pcm_hw_refine(pcm, params); 1634 if (err < 0) 1635 return err; 1636 } 1637 return snd_pcm_hw_param_value(params, var, dir); 1638 } 1639 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1640 1641 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1642 snd_pcm_hw_param_t var) 1643 { 1644 int changed; 1645 if (hw_is_mask(var)) 1646 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1647 else if (hw_is_interval(var)) 1648 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1649 else 1650 return -EINVAL; 1651 if (changed > 0) { 1652 params->cmask |= 1 << var; 1653 params->rmask |= 1 << var; 1654 } 1655 return changed; 1656 } 1657 1658 1659 /** 1660 * snd_pcm_hw_param_last - refine config space and return maximum value 1661 * @pcm: PCM instance 1662 * @params: the hw_params instance 1663 * @var: parameter to retrieve 1664 * @dir: pointer to the direction (-1,0,1) or %NULL 1665 * 1666 * Inside configuration space defined by @params remove from @var all 1667 * values < maximum. Reduce configuration space accordingly. 1668 * 1669 * Return: The maximum, or a negative error code on failure. 1670 */ 1671 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1672 struct snd_pcm_hw_params *params, 1673 snd_pcm_hw_param_t var, int *dir) 1674 { 1675 int changed = _snd_pcm_hw_param_last(params, var); 1676 if (changed < 0) 1677 return changed; 1678 if (params->rmask) { 1679 int err = snd_pcm_hw_refine(pcm, params); 1680 if (err < 0) 1681 return err; 1682 } 1683 return snd_pcm_hw_param_value(params, var, dir); 1684 } 1685 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1686 1687 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1688 void *arg) 1689 { 1690 struct snd_pcm_runtime *runtime = substream->runtime; 1691 unsigned long flags; 1692 snd_pcm_stream_lock_irqsave(substream, flags); 1693 if (snd_pcm_running(substream) && 1694 snd_pcm_update_hw_ptr(substream) >= 0) 1695 runtime->status->hw_ptr %= runtime->buffer_size; 1696 else { 1697 runtime->status->hw_ptr = 0; 1698 runtime->hw_ptr_wrap = 0; 1699 } 1700 snd_pcm_stream_unlock_irqrestore(substream, flags); 1701 return 0; 1702 } 1703 1704 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1705 void *arg) 1706 { 1707 struct snd_pcm_channel_info *info = arg; 1708 struct snd_pcm_runtime *runtime = substream->runtime; 1709 int width; 1710 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1711 info->offset = -1; 1712 return 0; 1713 } 1714 width = snd_pcm_format_physical_width(runtime->format); 1715 if (width < 0) 1716 return width; 1717 info->offset = 0; 1718 switch (runtime->access) { 1719 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1720 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1721 info->first = info->channel * width; 1722 info->step = runtime->channels * width; 1723 break; 1724 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1725 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1726 { 1727 size_t size = runtime->dma_bytes / runtime->channels; 1728 info->first = info->channel * size * 8; 1729 info->step = width; 1730 break; 1731 } 1732 default: 1733 snd_BUG(); 1734 break; 1735 } 1736 return 0; 1737 } 1738 1739 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1740 void *arg) 1741 { 1742 struct snd_pcm_hw_params *params = arg; 1743 snd_pcm_format_t format; 1744 int channels; 1745 ssize_t frame_size; 1746 1747 params->fifo_size = substream->runtime->hw.fifo_size; 1748 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1749 format = params_format(params); 1750 channels = params_channels(params); 1751 frame_size = snd_pcm_format_size(format, channels); 1752 if (frame_size > 0) 1753 params->fifo_size /= (unsigned)frame_size; 1754 } 1755 return 0; 1756 } 1757 1758 /** 1759 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1760 * @substream: the pcm substream instance 1761 * @cmd: ioctl command 1762 * @arg: ioctl argument 1763 * 1764 * Processes the generic ioctl commands for PCM. 1765 * Can be passed as the ioctl callback for PCM ops. 1766 * 1767 * Return: Zero if successful, or a negative error code on failure. 