1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <sound/core.h> 27 #include <sound/control.h> 28 #include <sound/info.h> 29 #include <sound/pcm.h> 30 #include <sound/pcm_params.h> 31 #include <sound/timer.h> 32 33 /* 34 * fill ring buffer with silence 35 * runtime->silence_start: starting pointer to silence area 36 * runtime->silence_filled: size filled with silence 37 * runtime->silence_threshold: threshold from application 38 * runtime->silence_size: maximal size from application 39 * 40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 41 */ 42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 43 { 44 struct snd_pcm_runtime *runtime = substream->runtime; 45 snd_pcm_uframes_t frames, ofs, transfer; 46 47 if (runtime->silence_size < runtime->boundary) { 48 snd_pcm_sframes_t noise_dist, n; 49 if (runtime->silence_start != runtime->control->appl_ptr) { 50 n = runtime->control->appl_ptr - runtime->silence_start; 51 if (n < 0) 52 n += runtime->boundary; 53 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 54 runtime->silence_filled -= n; 55 else 56 runtime->silence_filled = 0; 57 runtime->silence_start = runtime->control->appl_ptr; 58 } 59 if (runtime->silence_filled >= runtime->buffer_size) 60 return; 61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 63 return; 64 frames = runtime->silence_threshold - noise_dist; 65 if (frames > runtime->silence_size) 66 frames = runtime->silence_size; 67 } else { 68 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 70 if (avail > runtime->buffer_size) 71 avail = runtime->buffer_size; 72 runtime->silence_filled = avail > 0 ? avail : 0; 73 runtime->silence_start = (runtime->status->hw_ptr + 74 runtime->silence_filled) % 75 runtime->boundary; 76 } else { 77 ofs = runtime->status->hw_ptr; 78 frames = new_hw_ptr - ofs; 79 if ((snd_pcm_sframes_t)frames < 0) 80 frames += runtime->boundary; 81 runtime->silence_filled -= frames; 82 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 83 runtime->silence_filled = 0; 84 runtime->silence_start = new_hw_ptr; 85 } else { 86 runtime->silence_start = ofs; 87 } 88 } 89 frames = runtime->buffer_size - runtime->silence_filled; 90 } 91 if (snd_BUG_ON(frames > runtime->buffer_size)) 92 return; 93 if (frames == 0) 94 return; 95 ofs = runtime->silence_start % runtime->buffer_size; 96 while (frames > 0) { 97 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 98 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 99 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 100 if (substream->ops->silence) { 101 int err; 102 err = substream->ops->silence(substream, -1, ofs, transfer); 103 snd_BUG_ON(err < 0); 104 } else { 105 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 106 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 107 } 108 } else { 109 unsigned int c; 110 unsigned int channels = runtime->channels; 111 if (substream->ops->silence) { 112 for (c = 0; c < channels; ++c) { 113 int err; 114 err = substream->ops->silence(substream, c, ofs, transfer); 115 snd_BUG_ON(err < 0); 116 } 117 } else { 118 size_t dma_csize = runtime->dma_bytes / channels; 119 for (c = 0; c < channels; ++c) { 120 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 121 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 122 } 123 } 124 } 125 runtime->silence_filled += transfer; 126 frames -= transfer; 127 ofs = 0; 128 } 129 } 130 131 static void pcm_debug_name(struct snd_pcm_substream *substream, 132 char *name, size_t len) 133 { 134 snprintf(name, len, "pcmC%dD%d%c:%d", 135 substream->pcm->card->number, 136 substream->pcm->device, 137 substream->stream ? 'c' : 'p', 138 substream->number); 139 } 140 141 #define XRUN_DEBUG_BASIC (1<<0) 142 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 143 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 144 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */ 145 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */ 146 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */ 147 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */ 148 149 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 150 151 #define xrun_debug(substream, mask) \ 152 ((substream)->pstr->xrun_debug & (mask)) 153 #else 154 #define xrun_debug(substream, mask) 0 155 #endif 156 157 #define dump_stack_on_xrun(substream) do { \ 158 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 159 dump_stack(); \ 160 } while (0) 161 162 static void xrun(struct snd_pcm_substream *substream) 163 { 164 struct snd_pcm_runtime *runtime = substream->runtime; 165 166 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 167 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 168 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 169 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 170 char name[16]; 171 pcm_debug_name(substream, name, sizeof(name)); 172 snd_printd(KERN_DEBUG "XRUN: %s\n", name); 173 dump_stack_on_xrun(substream); 174 } 175 } 176 177 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 178 #define hw_ptr_error(substream, fmt, args...) \ 179 do { \ 180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 181 xrun_log_show(substream); \ 182 if (printk_ratelimit()) { \ 183 snd_printd("PCM: " fmt, ##args); \ 184 } \ 185 dump_stack_on_xrun(substream); \ 186 } \ 187 } while (0) 188 189 #define XRUN_LOG_CNT 10 190 191 struct hwptr_log_entry { 192 unsigned int in_interrupt; 193 unsigned long jiffies; 194 snd_pcm_uframes_t pos; 195 snd_pcm_uframes_t period_size; 196 snd_pcm_uframes_t buffer_size; 197 snd_pcm_uframes_t old_hw_ptr; 198 snd_pcm_uframes_t hw_ptr_base; 199 }; 200 201 struct snd_pcm_hwptr_log { 202 unsigned int idx; 203 unsigned int hit: 1; 204 struct hwptr_log_entry entries[XRUN_LOG_CNT]; 205 }; 206 207 static void xrun_log(struct snd_pcm_substream *substream, 208 snd_pcm_uframes_t pos, int in_interrupt) 209 { 210 struct snd_pcm_runtime *runtime = substream->runtime; 211 struct snd_pcm_hwptr_log *log = runtime->hwptr_log; 212 struct hwptr_log_entry *entry; 213 214 if (log == NULL) { 215 log = kzalloc(sizeof(*log), GFP_ATOMIC); 216 if (log == NULL) 217 return; 218 runtime->hwptr_log = log; 219 } else { 220 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 221 return; 222 } 223 entry = &log->entries[log->idx]; 224 entry->in_interrupt = in_interrupt; 225 entry->jiffies = jiffies; 226 entry->pos = pos; 227 entry->period_size = runtime->period_size; 228 entry->buffer_size = runtime->buffer_size; 229 entry->old_hw_ptr = runtime->status->hw_ptr; 230 entry->hw_ptr_base = runtime->hw_ptr_base; 231 log->idx = (log->idx + 1) % XRUN_LOG_CNT; 232 } 233 234 static void xrun_log_show(struct snd_pcm_substream *substream) 235 { 236 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log; 237 struct hwptr_log_entry *entry; 238 char name[16]; 239 unsigned int idx; 240 int cnt; 241 242 if (log == NULL) 243 return; 244 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 245 return; 246 pcm_debug_name(substream, name, sizeof(name)); 247 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) { 248 entry = &log->entries[idx]; 249 if (entry->period_size == 0) 250 break; 251 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, " 252 "hwptr=%ld/%ld\n", 253 name, entry->in_interrupt ? "[Q] " : "", 254 entry->jiffies, 255 (unsigned long)entry->pos, 256 (unsigned long)entry->period_size, 257 (unsigned long)entry->buffer_size, 258 (unsigned long)entry->old_hw_ptr, 259 (unsigned long)entry->hw_ptr_base); 260 idx++; 261 idx %= XRUN_LOG_CNT; 262 } 263 log->hit = 1; 264 } 265 266 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 267 268 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 269 #define xrun_log(substream, pos, in_interrupt) do { } while (0) 270 #define xrun_log_show(substream) do { } while (0) 271 272 #endif 273 274 int snd_pcm_update_state(struct snd_pcm_substream *substream, 275 struct snd_pcm_runtime *runtime) 276 { 277 snd_pcm_uframes_t avail; 278 279 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 280 avail = snd_pcm_playback_avail(runtime); 281 else 282 avail = snd_pcm_capture_avail(runtime); 283 if (avail > runtime->avail_max) 284 runtime->avail_max = avail; 285 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 286 if (avail >= runtime->buffer_size) { 287 snd_pcm_drain_done(substream); 288 return -EPIPE; 289 } 290 } else { 291 if (avail >= runtime->stop_threshold) { 292 xrun(substream); 293 return -EPIPE; 294 } 295 } 296 if (runtime->twake) { 297 if (avail >= runtime->twake) 298 wake_up(&runtime->tsleep); 299 } else if (avail >= runtime->control->avail_min) 300 wake_up(&runtime->sleep); 301 return 0; 302 } 303 304 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 305 unsigned int in_interrupt) 306 { 307 struct snd_pcm_runtime *runtime = substream->runtime; 308 snd_pcm_uframes_t pos; 309 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 310 snd_pcm_sframes_t hdelta, delta; 311 unsigned long jdelta; 312 313 old_hw_ptr = runtime->status->hw_ptr; 314 pos = substream->ops->pointer(substream); 315 if (pos == SNDRV_PCM_POS_XRUN) { 316 xrun(substream); 317 return -EPIPE; 318 } 319 if (pos >= runtime->buffer_size) { 320 if (printk_ratelimit()) { 321 char name[16]; 322 pcm_debug_name(substream, name, sizeof(name)); 323 xrun_log_show(substream); 324 snd_printd(KERN_ERR "BUG: %s, pos = %ld, " 325 "buffer size = %ld, period size = %ld\n", 326 name, pos, runtime->buffer_size, 327 runtime->period_size); 328 } 329 pos = 0; 330 } 331 pos -= pos % runtime->min_align; 332 if (xrun_debug(substream, XRUN_DEBUG_LOG)) 333 xrun_log(substream, pos, in_interrupt); 334 hw_base = runtime->hw_ptr_base; 335 new_hw_ptr = hw_base + pos; 336 if (in_interrupt) { 337 /* we know that one period was processed */ 338 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 339 delta = runtime->hw_ptr_interrupt + runtime->period_size; 340 if (delta > new_hw_ptr) { 341 /* check for double acknowledged interrupts */ 342 hdelta = jiffies - runtime->hw_ptr_jiffies; 343 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 344 hw_base += runtime->buffer_size; 345 if (hw_base >= runtime->boundary) 346 hw_base = 0; 347 new_hw_ptr = hw_base + pos; 348 goto __delta; 349 } 350 } 351 } 352 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 353 /* pointer crosses the end of the ring buffer */ 354 if (new_hw_ptr < old_hw_ptr) { 355 hw_base += runtime->buffer_size; 356 if (hw_base >= runtime->boundary) 357 hw_base = 0; 358 new_hw_ptr = hw_base + pos; 359 } 360 __delta: 361 delta = new_hw_ptr - old_hw_ptr; 362 if (delta < 0) 363 delta += runtime->boundary; 364 if (xrun_debug(substream, in_interrupt ? 365 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) { 366 char name[16]; 367 pcm_debug_name(substream, name, sizeof(name)); 368 snd_printd("%s_update: %s: pos=%u/%u/%u, " 369 "hwptr=%ld/%ld/%ld/%ld\n", 370 in_interrupt ? "period" : "hwptr", 371 name, 372 (unsigned int)pos, 373 (unsigned int)runtime->period_size, 374 (unsigned int)runtime->buffer_size, 375 (unsigned long)delta, 376 (unsigned long)old_hw_ptr, 377 (unsigned long)new_hw_ptr, 378 (unsigned long)runtime->hw_ptr_base); 379 } 380 381 if (runtime->no_period_wakeup) { 382 snd_pcm_sframes_t xrun_threshold; 383 /* 384 * Without regular period interrupts, we have to check 385 * the elapsed time to detect xruns. 386 */ 387 jdelta = jiffies - runtime->hw_ptr_jiffies; 388 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 389 goto no_delta_check; 390 hdelta = jdelta - delta * HZ / runtime->rate; 391 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 392 while (hdelta > xrun_threshold) { 393 delta += runtime->buffer_size; 394 hw_base += runtime->buffer_size; 395 if (hw_base >= runtime->boundary) 396 hw_base = 0; 397 new_hw_ptr = hw_base + pos; 398 hdelta -= runtime->hw_ptr_buffer_jiffies; 399 } 400 goto no_delta_check; 401 } 402 403 /* something must be really wrong */ 404 if (delta >= runtime->buffer_size + runtime->period_size) { 405 hw_ptr_error(substream, 406 "Unexpected hw_pointer value %s" 407 "(stream=%i, pos=%ld, new_hw_ptr=%ld, " 408 "old_hw_ptr=%ld)\n", 409 in_interrupt ? "[Q] " : "[P]", 410 substream->stream, (long)pos, 411 (long)new_hw_ptr, (long)old_hw_ptr); 412 return 0; 413 } 414 415 /* Do jiffies check only in xrun_debug mode */ 416 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 417 goto no_jiffies_check; 418 419 /* Skip the jiffies check for hardwares with BATCH flag. 420 * Such hardware usually just increases the position at each IRQ, 421 * thus it can't give any strange position. 422 */ 423 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 424 goto no_jiffies_check; 425 hdelta = delta; 426 if (hdelta < runtime->delay) 427 goto no_jiffies_check; 428 hdelta -= runtime->delay; 429 jdelta = jiffies - runtime->hw_ptr_jiffies; 430 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 431 delta = jdelta / 432 (((runtime->period_size * HZ) / runtime->rate) 433 + HZ/100); 434 /* move new_hw_ptr according jiffies not pos variable */ 435 new_hw_ptr = old_hw_ptr; 436 hw_base = delta; 437 /* use loop to avoid checks for delta overflows */ 438 /* the delta value is small or zero in most cases */ 439 while (delta > 0) { 440 new_hw_ptr += runtime->period_size; 441 if (new_hw_ptr >= runtime->boundary) 442 new_hw_ptr -= runtime->boundary; 443 delta--; 444 } 445 /* align hw_base to buffer_size */ 446 hw_ptr_error(substream, 447 "hw_ptr skipping! %s" 448 "(pos=%ld, delta=%ld, period=%ld, " 449 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 450 in_interrupt ? "[Q] " : "", 451 (long)pos, (long)hdelta, 452 (long)runtime->period_size, jdelta, 453 ((hdelta * HZ) / runtime->rate), hw_base, 454 (unsigned long)old_hw_ptr, 455 (unsigned long)new_hw_ptr); 456 /* reset values to proper state */ 457 delta = 0; 458 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 459 } 460 no_jiffies_check: 461 if (delta > runtime->period_size + runtime->period_size / 2) { 462 hw_ptr_error(substream, 463 "Lost interrupts? %s" 464 "(stream=%i, delta=%ld, new_hw_ptr=%ld, " 465 "old_hw_ptr=%ld)\n", 466 in_interrupt ? "[Q] " : "", 467 substream->stream, (long)delta, 468 (long)new_hw_ptr, 469 (long)old_hw_ptr); 470 } 471 472 no_delta_check: 473 if (runtime->status->hw_ptr == new_hw_ptr) 474 return 0; 475 476 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 477 runtime->silence_size > 0) 478 snd_pcm_playback_silence(substream, new_hw_ptr); 479 480 if (in_interrupt) { 481 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 482 if (delta < 0) 483 delta += runtime->boundary; 484 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 485 runtime->hw_ptr_interrupt += delta; 486 if (runtime->hw_ptr_interrupt >= runtime->boundary) 487 runtime->hw_ptr_interrupt -= runtime->boundary; 488 } 489 runtime->hw_ptr_base = hw_base; 490 runtime->status->hw_ptr = new_hw_ptr; 491 runtime->hw_ptr_jiffies = jiffies; 492 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 493 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 494 495 return snd_pcm_update_state(substream, runtime); 496 } 497 498 /* CAUTION: call it with irq disabled */ 499 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 500 { 501 return snd_pcm_update_hw_ptr0(substream, 0); 502 } 503 504 /** 505 * snd_pcm_set_ops - set the PCM operators 506 * @pcm: the pcm instance 507 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 508 * @ops: the operator table 509 * 510 * Sets the given PCM operators to the pcm instance. 