1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <linux/export.h> 27 #include <sound/core.h> 28 #include <sound/control.h> 29 #include <sound/tlv.h> 30 #include <sound/info.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/timer.h> 34 35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 36 #define CREATE_TRACE_POINTS 37 #include "pcm_trace.h" 38 #else 39 #define trace_hwptr(substream, pos, in_interrupt) 40 #define trace_xrun(substream) 41 #define trace_hw_ptr_error(substream, reason) 42 #endif 43 44 /* 45 * fill ring buffer with silence 46 * runtime->silence_start: starting pointer to silence area 47 * runtime->silence_filled: size filled with silence 48 * runtime->silence_threshold: threshold from application 49 * runtime->silence_size: maximal size from application 50 * 51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 52 */ 53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 54 { 55 struct snd_pcm_runtime *runtime = substream->runtime; 56 snd_pcm_uframes_t frames, ofs, transfer; 57 58 if (runtime->silence_size < runtime->boundary) { 59 snd_pcm_sframes_t noise_dist, n; 60 if (runtime->silence_start != runtime->control->appl_ptr) { 61 n = runtime->control->appl_ptr - runtime->silence_start; 62 if (n < 0) 63 n += runtime->boundary; 64 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 65 runtime->silence_filled -= n; 66 else 67 runtime->silence_filled = 0; 68 runtime->silence_start = runtime->control->appl_ptr; 69 } 70 if (runtime->silence_filled >= runtime->buffer_size) 71 return; 72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 74 return; 75 frames = runtime->silence_threshold - noise_dist; 76 if (frames > runtime->silence_size) 77 frames = runtime->silence_size; 78 } else { 79 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 81 if (avail > runtime->buffer_size) 82 avail = runtime->buffer_size; 83 runtime->silence_filled = avail > 0 ? avail : 0; 84 runtime->silence_start = (runtime->status->hw_ptr + 85 runtime->silence_filled) % 86 runtime->boundary; 87 } else { 88 ofs = runtime->status->hw_ptr; 89 frames = new_hw_ptr - ofs; 90 if ((snd_pcm_sframes_t)frames < 0) 91 frames += runtime->boundary; 92 runtime->silence_filled -= frames; 93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 94 runtime->silence_filled = 0; 95 runtime->silence_start = new_hw_ptr; 96 } else { 97 runtime->silence_start = ofs; 98 } 99 } 100 frames = runtime->buffer_size - runtime->silence_filled; 101 } 102 if (snd_BUG_ON(frames > runtime->buffer_size)) 103 return; 104 if (frames == 0) 105 return; 106 ofs = runtime->silence_start % runtime->buffer_size; 107 while (frames > 0) { 108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 111 if (substream->ops->silence) { 112 int err; 113 err = substream->ops->silence(substream, -1, ofs, transfer); 114 snd_BUG_ON(err < 0); 115 } else { 116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 118 } 119 } else { 120 unsigned int c; 121 unsigned int channels = runtime->channels; 122 if (substream->ops->silence) { 123 for (c = 0; c < channels; ++c) { 124 int err; 125 err = substream->ops->silence(substream, c, ofs, transfer); 126 snd_BUG_ON(err < 0); 127 } 128 } else { 129 size_t dma_csize = runtime->dma_bytes / channels; 130 for (c = 0; c < channels; ++c) { 131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 133 } 134 } 135 } 136 runtime->silence_filled += transfer; 137 frames -= transfer; 138 ofs = 0; 139 } 140 } 141 142 #ifdef CONFIG_SND_DEBUG 143 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 144 char *name, size_t len) 145 { 146 snprintf(name, len, "pcmC%dD%d%c:%d", 147 substream->pcm->card->number, 148 substream->pcm->device, 149 substream->stream ? 'c' : 'p', 150 substream->number); 151 } 152 EXPORT_SYMBOL(snd_pcm_debug_name); 153 #endif 154 155 #define XRUN_DEBUG_BASIC (1<<0) 156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 158 159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 160 161 #define xrun_debug(substream, mask) \ 162 ((substream)->pstr->xrun_debug & (mask)) 163 #else 164 #define xrun_debug(substream, mask) 0 165 #endif 166 167 #define dump_stack_on_xrun(substream) do { \ 168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 169 dump_stack(); \ 170 } while (0) 171 172 static void xrun(struct snd_pcm_substream *substream) 173 { 174 struct snd_pcm_runtime *runtime = substream->runtime; 175 176 trace_xrun(substream); 177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 181 char name[16]; 182 snd_pcm_debug_name(substream, name, sizeof(name)); 183 pcm_warn(substream->pcm, "XRUN: %s\n", name); 184 dump_stack_on_xrun(substream); 185 } 186 } 187 188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 190 do { \ 191 trace_hw_ptr_error(substream, reason); \ 192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 194 (in_interrupt) ? 'Q' : 'P', ##args); \ 195 dump_stack_on_xrun(substream); \ 196 } \ 197 } while (0) 198 199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 200 201 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 202 203 #endif 204 205 int snd_pcm_update_state(struct snd_pcm_substream *substream, 206 struct snd_pcm_runtime *runtime) 207 { 208 snd_pcm_uframes_t avail; 209 210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 211 avail = snd_pcm_playback_avail(runtime); 212 else 213 avail = snd_pcm_capture_avail(runtime); 214 if (avail > runtime->avail_max) 215 runtime->avail_max = avail; 216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 217 if (avail >= runtime->buffer_size) { 218 snd_pcm_drain_done(substream); 219 return -EPIPE; 220 } 221 } else { 222 if (avail >= runtime->stop_threshold) { 223 xrun(substream); 224 return -EPIPE; 225 } 226 } 227 if (runtime->twake) { 228 if (avail >= runtime->twake) 229 wake_up(&runtime->tsleep); 230 } else if (avail >= runtime->control->avail_min) 231 wake_up(&runtime->sleep); 232 return 0; 233 } 234 235 static void update_audio_tstamp(struct snd_pcm_substream *substream, 236 struct timespec *curr_tstamp, 237 struct timespec *audio_tstamp) 238 { 239 struct snd_pcm_runtime *runtime = substream->runtime; 240 u64 audio_frames, audio_nsecs; 241 struct timespec driver_tstamp; 242 243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 244 return; 245 246 if (!(substream->ops->get_time_info) || 247 (runtime->audio_tstamp_report.actual_type == 248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 249 250 /* 251 * provide audio timestamp derived from pointer position 252 * add delay only if requested 253 */ 254 255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 256 257 if (runtime->audio_tstamp_config.report_delay) { 258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 259 audio_frames -= runtime->delay; 260 else 261 audio_frames += runtime->delay; 262 } 263 audio_nsecs = div_u64(audio_frames * 1000000000LL, 264 runtime->rate); 265 *audio_tstamp = ns_to_timespec(audio_nsecs); 266 } 267 runtime->status->audio_tstamp = *audio_tstamp; 268 runtime->status->tstamp = *curr_tstamp; 269 270 /* 271 * re-take a driver timestamp to let apps detect if the reference tstamp 272 * read by low-level hardware was provided with a delay 273 */ 274 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp); 275 runtime->driver_tstamp = driver_tstamp; 276 } 277 278 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 279 unsigned int in_interrupt) 280 { 281 struct snd_pcm_runtime *runtime = substream->runtime; 282 snd_pcm_uframes_t pos; 283 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 284 snd_pcm_sframes_t hdelta, delta; 285 unsigned long jdelta; 286 unsigned long curr_jiffies; 287 struct timespec curr_tstamp; 288 struct timespec audio_tstamp; 289 int crossed_boundary = 0; 290 291 old_hw_ptr = runtime->status->hw_ptr; 292 293 /* 294 * group pointer, time and jiffies reads to allow for more 295 * accurate correlations/corrections. 296 * The values are stored at the end of this routine after 297 * corrections for hw_ptr position 298 */ 299 pos = substream->ops->pointer(substream); 300 curr_jiffies = jiffies; 301 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 302 if ((substream->ops->get_time_info) && 303 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 304 substream->ops->get_time_info(substream, &curr_tstamp, 305 &audio_tstamp, 306 &runtime->audio_tstamp_config, 307 &runtime->audio_tstamp_report); 308 309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 310 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 311 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 312 } else 313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 314 } 315 316 if (pos == SNDRV_PCM_POS_XRUN) { 317 xrun(substream); 318 return -EPIPE; 319 } 320 if (pos >= runtime->buffer_size) { 321 if (printk_ratelimit()) { 322 char name[16]; 323 snd_pcm_debug_name(substream, name, sizeof(name)); 324 pcm_err(substream->pcm, 325 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 326 name, pos, runtime->buffer_size, 327 runtime->period_size); 328 } 329 pos = 0; 330 } 331 pos -= pos % runtime->min_align; 332 trace_hwptr(substream, pos, in_interrupt); 333 hw_base = runtime->hw_ptr_base; 334 new_hw_ptr = hw_base + pos; 335 if (in_interrupt) { 336 /* we know that one period was processed */ 337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 338 delta = runtime->hw_ptr_interrupt + runtime->period_size; 339 if (delta > new_hw_ptr) { 340 /* check for double acknowledged interrupts */ 341 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 342 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 343 hw_base += runtime->buffer_size; 344 if (hw_base >= runtime->boundary) { 345 hw_base = 0; 346 crossed_boundary++; 347 } 348 new_hw_ptr = hw_base + pos; 349 goto __delta; 350 } 351 } 352 } 353 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 354 /* pointer crosses the end of the ring buffer */ 355 if (new_hw_ptr < old_hw_ptr) { 356 hw_base += runtime->buffer_size; 357 if (hw_base >= runtime->boundary) { 358 hw_base = 0; 359 crossed_boundary++; 360 } 361 new_hw_ptr = hw_base + pos; 362 } 363 __delta: 364 delta = new_hw_ptr - old_hw_ptr; 365 if (delta < 0) 366 delta += runtime->boundary; 367 368 if (runtime->no_period_wakeup) { 369 snd_pcm_sframes_t xrun_threshold; 370 /* 371 * Without regular period interrupts, we have to check 372 * the elapsed time to detect xruns. 