1768 */ 1769 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1770 unsigned int cmd, void *arg) 1771 { 1772 switch (cmd) { 1773 case SNDRV_PCM_IOCTL1_RESET: 1774 return snd_pcm_lib_ioctl_reset(substream, arg); 1775 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1776 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1777 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1778 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1779 } 1780 return -ENXIO; 1781 } 1782 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1783 1784 /** 1785 * snd_pcm_period_elapsed - update the pcm status for the next period 1786 * @substream: the pcm substream instance 1787 * 1788 * This function is called from the interrupt handler when the 1789 * PCM has processed the period size. It will update the current 1790 * pointer, wake up sleepers, etc. 1791 * 1792 * Even if more than one periods have elapsed since the last call, you 1793 * have to call this only once. 1794 */ 1795 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1796 { 1797 struct snd_pcm_runtime *runtime; 1798 unsigned long flags; 1799 1800 if (PCM_RUNTIME_CHECK(substream)) 1801 return; 1802 runtime = substream->runtime; 1803 1804 snd_pcm_stream_lock_irqsave(substream, flags); 1805 if (!snd_pcm_running(substream) || 1806 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1807 goto _end; 1808 1809 #ifdef CONFIG_SND_PCM_TIMER 1810 if (substream->timer_running) 1811 snd_timer_interrupt(substream->timer, 1); 1812 #endif 1813 _end: 1814 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1815 snd_pcm_stream_unlock_irqrestore(substream, flags); 1816 } 1817 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1818 1819 /* 1820 * Wait until avail_min data becomes available 1821 * Returns a negative error code if any error occurs during operation. 1822 * The available space is stored on availp. When err = 0 and avail = 0 1823 * on the capture stream, it indicates the stream is in DRAINING state. 1824 */ 1825 static int wait_for_avail(struct snd_pcm_substream *substream, 1826 snd_pcm_uframes_t *availp) 1827 { 1828 struct snd_pcm_runtime *runtime = substream->runtime; 1829 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1830 wait_queue_entry_t wait; 1831 int err = 0; 1832 snd_pcm_uframes_t avail = 0; 1833 long wait_time, tout; 1834 1835 init_waitqueue_entry(&wait, current); 1836 set_current_state(TASK_INTERRUPTIBLE); 1837 add_wait_queue(&runtime->tsleep, &wait); 1838 1839 if (runtime->no_period_wakeup) 1840 wait_time = MAX_SCHEDULE_TIMEOUT; 1841 else { 1842 /* use wait time from substream if available */ 1843 if (substream->wait_time) { 1844 wait_time = substream->wait_time; 1845 } else { 1846 wait_time = 10; 1847 1848 if (runtime->rate) { 1849 long t = runtime->period_size * 2 / 1850 runtime->rate; 1851 wait_time = max(t, wait_time); 1852 } 1853 wait_time = msecs_to_jiffies(wait_time * 1000); 1854 } 1855 } 1856 1857 for (;;) { 1858 if (signal_pending(current)) { 1859 err = -ERESTARTSYS; 1860 break; 1861 } 1862 1863 /* 1864 * We need to check if space became available already 1865 * (and thus the wakeup happened already) first to close 1866 * the race of space already having become available. 1867 * This check must happen after been added to the waitqueue 1868 * and having current state be INTERRUPTIBLE. 