1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <linux/export.h> 27 #include <sound/core.h> 28 #include <sound/control.h> 29 #include <sound/tlv.h> 30 #include <sound/info.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/timer.h> 34 35 /* 36 * fill ring buffer with silence 37 * runtime->silence_start: starting pointer to silence area 38 * runtime->silence_filled: size filled with silence 39 * runtime->silence_threshold: threshold from application 40 * runtime->silence_size: maximal size from application 41 * 42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 43 */ 44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 45 { 46 struct snd_pcm_runtime *runtime = substream->runtime; 47 snd_pcm_uframes_t frames, ofs, transfer; 48 49 if (runtime->silence_size < runtime->boundary) { 50 snd_pcm_sframes_t noise_dist, n; 51 if (runtime->silence_start != runtime->control->appl_ptr) { 52 n = runtime->control->appl_ptr - runtime->silence_start; 53 if (n < 0) 54 n += runtime->boundary; 55 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 56 runtime->silence_filled -= n; 57 else 58 runtime->silence_filled = 0; 59 runtime->silence_start = runtime->control->appl_ptr; 60 } 61 if (runtime->silence_filled >= runtime->buffer_size) 62 return; 63 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 64 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 65 return; 66 frames = runtime->silence_threshold - noise_dist; 67 if (frames > runtime->silence_size) 68 frames = runtime->silence_size; 69 } else { 70 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 71 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 72 if (avail > runtime->buffer_size) 73 avail = runtime->buffer_size; 74 runtime->silence_filled = avail > 0 ? avail : 0; 75 runtime->silence_start = (runtime->status->hw_ptr + 76 runtime->silence_filled) % 77 runtime->boundary; 78 } else { 79 ofs = runtime->status->hw_ptr; 80 frames = new_hw_ptr - ofs; 81 if ((snd_pcm_sframes_t)frames < 0) 82 frames += runtime->boundary; 83 runtime->silence_filled -= frames; 84 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 85 runtime->silence_filled = 0; 86 runtime->silence_start = new_hw_ptr; 87 } else { 88 runtime->silence_start = ofs; 89 } 90 } 91 frames = runtime->buffer_size - runtime->silence_filled; 92 } 93 if (snd_BUG_ON(frames > runtime->buffer_size)) 94 return; 95 if (frames == 0) 96 return; 97 ofs = runtime->silence_start % runtime->buffer_size; 98 while (frames > 0) { 99 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 100 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 101 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 102 if (substream->ops->silence) { 103 int err; 104 err = substream->ops->silence(substream, -1, ofs, transfer); 105 snd_BUG_ON(err < 0); 106 } else { 107 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 108 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 109 } 110 } else { 111 unsigned int c; 112 unsigned int channels = runtime->channels; 113 if (substream->ops->silence) { 114 for (c = 0; c < channels; ++c) { 115 int err; 116 err = substream->ops->silence(substream, c, ofs, transfer); 117 snd_BUG_ON(err < 0); 118 } 119 } else { 120 size_t dma_csize = runtime->dma_bytes / channels; 121 for (c = 0; c < channels; ++c) { 122 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 123 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 124 } 125 } 126 } 127 runtime->silence_filled += transfer; 128 frames -= transfer; 129 ofs = 0; 130 } 131 } 132 133 #ifdef CONFIG_SND_DEBUG 134 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 135 char *name, size_t len) 136 { 137 snprintf(name, len, "pcmC%dD%d%c:%d", 138 substream->pcm->card->number, 139 substream->pcm->device, 140 substream->stream ? 