373 */ 374 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 375 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 376 goto no_delta_check; 377 hdelta = jdelta - delta * HZ / runtime->rate; 378 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 379 while (hdelta > xrun_threshold) { 380 delta += runtime->buffer_size; 381 hw_base += runtime->buffer_size; 382 if (hw_base >= runtime->boundary) { 383 hw_base = 0; 384 crossed_boundary++; 385 } 386 new_hw_ptr = hw_base + pos; 387 hdelta -= runtime->hw_ptr_buffer_jiffies; 388 } 389 goto no_delta_check; 390 } 391 392 /* something must be really wrong */ 393 if (delta >= runtime->buffer_size + runtime->period_size) { 394 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 396 substream->stream, (long)pos, 397 (long)new_hw_ptr, (long)old_hw_ptr); 398 return 0; 399 } 400 401 /* Do jiffies check only in xrun_debug mode */ 402 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 403 goto no_jiffies_check; 404 405 /* Skip the jiffies check for hardwares with BATCH flag. 406 * Such hardware usually just increases the position at each IRQ, 407 * thus it can't give any strange position. 408 */ 409 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 410 goto no_jiffies_check; 411 hdelta = delta; 412 if (hdelta < runtime->delay) 413 goto no_jiffies_check; 414 hdelta -= runtime->delay; 415 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 416 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 417 delta = jdelta / 418 (((runtime->period_size * HZ) / runtime->rate) 419 + HZ/100); 420 /* move new_hw_ptr according jiffies not pos variable */ 421 new_hw_ptr = old_hw_ptr; 422 hw_base = delta; 423 /* use loop to avoid checks for delta overflows */ 424 /* the delta value is small or zero in most cases */ 425 while (delta > 0) { 426 new_hw_ptr += runtime->period_size; 427 if (new_hw_ptr >= runtime->boundary) { 428 new_hw_ptr -= runtime->boundary; 429 crossed_boundary--; 430 } 431 delta--; 432 } 433 /* align hw_base to buffer_size */ 434 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 436 (long)pos, (long)hdelta, 437 (long)runtime->period_size, jdelta, 438 ((hdelta * HZ) / runtime->rate), hw_base, 439 (unsigned long)old_hw_ptr, 440 (unsigned long)new_hw_ptr); 441 /* reset values to proper state */ 442 delta = 0; 443 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 444 } 445 no_jiffies_check: 446 if (delta > runtime->period_size + runtime->period_size / 2) { 447 hw_ptr_error(substream, in_interrupt, 448 "Lost interrupts?", 449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 450 substream->stream, (long)delta, 451 (long)new_hw_ptr, 452 (long)old_hw_ptr); 453 } 454 455 no_delta_check: 456 if (runtime->status->hw_ptr == new_hw_ptr) { 457 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 458 return 0; 459 } 460 461 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 462 runtime->silence_size > 0) 463 snd_pcm_playback_silence(substream, new_hw_ptr); 464 465 if (in_interrupt) { 466 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 467 if (delta < 0) 468 delta += runtime->boundary; 469 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 470 runtime->hw_ptr_interrupt += delta; 471 if (runtime->hw_ptr_interrupt >= runtime->boundary) 472 runtime->hw_ptr_interrupt -= runtime->boundary; 473 } 474 runtime->hw_ptr_base = hw_base; 475 runtime->status->hw_ptr = new_hw_ptr; 476 runtime->hw_ptr_jiffies = curr_jiffies; 477 if (crossed_boundary) { 478 snd_BUG_ON(crossed_boundary != 1); 479 runtime->hw_ptr_wrap += runtime->boundary; 480 } 481 482 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 483 484 return snd_pcm_update_state(substream, runtime); 485 } 486 487 /* CAUTION: call it with irq disabled */ 488 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 489 { 490 return snd_pcm_update_hw_ptr0(substream, 0); 491 } 492 493 /** 494 * snd_pcm_set_ops - set the PCM operators 495 * @pcm: the pcm instance 496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 497 * @ops: the operator table 498 * 499 * Sets the given PCM operators to the pcm instance. 500 */ 501 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 502 const struct snd_pcm_ops *ops) 503 { 504 struct snd_pcm_str *stream = &pcm->streams[direction]; 505 struct snd_pcm_substream *substream; 506 507 for (substream = stream->substream; substream != NULL; substream = substream->next) 508 substream->ops = ops; 509 } 510 511 EXPORT_SYMBOL(snd_pcm_set_ops); 512 513 /** 514 * snd_pcm_sync - set the PCM sync id 515 * @substream: the pcm substream 516 * 517 * Sets the PCM sync identifier for the card. 518 */ 519 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 520 { 521 struct snd_pcm_runtime *runtime = substream->runtime; 522 523 runtime->sync.id32[0] = substream->pcm->card->number; 524 runtime->sync.id32[1] = -1; 525 runtime->sync.id32[2] = -1; 526 runtime->sync.id32[3] = -1; 527 } 528 529 EXPORT_SYMBOL(snd_pcm_set_sync); 530 531 /* 532 * Standard ioctl routine 533 */ 534 535 static inline unsigned int div32(unsigned int a, unsigned int b, 536 unsigned int *r) 537 { 538 if (b == 0) { 539 *r = 0; 540 return UINT_MAX; 541 } 542 *r = a % b; 543 return a / b; 544 } 545 546 static inline unsigned int div_down(unsigned int a, unsigned int b) 547 { 548 if (b == 0) 549 return UINT_MAX; 550 return a / b; 551 } 552 553 static inline unsigned int div_up(unsigned int a, unsigned int b) 554 { 555 unsigned int r; 556 unsigned int q; 557 if (b == 0) 558 return UINT_MAX; 559 q = div32(a, b, &r); 560 if (r) 561 ++q; 562 return q; 563 } 564 565 static inline unsigned int mul(unsigned int a, unsigned int b) 566 { 567 if (a == 0) 568 return 0; 569 if (div_down(UINT_MAX, a) < b) 570 return UINT_MAX; 571 return a * b; 572 } 573 574 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 575 unsigned int c, unsigned int *r) 576 { 577 u_int64_t n = (u_int64_t) a * b; 578 if (c == 0) { 579 snd_BUG_ON(!n); 580 *r = 0; 581 return UINT_MAX; 582 } 583 n = div_u64_rem(n, c, r); 584 if (n >= UINT_MAX) { 585 *r = 0; 586 return UINT_MAX; 587 } 588 return n; 589 } 590 591 /** 592 * snd_interval_refine - refine the interval value of configurator 593 * @i: the interval value to refine 594 * @v: the interval value to refer to 595 * 596 * Refines the interval value with the reference value. 597 * The interval is changed to the range satisfying both intervals. 598 * The interval status (min, max, integer, etc.) are evaluated. 599 * 600 * Return: Positive if the value is changed, zero if it's not changed, or a 601 * negative error code. 602 */ 603 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 604 { 605 int changed = 0; 606 if (snd_BUG_ON(snd_interval_empty(i))) 607 return -EINVAL; 608 if (i->min < v->min) { 609 i->min = v->min; 610 i->openmin = v->openmin; 611 changed = 1; 612 } else if (i->min == v->min && !i->openmin && v->openmin) { 613 i->openmin = 1; 614 changed = 1; 615 } 616 if (i->max > v->max) { 617 i->max = v->max; 618 i->openmax = v->openmax; 619 changed = 1; 620 } else if (i->max == v->max && !i->openmax && v->openmax) { 621 i->openmax = 1; 622 changed = 1; 623 } 624 if (!i->integer && v->integer) { 625 i->integer = 1; 626 changed = 1; 627 } 628 if (i->integer) { 629 if (i->openmin) { 630 i->min++; 631 i->openmin = 0; 632 } 633 if (i->openmax) { 634 i->max--; 635 i->openmax = 0; 636 } 637 } else if (!i->openmin && !i->openmax && i->min == i->max) 638 i->integer = 1; 639 if (snd_interval_checkempty(i)) { 640 snd_interval_none(i); 641 return -EINVAL; 642 } 643 return changed; 644 } 645 646 EXPORT_SYMBOL(snd_interval_refine); 647 648 static int snd_interval_refine_first(struct snd_interval *i) 649 { 650 if (snd_BUG_ON(snd_interval_empty(i))) 651 return -EINVAL; 652 if (snd_interval_single(i)) 653 return 0; 654 i->max = i->min; 655 i->openmax = i->openmin; 656 if (i->openmax) 657 i->max++; 658 return 1; 659 } 660 661 static int snd_interval_refine_last(struct snd_interval *i) 662 { 663 if (snd_BUG_ON(snd_interval_empty(i))) 664 return -EINVAL; 665 if (snd_interval_single(i)) 666 return 0; 667 i->min = i->max; 668 i->openmin = i->openmax; 669 if (i->openmin) 670 i->min--; 671 return 1; 672 } 673 674 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 675 { 676 if (a->empty || b->empty) { 677 snd_interval_none(c); 678 return; 679 } 680 c->empty = 0; 681 c->min = mul(a->min, b->min); 682 c->openmin = (a->openmin || b->openmin); 683 c->max = mul(a->max, b->max); 684 c->openmax = (a->openmax || b->openmax); 685 c->integer = (a->integer && b->integer); 686 } 687 688 /** 689 * snd_interval_div - refine the interval value with division 690 * @a: dividend 691 * @b: divisor 692 * @c: quotient 693 * 694 * c = a / b 695 * 696 * Returns non-zero if the value is changed, zero if not changed. 