511 */ 512 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 513 { 514 struct snd_pcm_str *stream = &pcm->streams[direction]; 515 struct snd_pcm_substream *substream; 516 517 for (substream = stream->substream; substream != NULL; substream = substream->next) 518 substream->ops = ops; 519 } 520 521 EXPORT_SYMBOL(snd_pcm_set_ops); 522 523 /** 524 * snd_pcm_sync - set the PCM sync id 525 * @substream: the pcm substream 526 * 527 * Sets the PCM sync identifier for the card. 528 */ 529 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 530 { 531 struct snd_pcm_runtime *runtime = substream->runtime; 532 533 runtime->sync.id32[0] = substream->pcm->card->number; 534 runtime->sync.id32[1] = -1; 535 runtime->sync.id32[2] = -1; 536 runtime->sync.id32[3] = -1; 537 } 538 539 EXPORT_SYMBOL(snd_pcm_set_sync); 540 541 /* 542 * Standard ioctl routine 543 */ 544 545 static inline unsigned int div32(unsigned int a, unsigned int b, 546 unsigned int *r) 547 { 548 if (b == 0) { 549 *r = 0; 550 return UINT_MAX; 551 } 552 *r = a % b; 553 return a / b; 554 } 555 556 static inline unsigned int div_down(unsigned int a, unsigned int b) 557 { 558 if (b == 0) 559 return UINT_MAX; 560 return a / b; 561 } 562 563 static inline unsigned int div_up(unsigned int a, unsigned int b) 564 { 565 unsigned int r; 566 unsigned int q; 567 if (b == 0) 568 return UINT_MAX; 569 q = div32(a, b, &r); 570 if (r) 571 ++q; 572 return q; 573 } 574 575 static inline unsigned int mul(unsigned int a, unsigned int b) 576 { 577 if (a == 0) 578 return 0; 579 if (div_down(UINT_MAX, a) < b) 580 return UINT_MAX; 581 return a * b; 582 } 583 584 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 585 unsigned int c, unsigned int *r) 586 { 587 u_int64_t n = (u_int64_t) a * b; 588 if (c == 0) { 589 snd_BUG_ON(!n); 590 *r = 0; 591 return UINT_MAX; 592 } 593 n = div_u64_rem(n, c, r); 594 if (n >= UINT_MAX) { 595 *r = 0; 596 return UINT_MAX; 597 } 598 return n; 599 } 600 601 /** 602 * snd_interval_refine - refine the interval value of configurator 603 * @i: the interval value to refine 604 * @v: the interval value to refer to 605 * 606 * Refines the interval value with the reference value. 607 * The interval is changed to the range satisfying both intervals. 608 * The interval status (min, max, integer, etc.) are evaluated. 609 * 610 * Returns non-zero if the value is changed, zero if not changed. 611 */ 612 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 613 { 614 int changed = 0; 615 if (snd_BUG_ON(snd_interval_empty(i))) 616 return -EINVAL; 617 if (i->min < v->min) { 618 i->min = v->min; 619 i->openmin = v->openmin; 620 changed = 1; 621 } else if (i->min == v->min && !i->openmin && v->openmin) { 622 i->openmin = 1; 623 changed = 1; 624 } 625 if (i->max > v->max) { 626 i->max = v->max; 627 i->openmax = v->openmax; 628 changed = 1; 629 } else if (i->max == v->max && !i->openmax && v->openmax) { 630 i->openmax = 1; 631 changed = 1; 632 } 633 if (!i->integer && v->integer) { 634 i->integer = 1; 635 changed = 1; 636 } 637 if (i->integer) { 638 if (i->openmin) { 639 i->min++; 640 i->openmin = 0; 641 } 642 if (i->openmax) { 643 i->max--; 644 i->openmax = 0; 645 } 646 } else if (!i->openmin && !i->openmax && i->min == i->max) 647 i->integer = 1; 648 if (snd_interval_checkempty(i)) { 649 snd_interval_none(i); 650 return -EINVAL; 651 } 652 return changed; 653 } 654 655 EXPORT_SYMBOL(snd_interval_refine); 656 657 static int snd_interval_refine_first(struct snd_interval *i) 658 { 659 if (snd_BUG_ON(snd_interval_empty(i))) 660 return -EINVAL; 661 if (snd_interval_single(i)) 662 return 0; 663 i->max = i->min; 664 i->openmax = i->openmin; 665 if (i->openmax) 666 i->max++; 667 return 1; 668 } 669 670 static int snd_interval_refine_last(struct snd_interval *i) 671 { 672 if (snd_BUG_ON(snd_interval_empty(i))) 673 return -EINVAL; 674 if (snd_interval_single(i)) 675 return 0; 676 i->min = i->max; 677 i->openmin = i->openmax; 678 if (i->openmin) 679 i->min--; 680 return 1; 681 } 682 683 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 684 { 685 if (a->empty || b->empty) { 686 snd_interval_none(c); 687 return; 688 } 689 c->empty = 0; 690 c->min = mul(a->min, b->min); 691 c->openmin = (a->openmin || b->openmin); 692 c->max = mul(a->max, b->max); 693 c->openmax = (a->openmax || b->openmax); 694 c->integer = (a->integer && b->integer); 695 } 696 697 /** 698 * snd_interval_div - refine the interval value with division 699 * @a: dividend 700 * @b: divisor 701 * @c: quotient 702 * 703 * c = a / b 704 * 705 * Returns non-zero if the value is changed, zero if not changed. 706 */ 707 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 708 { 709 unsigned int r; 710 if (a->empty || b->empty) { 711 snd_interval_none(c); 712 return; 713 } 714 c->empty = 0; 715 c->min = div32(a->min, b->max, &r); 716 c->openmin = (r || a->openmin || b->openmax); 717 if (b->min > 0) { 718 c->max = div32(a->max, b->min, &r); 719 if (r) { 720 c->max++; 721 c->openmax = 1; 722 } else 723 c->openmax = (a->openmax || b->openmin); 724 } else { 725 c->max = UINT_MAX; 726 c->openmax = 0; 727 } 728 c->integer = 0; 729 } 730 731 /** 732 * snd_interval_muldivk - refine the interval value 733 * @a: dividend 1 734 * @b: dividend 2 735 * @k: divisor (as integer) 736 * @c: result 737 * 738 * c = a * b / k 739 * 740 * Returns non-zero if the value is changed, zero if not changed. 741 */ 742 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 743 unsigned int k, struct snd_interval *c) 744 { 745 unsigned int r; 746 if (a->empty || b->empty) { 747 snd_interval_none(c); 748 return; 749 } 750 c->empty = 0; 751 c->min = muldiv32(a->min, b->min, k, &r); 752 c->openmin = (r || a->openmin || b->openmin); 753 c->max = muldiv32(a->max, b->max, k, &r); 754 if (r) { 755 c->max++; 756 c->openmax = 1; 757 } else 758 c->openmax = (a->openmax || b->openmax); 759 c->integer = 0; 760 } 761 762 /** 763 * snd_interval_mulkdiv - refine the interval value 764 * @a: dividend 1 765 * @k: dividend 2 (as integer) 766 * @b: divisor 767 * @c: result 768 * 769 * c = a * k / b 770 * 771 * Returns non-zero if the value is changed, zero if not changed. 772 */ 773 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 774 const struct snd_interval *b, struct snd_interval *c) 775 { 776 unsigned int r; 777 if (a->empty || b->empty) { 778 snd_interval_none(c); 779 return; 780 } 781 c->empty = 0; 782 c->min = muldiv32(a->min, k, b->max, &r); 783 c->openmin = (r || a->openmin || b->openmax); 784 if (b->min > 0) { 785 c->max = muldiv32(a->max, k, b->min, &r); 786 if (r) { 787 c->max++; 788 c->openmax = 1; 789 } else 790 c->openmax = (a->openmax || b->openmin); 791 } else { 792 c->max = UINT_MAX; 793 c->openmax = 0; 794 } 795 c->integer = 0; 796 } 797 798 /* ---- */ 799 800 801 /** 802 * snd_interval_ratnum - refine the interval value 803 * @i: interval to refine 804 * @rats_count: number of ratnum_t 805 * @rats: ratnum_t array 806 * @nump: pointer to store the resultant numerator 807 * @denp: pointer to store the resultant denominator 808 * 809 * Returns non-zero if the value is changed, zero if not changed. 810 */ 811 int snd_interval_ratnum(struct snd_interval *i, 812 unsigned int rats_count, struct snd_ratnum *rats, 813 unsigned int *nump, unsigned int *denp) 814 { 815 unsigned int best_num, best_den; 816 int best_diff; 817 unsigned int k; 818 struct snd_interval t; 819 int err; 820 unsigned int result_num, result_den; 821 int result_diff; 822 823 best_num = best_den = best_diff = 0; 824 for (k = 0; k < rats_count; ++k) { 825 unsigned int num = rats[k].num; 826 unsigned int den; 827 unsigned int q = i->min; 828 int diff; 829 if (q == 0) 830 q = 1; 831 den = div_up(num, q); 832 if (den < rats[k].den_min) 833 continue; 834 if (den > rats[k].den_max) 835 den = rats[k].den_max; 836 else { 837 unsigned int r; 838 r = (den - rats[k].den_min) % rats[k].den_step; 839 if (r != 0) 840 den -= r; 841 } 842 diff = num - q * den; 843 if (diff < 0) 844 diff = -diff; 845 if (best_num == 0 || 846 diff * best_den < best_diff * den) { 847 best_diff = diff; 848 best_den = den; 849 best_num = num; 850 } 851 } 852 if (best_den == 0) { 853 i->empty = 1; 854 return -EINVAL; 855 } 856 t.min = div_down(best_num, best_den); 857 t.openmin = !!