'c' : 'p', 141 substream->number); 142 } 143 EXPORT_SYMBOL(snd_pcm_debug_name); 144 #endif 145 146 #define XRUN_DEBUG_BASIC (1<<0) 147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */ 150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */ 151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */ 152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */ 153 154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 155 156 #define xrun_debug(substream, mask) \ 157 ((substream)->pstr->xrun_debug & (mask)) 158 #else 159 #define xrun_debug(substream, mask) 0 160 #endif 161 162 #define dump_stack_on_xrun(substream) do { \ 163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 164 dump_stack(); \ 165 } while (0) 166 167 static void xrun(struct snd_pcm_substream *substream) 168 { 169 struct snd_pcm_runtime *runtime = substream->runtime; 170 171 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 172 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 173 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 175 char name[16]; 176 snd_pcm_debug_name(substream, name, sizeof(name)); 177 pcm_warn(substream->pcm, "XRUN: %s\n", name); 178 dump_stack_on_xrun(substream); 179 } 180 } 181 182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 183 #define hw_ptr_error(substream, fmt, args...) \ 184 do { \ 185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 186 xrun_log_show(substream); \ 187 pr_err_ratelimited("ALSA: PCM: " fmt, ##args); \ 188 dump_stack_on_xrun(substream); \ 189 } \ 190 } while (0) 191 192 #define XRUN_LOG_CNT 10 193 194 struct hwptr_log_entry { 195 unsigned int in_interrupt; 196 unsigned long jiffies; 197 snd_pcm_uframes_t pos; 198 snd_pcm_uframes_t period_size; 199 snd_pcm_uframes_t buffer_size; 200 snd_pcm_uframes_t old_hw_ptr; 201 snd_pcm_uframes_t hw_ptr_base; 202 }; 203 204 struct snd_pcm_hwptr_log { 205 unsigned int idx; 206 unsigned int hit: 1; 207 struct hwptr_log_entry entries[XRUN_LOG_CNT]; 208 }; 209 210 static void xrun_log(struct snd_pcm_substream *substream, 211 snd_pcm_uframes_t pos, int in_interrupt) 212 { 213 struct snd_pcm_runtime *runtime = substream->runtime; 214 struct snd_pcm_hwptr_log *log = runtime->hwptr_log; 215 struct hwptr_log_entry *entry; 216 217 if (log == NULL) { 218 log = kzalloc(sizeof(*log), GFP_ATOMIC); 219 if (log == NULL) 220 return; 221 runtime->hwptr_log = log; 222 } else { 223 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 224 return; 225 } 226 entry = &log->entries[log->idx]; 227 entry->in_interrupt = in_interrupt; 228 entry->jiffies = jiffies; 229 entry->pos = pos; 230 entry->period_size = runtime->period_size; 231 entry->buffer_size = runtime->buffer_size; 232 entry->old_hw_ptr = runtime->status->hw_ptr; 233 entry->hw_ptr_base = runtime->hw_ptr_base; 234 log->idx = (log->idx + 1) % XRUN_LOG_CNT; 235 } 236 237 static void xrun_log_show(struct snd_pcm_substream *substream) 238 { 239 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log; 240 struct hwptr_log_entry *entry; 241 char name[16]; 242 unsigned int idx; 243 int cnt; 244 245 if (log == NULL) 246 return; 247 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 248 return; 249 snd_pcm_debug_name(substream, name, sizeof(name)); 250 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) { 251 entry = &log->entries[idx]; 252 if (entry->period_size == 0) 253 break; 254 pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, " 255 "hwptr=%ld/%ld\n", 256 name, entry->in_interrupt ? "[Q] " : "", 257 entry->jiffies, 258 (unsigned long)entry->pos, 259 (unsigned long)entry->period_size, 260 (unsigned long)entry->buffer_size, 261 (unsigned long)entry->old_hw_ptr, 262 (unsigned long)entry->hw_ptr_base); 263 idx++; 264 idx %= XRUN_LOG_CNT; 265 } 266 log->hit = 1; 267 } 268 269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 270 271 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 272 #define