697 */ 698 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 699 { 700 unsigned int r; 701 if (a->empty || b->empty) { 702 snd_interval_none(c); 703 return; 704 } 705 c->empty = 0; 706 c->min = div32(a->min, b->max, &r); 707 c->openmin = (r || a->openmin || b->openmax); 708 if (b->min > 0) { 709 c->max = div32(a->max, b->min, &r); 710 if (r) { 711 c->max++; 712 c->openmax = 1; 713 } else 714 c->openmax = (a->openmax || b->openmin); 715 } else { 716 c->max = UINT_MAX; 717 c->openmax = 0; 718 } 719 c->integer = 0; 720 } 721 722 /** 723 * snd_interval_muldivk - refine the interval value 724 * @a: dividend 1 725 * @b: dividend 2 726 * @k: divisor (as integer) 727 * @c: result 728 * 729 * c = a * b / k 730 * 731 * Returns non-zero if the value is changed, zero if not changed. 732 */ 733 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 734 unsigned int k, struct snd_interval *c) 735 { 736 unsigned int r; 737 if (a->empty || b->empty) { 738 snd_interval_none(c); 739 return; 740 } 741 c->empty = 0; 742 c->min = muldiv32(a->min, b->min, k, &r); 743 c->openmin = (r || a->openmin || b->openmin); 744 c->max = muldiv32(a->max, b->max, k, &r); 745 if (r) { 746 c->max++; 747 c->openmax = 1; 748 } else 749 c->openmax = (a->openmax || b->openmax); 750 c->integer = 0; 751 } 752 753 /** 754 * snd_interval_mulkdiv - refine the interval value 755 * @a: dividend 1 756 * @k: dividend 2 (as integer) 757 * @b: divisor 758 * @c: result 759 * 760 * c = a * k / b 761 * 762 * Returns non-zero if the value is changed, zero if not changed. 763 */ 764 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 765 const struct snd_interval *b, struct snd_interval *c) 766 { 767 unsigned int r; 768 if (a->empty || b->empty) { 769 snd_interval_none(c); 770 return; 771 } 772 c->empty = 0; 773 c->min = muldiv32(a->min, k, b->max, &r); 774 c->openmin = (r || a->openmin || b->openmax); 775 if (b->min > 0) { 776 c->max = muldiv32(a->max, k, b->min, &r); 777 if (r) { 778 c->max++; 779 c->openmax = 1; 780 } else 781 c->openmax = (a->openmax || b->openmin); 782 } else { 783 c->max = UINT_MAX; 784 c->openmax = 0; 785 } 786 c->integer = 0; 787 } 788 789 /* ---- */ 790 791 792 /** 793 * snd_interval_ratnum - refine the interval value 794 * @i: interval to refine 795 * @rats_count: number of ratnum_t 796 * @rats: ratnum_t array 797 * @nump: pointer to store the resultant numerator 798 * @denp: pointer to store the resultant denominator 799 * 800 * Return: Positive if the value is changed, zero if it's not changed, or a 801 * negative error code. 802 */ 803 int snd_interval_ratnum(struct snd_interval *i, 804 unsigned int rats_count, struct snd_ratnum *rats, 805 unsigned int *nump, unsigned int *denp) 806 { 807 unsigned int best_num, best_den; 808 int best_diff; 809 unsigned int k; 810 struct snd_interval t; 811 int err; 812 unsigned int result_num, result_den; 813 int result_diff; 814 815 best_num = best_den = best_diff = 0; 816 for (k = 0; k < rats_count; ++k) { 817 unsigned int num = rats[k].num; 818 unsigned int den; 819 unsigned int q = i->min; 820 int diff; 821 if (q == 0) 822 q = 1; 823 den = div_up(num, q); 824 if (den < rats[k].den_min) 825 continue; 826 if (den > rats[k].den_max) 827 den = rats[k].den_max; 828 else { 829 unsigned int r; 830 r = (den - rats[k].den_min) % rats[k].den_step; 831 if (r != 0) 832 den -= r; 833 } 834 diff = num - q * den; 835 if (diff < 0) 836 diff = -diff; 837 if (best_num == 0 || 838 diff * best_den < best_diff * den) { 839 best_diff = diff; 840 best_den = den; 841 best_num = num; 842 } 843 } 844 if (best_den == 0) { 845 i->empty = 1; 846 return -EINVAL; 847 } 848 t.min = div_down(best_num, best_den); 849 t.openmin = !!(best_num % best_den); 850 851 result_num = best_num; 852 result_diff = best_diff; 853 result_den = best_den; 854 best_num = best_den = best_diff = 0; 855 for (k = 0; k < rats_count; ++k) { 856 unsigned int num = rats[k].num; 857 unsigned int den; 858 unsigned int q = i->max; 859 int diff; 860 if (q == 0) { 861 i->empty = 1; 862 return -EINVAL; 863 } 864 den = div_down(num, q); 865 if (den > rats[k].den_max) 866 continue; 867 if (den < rats[k].den_min) 868 den = rats[k].den_min; 869 else { 870 unsigned int r; 871 r = (den - rats[k].den_min) % rats[k].den_step; 872 if (r != 0) 873 den += rats[k].den_step - r; 874 } 875 diff = q * den - num; 876 if (diff < 0) 877 diff = -diff; 878 if (best_num == 0 || 879 diff * best_den < best_diff * den) { 880 best_diff = diff; 881 best_den = den; 882 best_num = num; 883 } 884 } 885 if (best_den == 0) { 886 i->empty = 1; 887 return -EINVAL; 888 } 889 t.max = div_up(best_num, best_den); 890 t.openmax = !!(best_num % best_den); 891 t.integer = 0; 892 err = snd_interval_refine(i, &t); 893 if (err < 0) 894 return err; 895 896 if (snd_interval_single(i)) { 897 if (best_diff * result_den < result_diff * best_den) { 898 result_num = best_num; 899 result_den = best_den; 900 } 901 if (nump) 902 *nump = result_num; 903 if (denp) 904 *denp = result_den; 905 } 906 return err; 907 } 908 909 EXPORT_SYMBOL(snd_interval_ratnum); 910 911 /** 912 * snd_interval_ratden - refine the interval value 913 * @i: interval to refine 914 * @rats_count: number of struct ratden 915 * @rats: struct ratden array 916 * @nump: pointer to store the resultant numerator 917 * @denp: pointer to store the resultant denominator 918 * 919 * Return: Positive if the value is changed, zero if it's not changed, or a 920 * negative error code. 921 */ 922 static int snd_interval_ratden(struct snd_interval *i, 923 unsigned int rats_count, struct snd_ratden *rats, 924 unsigned int *nump, unsigned int *denp) 925 { 926 unsigned int best_num, best_diff, best_den; 927 unsigned int k; 928 struct snd_interval t; 929 int err; 930 931 best_num = best_den = best_diff = 0; 932 for (k = 0; k < rats_count; ++k) { 933 unsigned int num; 934 unsigned int den = rats[k].den; 935 unsigned int q = i->min; 936 int diff; 937 num = mul(q, den); 938 if (num > rats[k].num_max) 939 continue; 940 if (num < rats[k].num_min) 941 num = rats[k].num_max; 942 else { 943 unsigned int r; 944 r = (num - rats[k].num_min) % rats[k].num_step; 945 if (r != 0) 946 num += rats[k].num_step - r; 947 } 948 diff = num - q * den; 949 if (best_num == 0 || 950 diff * best_den < best_diff * den) { 951 best_diff = diff; 952 best_den = den; 953 best_num = num; 954 } 955 } 956 if (best_den == 0) { 957 i->empty = 1; 958 return -EINVAL; 959 } 960 t.min = div_down(best_num, best_den); 961 t.openmin = !!(best_num % best_den); 962 963 best_num = best_den = best_diff = 0; 964 for (k = 0; k < rats_count; ++k) { 965 unsigned int num; 966 unsigned int den = rats[k].den; 967 unsigned int q = i->max; 968 int diff; 969 num = mul(q, den); 970 if (num < rats[k].num_min) 971 continue; 972 if (num > rats[k].num_max) 973 num = rats[k].num_max; 974 else { 975 unsigned int r; 976 r = (num - rats[k].num_min) % rats[k].num_step; 977 if (r != 0) 978 num -= r; 979 } 980 diff = q * den - num; 981 if (best_num == 0 || 982 diff * best_den < best_diff * den) { 983 best_diff = diff; 984 best_den = den; 985 best_num = num; 986 } 987 } 988 if (best_den == 0) { 989 i->empty = 1; 990 return -EINVAL; 991 } 992 t.max = div_up(best_num, best_den); 993 t.openmax = !!(best_num % best_den); 994 t.integer = 0; 995 err = snd_interval_refine(i, &t); 996 if (err < 0) 997 return err; 998 999 if (snd_interval_single(i)) { 1000 if (nump) 1001 *nump = best_num; 1002 if (denp) 1003 *denp = best_den; 1004 } 1005 return err; 1006 } 1007 1008 /** 1009 * snd_interval_list - refine the interval value from the list 1010 * @i: the interval value to refine 1011 * @count: the number of elements in the list 1012 * @list: the value list 1013 * @mask: the bit-mask to evaluate 1014 * 1015 * Refines the interval value from the list. 1016 * When mask is non-zero, only the elements corresponding to bit 1 are 1017 * evaluated. 1018 * 1019 * Return: Positive if the value is changed, zero if it's not changed, or a 1020 * negative error code. 1021 */ 1022 int snd_interval_list(struct snd_interval *i, unsigned int count, 1023 const unsigned int *list, unsigned int mask) 1024 { 1025 unsigned int k; 1026 struct snd_interval list_range; 1027 1028 if (!count) { 1029 i->empty = 1; 1030 return -EINVAL; 1031 } 1032 snd_interval_any(&list_range); 1033 list_range.min = UINT_MAX; 1034 list_range.max = 0; 1035 for (k = 0; k < count; k++) { 1036 if (mask && !(mask & (1 << k))) 1037 continue; 1038 if (!snd_interval_test(i, list[k])) 1039 continue; 1040 list_range.min = min(list_range.min, list[k]); 1041 list_range.max = max(list_range.max, list[k]); 1042 } 1043 return snd_interval_refine(i, &list_range); 1044 } 1045 1046 EXPORT_SYMBOL(snd_interval_list); 1047 1048 /** 1049 * snd_interval_ranges - refine the interval value from the list of ranges 1050 * @i: the interval value to refine 1051 * @count: the number of elements in the list of ranges 1052 * @ranges: the ranges list 1053 * @mask: the bit-mask to evaluate 1054 * 1055 * Refines the interval value from the list of ranges. 1056 * When mask is non-zero, only the elements corresponding to bit 1 are 1057 * evaluated. 1058 * 1059 * Return: Positive if the value is changed, zero if it's not changed, or a 1060 * negative error code. 1061 */ 1062 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1063 const struct snd_interval *ranges, unsigned int mask) 1064 { 1065 unsigned int k; 1066 struct snd_interval range_union; 1067 struct snd_interval range; 1068 1069 if (!count) { 1070 snd_interval_none(i); 1071 return -EINVAL; 1072 } 1073 snd_interval_any(&range_union); 1074 range_union.min = UINT_MAX; 1075 range_union.max = 0; 1076 for (k = 0; k < count; k++) { 1077 if (mask && !