(best_num % best_den); 858 859 result_num = best_num; 860 result_diff = best_diff; 861 result_den = best_den; 862 best_num = best_den = best_diff = 0; 863 for (k = 0; k < rats_count; ++k) { 864 unsigned int num = rats[k].num; 865 unsigned int den; 866 unsigned int q = i->max; 867 int diff; 868 if (q == 0) { 869 i->empty = 1; 870 return -EINVAL; 871 } 872 den = div_down(num, q); 873 if (den > rats[k].den_max) 874 continue; 875 if (den < rats[k].den_min) 876 den = rats[k].den_min; 877 else { 878 unsigned int r; 879 r = (den - rats[k].den_min) % rats[k].den_step; 880 if (r != 0) 881 den += rats[k].den_step - r; 882 } 883 diff = q * den - num; 884 if (diff < 0) 885 diff = -diff; 886 if (best_num == 0 || 887 diff * best_den < best_diff * den) { 888 best_diff = diff; 889 best_den = den; 890 best_num = num; 891 } 892 } 893 if (best_den == 0) { 894 i->empty = 1; 895 return -EINVAL; 896 } 897 t.max = div_up(best_num, best_den); 898 t.openmax = !!(best_num % best_den); 899 t.integer = 0; 900 err = snd_interval_refine(i, &t); 901 if (err < 0) 902 return err; 903 904 if (snd_interval_single(i)) { 905 if (best_diff * result_den < result_diff * best_den) { 906 result_num = best_num; 907 result_den = best_den; 908 } 909 if (nump) 910 *nump = result_num; 911 if (denp) 912 *denp = result_den; 913 } 914 return err; 915 } 916 917 EXPORT_SYMBOL(snd_interval_ratnum); 918 919 /** 920 * snd_interval_ratden - refine the interval value 921 * @i: interval to refine 922 * @rats_count: number of struct ratden 923 * @rats: struct ratden array 924 * @nump: pointer to store the resultant numerator 925 * @denp: pointer to store the resultant denominator 926 * 927 * Returns non-zero if the value is changed, zero if not changed. 928 */ 929 static int snd_interval_ratden(struct snd_interval *i, 930 unsigned int rats_count, struct snd_ratden *rats, 931 unsigned int *nump, unsigned int *denp) 932 { 933 unsigned int best_num, best_diff, best_den; 934 unsigned int k; 935 struct snd_interval t; 936 int err; 937 938 best_num = best_den = best_diff = 0; 939 for (k = 0; k < rats_count; ++k) { 940 unsigned int num; 941 unsigned int den = rats[k].den; 942 unsigned int q = i->min; 943 int diff; 944 num = mul(q, den); 945 if (num > rats[k].num_max) 946 continue; 947 if (num < rats[k].num_min) 948 num = rats[k].num_max; 949 else { 950 unsigned int r; 951 r = (num - rats[k].num_min) % rats[k].num_step; 952 if (r != 0) 953 num += rats[k].num_step - r; 954 } 955 diff = num - q * den; 956 if (best_num == 0 || 957 diff * best_den < best_diff * den) { 958 best_diff = diff; 959 best_den = den; 960 best_num = num; 961 } 962 } 963 if (best_den == 0) { 964 i->empty = 1; 965 return -EINVAL; 966 } 967 t.min = div_down(best_num, best_den); 968 t.openmin = !!(best_num % best_den); 969 970 best_num = best_den = best_diff = 0; 971 for (k = 0; k < rats_count; ++k) { 972 unsigned int num; 973 unsigned int den = rats[k].den; 974 unsigned int q = i->max; 975 int diff; 976 num = mul(q, den); 977 if (num < rats[k].num_min) 978 continue; 979 if (num > rats[k].num_max) 980 num = rats[k].num_max; 981 else { 982 unsigned int r; 983 r = (num - rats[k].num_min) % rats[k].num_step; 984 if (r != 0) 985 num -= r; 986 } 987 diff = q * den - num; 988 if (best_num == 0 || 989 diff * best_den < best_diff * den) { 990 best_diff = diff; 991 best_den = den; 992 best_num = num; 993 } 994 } 995 if (best_den == 0) { 996 i->empty = 1; 997 return -EINVAL; 998 } 999 t.max = div_up(best_num, best_den); 1000 t.openmax = !!(best_num % best_den); 1001 t.integer = 0; 1002 err = snd_interval_refine(i, &t); 1003 if (err < 0) 1004 return err; 1005 1006 if (snd_interval_single(i)) { 1007 if (nump) 1008 *nump = best_num; 1009 if (denp) 1010 *denp = best_den; 1011 } 1012 return err; 1013 } 1014 1015 /** 1016 * snd_interval_list - refine the interval value from the list 1017 * @i: the interval value to refine 1018 * @count: the number of elements in the list 1019 * @list: the value list 1020 * @mask: the bit-mask to evaluate 1021 * 1022 * Refines the interval value from the list. 1023 * When mask is non-zero, only the elements corresponding to bit 1 are 1024 * evaluated. 1025 * 1026 * Returns non-zero if the value is changed, zero if not changed. 1027 */ 1028 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 1029 { 1030 unsigned int k; 1031 struct snd_interval list_range; 1032 1033 if (!count) { 1034 i->empty = 1; 1035 return -EINVAL; 1036 } 1037 snd_interval_any(&list_range); 1038 list_range.min = UINT_MAX; 1039 list_range.max = 0; 1040 for (k = 0; k < count; k++) { 1041 if (mask && !(mask & (1 << k))) 1042 continue; 1043 if (!snd_interval_test(i, list[k])) 1044 continue; 1045 list_range.min = min(list_range.min, list[k]); 1046 list_range.max = max(list_range.max, list[k]); 1047 } 1048 return snd_interval_refine(i, &list_range); 1049 } 1050 1051 EXPORT_SYMBOL(snd_interval_list); 1052 1053 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 1054 { 1055 unsigned int n; 1056 int changed = 0; 1057 n = (i->min - min) % step; 1058 if (n != 0 || i->openmin) { 1059 i->min += step - n; 1060 changed = 1; 1061 } 1062 n = (i->max - min) % step; 1063 if (n != 0 || i->openmax) { 1064 i->max -= n; 1065 changed = 1; 1066 } 1067 if (snd_interval_checkempty(i)) { 1068 i->empty = 1; 1069 return -EINVAL; 1070 } 1071 return changed; 1072 } 1073 1074 /* Info constraints helpers */ 1075 1076 /** 1077 * snd_pcm_hw_rule_add - add the hw-constraint rule 1078 * @runtime: the pcm runtime instance 1079 * @cond: condition bits 1080 * @var: the variable to evaluate 1081 * @func: the evaluation function 1082 * @private: the private data pointer passed to function 1083 * @dep: the dependent variables 1084 * 1085 * Returns zero if successful, or a negative error code on failure. 1086 */ 1087 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1088 int var, 1089 snd_pcm_hw_rule_func_t func, void *private, 1090 int dep, ...) 1091 { 1092 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1093 struct snd_pcm_hw_rule *c; 1094 unsigned int k; 1095 va_list args; 1096 va_start(args, dep); 1097 if (constrs->rules_num >= constrs->rules_all) { 1098 struct snd_pcm_hw_rule *new; 1099 unsigned int new_rules = constrs->rules_all + 16; 1100 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1101 if (!new) { 1102 va_end(args); 1103 return -ENOMEM; 1104 } 1105 if (constrs->rules) { 1106 memcpy(new, constrs->rules, 1107 constrs->rules_num * sizeof(*c)); 1108 kfree(constrs->rules); 1109 } 1110 constrs->rules = new; 1111 constrs->rules_all = new_rules; 1112 } 1113 c = &constrs->rules[constrs->rules_num]; 1114 c->cond = cond; 1115 c->func = func; 1116 c->var = var; 1117 c->private = private; 1118 k = 0; 1119 while (1) { 1120 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1121 va_end(args); 1122 return -EINVAL; 1123 } 1124 c->deps[k++] = dep; 1125 if (dep < 0) 1126 break; 1127 dep = va_arg(args, int); 1128 } 1129 constrs->rules_num++; 1130 va_end(args); 1131 return 0; 1132 } 1133 1134 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1135 1136 /** 1137 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1138 * @runtime: PCM runtime instance 1139 * @var: hw_params variable to apply the mask 1140 * @mask: the bitmap mask 1141 * 1142 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1143 */ 1144 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1145 u_int32_t mask) 1146 { 1147 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1148 struct snd_mask *maskp = constrs_mask(constrs, var); 1149 *maskp->bits &= mask; 1150 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1151 if (*maskp->bits == 0) 1152 return -EINVAL; 1153 return 0; 1154 } 1155 1156 /** 1157 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1158 * @runtime: PCM runtime instance 1159 * @var: hw_params variable to apply the mask 1160 * @mask: the 64bit bitmap mask 1161 * 1162 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1163 */ 1164 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1165 u_int64_t mask) 1166 { 1167 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1168 struct snd_mask *maskp = constrs_mask(constrs, var); 1169 maskp->bits[0] &= (u_int32_t)mask; 1170 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1171 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1172 if (! maskp->bits[0] && ! maskp->bits[1]) 1173 return -EINVAL; 1174 return 0; 1175 } 1176 1177 /** 1178 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1179 * @runtime: PCM runtime instance 1180 * @var: hw_params variable to apply the integer constraint 1181 * 1182 * Apply the constraint of integer to an interval parameter. 