xrun_log(substream, pos, in_interrupt) do { } while (0) 273 #define xrun_log_show(substream) do { } while (0) 274 275 #endif 276 277 int snd_pcm_update_state(struct snd_pcm_substream *substream, 278 struct snd_pcm_runtime *runtime) 279 { 280 snd_pcm_uframes_t avail; 281 282 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 283 avail = snd_pcm_playback_avail(runtime); 284 else 285 avail = snd_pcm_capture_avail(runtime); 286 if (avail > runtime->avail_max) 287 runtime->avail_max = avail; 288 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 289 if (avail >= runtime->buffer_size) { 290 snd_pcm_drain_done(substream); 291 return -EPIPE; 292 } 293 } else { 294 if (avail >= runtime->stop_threshold) { 295 xrun(substream); 296 return -EPIPE; 297 } 298 } 299 if (runtime->twake) { 300 if (avail >= runtime->twake) 301 wake_up(&runtime->tsleep); 302 } else if (avail >= runtime->control->avail_min) 303 wake_up(&runtime->sleep); 304 return 0; 305 } 306 307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 308 unsigned int in_interrupt) 309 { 310 struct snd_pcm_runtime *runtime = substream->runtime; 311 snd_pcm_uframes_t pos; 312 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 313 snd_pcm_sframes_t hdelta, delta; 314 unsigned long jdelta; 315 unsigned long curr_jiffies; 316 struct timespec curr_tstamp; 317 struct timespec audio_tstamp; 318 int crossed_boundary = 0; 319 320 old_hw_ptr = runtime->status->hw_ptr; 321 322 /* 323 * group pointer, time and jiffies reads to allow for more 324 * accurate correlations/corrections. 325 * The values are stored at the end of this routine after 326 * corrections for hw_ptr position 327 */ 328 pos = substream->ops->pointer(substream); 329 curr_jiffies = jiffies; 330 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 331 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 332 333 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) && 334 (substream->ops->wall_clock)) 335 substream->ops->wall_clock(substream, &audio_tstamp); 336 } 337 338 if (pos == SNDRV_PCM_POS_XRUN) { 339 xrun(substream); 340 return -EPIPE; 341 } 342 if (pos >= runtime->buffer_size) { 343 if (printk_ratelimit()) { 344 char name[16]; 345 snd_pcm_debug_name(substream, name, sizeof(name)); 346 xrun_log_show(substream); 347 pcm_err(substream->pcm, 348 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 349 name, pos, runtime->buffer_size, 350 runtime->period_size); 351 } 352 pos = 0; 353 } 354 pos -= pos % runtime->min_align; 355 if (xrun_debug(substream, XRUN_DEBUG_LOG)) 356 xrun_log(substream, pos, in_interrupt); 357 hw_base = runtime->hw_ptr_base; 358 new_hw_ptr = hw_base + pos; 359 if (in_interrupt) { 360 /* we know that one period was processed */ 361 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 362 delta = runtime->hw_ptr_interrupt + runtime->period_size; 363 if (delta > new_hw_ptr) { 364 /* check for double acknowledged interrupts */ 365 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 366 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 367 hw_base += runtime->buffer_size; 368 if (hw_base >= runtime->boundary) { 369 hw_base = 0; 370 crossed_boundary++; 371 } 372 new_hw_ptr = hw_base + pos; 373 goto __delta; 374 } 375 } 376 } 377 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 378 /* pointer crosses the end of the ring buffer */ 379 if (new_hw_ptr < old_hw_ptr) { 380 hw_base += runtime->buffer_size; 381 if (hw_base >= runtime->boundary) { 382 hw_base = 0; 383 crossed_boundary++; 384 } 385 new_hw_ptr = hw_base + pos; 386 } 387 __delta: 388 delta = new_hw_ptr - old_hw_ptr; 389 if (delta < 0) 390 delta += runtime->boundary; 391 if (xrun_debug(substream, in_interrupt ? 