1869 */ 1870 avail = snd_pcm_avail(substream); 1871 if (avail >= runtime->twake) 1872 break; 1873 snd_pcm_stream_unlock_irq(substream); 1874 1875 tout = schedule_timeout(wait_time); 1876 1877 snd_pcm_stream_lock_irq(substream); 1878 set_current_state(TASK_INTERRUPTIBLE); 1879 switch (runtime->status->state) { 1880 case SNDRV_PCM_STATE_SUSPENDED: 1881 err = -ESTRPIPE; 1882 goto _endloop; 1883 case SNDRV_PCM_STATE_XRUN: 1884 err = -EPIPE; 1885 goto _endloop; 1886 case SNDRV_PCM_STATE_DRAINING: 1887 if (is_playback) 1888 err = -EPIPE; 1889 else 1890 avail = 0; /* indicate draining */ 1891 goto _endloop; 1892 case SNDRV_PCM_STATE_OPEN: 1893 case SNDRV_PCM_STATE_SETUP: 1894 case SNDRV_PCM_STATE_DISCONNECTED: 1895 err = -EBADFD; 1896 goto _endloop; 1897 case SNDRV_PCM_STATE_PAUSED: 1898 continue; 1899 } 1900 if (!tout) { 1901 pcm_dbg(substream->pcm, 1902 "%s write error (DMA or IRQ trouble?)\n", 1903 is_playback ? "playback" : "capture"); 1904 err = -EIO; 1905 break; 1906 } 1907 } 1908 _endloop: 1909 set_current_state(TASK_RUNNING); 1910 remove_wait_queue(&runtime->tsleep, &wait); 1911 *availp = avail; 1912 return err; 1913 } 1914 1915 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, 1916 int channel, unsigned long hwoff, 1917 void *buf, unsigned long bytes); 1918 1919 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, 1920 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f); 1921 1922 /* calculate the target DMA-buffer position to be written/read */ 1923 static void *get_dma_ptr(struct snd_pcm_runtime *runtime, 1924 int channel, unsigned long hwoff) 1925 { 1926 return runtime->dma_area + hwoff + 1927 channel * (runtime->dma_bytes / runtime->channels); 1928 } 1929 1930 /* default copy_user ops for write; used for both interleaved and non- modes */ 1931 static int default_write_copy(struct snd_pcm_substream *substream, 1932 int channel, unsigned long hwoff, 1933 void *buf, unsigned long bytes) 1934 { 1935 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff), 1936 (void __user *)buf, bytes)) 1937 return -EFAULT; 1938 return 0; 1939 } 1940 1941 /* default copy_kernel ops for write */ 1942 static int default_write_copy_kernel(struct snd_pcm_substream *substream, 1943 int channel, unsigned long hwoff, 1944 void *buf, unsigned long bytes) 1945 { 1946 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes); 1947 return 0; 1948 } 1949 1950 /* fill silence instead of copy data; called as a transfer helper 1951 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when 1952 * a NULL buffer is passed 1953 */ 1954 static int fill_silence(struct snd_pcm_substream *substream, int channel, 1955 unsigned long hwoff, void *buf, unsigned long bytes) 1956 { 1957 struct snd_pcm_runtime *runtime = substream->runtime; 1958 1959 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 1960 return 0; 1961 if (substream->ops->fill_silence) 1962 return substream->ops->fill_silence(substream, channel, 1963 hwoff, bytes); 1964 1965 snd_pcm_format_set_silence(runtime->format, 1966 get_dma_ptr(runtime, channel, hwoff), 1967 bytes_to_samples(runtime, bytes)); 1968 return 0; 1969 } 1970 1971 /* default copy_user ops for read; used for both interleaved and non- modes */ 1972 static int default_read_copy(struct snd_pcm_substream *substream, 1973 int channel, unsigned long hwoff, 1974 void *buf, unsigned long bytes) 1975 { 1976 if (copy_to_user((void __user *)buf, 1977 get_dma_ptr(substream->runtime, channel, hwoff), 1978 bytes)) 1979 return -EFAULT; 1980 return 0; 1981 } 1982 1983 /* default copy_kernel ops for read */ 1984 static int default_read_copy_kernel(struct snd_pcm_substream *substream, 1985 int channel, unsigned long hwoff, 1986 void *buf, unsigned long bytes) 1987 { 1988 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes); 1989 return 0; 1990 } 1991 1992 /* call transfer function with the converted pointers and sizes; 1993 * for interleaved mode, it's one shot for all samples 1994 */ 1995 static int interleaved_copy(struct snd_pcm_substream *substream, 1996 snd_pcm_uframes_t hwoff, void *data, 1997 