1183 */ 1184 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1185 { 1186 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1187 return snd_interval_setinteger(constrs_interval(constrs, var)); 1188 } 1189 1190 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1191 1192 /** 1193 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1194 * @runtime: PCM runtime instance 1195 * @var: hw_params variable to apply the range 1196 * @min: the minimal value 1197 * @max: the maximal value 1198 * 1199 * Apply the min/max range constraint to an interval parameter. 1200 */ 1201 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1202 unsigned int min, unsigned int max) 1203 { 1204 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1205 struct snd_interval t; 1206 t.min = min; 1207 t.max = max; 1208 t.openmin = t.openmax = 0; 1209 t.integer = 0; 1210 return snd_interval_refine(constrs_interval(constrs, var), &t); 1211 } 1212 1213 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1214 1215 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1216 struct snd_pcm_hw_rule *rule) 1217 { 1218 struct snd_pcm_hw_constraint_list *list = rule->private; 1219 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1220 } 1221 1222 1223 /** 1224 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1225 * @runtime: PCM runtime instance 1226 * @cond: condition bits 1227 * @var: hw_params variable to apply the list constraint 1228 * @l: list 1229 * 1230 * Apply the list of constraints to an interval parameter. 1231 */ 1232 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1233 unsigned int cond, 1234 snd_pcm_hw_param_t var, 1235 struct snd_pcm_hw_constraint_list *l) 1236 { 1237 return snd_pcm_hw_rule_add(runtime, cond, var, 1238 snd_pcm_hw_rule_list, l, 1239 var, -1); 1240 } 1241 1242 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1243 1244 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1245 struct snd_pcm_hw_rule *rule) 1246 { 1247 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1248 unsigned int num = 0, den = 0; 1249 int err; 1250 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1251 r->nrats, r->rats, &num, &den); 1252 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1253 params->rate_num = num; 1254 params->rate_den = den; 1255 } 1256 return err; 1257 } 1258 1259 /** 1260 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1261 * @runtime: PCM runtime instance 1262 * @cond: condition bits 1263 * @var: hw_params variable to apply the ratnums constraint 1264 * @r: struct snd_ratnums constriants 1265 */ 1266 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1267 unsigned int cond, 1268 snd_pcm_hw_param_t var, 1269 struct snd_pcm_hw_constraint_ratnums *r) 1270 { 1271 return snd_pcm_hw_rule_add(runtime, cond, var, 1272 snd_pcm_hw_rule_ratnums, r, 1273 var, -1); 1274 } 1275 1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1277 1278 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1279 struct snd_pcm_hw_rule *rule) 1280 { 1281 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1282 unsigned int num = 0, den = 0; 1283 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1284 r->nrats, r->rats, &num, &den); 1285 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1286 params->rate_num = num; 1287 params->rate_den = den; 1288 } 1289 return err; 1290 } 1291 1292 /** 1293 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1294 * @runtime: PCM runtime instance 1295 * @cond: condition bits 1296 * @var: hw_params variable to apply the ratdens constraint 1297 * @r: struct snd_ratdens constriants 1298 */ 1299 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1300 unsigned int cond, 1301 snd_pcm_hw_param_t var, 1302 struct snd_pcm_hw_constraint_ratdens *r) 1303 { 1304 return snd_pcm_hw_rule_add(runtime, cond, var, 1305 snd_pcm_hw_rule_ratdens, r, 1306 var, -1); 1307 } 1308 1309 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1310 1311 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1312 struct snd_pcm_hw_rule *rule) 1313 { 1314 unsigned int l = (unsigned long) rule->private; 1315 int width = l & 0xffff; 1316 unsigned int msbits = l >> 16; 1317 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1318 if (snd_interval_single(i) && snd_interval_value(i) == width) 1319 params->msbits = msbits; 1320 return 0; 1321 } 1322 1323 /** 1324 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1325 * @runtime: PCM runtime instance 1326 * @cond: condition bits 1327 * @width: sample bits width 1328 * @msbits: msbits width 1329 */ 1330 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1331 unsigned int cond, 1332 unsigned int width, 1333 unsigned int msbits) 1334 { 1335 unsigned long l = (msbits << 16) | width; 1336 return snd_pcm_hw_rule_add(runtime, cond, -1, 1337 snd_pcm_hw_rule_msbits, 1338 (void*) l, 1339 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1340 } 1341 1342 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1343 1344 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1345 struct snd_pcm_hw_rule *rule) 1346 { 1347 unsigned long step = (unsigned long) rule->private; 1348 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1349 } 1350 1351 /** 1352 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1353 * @runtime: PCM runtime instance 1354 * @cond: condition bits 1355 * @var: hw_params variable to apply the step constraint 1356 * @step: step size 1357 */ 1358 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1359 unsigned int cond, 1360 snd_pcm_hw_param_t var, 1361 unsigned long step) 1362 { 1363 return snd_pcm_hw_rule_add(runtime, cond, var, 1364 snd_pcm_hw_rule_step, (void *) step, 1365 var, -1); 1366 } 1367 1368 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1369 1370 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1371 { 1372 static unsigned int pow2_sizes[] = { 1373 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1374 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1375 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1376 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1377 }; 1378 return snd_interval_list(hw_param_interval(params, rule->var), 1379 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1380 } 1381 1382 /** 1383 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1384 * @runtime: PCM runtime instance 1385 * @cond: condition bits 1386 * @var: hw_params variable to apply the power-of-2 constraint 1387 */ 1388 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1389 unsigned int cond, 1390 snd_pcm_hw_param_t var) 1391 { 1392 return snd_pcm_hw_rule_add(runtime, cond, var, 1393 snd_pcm_hw_rule_pow2, NULL, 1394 var, -1); 1395 } 1396 1397 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1398 1399 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1400 snd_pcm_hw_param_t var) 1401 { 1402 if (hw_is_mask(var)) { 1403 snd_mask_any(hw_param_mask(params, var)); 1404 params->cmask |= 1 << var; 1405 params->rmask |= 1 << var; 1406 return; 1407 } 1408 if (hw_is_interval(var)) { 1409 snd_interval_any(hw_param_interval(params, var)); 1410 params->cmask |= 1 << var; 1411 params->rmask |= 1 << var; 1412 return; 1413 } 1414 snd_BUG(); 1415 } 1416 1417 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1418 { 1419 unsigned int k; 1420 memset(params, 0, sizeof(*params)); 1421 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1422 _snd_pcm_hw_param_any(params, k); 1423 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1424 _snd_pcm_hw_param_any(params, k); 1425 params->info = ~0U; 1426 } 1427 1428 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1429 1430 /** 1431 * snd_pcm_hw_param_value - return @params field @var value 1432 * @params: the hw_params instance 1433 * @var: parameter to retrieve 1434 * @dir: pointer to the direction (-1,0,1) or %NULL 1435 * 1436 * Return the value for field @var if it's fixed in configuration space 1437 * defined by @params. Return -%EINVAL otherwise. 