392 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) { 393 char name[16]; 394 snd_pcm_debug_name(substream, name, sizeof(name)); 395 pcm_dbg(substream->pcm, 396 "%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n", 397 in_interrupt ? "period" : "hwptr", 398 name, 399 (unsigned int)pos, 400 (unsigned int)runtime->period_size, 401 (unsigned int)runtime->buffer_size, 402 (unsigned long)delta, 403 (unsigned long)old_hw_ptr, 404 (unsigned long)new_hw_ptr, 405 (unsigned long)runtime->hw_ptr_base); 406 } 407 408 if (runtime->no_period_wakeup) { 409 snd_pcm_sframes_t xrun_threshold; 410 /* 411 * Without regular period interrupts, we have to check 412 * the elapsed time to detect xruns. 413 */ 414 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 415 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 416 goto no_delta_check; 417 hdelta = jdelta - delta * HZ / runtime->rate; 418 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 419 while (hdelta > xrun_threshold) { 420 delta += runtime->buffer_size; 421 hw_base += runtime->buffer_size; 422 if (hw_base >= runtime->boundary) { 423 hw_base = 0; 424 crossed_boundary++; 425 } 426 new_hw_ptr = hw_base + pos; 427 hdelta -= runtime->hw_ptr_buffer_jiffies; 428 } 429 goto no_delta_check; 430 } 431 432 /* something must be really wrong */ 433 if (delta >= runtime->buffer_size + runtime->period_size) { 434 hw_ptr_error(substream, 435 "Unexpected hw_pointer value %s" 436 "(stream=%i, pos=%ld, new_hw_ptr=%ld, " 437 "old_hw_ptr=%ld)\n", 438 in_interrupt ? "[Q] " : "[P]", 439 substream->stream, (long)pos, 440 (long)new_hw_ptr, (long)old_hw_ptr); 441 return 0; 442 } 443 444 /* Do jiffies check only in xrun_debug mode */ 445 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 446 goto no_jiffies_check; 447 448 /* Skip the jiffies check for hardwares with BATCH flag. 449 * Such hardware usually just increases the position at each IRQ, 450 * thus it can't give any strange position. 451 */ 452 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 453 goto no_jiffies_check; 454 hdelta = delta; 455 if (hdelta < runtime->delay) 456 goto no_jiffies_check; 457 hdelta -= runtime->delay; 458 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 459 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 460 delta = jdelta / 461 (((runtime->period_size * HZ) / runtime->rate) 462 + HZ/100); 463 /* move new_hw_ptr according jiffies not pos variable */ 464 new_hw_ptr = old_hw_ptr; 465 hw_base = delta; 466 /* use loop to avoid checks for delta overflows */ 467 /* the delta value is small or zero in most cases */ 468 while (delta > 0) { 469 new_hw_ptr += runtime->period_size; 470 if (new_hw_ptr >= runtime->boundary) { 471 new_hw_ptr -= runtime->boundary; 472 crossed_boundary--; 473 } 474 delta--; 475 } 476 /* align hw_base to buffer_size */ 477 hw_ptr_error(substream, 478 "hw_ptr skipping! %s" 479 "(pos=%ld, delta=%ld, period=%ld, " 480 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 481 in_interrupt ? "[Q] " : "", 482 (long)pos, (long)hdelta, 483 (long)runtime->period_size, jdelta, 484 ((hdelta * HZ) / runtime->rate), hw_base, 485 (unsigned long)old_hw_ptr, 486 (unsigned long)new_hw_ptr); 487 /* reset values to proper state */ 488 delta = 0; 489 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 490 } 491 no_jiffies_check: 492 if (delta > runtime->period_size + runtime->period_size / 2) { 493 hw_ptr_error(substream, 494 "Lost interrupts? %s" 495 "(stream=%i, delta=%ld, new_hw_ptr=%ld, " 496 "old_hw_ptr=%ld)\n", 497 in_interrupt ? "[Q] " : "", 498 substream->stream, (long)delta, 499 (long)new_hw_ptr, 500 (long)old_hw_ptr); 501 } 502 503 no_delta_check: 504 if (runtime->status->hw_ptr == new_hw_ptr) 505 return 0; 506 507 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 508 runtime->silence_size > 0) 509 snd_pcm_playback_silence(substream, new_hw_ptr); 510 511 if (in_interrupt) { 512 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 513 if (delta < 0) 514 delta += runtime->boundary; 