snd_pcm_uframes_t off, 1998 snd_pcm_uframes_t frames, 1999 pcm_transfer_f transfer) 2000 { 2001 struct snd_pcm_runtime *runtime = substream->runtime; 2002 2003 /* convert to bytes */ 2004 hwoff = frames_to_bytes(runtime, hwoff); 2005 off = frames_to_bytes(runtime, off); 2006 frames = frames_to_bytes(runtime, frames); 2007 return transfer(substream, 0, hwoff, data + off, frames); 2008 } 2009 2010 /* call transfer function with the converted pointers and sizes for each 2011 * non-interleaved channel; when buffer is NULL, silencing instead of copying 2012 */ 2013 static int noninterleaved_copy(struct snd_pcm_substream *substream, 2014 snd_pcm_uframes_t hwoff, void *data, 2015 snd_pcm_uframes_t off, 2016 snd_pcm_uframes_t frames, 2017 pcm_transfer_f transfer) 2018 { 2019 struct snd_pcm_runtime *runtime = substream->runtime; 2020 int channels = runtime->channels; 2021 void **bufs = data; 2022 int c, err; 2023 2024 /* convert to bytes; note that it's not frames_to_bytes() here. 2025 * in non-interleaved mode, we copy for each channel, thus 2026 * each copy is n_samples bytes x channels = whole frames. 2027 */ 2028 off = samples_to_bytes(runtime, off); 2029 frames = samples_to_bytes(runtime, frames); 2030 hwoff = samples_to_bytes(runtime, hwoff); 2031 for (c = 0; c < channels; ++c, ++bufs) { 2032 if (!data || !*bufs) 2033 err = fill_silence(substream, c, hwoff, NULL, frames); 2034 else 2035 err = transfer(substream, c, hwoff, *bufs + off, 2036 frames); 2037 if (err < 0) 2038 return err; 2039 } 2040 return 0; 2041 } 2042 2043 /* fill silence on the given buffer position; 2044 * called from snd_pcm_playback_silence() 2045 */ 2046 static int fill_silence_frames(struct snd_pcm_substream *substream, 2047 snd_pcm_uframes_t off, snd_pcm_uframes_t frames) 2048 { 2049 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 2050 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) 2051 return interleaved_copy(substream, off, NULL, 0, frames, 2052 fill_silence); 2053 else 2054 return noninterleaved_copy(substream, off, NULL, 0, frames, 2055 fill_silence); 2056 } 2057 2058 /* sanity-check for read/write methods */ 2059 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2060 { 2061 struct snd_pcm_runtime *runtime; 2062 if (PCM_RUNTIME_CHECK(substream)) 2063 return -ENXIO; 2064 runtime = substream->runtime; 2065 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area)) 2066 return -EINVAL; 2067 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2068 return -EBADFD; 2069 return 0; 2070 } 2071 2072 static int pcm_accessible_state(struct snd_pcm_runtime *runtime) 2073 { 2074 switch (runtime->status->state) { 2075 case SNDRV_PCM_STATE_PREPARED: 2076 case SNDRV_PCM_STATE_RUNNING: 2077 case SNDRV_PCM_STATE_PAUSED: 2078 return 0; 2079 case SNDRV_PCM_STATE_XRUN: 2080 return -EPIPE; 2081 case SNDRV_PCM_STATE_SUSPENDED: 2082 return -ESTRPIPE; 2083 default: 2084 return -EBADFD; 2085 } 2086 } 2087 2088 /* update to the given appl_ptr and call ack callback if needed; 2089 * when an error is returned, take back to the original value 2090 */ 2091 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream, 2092 snd_pcm_uframes_t appl_ptr) 2093 { 2094 struct snd_pcm_runtime *runtime = substream->runtime; 2095 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr; 2096 int ret; 2097 2098 if (old_appl_ptr == appl_ptr) 2099 return 0; 2100 2101 runtime->control->appl_ptr = appl_ptr; 2102 if (substream->ops->ack) { 2103 ret = substream->ops->ack(substream); 2104 if (ret < 0) { 2105 runtime->control->appl_ptr = old_appl_ptr; 2106 return ret; 2107 } 2108 } 2109 2110 trace_applptr(substream, old_appl_ptr, appl_ptr); 2111 2112 return 0; 2113 } 2114 2115 /* allow waiting for a capture stream that hasn't been started */ 2116 #if IS_ENABLED(CONFIG_SND_PCM_OSS) 2117 #define