(mask & (1 << k))) 1078 continue; 1079 snd_interval_copy(&range, &ranges[k]); 1080 if (snd_interval_refine(&range, i) < 0) 1081 continue; 1082 if (snd_interval_empty(&range)) 1083 continue; 1084 1085 if (range.min < range_union.min) { 1086 range_union.min = range.min; 1087 range_union.openmin = 1; 1088 } 1089 if (range.min == range_union.min && !range.openmin) 1090 range_union.openmin = 0; 1091 if (range.max > range_union.max) { 1092 range_union.max = range.max; 1093 range_union.openmax = 1; 1094 } 1095 if (range.max == range_union.max && !range.openmax) 1096 range_union.openmax = 0; 1097 } 1098 return snd_interval_refine(i, &range_union); 1099 } 1100 EXPORT_SYMBOL(snd_interval_ranges); 1101 1102 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1103 { 1104 unsigned int n; 1105 int changed = 0; 1106 n = i->min % step; 1107 if (n != 0 || i->openmin) { 1108 i->min += step - n; 1109 i->openmin = 0; 1110 changed = 1; 1111 } 1112 n = i->max % step; 1113 if (n != 0 || i->openmax) { 1114 i->max -= n; 1115 i->openmax = 0; 1116 changed = 1; 1117 } 1118 if (snd_interval_checkempty(i)) { 1119 i->empty = 1; 1120 return -EINVAL; 1121 } 1122 return changed; 1123 } 1124 1125 /* Info constraints helpers */ 1126 1127 /** 1128 * snd_pcm_hw_rule_add - add the hw-constraint rule 1129 * @runtime: the pcm runtime instance 1130 * @cond: condition bits 1131 * @var: the variable to evaluate 1132 * @func: the evaluation function 1133 * @private: the private data pointer passed to function 1134 * @dep: the dependent variables 1135 * 1136 * Return: Zero if successful, or a negative error code on failure. 1137 */ 1138 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1139 int var, 1140 snd_pcm_hw_rule_func_t func, void *private, 1141 int dep, ...) 1142 { 1143 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1144 struct snd_pcm_hw_rule *c; 1145 unsigned int k; 1146 va_list args; 1147 va_start(args, dep); 1148 if (constrs->rules_num >= constrs->rules_all) { 1149 struct snd_pcm_hw_rule *new; 1150 unsigned int new_rules = constrs->rules_all + 16; 1151 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1152 if (!new) { 1153 va_end(args); 1154 return -ENOMEM; 1155 } 1156 if (constrs->rules) { 1157 memcpy(new, constrs->rules, 1158 constrs->rules_num * sizeof(*c)); 1159 kfree(constrs->rules); 1160 } 1161 constrs->rules = new; 1162 constrs->rules_all = new_rules; 1163 } 1164 c = &constrs->rules[constrs->rules_num]; 1165 c->cond = cond; 1166 c->func = func; 1167 c->var = var; 1168 c->private = private; 1169 k = 0; 1170 while (1) { 1171 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1172 va_end(args); 1173 return -EINVAL; 1174 } 1175 c->deps[k++] = dep; 1176 if (dep < 0) 1177 break; 1178 dep = va_arg(args, int); 1179 } 1180 constrs->rules_num++; 1181 va_end(args); 1182 return 0; 1183 } 1184 1185 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1186 1187 /** 1188 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1189 * @runtime: PCM runtime instance 1190 * @var: hw_params variable to apply the mask 1191 * @mask: the bitmap mask 1192 * 1193 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1194 * 1195 * Return: Zero if successful, or a negative error code on failure. 1196 */ 1197 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1198 u_int32_t mask) 1199 { 1200 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1201 struct snd_mask *maskp = constrs_mask(constrs, var); 1202 *maskp->bits &= mask; 1203 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1204 if (*maskp->bits == 0) 1205 return -EINVAL; 1206 return 0; 1207 } 1208 1209 /** 1210 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1211 * @runtime: PCM runtime instance 1212 * @var: hw_params variable to apply the mask 1213 * @mask: the 64bit bitmap mask 1214 * 1215 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1216 * 1217 * Return: Zero if successful, or a negative error code on failure. 1218 */ 1219 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1220 u_int64_t mask) 1221 { 1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1223 struct snd_mask *maskp = constrs_mask(constrs, var); 1224 maskp->bits[0] &= (u_int32_t)mask; 1225 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1226 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1227 if (! maskp->bits[0] && ! maskp->bits[1]) 1228 return -EINVAL; 1229 return 0; 1230 } 1231 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1232 1233 /** 1234 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1235 * @runtime: PCM runtime instance 1236 * @var: hw_params variable to apply the integer constraint 1237 * 1238 * Apply the constraint of integer to an interval parameter. 1239 * 1240 * Return: Positive if the value is changed, zero if it's not changed, or a 1241 * negative error code. 1242 */ 1243 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1244 { 1245 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1246 return snd_interval_setinteger(constrs_interval(constrs, var)); 1247 } 1248 1249 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1250 1251 /** 1252 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1253 * @runtime: PCM runtime instance 1254 * @var: hw_params variable to apply the range 1255 * @min: the minimal value 1256 * @max: the maximal value 1257 * 1258 * Apply the min/max range constraint to an interval parameter. 1259 * 1260 * Return: Positive if the value is changed, zero if it's not changed, or a 1261 * negative error code. 1262 */ 1263 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1264 unsigned int min, unsigned int max) 1265 { 1266 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1267 struct snd_interval t; 1268 t.min = min; 1269 t.max = max; 1270 t.openmin = t.openmax = 0; 1271 t.integer = 0; 1272 return snd_interval_refine(constrs_interval(constrs, var), &t); 1273 } 1274 1275 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1276 1277 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1278 struct snd_pcm_hw_rule *rule) 1279 { 1280 struct snd_pcm_hw_constraint_list *list = rule->private; 1281 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1282 } 1283 1284 1285 /** 1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1287 * @runtime: PCM runtime instance 1288 * @cond: condition bits 1289 * @var: hw_params variable to apply the list constraint 1290 * @l: list 1291 * 1292 * Apply the list of constraints to an interval parameter. 1293 * 1294 * Return: Zero if successful, or a negative error code on failure. 1295 */ 1296 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1297 unsigned int cond, 1298 snd_pcm_hw_param_t var, 1299 const struct snd_pcm_hw_constraint_list *l) 1300 { 1301 return snd_pcm_hw_rule_add(runtime, cond, var, 1302 snd_pcm_hw_rule_list, (void *)l, 1303 var, -1); 1304 } 1305 1306 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1307 1308 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1309 struct snd_pcm_hw_rule *rule) 1310 { 1311 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1312 return snd_interval_ranges(hw_param_interval(params, rule->var), 1313 r->count, r->ranges, r->mask); 1314 } 1315 1316 1317 /** 1318 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1319 * @runtime: PCM runtime instance 1320 * @cond: condition bits 1321 * @var: hw_params variable to apply the list of range constraints 1322 * @r: ranges 1323 * 1324 * Apply the list of range constraints to an interval parameter. 1325 * 1326 * Return: Zero if successful, or a negative error code on failure. 1327 */ 1328 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1329 unsigned int cond, 1330 snd_pcm_hw_param_t var, 1331 const struct snd_pcm_hw_constraint_ranges *r) 1332 { 1333 return snd_pcm_hw_rule_add(runtime, cond, var, 1334 snd_pcm_hw_rule_ranges, (void *)r, 1335 var, -1); 1336 } 1337 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1338 1339 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1340 struct snd_pcm_hw_rule *rule) 1341 { 1342 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1343 unsigned int num = 0, den = 0; 1344 int err; 1345 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1346 r->nrats, r->rats, &num, &den); 1347 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1348 params->rate_num = num; 1349 params->rate_den = den; 1350 } 1351 return err; 1352 } 1353 1354 /** 1355 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1356 * @runtime: PCM runtime instance 1357 * @cond: condition bits 1358 * @var: hw_params variable to apply the ratnums constraint 1359 * @r: struct snd_ratnums constriants 1360 * 1361 * Return: Zero if successful, or a negative error code on failure. 1362 */ 1363 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1364 unsigned int cond, 1365 snd_pcm_hw_param_t var, 1366 struct snd_pcm_hw_constraint_ratnums *r) 1367 { 1368 return snd_pcm_hw_rule_add(runtime, cond, var, 1369 snd_pcm_hw_rule_ratnums, r, 1370 var, -1); 1371 } 1372 1373 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1374 1375 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1376 struct snd_pcm_hw_rule *rule) 1377 { 1378 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1379 unsigned int num = 0, den = 0; 1380 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1381 r->nrats, r->rats, &num, &den); 1382 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1383 params->rate_num = num; 1384 params->rate_den = den; 1385 } 1386 return err; 1387 } 1388 1389 /** 1390 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1391 * @runtime: PCM runtime instance 1392 * @cond: condition bits 1393 * @var: hw_params variable to apply the ratdens constraint 1394 * @r: struct snd_ratdens constriants 1395 * 1396 * Return: Zero if successful, or a negative error code on failure. 