515 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 516 runtime->hw_ptr_interrupt += delta; 517 if (runtime->hw_ptr_interrupt >= runtime->boundary) 518 runtime->hw_ptr_interrupt -= runtime->boundary; 519 } 520 runtime->hw_ptr_base = hw_base; 521 runtime->status->hw_ptr = new_hw_ptr; 522 runtime->hw_ptr_jiffies = curr_jiffies; 523 if (crossed_boundary) { 524 snd_BUG_ON(crossed_boundary != 1); 525 runtime->hw_ptr_wrap += runtime->boundary; 526 } 527 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 528 runtime->status->tstamp = curr_tstamp; 529 530 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) { 531 /* 532 * no wall clock available, provide audio timestamp 533 * derived from pointer position+delay 534 */ 535 u64 audio_frames, audio_nsecs; 536 537 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 538 audio_frames = runtime->hw_ptr_wrap 539 + runtime->status->hw_ptr 540 - runtime->delay; 541 else 542 audio_frames = runtime->hw_ptr_wrap 543 + runtime->status->hw_ptr 544 + runtime->delay; 545 audio_nsecs = div_u64(audio_frames * 1000000000LL, 546 runtime->rate); 547 audio_tstamp = ns_to_timespec(audio_nsecs); 548 } 549 runtime->status->audio_tstamp = audio_tstamp; 550 } 551 552 return snd_pcm_update_state(substream, runtime); 553 } 554 555 /* CAUTION: call it with irq disabled */ 556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 557 { 558 return snd_pcm_update_hw_ptr0(substream, 0); 559 } 560 561 /** 562 * snd_pcm_set_ops - set the PCM operators 563 * @pcm: the pcm instance 564 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 565 * @ops: the operator table 566 * 567 * Sets the given PCM operators to the pcm instance. 568 */ 569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 570 const struct snd_pcm_ops *ops) 571 { 572 struct snd_pcm_str *stream = &pcm->streams[direction]; 573 struct snd_pcm_substream *substream; 574 575 for (substream = stream->substream; substream != NULL; substream = substream->next) 576 substream->ops = ops; 577 } 578 579 EXPORT_SYMBOL(snd_pcm_set_ops); 580 581 /** 582 * snd_pcm_sync - set the PCM sync id 583 * @substream: the pcm substream 584 * 585 * Sets the PCM sync identifier for the card. 586 */ 587 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 588 { 589 struct snd_pcm_runtime *runtime = substream->runtime; 590 591 runtime->sync.id32[0] = substream->pcm->card->number; 592 runtime->sync.id32[1] = -1; 593 runtime->sync.id32[2] = -1; 594 runtime->sync.id32[3] = -1; 595 } 596 597 EXPORT_SYMBOL(snd_pcm_set_sync); 598 599 /* 600 * Standard ioctl routine 601 */ 602 603 static inline unsigned int div32(unsigned int a, unsigned int b, 604 unsigned int *r) 605 { 606 if (b == 0) { 607 *r = 0; 608 return UINT_MAX; 609 } 610 *r = a % b; 611 return a / b; 612 } 613 614 static inline unsigned int div_down(unsigned int a, unsigned int b) 615 { 616 if (b == 0) 617 return UINT_MAX; 618 return a / b; 619 } 620 621 static inline unsigned int div_up(unsigned int a, unsigned int b) 622 { 623 unsigned int r; 624 unsigned int q; 625 if (b == 0) 626 return UINT_MAX; 627 q = div32(a, b, &r); 628 if (r) 629 ++q; 630 return q; 631 } 632 633 static inline unsigned int mul(unsigned int a, unsigned int b) 634 { 635 if (a == 0) 636 return 0; 637 if (div_down(UINT_MAX, a) < b) 638 return UINT_MAX; 639 return a * b; 640 } 641 642 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 643 unsigned int c, unsigned int *r) 644 { 645 u_int64_t n = (u_int64_t) a * b; 646 if (c == 0) { 647 snd_BUG_ON(!n); 648 *r = 0; 649 return UINT_MAX; 650 } 651 n = div_u64_rem(n, c, r); 652 if (n >= UINT_MAX) { 653 *r = 0; 654 return UINT_MAX; 655 } 656 return n; 657 } 658 659 /** 660 * snd_interval_refine - refine the interval value of configurator 661 * @i: the interval value to refine 662 * @v: the interval value to refer to 663 * 664 * Refines the interval value with the reference value. 