wait_capture_start(substream) ((substream)->oss.oss) 2118 #else 2119 #define wait_capture_start(substream) false 2120 #endif 2121 2122 /* the common loop for read/write data */ 2123 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, 2124 void *data, bool interleaved, 2125 snd_pcm_uframes_t size, bool in_kernel) 2126 { 2127 struct snd_pcm_runtime *runtime = substream->runtime; 2128 snd_pcm_uframes_t xfer = 0; 2129 snd_pcm_uframes_t offset = 0; 2130 snd_pcm_uframes_t avail; 2131 pcm_copy_f writer; 2132 pcm_transfer_f transfer; 2133 bool nonblock; 2134 bool is_playback; 2135 int err; 2136 2137 err = pcm_sanity_check(substream); 2138 if (err < 0) 2139 return err; 2140 2141 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 2142 if (interleaved) { 2143 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2144 runtime->channels > 1) 2145 return -EINVAL; 2146 writer = interleaved_copy; 2147 } else { 2148 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2149 return -EINVAL; 2150 writer = noninterleaved_copy; 2151 } 2152 2153 if (!data) { 2154 if (is_playback) 2155 transfer = fill_silence; 2156 else 2157 return -EINVAL; 2158 } else if (in_kernel) { 2159 if (substream->ops->copy_kernel) 2160 transfer = substream->ops->copy_kernel; 2161 else 2162 transfer = is_playback ? 2163 default_write_copy_kernel : default_read_copy_kernel; 2164 } else { 2165 if (substream->ops->copy_user) 2166 transfer = (pcm_transfer_f)substream->ops->copy_user; 2167 else 2168 transfer = is_playback ? 2169 default_write_copy : default_read_copy; 2170 } 2171 2172 if (size == 0) 2173 return 0; 2174 2175 nonblock = !!(substream->f_flags & O_NONBLOCK); 2176 2177 snd_pcm_stream_lock_irq(substream); 2178 err = pcm_accessible_state(runtime); 2179 if (err < 0) 2180 goto _end_unlock; 2181 2182 runtime->twake = runtime->control->avail_min ? : 1; 2183 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2184 snd_pcm_update_hw_ptr(substream); 2185 2186 if (!is_playback && 2187 runtime->status->state == SNDRV_PCM_STATE_PREPARED) { 2188 if (size >= runtime->start_threshold) { 2189 err = snd_pcm_start(substream); 2190 if (err < 0) 2191 goto _end_unlock; 2192 } else if (!wait_capture_start(substream)) { 2193 /* nothing to do */ 2194 err = 0; 2195 goto _end_unlock; 2196 } 2197 } 2198 2199 avail = snd_pcm_avail(substream); 2200 2201 while (size > 0) { 2202 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2203 snd_pcm_uframes_t cont; 2204 if (!avail) { 2205 if (!is_playback && 2206 runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 2207 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2208 goto _end_unlock; 2209 } 2210 if (nonblock) { 2211 err = -EAGAIN; 2212 goto _end_unlock; 2213 } 2214 runtime->twake = min_t(snd_pcm_uframes_t, size, 2215 runtime->control->avail_min ? : 1); 2216 err = wait_for_avail(substream, &avail); 2217 if (err < 0) 2218 goto _end_unlock; 2219 if (!avail) 2220 continue; /* draining */ 2221 } 2222 frames = size > avail ? avail : size; 2223 appl_ptr = READ_ONCE(runtime->control->appl_ptr); 2224 appl_ofs = appl_ptr % runtime->buffer_size; 2225 cont = runtime->buffer_size - appl_ofs; 2226 if (frames > cont) 2227 frames = cont; 2228 if (snd_BUG_ON(!frames)) { 2229 err = -EINVAL; 2230 goto _end_unlock; 2231 } 2232 snd_pcm_stream_unlock_irq(substream); 2233 err = writer(substream, appl_ofs, data, offset, frames, 2234 transfer); 2235 snd_pcm_stream_lock_irq(substream); 2236 if (err < 0) 2237 goto _end_unlock; 2238 err = pcm_accessible_state(runtime); 2239 if (err < 0) 2240 goto _end_unlock; 2241 appl_ptr += frames; 2242 if (appl_ptr >= runtime->boundary) 2243 appl_ptr -= runtime->boundary; 2244 err = pcm_lib_apply_appl_ptr(substream, appl_ptr); 2245 if (err < 0) 2246 goto _end_unlock; 2247 2248 offset += frames; 2249 size -= frames; 2250 xfer += frames; 2251 avail -= frames; 2252 if (is_playback && 2253 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2254 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2255 err = snd_pcm_start(substream); 2256 if (err < 0) 2257 goto _end_unlock; 2258 } 2259 } 2260 _end_unlock: 2261 runtime->twake = 0; 2262 if (xfer > 0 && err >= 0) 2263 snd_pcm_update_state(substream, runtime); 2264 snd_pcm_stream_unlock_irq(substream); 2265 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2266 } 2267 EXPORT_SYMBOL(__snd_pcm_lib_xfer); 2268 2269 /* 2270 * standard channel mapping helpers 2271 */ 2272 2273 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2274 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2275 { .channels = 1, 2276 .map = { SNDRV_CHMAP_MONO } }, 2277 { .channels = 2, 2278 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2279 { .channels = 4, 2280 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2281 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2282 { .channels = 6, 2283 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2284 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2285 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2286 { .channels = 8, 2287 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2289 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2290 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2291 { } 2292 }; 2293 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2294 2295 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2296 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2297 { .channels = 1, 2298 .map = { SNDRV_CHMAP_MONO } }, 2299 { .channels = 2, 2300 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2301 { .channels = 4, 2302 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2303 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2304 { .channels = 6, 2305 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2306 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2307 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2308 { .channels = 8, 2309 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2310 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2311 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2312 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2313 { } 2314 }; 2315 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2316 2317 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2318 { 2319 if (ch > info->max_channels) 2320 return false; 2321 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2322 } 2323 2324 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2325 struct snd_ctl_elem_info *uinfo) 2326 { 2327 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2328 2329 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2330 uinfo->count = 0; 2331 uinfo->count = info->max_channels; 2332 uinfo->value.integer.min = 0; 2333 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2334 return 0; 2335 } 2336 2337 /* get callback for channel map ctl element 2338 * stores the channel position firstly matching with the current channels 2339 */ 2340 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2341 struct snd_ctl_elem_value *ucontrol) 2342 { 2343 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2344 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2345 struct snd_pcm_substream *substream; 2346 const struct snd_pcm_chmap_elem *map; 2347 2348 if (!info->chmap) 2349 return -EINVAL; 2350 substream = snd_pcm_chmap_substream(info, idx); 2351 if (!substream) 2352 return -ENODEV; 2353 memset(ucontrol->value.integer.value, 0, 2354 sizeof(ucontrol->value.integer.value)); 2355 if (!substream->runtime) 2356 return 0; /* no channels set */ 2357 for (map = info->chmap; map->channels; map++) { 2358 int i; 2359 if (map->channels == substream->runtime->channels && 2360 