1397 */ 1398 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1399 unsigned int cond, 1400 snd_pcm_hw_param_t var, 1401 struct snd_pcm_hw_constraint_ratdens *r) 1402 { 1403 return snd_pcm_hw_rule_add(runtime, cond, var, 1404 snd_pcm_hw_rule_ratdens, r, 1405 var, -1); 1406 } 1407 1408 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1409 1410 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1411 struct snd_pcm_hw_rule *rule) 1412 { 1413 unsigned int l = (unsigned long) rule->private; 1414 int width = l & 0xffff; 1415 unsigned int msbits = l >> 16; 1416 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1417 1418 if (!snd_interval_single(i)) 1419 return 0; 1420 1421 if ((snd_interval_value(i) == width) || 1422 (width == 0 && snd_interval_value(i) > msbits)) 1423 params->msbits = min_not_zero(params->msbits, msbits); 1424 1425 return 0; 1426 } 1427 1428 /** 1429 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1430 * @runtime: PCM runtime instance 1431 * @cond: condition bits 1432 * @width: sample bits width 1433 * @msbits: msbits width 1434 * 1435 * This constraint will set the number of most significant bits (msbits) if a 1436 * sample format with the specified width has been select. If width is set to 0 1437 * the msbits will be set for any sample format with a width larger than the 1438 * specified msbits. 1439 * 1440 * Return: Zero if successful, or a negative error code on failure. 1441 */ 1442 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1443 unsigned int cond, 1444 unsigned int width, 1445 unsigned int msbits) 1446 { 1447 unsigned long l = (msbits << 16) | width; 1448 return snd_pcm_hw_rule_add(runtime, cond, -1, 1449 snd_pcm_hw_rule_msbits, 1450 (void*) l, 1451 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1452 } 1453 1454 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1455 1456 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1457 struct snd_pcm_hw_rule *rule) 1458 { 1459 unsigned long step = (unsigned long) rule->private; 1460 return snd_interval_step(hw_param_interval(params, rule->var), step); 1461 } 1462 1463 /** 1464 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1465 * @runtime: PCM runtime instance 1466 * @cond: condition bits 1467 * @var: hw_params variable to apply the step constraint 1468 * @step: step size 1469 * 1470 * Return: Zero if successful, or a negative error code on failure. 1471 */ 1472 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1473 unsigned int cond, 1474 snd_pcm_hw_param_t var, 1475 unsigned long step) 1476 { 1477 return snd_pcm_hw_rule_add(runtime, cond, var, 1478 snd_pcm_hw_rule_step, (void *) step, 1479 var, -1); 1480 } 1481 1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1483 1484 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1485 { 1486 static unsigned int pow2_sizes[] = { 1487 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1488 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1489 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1490 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1491 }; 1492 return snd_interval_list(hw_param_interval(params, rule->var), 1493 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1494 } 1495 1496 /** 1497 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1498 * @runtime: PCM runtime instance 1499 * @cond: condition bits 1500 * @var: hw_params variable to apply the power-of-2 constraint 1501 * 1502 * Return: Zero if successful, or a negative error code on failure. 1503 */ 1504 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1505 unsigned int cond, 1506 snd_pcm_hw_param_t var) 1507 { 1508 return snd_pcm_hw_rule_add(runtime, cond, var, 1509 snd_pcm_hw_rule_pow2, NULL, 1510 var, -1); 1511 } 1512 1513 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1514 1515 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1516 struct snd_pcm_hw_rule *rule) 1517 { 1518 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1519 struct snd_interval *rate; 1520 1521 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1522 return snd_interval_list(rate, 1, &base_rate, 0); 1523 } 1524 1525 /** 1526 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1527 * @runtime: PCM runtime instance 1528 * @base_rate: the rate at which the hardware does not resample 1529 * 1530 * Return: Zero if successful, or a negative error code on failure. 1531 */ 1532 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1533 unsigned int base_rate) 1534 { 1535 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1536 SNDRV_PCM_HW_PARAM_RATE, 1537 snd_pcm_hw_rule_noresample_func, 1538 (void *)(uintptr_t)base_rate, 1539 SNDRV_PCM_HW_PARAM_RATE, -1); 1540 } 1541 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1542 1543 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1544 snd_pcm_hw_param_t var) 1545 { 1546 if (hw_is_mask(var)) { 1547 snd_mask_any(hw_param_mask(params, var)); 1548 params->cmask |= 1 << var; 1549 params->rmask |= 1 << var; 1550 return; 1551 } 1552 if (hw_is_interval(var)) { 1553 snd_interval_any(hw_param_interval(params, var)); 1554 params->cmask |= 1 << var; 1555 params->rmask |= 1 << var; 1556 return; 1557 } 1558 snd_BUG(); 1559 } 1560 1561 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1562 { 1563 unsigned int k; 1564 memset(params, 0, sizeof(*params)); 1565 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1566 _snd_pcm_hw_param_any(params, k); 1567 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1568 _snd_pcm_hw_param_any(params, k); 1569 params->info = ~0U; 1570 } 1571 1572 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1573 1574 /** 1575 * snd_pcm_hw_param_value - return @params field @var value 1576 * @params: the hw_params instance 1577 * @var: parameter to retrieve 1578 * @dir: pointer to the direction (-1,0,1) or %NULL 1579 * 1580 * Return: The value for field @var if it's fixed in configuration space 1581 * defined by @params. -%EINVAL otherwise. 1582 */ 1583 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1584 snd_pcm_hw_param_t var, int *dir) 1585 { 1586 if (hw_is_mask(var)) { 1587 const struct snd_mask *mask = hw_param_mask_c(params, var); 1588 if (!snd_mask_single(mask)) 1589 return -EINVAL; 1590 if (dir) 1591 *dir = 0; 1592 return snd_mask_value(mask); 1593 } 1594 if (hw_is_interval(var)) { 1595 const struct snd_interval *i = hw_param_interval_c(params, var); 1596 if (!snd_interval_single(i)) 1597 return -EINVAL; 1598 if (dir) 1599 *dir = i->openmin; 1600 return snd_interval_value(i); 1601 } 1602 return -EINVAL; 1603 } 1604 1605 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1606 1607 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1608 snd_pcm_hw_param_t var) 1609 { 1610 if (hw_is_mask(var)) { 1611 snd_mask_none(hw_param_mask(params, var)); 1612 params->cmask |= 1 << var; 1613 params->rmask |= 1 << var; 1614 } else if (hw_is_interval(var)) { 1615 snd_interval_none(hw_param_interval(params, var)); 1616 params->cmask |= 1 << var; 1617 params->rmask |= 1 << var; 1618 } else { 1619 snd_BUG(); 1620 } 1621 } 1622 1623 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1624 1625 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1626 snd_pcm_hw_param_t var) 1627 { 1628 int changed; 1629 if (hw_is_mask(var)) 1630 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1631 else if (hw_is_interval(var)) 1632 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1633 else 1634 return -EINVAL; 1635 if (changed) { 1636 params->cmask |= 1 << var; 1637 params->rmask |= 1 << var; 1638 } 1639 return changed; 1640 } 1641 1642 1643 /** 1644 * snd_pcm_hw_param_first - refine config space and return minimum value 1645 * @pcm: PCM instance 1646 * @params: the hw_params instance 1647 * @var: parameter to retrieve 1648 * @dir: pointer to the direction (-1,0,1) or %NULL 1649 * 1650 * Inside configuration space defined by @params remove from @var all 1651 * values > minimum. Reduce configuration space accordingly. 1652 * 1653 * Return: The minimum, or a negative error code on failure. 1654 */ 1655 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1656 struct snd_pcm_hw_params *params, 1657 snd_pcm_hw_param_t var, int *dir) 1658 { 1659 int changed = _snd_pcm_hw_param_first(params, var); 1660 if (changed < 0) 1661 return changed; 1662 if (params->rmask) { 1663 int err = snd_pcm_hw_refine(pcm, params); 1664 if (snd_BUG_ON(err < 0)) 1665 return err; 1666 } 1667 return snd_pcm_hw_param_value(params, var, dir); 1668 } 1669 1670 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1671 1672 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1673 snd_pcm_hw_param_t var) 1674 { 1675 int changed; 1676 if (hw_is_mask(var)) 1677 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1678 else if (hw_is_interval(var)) 1679 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1680 else 1681 return -EINVAL; 1682 if (changed) { 1683 params->cmask |= 1 << var; 1684 params->rmask |= 1 << var; 1685 } 1686 return changed; 1687 } 1688 1689 1690 /** 1691 * snd_pcm_hw_param_last - refine config space and return maximum value 1692 * @pcm: PCM instance 1693 * @params: the hw_params instance 1694 * @var: parameter to retrieve 1695 * @dir: pointer to the direction (-1,0,1) or %NULL 1696 * 1697 * Inside configuration space defined by @params remove from @var all 1698 * values < maximum. Reduce configuration space accordingly. 