1438 */ 1439 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1440 snd_pcm_hw_param_t var, int *dir) 1441 { 1442 if (hw_is_mask(var)) { 1443 const struct snd_mask *mask = hw_param_mask_c(params, var); 1444 if (!snd_mask_single(mask)) 1445 return -EINVAL; 1446 if (dir) 1447 *dir = 0; 1448 return snd_mask_value(mask); 1449 } 1450 if (hw_is_interval(var)) { 1451 const struct snd_interval *i = hw_param_interval_c(params, var); 1452 if (!snd_interval_single(i)) 1453 return -EINVAL; 1454 if (dir) 1455 *dir = i->openmin; 1456 return snd_interval_value(i); 1457 } 1458 return -EINVAL; 1459 } 1460 1461 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1462 1463 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1464 snd_pcm_hw_param_t var) 1465 { 1466 if (hw_is_mask(var)) { 1467 snd_mask_none(hw_param_mask(params, var)); 1468 params->cmask |= 1 << var; 1469 params->rmask |= 1 << var; 1470 } else if (hw_is_interval(var)) { 1471 snd_interval_none(hw_param_interval(params, var)); 1472 params->cmask |= 1 << var; 1473 params->rmask |= 1 << var; 1474 } else { 1475 snd_BUG(); 1476 } 1477 } 1478 1479 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1480 1481 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1482 snd_pcm_hw_param_t var) 1483 { 1484 int changed; 1485 if (hw_is_mask(var)) 1486 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1487 else if (hw_is_interval(var)) 1488 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1489 else 1490 return -EINVAL; 1491 if (changed) { 1492 params->cmask |= 1 << var; 1493 params->rmask |= 1 << var; 1494 } 1495 return changed; 1496 } 1497 1498 1499 /** 1500 * snd_pcm_hw_param_first - refine config space and return minimum value 1501 * @pcm: PCM instance 1502 * @params: the hw_params instance 1503 * @var: parameter to retrieve 1504 * @dir: pointer to the direction (-1,0,1) or %NULL 1505 * 1506 * Inside configuration space defined by @params remove from @var all 1507 * values > minimum. Reduce configuration space accordingly. 1508 * Return the minimum. 1509 */ 1510 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1511 struct snd_pcm_hw_params *params, 1512 snd_pcm_hw_param_t var, int *dir) 1513 { 1514 int changed = _snd_pcm_hw_param_first(params, var); 1515 if (changed < 0) 1516 return changed; 1517 if (params->rmask) { 1518 int err = snd_pcm_hw_refine(pcm, params); 1519 if (snd_BUG_ON(err < 0)) 1520 return err; 1521 } 1522 return snd_pcm_hw_param_value(params, var, dir); 1523 } 1524 1525 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1526 1527 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1528 snd_pcm_hw_param_t var) 1529 { 1530 int changed; 1531 if (hw_is_mask(var)) 1532 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1533 else if (hw_is_interval(var)) 1534 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1535 else 1536 return -EINVAL; 1537 if (changed) { 1538 params->cmask |= 1 << var; 1539 params->rmask |= 1 << var; 1540 } 1541 return changed; 1542 } 1543 1544 1545 /** 1546 * snd_pcm_hw_param_last - refine config space and return maximum value 1547 * @pcm: PCM instance 1548 * @params: the hw_params instance 1549 * @var: parameter to retrieve 1550 * @dir: pointer to the direction (-1,0,1) or %NULL 1551 * 1552 * Inside configuration space defined by @params remove from @var all 1553 * values < maximum. Reduce configuration space accordingly. 1554 * Return the maximum. 1555 */ 1556 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1557 struct snd_pcm_hw_params *params, 1558 snd_pcm_hw_param_t var, int *dir) 1559 { 1560 int changed = _snd_pcm_hw_param_last(params, var); 1561 if (changed < 0) 1562 return changed; 1563 if (params->rmask) { 1564 int err = snd_pcm_hw_refine(pcm, params); 1565 if (snd_BUG_ON(err < 0)) 1566 return err; 1567 } 1568 return snd_pcm_hw_param_value(params, var, dir); 1569 } 1570 1571 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1572 1573 /** 1574 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1575 * @pcm: PCM instance 1576 * @params: the hw_params instance 1577 * 1578 * Choose one configuration from configuration space defined by @params. 1579 * The configuration chosen is that obtained fixing in this order: 1580 * first access, first format, first subformat, min channels, 1581 * min rate, min period time, max buffer size, min tick time 1582 */ 1583 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1584 struct snd_pcm_hw_params *params) 1585 { 1586 static int vars[] = { 1587 SNDRV_PCM_HW_PARAM_ACCESS, 1588 SNDRV_PCM_HW_PARAM_FORMAT, 1589 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1590 SNDRV_PCM_HW_PARAM_CHANNELS, 1591 SNDRV_PCM_HW_PARAM_RATE, 1592 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1593 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1594 SNDRV_PCM_HW_PARAM_TICK_TIME, 1595 -1 1596 }; 1597 int err, *v; 1598 1599 for (v = vars; *v != -1; v++) { 1600 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1601 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1602 else 1603 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1604 if (snd_BUG_ON(err < 0)) 1605 return err; 1606 } 1607 return 0; 1608 } 1609 1610 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1611 void *arg) 1612 { 1613 struct snd_pcm_runtime *runtime = substream->runtime; 1614 unsigned long flags; 1615 snd_pcm_stream_lock_irqsave(substream, flags); 1616 if (snd_pcm_running(substream) && 1617 snd_pcm_update_hw_ptr(substream) >= 0) 1618 runtime->status->hw_ptr %= runtime->buffer_size; 1619 else 1620 runtime->status->hw_ptr = 0; 1621 snd_pcm_stream_unlock_irqrestore(substream, flags); 1622 return 0; 1623 } 1624 1625 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1626 void *arg) 1627 { 1628 struct snd_pcm_channel_info *info = arg; 1629 struct snd_pcm_runtime *runtime = substream->runtime; 1630 int width; 1631 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1632 info->offset = -1; 1633 return 0; 1634 } 1635 width = snd_pcm_format_physical_width(runtime->format); 1636 if (width < 0) 1637 return width; 1638 info->offset = 0; 1639 switch (runtime->access) { 1640 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1641 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1642 info->first = info->channel * width; 1643 info->step = runtime->channels * width; 1644 break; 1645 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1646 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1647 { 1648 size_t size = runtime->dma_bytes / runtime->channels; 1649 info->first = info->channel * size * 8; 1650 info->step = width; 1651 break; 1652 } 1653 default: 1654 snd_BUG(); 1655 break; 1656 } 1657 return 0; 1658 } 1659 1660 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1661 void *arg) 1662 { 1663 struct snd_pcm_hw_params *params = arg; 1664 snd_pcm_format_t format; 1665 int channels, width; 1666 1667 params->fifo_size = substream->runtime->hw.fifo_size; 1668 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1669 format = params_format(params); 1670 channels = params_channels(params); 1671 width = snd_pcm_format_physical_width(format); 1672 params->fifo_size /= width * channels; 1673 } 1674 return 0; 1675 } 1676 1677 /** 1678 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1679 * @substream: the pcm substream instance 1680 * @cmd: ioctl command 1681 * @arg: ioctl argument 1682 * 1683 * Processes the generic ioctl commands for PCM. 1684 * Can be passed as the ioctl callback for PCM ops. 1685 * 1686 * Returns zero if successful, or a negative error code on failure. 