valid_chmap_channels(info, map->channels)) { 2361 for (i = 0; i < map->channels; i++) 2362 ucontrol->value.integer.value[i] = map->map[i]; 2363 return 0; 2364 } 2365 } 2366 return -EINVAL; 2367 } 2368 2369 /* tlv callback for channel map ctl element 2370 * expands the pre-defined channel maps in a form of TLV 2371 */ 2372 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2373 unsigned int size, unsigned int __user *tlv) 2374 { 2375 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2376 const struct snd_pcm_chmap_elem *map; 2377 unsigned int __user *dst; 2378 int c, count = 0; 2379 2380 if (!info->chmap) 2381 return -EINVAL; 2382 if (size < 8) 2383 return -ENOMEM; 2384 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2385 return -EFAULT; 2386 size -= 8; 2387 dst = tlv + 2; 2388 for (map = info->chmap; map->channels; map++) { 2389 int chs_bytes = map->channels * 4; 2390 if (!valid_chmap_channels(info, map->channels)) 2391 continue; 2392 if (size < 8) 2393 return -ENOMEM; 2394 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2395 put_user(chs_bytes, dst + 1)) 2396 return -EFAULT; 2397 dst += 2; 2398 size -= 8; 2399 count += 8; 2400 if (size < chs_bytes) 2401 return -ENOMEM; 2402 size -= chs_bytes; 2403 count += chs_bytes; 2404 for (c = 0; c < map->channels; c++) { 2405 if (put_user(map->map[c], dst)) 2406 return -EFAULT; 2407 dst++; 2408 } 2409 } 2410 if (put_user(count, tlv + 1)) 2411 return -EFAULT; 2412 return 0; 2413 } 2414 2415 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2416 { 2417 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2418 info->pcm->streams[info->stream].chmap_kctl = NULL; 2419 kfree(info); 2420 } 2421 2422 /** 2423 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2424 * @pcm: the assigned PCM instance 2425 * @stream: stream direction 2426 * @chmap: channel map elements (for query) 2427 * @max_channels: the max number of channels for the stream 2428 * @private_value: the value passed to each kcontrol's private_value field 2429 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2430 * 2431 * Create channel-mapping control elements assigned to the given PCM stream(s). 2432 * Return: Zero if successful, or a negative error value. 2433 */ 2434 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2435 const struct snd_pcm_chmap_elem *chmap, 2436 int max_channels, 2437 unsigned long private_value, 2438 struct snd_pcm_chmap **info_ret) 2439 { 2440 struct snd_pcm_chmap *info; 2441 struct snd_kcontrol_new knew = { 2442 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2443 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2444 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2445 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2446 .info = pcm_chmap_ctl_info, 2447 .get = pcm_chmap_ctl_get, 2448 .tlv.c = pcm_chmap_ctl_tlv, 2449 }; 2450 int err; 2451 2452 if (WARN_ON(pcm->streams[stream].chmap_kctl)) 2453 return -EBUSY; 2454 info = kzalloc(sizeof(*info), GFP_KERNEL); 2455 if (!info) 2456 return -ENOMEM; 2457 info->pcm = pcm; 2458 info->stream = stream; 2459 info->chmap = chmap; 2460 info->max_channels = max_channels; 2461 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2462 knew.name = "Playback Channel Map"; 2463 else 2464 knew.name = "Capture Channel Map"; 2465 knew.device = pcm->device; 2466 knew.count = pcm->streams[stream].substream_count; 2467 knew.private_value = private_value; 2468 info->kctl = snd_ctl_new1(&knew, info); 2469 if (!info->kctl) { 2470 kfree(info); 2471 return -ENOMEM; 2472 } 2473 info->kctl->private_free = pcm_chmap_ctl_private_free; 2474 err = snd_ctl_add(pcm->card, info->kctl); 2475 if (err < 0) 2476 return err; 2477 pcm->streams[stream].chmap_kctl = info->kctl; 2478 if (info_ret) 2479 *info_ret = info; 2480 return 0; 2481 } 2482 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2483