1699 * 1700 * Return: The maximum, or a negative error code on failure. 1701 */ 1702 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1703 struct snd_pcm_hw_params *params, 1704 snd_pcm_hw_param_t var, int *dir) 1705 { 1706 int changed = _snd_pcm_hw_param_last(params, var); 1707 if (changed < 0) 1708 return changed; 1709 if (params->rmask) { 1710 int err = snd_pcm_hw_refine(pcm, params); 1711 if (snd_BUG_ON(err < 0)) 1712 return err; 1713 } 1714 return snd_pcm_hw_param_value(params, var, dir); 1715 } 1716 1717 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1718 1719 /** 1720 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1721 * @pcm: PCM instance 1722 * @params: the hw_params instance 1723 * 1724 * Choose one configuration from configuration space defined by @params. 1725 * The configuration chosen is that obtained fixing in this order: 1726 * first access, first format, first subformat, min channels, 1727 * min rate, min period time, max buffer size, min tick time 1728 * 1729 * Return: Zero if successful, or a negative error code on failure. 1730 */ 1731 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1732 struct snd_pcm_hw_params *params) 1733 { 1734 static int vars[] = { 1735 SNDRV_PCM_HW_PARAM_ACCESS, 1736 SNDRV_PCM_HW_PARAM_FORMAT, 1737 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1738 SNDRV_PCM_HW_PARAM_CHANNELS, 1739 SNDRV_PCM_HW_PARAM_RATE, 1740 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1741 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1742 SNDRV_PCM_HW_PARAM_TICK_TIME, 1743 -1 1744 }; 1745 int err, *v; 1746 1747 for (v = vars; *v != -1; v++) { 1748 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1749 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1750 else 1751 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1752 if (snd_BUG_ON(err < 0)) 1753 return err; 1754 } 1755 return 0; 1756 } 1757 1758 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1759 void *arg) 1760 { 1761 struct snd_pcm_runtime *runtime = substream->runtime; 1762 unsigned long flags; 1763 snd_pcm_stream_lock_irqsave(substream, flags); 1764 if (snd_pcm_running(substream) && 1765 snd_pcm_update_hw_ptr(substream) >= 0) 1766 runtime->status->hw_ptr %= runtime->buffer_size; 1767 else { 1768 runtime->status->hw_ptr = 0; 1769 runtime->hw_ptr_wrap = 0; 1770 } 1771 snd_pcm_stream_unlock_irqrestore(substream, flags); 1772 return 0; 1773 } 1774 1775 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1776 void *arg) 1777 { 1778 struct snd_pcm_channel_info *info = arg; 1779 struct snd_pcm_runtime *runtime = substream->runtime; 1780 int width; 1781 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1782 info->offset = -1; 1783 return 0; 1784 } 1785 width = snd_pcm_format_physical_width(runtime->format); 1786 if (width < 0) 1787 return width; 1788 info->offset = 0; 1789 switch (runtime->access) { 1790 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1791 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1792 info->first = info->channel * width; 1793 info->step = runtime->channels * width; 1794 break; 1795 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1796 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1797 { 1798 size_t size = runtime->dma_bytes / runtime->channels; 1799 info->first = info->channel * size * 8; 1800 info->step = width; 1801 break; 1802 } 1803 default: 1804 snd_BUG(); 1805 break; 1806 } 1807 return 0; 1808 } 1809 1810 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1811 void *arg) 1812 { 1813 struct snd_pcm_hw_params *params = arg; 1814 snd_pcm_format_t format; 1815 int channels; 1816 ssize_t frame_size; 1817 1818 params->fifo_size = substream->runtime->hw.fifo_size; 1819 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1820 format = params_format(params); 1821 channels = params_channels(params); 1822 frame_size = snd_pcm_format_size(format, channels); 1823 if (frame_size > 0) 1824 params->fifo_size /= (unsigned)frame_size; 1825 } 1826 return 0; 1827 } 1828 1829 /** 1830 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1831 * @substream: the pcm substream instance 1832 * @cmd: ioctl command 1833 * @arg: ioctl argument 1834 * 1835 * Processes the generic ioctl commands for PCM. 1836 * Can be passed as the ioctl callback for PCM ops. 1837 * 1838 * Return: Zero if successful, or a negative error code on failure. 1839 */ 1840 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1841 unsigned int cmd, void *arg) 1842 { 1843 switch (cmd) { 1844 case SNDRV_PCM_IOCTL1_INFO: 1845 return 0; 1846 case SNDRV_PCM_IOCTL1_RESET: 1847 return snd_pcm_lib_ioctl_reset(substream, arg); 1848 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1849 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1850 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1851 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1852 } 1853 return -ENXIO; 1854 } 1855 1856 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1857 1858 /** 1859 * snd_pcm_period_elapsed - update the pcm status for the next period 1860 * @substream: the pcm substream instance 1861 * 1862 * This function is called from the interrupt handler when the 1863 * PCM has processed the period size. It will update the current 1864 * pointer, wake up sleepers, etc. 1865 * 1866 * Even if more than one periods have elapsed since the last call, you 1867 * have to call this only once. 1868 */ 1869 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1870 { 1871 struct snd_pcm_runtime *runtime; 1872 unsigned long flags; 1873 1874 if (PCM_RUNTIME_CHECK(substream)) 1875 return; 1876 runtime = substream->runtime; 1877 1878 if (runtime->transfer_ack_begin) 1879 runtime->transfer_ack_begin(substream); 1880 1881 snd_pcm_stream_lock_irqsave(substream, flags); 1882 if (!snd_pcm_running(substream) || 1883 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1884 goto _end; 1885 1886 if (substream->timer_running) 1887 snd_timer_interrupt(substream->timer, 1); 1888 _end: 1889 snd_pcm_stream_unlock_irqrestore(substream, flags); 1890 if (runtime->transfer_ack_end) 1891 runtime->transfer_ack_end(substream); 1892 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1893 } 1894 1895 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1896 1897 /* 1898 * Wait until avail_min data becomes available 1899 * Returns a negative error code if any error occurs during operation. 1900 * The available space is stored on availp. When err = 0 and avail = 0 1901 * on the capture stream, it indicates the stream is in DRAINING state. 1902 */ 1903 static int wait_for_avail(struct snd_pcm_substream *substream, 1904 snd_pcm_uframes_t *availp) 1905 { 1906 struct snd_pcm_runtime *runtime = substream->runtime; 1907 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1908 wait_queue_t wait; 1909 int err = 0; 1910 snd_pcm_uframes_t avail = 0; 1911 long wait_time, tout; 1912 1913 init_waitqueue_entry(&wait, current); 1914 set_current_state(TASK_INTERRUPTIBLE); 1915 add_wait_queue(&runtime->tsleep, &wait); 1916 1917 if (runtime->no_period_wakeup) 1918 wait_time = MAX_SCHEDULE_TIMEOUT; 1919 else { 1920 wait_time = 10; 1921 if (runtime->rate) { 1922 long t = runtime->period_size * 2 / runtime->rate; 1923 wait_time = max(t, wait_time); 1924 } 1925 wait_time = msecs_to_jiffies(wait_time * 1000); 1926 } 1927 1928 for (;;) { 1929 if (signal_pending(current)) { 1930 err = -ERESTARTSYS; 1931 break; 1932 } 1933 1934 /* 1935 * We need to check if space became available already 1936 * (and thus the wakeup happened already) first to close 1937 * the race of space already having become available. 1938 * This check must happen after been added to the waitqueue 1939 * and having current state be INTERRUPTIBLE. 1940 */ 1941 if (is_playback) 1942 avail = snd_pcm_playback_avail(runtime); 1943 else 1944 avail = snd_pcm_capture_avail(runtime); 1945 if (avail >= runtime->twake) 1946 break; 1947 snd_pcm_stream_unlock_irq(substream); 1948 1949 tout = schedule_timeout(wait_time); 1950 1951 snd_pcm_stream_lock_irq(substream); 1952 set_current_state(TASK_INTERRUPTIBLE); 1953 switch (runtime->status->state) { 1954 case SNDRV_PCM_STATE_SUSPENDED: 1955 err = -ESTRPIPE; 1956 goto _endloop; 1957 case SNDRV_PCM_STATE_XRUN: 1958 err = -EPIPE; 1959 goto _endloop; 1960 case SNDRV_PCM_STATE_DRAINING: 1961 if (is_playback) 1962 err = -EPIPE; 1963 else 1964 avail = 0; /* indicate draining */ 1965 goto _endloop; 1966 case SNDRV_PCM_STATE_OPEN: 1967 case SNDRV_PCM_STATE_SETUP: 1968 case SNDRV_PCM_STATE_DISCONNECTED: 1969 err = -EBADFD; 1970 goto _endloop; 1971 case SNDRV_PCM_STATE_PAUSED: 1972 continue; 1973 } 1974 if (!tout) { 1975 pcm_dbg(substream->pcm, 1976 "%s write error (DMA or IRQ trouble?)