1687 */ 1688 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1689 unsigned int cmd, void *arg) 1690 { 1691 switch (cmd) { 1692 case SNDRV_PCM_IOCTL1_INFO: 1693 return 0; 1694 case SNDRV_PCM_IOCTL1_RESET: 1695 return snd_pcm_lib_ioctl_reset(substream, arg); 1696 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1697 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1698 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1699 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1700 } 1701 return -ENXIO; 1702 } 1703 1704 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1705 1706 /** 1707 * snd_pcm_period_elapsed - update the pcm status for the next period 1708 * @substream: the pcm substream instance 1709 * 1710 * This function is called from the interrupt handler when the 1711 * PCM has processed the period size. It will update the current 1712 * pointer, wake up sleepers, etc. 1713 * 1714 * Even if more than one periods have elapsed since the last call, you 1715 * have to call this only once. 1716 */ 1717 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1718 { 1719 struct snd_pcm_runtime *runtime; 1720 unsigned long flags; 1721 1722 if (PCM_RUNTIME_CHECK(substream)) 1723 return; 1724 runtime = substream->runtime; 1725 1726 if (runtime->transfer_ack_begin) 1727 runtime->transfer_ack_begin(substream); 1728 1729 snd_pcm_stream_lock_irqsave(substream, flags); 1730 if (!snd_pcm_running(substream) || 1731 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1732 goto _end; 1733 1734 if (substream->timer_running) 1735 snd_timer_interrupt(substream->timer, 1); 1736 _end: 1737 snd_pcm_stream_unlock_irqrestore(substream, flags); 1738 if (runtime->transfer_ack_end) 1739 runtime->transfer_ack_end(substream); 1740 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1741 } 1742 1743 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1744 1745 /* 1746 * Wait until avail_min data becomes available 1747 * Returns a negative error code if any error occurs during operation. 1748 * The available space is stored on availp. When err = 0 and avail = 0 1749 * on the capture stream, it indicates the stream is in DRAINING state. 1750 */ 1751 static int wait_for_avail(struct snd_pcm_substream *substream, 1752 snd_pcm_uframes_t *availp) 1753 { 1754 struct snd_pcm_runtime *runtime = substream->runtime; 1755 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1756 wait_queue_t wait; 1757 int err = 0; 1758 snd_pcm_uframes_t avail = 0; 1759 long tout; 1760 1761 init_waitqueue_entry(&wait, current); 1762 add_wait_queue(&runtime->tsleep, &wait); 1763 for (;;) { 1764 if (signal_pending(current)) { 1765 err = -ERESTARTSYS; 1766 break; 1767 } 1768 set_current_state(TASK_INTERRUPTIBLE); 1769 snd_pcm_stream_unlock_irq(substream); 1770 tout = schedule_timeout(msecs_to_jiffies(10000)); 1771 snd_pcm_stream_lock_irq(substream); 1772 switch (runtime->status->state) { 1773 case SNDRV_PCM_STATE_SUSPENDED: 1774 err = -ESTRPIPE; 1775 goto _endloop; 1776 case SNDRV_PCM_STATE_XRUN: 1777 err = -EPIPE; 1778 goto _endloop; 1779 case SNDRV_PCM_STATE_DRAINING: 1780 if (is_playback) 1781 err = -EPIPE; 1782 else 1783 avail = 0; /* indicate draining */ 1784 goto _endloop; 1785 case SNDRV_PCM_STATE_OPEN: 1786 case SNDRV_PCM_STATE_SETUP: 1787 case SNDRV_PCM_STATE_DISCONNECTED: 1788 err = -EBADFD; 1789 goto _endloop; 1790 } 1791 if (!tout) { 1792 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1793 is_playback ? "playback" : "capture"); 1794 err = -EIO; 1795 break; 1796 } 1797 if (is_playback) 1798 avail = snd_pcm_playback_avail(runtime); 1799 else 1800 avail = snd_pcm_capture_avail(runtime); 1801 if (avail >= runtime->twake) 1802 break; 1803 } 1804 _endloop: 1805 remove_wait_queue(&runtime->tsleep, &wait); 1806 *availp = avail; 1807 return err; 1808 } 1809 1810 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1811 unsigned int hwoff, 1812 unsigned long data, unsigned int off, 1813 snd_pcm_uframes_t frames) 1814 { 1815 struct snd_pcm_runtime *runtime = substream->runtime; 1816 int err; 1817 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1818 if (substream->ops->copy) { 1819 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1820 return err; 1821 } else { 1822 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1823 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1824 return -EFAULT; 1825 } 1826 return 0; 1827 } 1828 1829 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1830 unsigned long data, unsigned int off, 1831 snd_pcm_uframes_t size); 1832 1833 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1834 unsigned long data, 1835 snd_pcm_uframes_t size, 1836 int nonblock, 1837 transfer_f transfer) 1838 { 1839 struct snd_pcm_runtime *runtime = substream->runtime; 1840 snd_pcm_uframes_t xfer = 0; 1841 snd_pcm_uframes_t offset = 0; 1842 int err = 0; 1843 1844 if (size == 0) 1845 return 0; 1846 1847 snd_pcm_stream_lock_irq(substream); 1848 switch (runtime->status->state) { 1849 case SNDRV_PCM_STATE_PREPARED: 1850 case SNDRV_PCM_STATE_RUNNING: 1851 case SNDRV_PCM_STATE_PAUSED: 1852 break; 1853 case SNDRV_PCM_STATE_XRUN: 1854 err = -EPIPE; 1855 goto _end_unlock; 1856 case SNDRV_PCM_STATE_SUSPENDED: 1857 err = -ESTRPIPE; 1858 goto _end_unlock; 1859 default: 1860 err = -EBADFD; 1861 goto _end_unlock; 1862 } 1863 1864 runtime->twake = runtime->control->avail_min ? : 1; 1865 while (size > 0) { 1866 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1867 snd_pcm_uframes_t avail; 1868 snd_pcm_uframes_t cont; 1869 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1870 snd_pcm_update_hw_ptr(substream); 1871 avail = snd_pcm_playback_avail(runtime); 1872 if (!avail) { 1873 if (nonblock) { 1874 err = -EAGAIN; 1875 goto _end_unlock; 1876 } 1877 runtime->twake = min_t(snd_pcm_uframes_t, size, 1878 runtime->control->avail_min ? : 1); 1879 err = wait_for_avail(substream, &avail); 1880 if (err < 0) 1881 goto _end_unlock; 1882 } 1883 frames = size > avail ? avail : size; 1884 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1885 if (frames > cont) 1886 frames = cont; 1887 if (snd_BUG_ON(!frames)) { 1888 runtime->twake = 0; 1889 snd_pcm_stream_unlock_irq(substream); 1890 return -EINVAL; 1891 } 1892 appl_ptr = runtime->control->appl_ptr; 1893 appl_ofs = appl_ptr % runtime->buffer_size; 1894 snd_pcm_stream_unlock_irq(substream); 1895 err = transfer(substream, appl_ofs, data, offset, frames); 1896 snd_pcm_stream_lock_irq(substream); 1897 if (err < 0) 1898 goto _end_unlock; 1899 switch (runtime->status->state) { 1900 case SNDRV_PCM_STATE_XRUN: 1901 err = -EPIPE; 1902 goto _end_unlock; 1903 case SNDRV_PCM_STATE_SUSPENDED: 1904 err = -ESTRPIPE; 1905 goto _end_unlock; 1906 default: 1907 break; 1908 } 1909 appl_ptr += frames; 1910 if (appl_ptr >= runtime->boundary) 1911 appl_ptr -= runtime->boundary; 1912 runtime->control->appl_ptr = appl_ptr; 1913 if (substream->ops->ack) 1914 substream->ops->ack(substream); 1915 1916 offset += frames; 1917 size -= frames; 1918 xfer += frames; 1919 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1920 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1921 err = snd_pcm_start(substream); 1922 if (err < 0) 1923 goto _end_unlock; 1924 } 1925 } 1926 _end_unlock: 1927 runtime->twake = 0; 1928 if (xfer > 0 && err >= 0) 1929 snd_pcm_update_state(substream, runtime); 1930 snd_pcm_stream_unlock_irq(substream); 1931 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1932 } 1933 1934 /* sanity-check for read/write methods */ 1935 static int pcm_sanity_check(struct snd_pcm_substream *substream) 1936 { 1937 struct snd_pcm_runtime *runtime; 1938 if (PCM_RUNTIME_CHECK(substream)) 1939 return -ENXIO; 1940 runtime = substream->runtime; 1941 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 1942 return -EINVAL; 1943 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1944 return -EBADFD; 1945 return 0; 1946 } 1947 1948 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 1949 { 1950 struct snd_pcm_runtime *runtime; 1951 int nonblock; 1952 int err; 1953 1954 err = pcm_sanity_check(substream); 1955 if (err < 0) 1956 return err; 1957 runtime = substream->runtime; 1958 nonblock = !!