665 * The interval is changed to the range satisfying both intervals. 666 * The interval status (min, max, integer, etc.) are evaluated. 667 * 668 * Return: Positive if the value is changed, zero if it's not changed, or a 669 * negative error code. 670 */ 671 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 672 { 673 int changed = 0; 674 if (snd_BUG_ON(snd_interval_empty(i))) 675 return -EINVAL; 676 if (i->min < v->min) { 677 i->min = v->min; 678 i->openmin = v->openmin; 679 changed = 1; 680 } else if (i->min == v->min && !i->openmin && v->openmin) { 681 i->openmin = 1; 682 changed = 1; 683 } 684 if (i->max > v->max) { 685 i->max = v->max; 686 i->openmax = v->openmax; 687 changed = 1; 688 } else if (i->max == v->max && !i->openmax && v->openmax) { 689 i->openmax = 1; 690 changed = 1; 691 } 692 if (!i->integer && v->integer) { 693 i->integer = 1; 694 changed = 1; 695 } 696 if (i->integer) { 697 if (i->openmin) { 698 i->min++; 699 i->openmin = 0; 700 } 701 if (i->openmax) { 702 i->max--; 703 i->openmax = 0; 704 } 705 } else if (!i->openmin && !i->openmax && i->min == i->max) 706 i->integer = 1; 707 if (snd_interval_checkempty(i)) { 708 snd_interval_none(i); 709 return -EINVAL; 710 } 711 return changed; 712 } 713 714 EXPORT_SYMBOL(snd_interval_refine); 715 716 static int snd_interval_refine_first(struct snd_interval *i) 717 { 718 if (snd_BUG_ON(snd_interval_empty(i))) 719 return -EINVAL; 720 if (snd_interval_single(i)) 721 return 0; 722 i->max = i->min; 723 i->openmax = i->openmin; 724 if (i->openmax) 725 i->max++; 726 return 1; 727 } 728 729 static int snd_interval_refine_last(struct snd_interval *i) 730 { 731 if (snd_BUG_ON(snd_interval_empty(i))) 732 return -EINVAL; 733 if (snd_interval_single(i)) 734 return 0; 735 i->min = i->max; 736 i->openmin = i->openmax; 737 if (i->openmin) 738 i->min--; 739 return 1; 740 } 741 742 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 743 { 744 if (a->empty || b->empty) { 745 snd_interval_none(c); 746 return; 747 } 748 c->empty = 0; 749 c->min = mul(a->min, b->min); 750 c->openmin = (a->openmin || b->openmin); 751 c->max = mul(a->max, b->max); 752 c->openmax = (a->openmax || b->openmax); 753 c->integer = (a->integer && b->integer); 754 } 755 756 /** 757 * snd_interval_div - refine the interval value with division 758 * @a: dividend 759 * @b: divisor 760 * @c: quotient 761 * 762 * c = a / b 763 * 764 * Returns non-zero if the value is changed, zero if not changed. 765 */ 766 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 767 { 768 unsigned int r; 769 if (a->empty || b->empty) { 770 snd_interval_none(c); 771 return; 772 } 773 c->empty = 0; 774 c->min = div32(a->min, b->max, &r); 775 c->openmin = (r || a->openmin || b->openmax); 776 if (b->min > 0) { 777 c->max = div32(a->max, b->min, &r); 778 if (r) { 779 c->max++; 780 c->openmax = 1; 781 } else 782 c->openmax = (a->openmax || b->openmin); 783 } else { 784 c->max = UINT_MAX; 785 c->openmax = 0; 786 } 787 c->integer = 0; 788 } 789 790 /** 791 * snd_interval_muldivk - refine the interval value 792 * @a: dividend 1 793 * @b: dividend 2 794 * @k: divisor (as integer) 795 * @c: result 796 * 797 * c = a * b / k 798 * 799 * Returns non-zero if the value is changed, zero if not changed. 800 */ 801 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 802 unsigned int k, struct snd_interval *c) 803 { 804 unsigned int r; 805 if (a->empty || b->empty) { 806 snd_interval_none(c); 807 return; 808 } 809 c->empty = 0; 810 c->min = muldiv32(a->min, b->min, k, &r); 811 c->openmin = (r || a->openmin || b->openmin); 812 c->max = muldiv32(a->max, b->max, k, &r); 813 if (r) { 814 c->max++; 815 c->openmax = 1; 816 } else 817 c->openmax = (a->openmax || b->openmax); 818 c->integer = 0; 819 } 820 821 /** 822 * snd_interval_mulkdiv - refine the interval value 823 * @a: dividend 1 824 * @k: dividend 2 (as integer) 825 * @b: divisor 826 * @c: result 827 * 828 * c = a * k / b 829 * 830 * Returns non-zero if the value is changed, zero if not changed. 