\n", 1977 is_playback ? "playback" : "capture"); 1978 err = -EIO; 1979 break; 1980 } 1981 } 1982 _endloop: 1983 set_current_state(TASK_RUNNING); 1984 remove_wait_queue(&runtime->tsleep, &wait); 1985 *availp = avail; 1986 return err; 1987 } 1988 1989 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1990 unsigned int hwoff, 1991 unsigned long data, unsigned int off, 1992 snd_pcm_uframes_t frames) 1993 { 1994 struct snd_pcm_runtime *runtime = substream->runtime; 1995 int err; 1996 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1997 if (substream->ops->copy) { 1998 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1999 return err; 2000 } else { 2001 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2002 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 2003 return -EFAULT; 2004 } 2005 return 0; 2006 } 2007 2008 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 2009 unsigned long data, unsigned int off, 2010 snd_pcm_uframes_t size); 2011 2012 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 2013 unsigned long data, 2014 snd_pcm_uframes_t size, 2015 int nonblock, 2016 transfer_f transfer) 2017 { 2018 struct snd_pcm_runtime *runtime = substream->runtime; 2019 snd_pcm_uframes_t xfer = 0; 2020 snd_pcm_uframes_t offset = 0; 2021 snd_pcm_uframes_t avail; 2022 int err = 0; 2023 2024 if (size == 0) 2025 return 0; 2026 2027 snd_pcm_stream_lock_irq(substream); 2028 switch (runtime->status->state) { 2029 case SNDRV_PCM_STATE_PREPARED: 2030 case SNDRV_PCM_STATE_RUNNING: 2031 case SNDRV_PCM_STATE_PAUSED: 2032 break; 2033 case SNDRV_PCM_STATE_XRUN: 2034 err = -EPIPE; 2035 goto _end_unlock; 2036 case SNDRV_PCM_STATE_SUSPENDED: 2037 err = -ESTRPIPE; 2038 goto _end_unlock; 2039 default: 2040 err = -EBADFD; 2041 goto _end_unlock; 2042 } 2043 2044 runtime->twake = runtime->control->avail_min ? : 1; 2045 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2046 snd_pcm_update_hw_ptr(substream); 2047 avail = snd_pcm_playback_avail(runtime); 2048 while (size > 0) { 2049 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2050 snd_pcm_uframes_t cont; 2051 if (!avail) { 2052 if (nonblock) { 2053 err = -EAGAIN; 2054 goto _end_unlock; 2055 } 2056 runtime->twake = min_t(snd_pcm_uframes_t, size, 2057 runtime->control->avail_min ? : 1); 2058 err = wait_for_avail(substream, &avail); 2059 if (err < 0) 2060 goto _end_unlock; 2061 } 2062 frames = size > avail ? avail : size; 2063 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2064 if (frames > cont) 2065 frames = cont; 2066 if (snd_BUG_ON(!frames)) { 2067 runtime->twake = 0; 2068 snd_pcm_stream_unlock_irq(substream); 2069 return -EINVAL; 2070 } 2071 appl_ptr = runtime->control->appl_ptr; 2072 appl_ofs = appl_ptr % runtime->buffer_size; 2073 snd_pcm_stream_unlock_irq(substream); 2074 err = transfer(substream, appl_ofs, data, offset, frames); 2075 snd_pcm_stream_lock_irq(substream); 2076 if (err < 0) 2077 goto _end_unlock; 2078 switch (runtime->status->state) { 2079 case SNDRV_PCM_STATE_XRUN: 2080 err = -EPIPE; 2081 goto _end_unlock; 2082 case SNDRV_PCM_STATE_SUSPENDED: 2083 err = -ESTRPIPE; 2084 goto _end_unlock; 2085 default: 2086 break; 2087 } 2088 appl_ptr += frames; 2089 if (appl_ptr >= runtime->boundary) 2090 appl_ptr -= runtime->boundary; 2091 runtime->control->appl_ptr = appl_ptr; 2092 if (substream->ops->ack) 2093 substream->ops->ack(substream); 2094 2095 offset += frames; 2096 size -= frames; 2097 xfer += frames; 2098 avail -= frames; 2099 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2100 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2101 err = snd_pcm_start(substream); 2102 if (err < 0) 2103 goto _end_unlock; 2104 } 2105 } 2106 _end_unlock: 2107 runtime->twake = 0; 2108 if (xfer > 0 && err >= 0) 2109 snd_pcm_update_state(substream, runtime); 2110 snd_pcm_stream_unlock_irq(substream); 2111 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2112 } 2113 2114 /* sanity-check for read/write methods */ 2115 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2116 { 2117 struct snd_pcm_runtime *runtime; 2118 if (PCM_RUNTIME_CHECK(substream)) 2119 return -ENXIO; 2120 runtime = substream->runtime; 2121 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 2122 return -EINVAL; 2123 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2124 return -EBADFD; 2125 return 0; 2126 } 2127 2128 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 2129 { 2130 struct snd_pcm_runtime *runtime; 2131 int nonblock; 2132 int err; 2133 2134 err = pcm_sanity_check(substream); 2135 if (err < 0) 2136 return err; 2137 runtime = substream->runtime; 2138 nonblock = !!(substream->f_flags & O_NONBLOCK); 2139 2140 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2141 runtime->channels > 1) 2142 return -EINVAL; 2143 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 2144 snd_pcm_lib_write_transfer); 2145 } 2146 2147 EXPORT_SYMBOL(snd_pcm_lib_write); 2148 2149 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 2150 unsigned int hwoff, 2151 unsigned long data, unsigned int off, 2152 snd_pcm_uframes_t frames) 2153 { 2154 struct snd_pcm_runtime *runtime = substream->runtime; 2155 int err; 2156 void __user **bufs = (void __user **)data; 2157 int channels = runtime->channels; 2158 int c; 2159 if (substream->ops->copy) { 2160 if (snd_BUG_ON(!substream->ops->silence)) 2161 return -EINVAL; 2162 for (c = 0; c < channels; ++c, ++bufs) { 2163 if (*bufs == NULL) { 2164 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 2165 return err; 2166 } else { 2167 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2168 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2169 return err; 2170 } 2171 } 2172 } else { 2173 /* default transfer behaviour */ 2174 size_t dma_csize = runtime->dma_bytes / channels; 2175 for (c = 0; c < channels; ++c, ++bufs) { 2176 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2177 if (*bufs == NULL) { 2178 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 2179 } else { 2180 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2181 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2182 return -EFAULT; 2183 } 2184 } 2185 } 2186 return 0; 2187 } 2188 2189 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2190 void __user **bufs, 2191 snd_pcm_uframes_t frames) 2192 { 2193 struct snd_pcm_runtime *runtime; 2194 int nonblock; 2195 int err; 2196 2197 err = pcm_sanity_check(substream); 2198 if (err < 0) 2199 return err; 2200 runtime = substream->runtime; 2201 nonblock = !!(substream->f_flags & O_NONBLOCK); 2202 2203 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2204 return -EINVAL; 2205 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2206 nonblock, snd_pcm_lib_writev_transfer); 2207 } 2208 2209 EXPORT_SYMBOL(snd_pcm_lib_writev); 2210 2211 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2212 unsigned int hwoff, 2213 unsigned long data, unsigned int off, 2214 snd_pcm_uframes_t frames) 2215 { 2216 struct snd_pcm_runtime *runtime = substream->runtime; 2217 int err; 2218 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2219 if (substream->ops->copy) { 2220 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2221 return err; 2222 } else { 2223 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2224 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2225 return -EFAULT; 2226 } 2227 return 0; 2228 } 2229 2230 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2231 unsigned long data, 2232 snd_pcm_uframes_t size, 2233 int nonblock, 2234 transfer_f transfer) 2235 { 2236 struct snd_pcm_runtime *runtime = substream->runtime; 2237 snd_pcm_uframes_t xfer = 0; 2238 snd_pcm_uframes_t offset = 0; 2239 snd_pcm_uframes_t avail; 2240 int err = 0; 2241 2242 if (size == 0) 2243 return 0; 2244 2245 snd_pcm_stream_lock_irq(substream); 2246 switch (runtime->status->state) { 2247 case SNDRV_PCM_STATE_PREPARED: 2248 if (size >= runtime->start_threshold) { 2249 err = snd_pcm_start(substream); 2250 if (err < 0) 2251 goto _end_unlock; 2252 } 2253 break; 2254 case SNDRV_PCM_STATE_DRAINING: 2255 case SNDRV_PCM_STATE_RUNNING: 2256 case SNDRV_PCM_STATE_PAUSED: 2257 break; 2258 case SNDRV_PCM_STATE_XRUN: 2259 err = -EPIPE; 2260 goto _end_unlock; 2261 case SNDRV_PCM_STATE_SUSPENDED: 2262 err = -ESTRPIPE; 2263 goto _end_unlock; 2264 default: 2265 err = -EBADFD; 2266 goto _end_unlock; 2267 } 2268 2269 runtime->twake = runtime->control->avail_min ? : 1; 2270 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2271 snd_pcm_update_hw_ptr(substream); 2272 avail = snd_pcm_capture_avail(runtime); 2273 while (size > 0) { 2274 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2275 snd_pcm_uframes_t cont; 2276 if (!avail) { 2277 if (runtime->status->state == 2278 SNDRV_PCM_STATE_DRAINING) { 2279 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2280 goto _end_unlock; 2281 } 2282 if (nonblock) { 2283 err = -EAGAIN; 2284 goto _end_unlock; 2285 } 2286 runtime->twake = min_t(snd_pcm_uframes_t, size, 2287 runtime->control->avail_min ? : 1); 2288 err = wait_for_avail(substream, &avail); 2289 if (err < 0) 2290 goto _end_unlock; 2291 if (!avail) 2292 continue; /* draining */ 2293 } 2294 frames = size > avail ? avail : size; 2295 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2296 if (frames > cont) 2297 frames = cont; 2298 if (snd_BUG_ON(!frames)) { 2299 runtime->twake = 0; 2300 snd_pcm_stream_unlock_irq(substream); 2301 return -EINVAL; 2302 } 2303 appl_ptr = runtime->control->appl_ptr; 2304 appl_ofs = appl_ptr % runtime->buffer_size; 2305 snd_pcm_stream_unlock_irq(substream); 2306 err = transfer(substream, appl_ofs, data, offset, frames); 2307 snd_pcm_stream_lock_irq(substream); 2308 if (err < 0) 2309 goto _end_unlock; 2310 switch (runtime->status->state) { 2311 case SNDRV_PCM_STATE_XRUN: 2312 err = -EPIPE; 2313 goto _end_unlock; 2314 case SNDRV_PCM_STATE_SUSPENDED: 2315 err = -ESTRPIPE; 2316 goto _end_unlock; 2317 default: 2318 break; 2319 } 2320 appl_ptr += frames; 2321 if (appl_ptr >= runtime->boundary) 2322 appl_ptr -= runtime->boundary; 2323 runtime->control->appl_ptr = appl_ptr; 2324 if (substream->ops->ack) 2325 substream->ops->ack(substream); 2326 2327 offset += frames; 2328 size -= frames; 2329 xfer += frames; 2330 avail -= frames; 2331 } 2332 _end_unlock: 2333 runtime->twake = 0; 2334 if (xfer > 0 && err >= 0) 2335 snd_pcm_update_state(substream, runtime); 2336 snd_pcm_stream_unlock_irq(substream); 2337 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2338 } 2339 2340 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2341 { 2342 struct snd_pcm_runtime *runtime; 2343 int nonblock; 2344 int err; 2345 2346 err = pcm_sanity_check(substream); 2347 if (err < 0) 2348 return err; 2349 runtime = substream->runtime; 2350 nonblock = !!