(substream->f_flags & O_NONBLOCK); 1959 1960 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 1961 runtime->channels > 1) 1962 return -EINVAL; 1963 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 1964 snd_pcm_lib_write_transfer); 1965 } 1966 1967 EXPORT_SYMBOL(snd_pcm_lib_write); 1968 1969 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 1970 unsigned int hwoff, 1971 unsigned long data, unsigned int off, 1972 snd_pcm_uframes_t frames) 1973 { 1974 struct snd_pcm_runtime *runtime = substream->runtime; 1975 int err; 1976 void __user **bufs = (void __user **)data; 1977 int channels = runtime->channels; 1978 int c; 1979 if (substream->ops->copy) { 1980 if (snd_BUG_ON(!substream->ops->silence)) 1981 return -EINVAL; 1982 for (c = 0; c < channels; ++c, ++bufs) { 1983 if (*bufs == NULL) { 1984 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 1985 return err; 1986 } else { 1987 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1988 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 1989 return err; 1990 } 1991 } 1992 } else { 1993 /* default transfer behaviour */ 1994 size_t dma_csize = runtime->dma_bytes / channels; 1995 for (c = 0; c < channels; ++c, ++bufs) { 1996 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 1997 if (*bufs == NULL) { 1998 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 1999 } else { 2000 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2001 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2002 return -EFAULT; 2003 } 2004 } 2005 } 2006 return 0; 2007 } 2008 2009 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2010 void __user **bufs, 2011 snd_pcm_uframes_t frames) 2012 { 2013 struct snd_pcm_runtime *runtime; 2014 int nonblock; 2015 int err; 2016 2017 err = pcm_sanity_check(substream); 2018 if (err < 0) 2019 return err; 2020 runtime = substream->runtime; 2021 nonblock = !!(substream->f_flags & O_NONBLOCK); 2022 2023 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2024 return -EINVAL; 2025 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2026 nonblock, snd_pcm_lib_writev_transfer); 2027 } 2028 2029 EXPORT_SYMBOL(snd_pcm_lib_writev); 2030 2031 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2032 unsigned int hwoff, 2033 unsigned long data, unsigned int off, 2034 snd_pcm_uframes_t frames) 2035 { 2036 struct snd_pcm_runtime *runtime = substream->runtime; 2037 int err; 2038 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2039 if (substream->ops->copy) { 2040 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2041 return err; 2042 } else { 2043 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2044 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2045 return -EFAULT; 2046 } 2047 return 0; 2048 } 2049 2050 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2051 unsigned long data, 2052 snd_pcm_uframes_t size, 2053 int nonblock, 2054 transfer_f transfer) 2055 { 2056 struct snd_pcm_runtime *runtime = substream->runtime; 2057 snd_pcm_uframes_t xfer = 0; 2058 snd_pcm_uframes_t offset = 0; 2059 int err = 0; 2060 2061 if (size == 0) 2062 return 0; 2063 2064 snd_pcm_stream_lock_irq(substream); 2065 switch (runtime->status->state) { 2066 case SNDRV_PCM_STATE_PREPARED: 2067 if (size >= runtime->start_threshold) { 2068 err = snd_pcm_start(substream); 2069 if (err < 0) 2070 goto _end_unlock; 2071 } 2072 break; 2073 case SNDRV_PCM_STATE_DRAINING: 2074 case SNDRV_PCM_STATE_RUNNING: 2075 case SNDRV_PCM_STATE_PAUSED: 2076 break; 2077 case SNDRV_PCM_STATE_XRUN: 2078 err = -EPIPE; 2079 goto _end_unlock; 2080 case SNDRV_PCM_STATE_SUSPENDED: 2081 err = -ESTRPIPE; 2082 goto _end_unlock; 2083 default: 2084 err = -EBADFD; 2085 goto _end_unlock; 2086 } 2087 2088 runtime->twake = runtime->control->avail_min ? : 1; 2089 while (size > 0) { 2090 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2091 snd_pcm_uframes_t avail; 2092 snd_pcm_uframes_t cont; 2093 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2094 snd_pcm_update_hw_ptr(substream); 2095 avail = snd_pcm_capture_avail(runtime); 2096 if (!avail) { 2097 if (runtime->status->state == 2098 SNDRV_PCM_STATE_DRAINING) { 2099 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2100 goto _end_unlock; 2101 } 2102 if (nonblock) { 2103 err = -EAGAIN; 2104 goto _end_unlock; 2105 } 2106 runtime->twake = min_t(snd_pcm_uframes_t, size, 2107 runtime->control->avail_min ? : 1); 2108 err = wait_for_avail(substream, &avail); 2109 if (err < 0) 2110 goto _end_unlock; 2111 if (!avail) 2112 continue; /* draining */ 2113 } 2114 frames = size > avail ? avail : size; 2115 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2116 if (frames > cont) 2117 frames = cont; 2118 if (snd_BUG_ON(!frames)) { 2119 runtime->twake = 0; 2120 snd_pcm_stream_unlock_irq(substream); 2121 return -EINVAL; 2122 } 2123 appl_ptr = runtime->control->appl_ptr; 2124 appl_ofs = appl_ptr % runtime->buffer_size; 2125 snd_pcm_stream_unlock_irq(substream); 2126 err = transfer(substream, appl_ofs, data, offset, frames); 2127 snd_pcm_stream_lock_irq(substream); 2128 if (err < 0) 2129 goto _end_unlock; 2130 switch (runtime->status->state) { 2131 case SNDRV_PCM_STATE_XRUN: 2132 err = -EPIPE; 2133 goto _end_unlock; 2134 case SNDRV_PCM_STATE_SUSPENDED: 2135 err = -ESTRPIPE; 2136 goto _end_unlock; 2137 default: 2138 break; 2139 } 2140 appl_ptr += frames; 2141 if (appl_ptr >= runtime->boundary) 2142 appl_ptr -= runtime->boundary; 2143 runtime->control->appl_ptr = appl_ptr; 2144 if (substream->ops->ack) 2145 substream->ops->ack(substream); 2146 2147 offset += frames; 2148 size -= frames; 2149 xfer += frames; 2150 } 2151 _end_unlock: 2152 runtime->twake = 0; 2153 if (xfer > 0 && err >= 0) 2154 snd_pcm_update_state(substream, runtime); 2155 snd_pcm_stream_unlock_irq(substream); 2156 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2157 } 2158 2159 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2160 { 2161 struct snd_pcm_runtime *runtime; 2162 int nonblock; 2163 int err; 2164 2165 err = pcm_sanity_check(substream); 2166 if (err < 0) 2167 return err; 2168 runtime = substream->runtime; 2169 nonblock = !!(substream->f_flags & O_NONBLOCK); 2170 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2171 return -EINVAL; 2172 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2173 } 2174 2175 EXPORT_SYMBOL(snd_pcm_lib_read); 2176 2177 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2178 unsigned int hwoff, 2179 unsigned long data, unsigned int off, 2180 snd_pcm_uframes_t frames) 2181 { 2182 struct snd_pcm_runtime *runtime = substream->runtime; 2183 int err; 2184 void __user **bufs = (void __user **)data; 2185 int channels = runtime->channels; 2186 int c; 2187 if (substream->ops->copy) { 2188 for (c = 0; c < channels; ++c, ++bufs) { 2189 char __user *buf; 2190 if (*bufs == NULL) 2191 continue; 2192 buf = *bufs + samples_to_bytes(runtime, off); 2193 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2194 return err; 2195 } 2196 } else { 2197 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2198 for (c = 0; c < channels; ++c, ++bufs) { 2199 char *hwbuf; 2200 char __user *buf; 2201 if (*bufs == NULL) 2202 continue; 2203 2204 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2205 buf = *bufs + samples_to_bytes(runtime, off); 2206 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2207 return -EFAULT; 2208 } 2209 } 2210 return 0; 2211 } 2212 2213 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2214 void __user **bufs, 2215 snd_pcm_uframes_t frames) 2216 { 2217 struct snd_pcm_runtime *runtime; 2218 int nonblock; 2219 int err; 2220 2221 err = pcm_sanity_check(substream); 2222 if (err < 0) 2223 return err; 2224 runtime = substream->runtime; 2225 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2226 return -EBADFD; 2227 2228 nonblock = !!(substream->f_flags & O_NONBLOCK); 2229 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2230 return -EINVAL; 2231 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2232 } 2233 2234 EXPORT_SYMBOL(snd_pcm_lib_readv); 2235