831 */ 832 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 833 const struct snd_interval *b, struct snd_interval *c) 834 { 835 unsigned int r; 836 if (a->empty || b->empty) { 837 snd_interval_none(c); 838 return; 839 } 840 c->empty = 0; 841 c->min = muldiv32(a->min, k, b->max, &r); 842 c->openmin = (r || a->openmin || b->openmax); 843 if (b->min > 0) { 844 c->max = muldiv32(a->max, k, b->min, &r); 845 if (r) { 846 c->max++; 847 c->openmax = 1; 848 } else 849 c->openmax = (a->openmax || b->openmin); 850 } else { 851 c->max = UINT_MAX; 852 c->openmax = 0; 853 } 854 c->integer = 0; 855 } 856 857 /* ---- */ 858 859 860 /** 861 * snd_interval_ratnum - refine the interval value 862 * @i: interval to refine 863 * @rats_count: number of ratnum_t 864 * @rats: ratnum_t array 865 * @nump: pointer to store the resultant numerator 866 * @denp: pointer to store the resultant denominator 867 * 868 * Return: Positive if the value is changed, zero if it's not changed, or a 869 * negative error code. 870 */ 871 int snd_interval_ratnum(struct snd_interval *i, 872 unsigned int rats_count, struct snd_ratnum *rats, 873 unsigned int *nump, unsigned int *denp) 874 { 875 unsigned int best_num, best_den; 876 int best_diff; 877 unsigned int k; 878 struct snd_interval t; 879 int err; 880 unsigned int result_num, result_den; 881 int result_diff; 882 883 best_num = best_den = best_diff = 0; 884 for (k = 0; k < rats_count; ++k) { 885 unsigned int num = rats[k].num; 886 unsigned int den; 887 unsigned int q = i->min; 888 int diff; 889 if (q == 0) 890 q = 1; 891 den = div_up(num, q); 892 if (den < rats[k].den_min) 893 continue; 894 if (den > rats[k].den_max) 895 den = rats[k].den_max; 896 else { 897 unsigned int r; 898 r = (den - rats[k].den_min) % rats[k].den_step; 899 if (r != 0) 900 den -= r; 901 } 902 diff = num - q * den; 903 if (diff < 0) 904 diff = -diff; 905 if (best_num == 0 || 906 diff * best_den < best_diff * den) { 907 best_diff = diff; 908 best_den = den; 909 best_num = num; 910 } 911 } 912 if (best_den == 0) { 913 i->empty = 1; 914 return -EINVAL; 915 } 916 t.min = div_down(best_num, best_den); 917 t.openmin = !!(best_num % best_den); 918 919 result_num = best_num; 920 result_diff = best_diff; 921 result_den = best_den; 922 best_num = best_den = best_diff = 0; 923 for (k = 0; k < rats_count; ++k) { 924 unsigned int num = rats[k].num; 925 unsigned int den; 926 unsigned int q = i->max; 927 int diff; 928 if (q == 0) { 929 i->empty = 1; 930 return -EINVAL; 931 } 932 den = div_down(num, q); 933 if (den > rats[k].den_max) 934 continue; 935 if (den < rats[k].den_min) 936 den = rats[k].den_min; 937 else { 938 unsigned int r; 939 r = (den - rats[k].den_min) % rats[k].den_step; 940 if (r != 0) 941 den += rats[k].den_step - r; 942 } 943 diff = q * den - num; 944 if (diff < 0) 945 diff = -diff; 946 if (best_num == 0 || 947 diff * best_den < best_diff * den) { 948 best_diff = diff; 949 best_den = den; 950 best_num = num; 951 } 952 } 953 if (best_den == 0) { 954 i->empty = 1; 955 return -EINVAL; 956 } 957 t.max = div_up(best_num, best_den); 958 t.openmax = !!