(substream->f_flags & O_NONBLOCK); 2351 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2352 return -EINVAL; 2353 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2354 } 2355 2356 EXPORT_SYMBOL(snd_pcm_lib_read); 2357 2358 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2359 unsigned int hwoff, 2360 unsigned long data, unsigned int off, 2361 snd_pcm_uframes_t frames) 2362 { 2363 struct snd_pcm_runtime *runtime = substream->runtime; 2364 int err; 2365 void __user **bufs = (void __user **)data; 2366 int channels = runtime->channels; 2367 int c; 2368 if (substream->ops->copy) { 2369 for (c = 0; c < channels; ++c, ++bufs) { 2370 char __user *buf; 2371 if (*bufs == NULL) 2372 continue; 2373 buf = *bufs + samples_to_bytes(runtime, off); 2374 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2375 return err; 2376 } 2377 } else { 2378 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2379 for (c = 0; c < channels; ++c, ++bufs) { 2380 char *hwbuf; 2381 char __user *buf; 2382 if (*bufs == NULL) 2383 continue; 2384 2385 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2386 buf = *bufs + samples_to_bytes(runtime, off); 2387 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2388 return -EFAULT; 2389 } 2390 } 2391 return 0; 2392 } 2393 2394 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2395 void __user **bufs, 2396 snd_pcm_uframes_t frames) 2397 { 2398 struct snd_pcm_runtime *runtime; 2399 int nonblock; 2400 int err; 2401 2402 err = pcm_sanity_check(substream); 2403 if (err < 0) 2404 return err; 2405 runtime = substream->runtime; 2406 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2407 return -EBADFD; 2408 2409 nonblock = !!(substream->f_flags & O_NONBLOCK); 2410 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2411 return -EINVAL; 2412 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2413 } 2414 2415 EXPORT_SYMBOL(snd_pcm_lib_readv); 2416 2417 /* 2418 * standard channel mapping helpers 2419 */ 2420 2421 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2422 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2423 { .channels = 1, 2424 .map = { SNDRV_CHMAP_MONO } }, 2425 { .channels = 2, 2426 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2427 { .channels = 4, 2428 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2429 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2430 { .channels = 6, 2431 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2432 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2433 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2434 { .channels = 8, 2435 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2436 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2437 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2438 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2439 { } 2440 }; 2441 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2442 2443 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2444 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2445 { .channels = 1, 2446 .map = { SNDRV_CHMAP_MONO } }, 2447 { .channels = 2, 2448 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2449 { .channels = 4, 2450 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2451 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2452 { .channels = 6, 2453 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2454 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2455 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2456 { .channels = 8, 2457 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2458 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2459 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2460 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2461 { } 2462 }; 2463 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2464 2465 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2466 { 2467 if (ch > info->max_channels) 2468 return false; 2469 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2470 } 2471 2472 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2473 struct snd_ctl_elem_info *uinfo) 2474 { 2475 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2476 2477 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2478 uinfo->count = 0; 2479 uinfo->count = info->max_channels; 2480 uinfo->value.integer.min = 0; 2481 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2482 return 0; 2483 } 2484 2485 /* get callback for channel map ctl element 2486 * stores the channel position firstly matching with the current channels 2487 */ 2488 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2489 struct snd_ctl_elem_value *ucontrol) 2490 { 2491 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2492 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2493 struct snd_pcm_substream *substream; 2494 const struct snd_pcm_chmap_elem *map; 2495 2496 if (snd_BUG_ON(!info->chmap)) 2497 return -EINVAL; 2498 substream = snd_pcm_chmap_substream(info, idx); 2499 if (!substream) 2500 return -ENODEV; 2501 memset(ucontrol->value.integer.value, 0, 2502 sizeof(ucontrol->value.integer.value)); 2503 if (!substream->runtime) 2504 return 0; /* no channels set */ 2505 for (map = info->chmap; map->channels; map++) { 2506 int i; 2507 if (map->channels == substream->runtime->channels && 2508 valid_chmap_channels(info, map->channels)) { 2509 for (i = 0; i < map->channels; i++) 2510 ucontrol->value.integer.value[i] = map->map[i]; 2511 return 0; 2512 } 2513 } 2514 return -EINVAL; 2515 } 2516 2517 /* tlv callback for channel map ctl element 2518 * expands the pre-defined channel maps in a form of TLV 2519 */ 2520 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2521 unsigned int size, unsigned int __user *tlv) 2522 { 2523 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2524 const struct snd_pcm_chmap_elem *map; 2525 unsigned int __user *dst; 2526 int c, count = 0; 2527 2528 if (snd_BUG_ON(!info->chmap)) 2529 return -EINVAL; 2530 if (size < 8) 2531 return -ENOMEM; 2532 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2533 return -EFAULT; 2534 size -= 8; 2535 dst = tlv + 2; 2536 for (map = info->chmap; map->channels; map++) { 2537 int chs_bytes = map->channels * 4; 2538 if (!valid_chmap_channels(info, map->channels)) 2539 continue; 2540 if (size < 8) 2541 return -ENOMEM; 2542 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2543 put_user(chs_bytes, dst + 1)) 2544 return -EFAULT; 2545 dst += 2; 2546 size -= 8; 2547 count += 8; 2548 if (size < chs_bytes) 2549 return -ENOMEM; 2550 size -= chs_bytes; 2551 count += chs_bytes; 2552 for (c = 0; c < map->channels; c++) { 2553 if (put_user(map->map[c], dst)) 2554 return -EFAULT; 2555 dst++; 2556 } 2557 } 2558 if (put_user(count, tlv + 1)) 2559 return -EFAULT; 2560 return 0; 2561 } 2562 2563 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2564 { 2565 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2566 info->pcm->streams[info->stream].chmap_kctl = NULL; 2567 kfree(info); 2568 } 2569 2570 /** 2571 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2572 * @pcm: the assigned PCM instance 2573 * @stream: stream direction 2574 * @chmap: channel map elements (for query) 2575 * @max_channels: the max number of channels for the stream 2576 * @private_value: the value passed to each kcontrol's private_value field 2577 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2578 * 2579 * Create channel-mapping control elements assigned to the given PCM stream(s). 2580 * Return: Zero if successful, or a negative error value. 2581 */ 2582 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2583 const struct snd_pcm_chmap_elem *chmap, 2584 int max_channels, 2585 unsigned long private_value, 2586 struct snd_pcm_chmap **info_ret) 2587 { 2588 struct snd_pcm_chmap *info; 2589 struct snd_kcontrol_new knew = { 2590 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2591 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2592 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2593 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2594 .info = pcm_chmap_ctl_info, 2595 .get = pcm_chmap_ctl_get, 2596 .tlv.c = pcm_chmap_ctl_tlv, 2597 }; 2598 int err; 2599 2600 info = kzalloc(sizeof(*info), GFP_KERNEL); 2601 if (!info) 2602 return -ENOMEM; 2603 info->pcm = pcm; 2604 info->stream = stream; 2605 info->chmap = chmap; 2606 info->max_channels = max_channels; 2607 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2608 knew.name = "Playback Channel Map"; 2609 else 2610 knew.name = "Capture Channel Map"; 2611 knew.device = pcm->device; 2612 knew.count = pcm->streams[stream].substream_count; 2613 knew.private_value = private_value; 2614 info->kctl = snd_ctl_new1(&knew, info); 2615 if (!info->kctl) { 2616 kfree(info); 2617 return -ENOMEM; 2618 } 2619 info->kctl->private_free = pcm_chmap_ctl_private_free; 2620 err = snd_ctl_add(pcm->card, info->kctl); 2621 if (err < 0) 2622 return err; 2623 pcm->streams[stream].chmap_kctl = info->kctl; 2624 if (info_ret) 2625 *info_ret = info; 2626 return 0; 2627 } 2628 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2629