(best_num % best_den); 959 t.integer = 0; 960 err = snd_interval_refine(i, &t); 961 if (err < 0) 962 return err; 963 964 if (snd_interval_single(i)) { 965 if (best_diff * result_den < result_diff * best_den) { 966 result_num = best_num; 967 result_den = best_den; 968 } 969 if (nump) 970 *nump = result_num; 971 if (denp) 972 *denp = result_den; 973 } 974 return err; 975 } 976 977 EXPORT_SYMBOL(snd_interval_ratnum); 978 979 /** 980 * snd_interval_ratden - refine the interval value 981 * @i: interval to refine 982 * @rats_count: number of struct ratden 983 * @rats: struct ratden array 984 * @nump: pointer to store the resultant numerator 985 * @denp: pointer to store the resultant denominator 986 * 987 * Return: Positive if the value is changed, zero if it's not changed, or a 988 * negative error code. 989 */ 990 static int snd_interval_ratden(struct snd_interval *i, 991 unsigned int rats_count, struct snd_ratden *rats, 992 unsigned int *nump, unsigned int *denp) 993 { 994 unsigned int best_num, best_diff, best_den; 995 unsigned int k; 996 struct snd_interval t; 997 int err; 998 999 best_num = best_den = best_diff = 0; 1000 for (k = 0; k < rats_count; ++k) { 1001 unsigned int num; 1002 unsigned int den = rats[k].den; 1003 unsigned int q = i->min; 1004 int diff; 1005 num = mul(q, den); 1006 if (num > rats[k].num_max) 1007 continue; 1008 if (num < rats[k].num_min) 1009 num = rats[k].num_max; 1010 else { 1011 unsigned int r; 1012 r = (num - rats[k].num_min) % rats[k].num_step; 1013 if (r != 0) 1014 num += rats[k].num_step - r; 1015 } 1016 diff = num - q * den; 1017 if (best_num == 0 || 1018 diff * best_den < best_diff * den) { 1019 best_diff = diff; 1020 best_den = den; 1021 best_num = num; 1022 } 1023 } 1024 if (best_den == 0) { 1025 i->empty = 1; 1026 return -EINVAL; 1027 } 1028 t.min = div_down(best_num, best_den); 1029 t.openmin = !!(best_num % best_den); 1030 1031 best_num = best_den = best_diff = 0; 1032 for (k = 0; k < rats_count; ++k) { 1033 unsigned int num; 1034 unsigned int den = rats[k].den; 1035 unsigned int q = i->max; 1036 int diff; 1037 num = mul(q, den); 1038 if (num < rats[k].num_min) 1039 continue; 1040 if (num > rats[k].num_max) 1041 num = rats[k].num_max; 1042 else { 1043 unsigned int r; 1044 r = (num - rats[k].num_min) % rats[k].num_step; 1045 if (r != 0) 1046 num -= r; 1047 } 1048 diff = q * den - num; 1049 if (best_num == 0 || 1050 diff * best_den < best_diff * den) { 1051 best_diff = diff; 1052 best_den = den; 1053 best_num = num; 1054 } 1055 } 1056 if (best_den == 0) { 1057 i->empty = 1; 1058 return -EINVAL; 1059 } 1060 t.max = div_up(best_num, best_den); 1061 t.openmax = !!(best_num % best_den); 1062 t.integer = 0; 1063 err = snd_interval_refine(i, &t); 1064 if (err < 0) 1065 return err; 1066 1067 if (snd_interval_single(i)) { 1068 if (nump) 1069 *nump = best_num; 1070 if (denp) 1071 *denp = best_den; 1072 } 1073 return err; 1074 } 1075 1076 /** 1077 * snd_interval_list - refine the interval value from the list 1078 * @i: the interval value to refine 1079 * @count: the number of elements in the list 1080 * @list: the value list 1081 * @mask: the bit-mask to evaluate 1082 * 1083 * Refines the interval value from the list. 1084 * When mask is non-zero, only the elements corresponding to bit 1 are 1085 * evaluated. 1086 * 1087 * Return: Positive if the value is changed, zero if it's not changed, or a 1088 * negative error code. 1089 */ 1090 int snd_interval_list(struct snd_interval *i, unsigned int count, 1091 const unsigned int *list, unsigned int mask) 1092 { 1093 unsigned int k; 1094 struct snd_interval list_range; 1095 1096 if (!count) { 1097 i->empty = 1; 1098 return -EINVAL; 1099 } 1100 snd_interval_any(&list_range); 1101 list_range.min = UINT_MAX; 1102 list_range.max = 0; 1103 for (k = 0; k < count; k++) { 1104 if (mask && !(mask & (1 << k))) 1105 continue; 1106 if (!snd_interval_test(i, list[k])) 1107 continue; 1108 list_range.min = min(list_range.min, list[k]); 1109 list_range.max = max(list_range.max, list[k]); 1110 } 1111 return snd_interval_refine(i, &list_range); 1112 } 1113 1114 EXPORT_SYMBOL(snd_interval_list); 1115 1116 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 1117 { 1118 unsigned int n; 1119 int changed = 0; 1120 n = (i->min - min) % step; 1121 if (n != 0 || i->openmin) { 1122 i->min += step - n; 1123 changed = 1; 1124 } 1125 n = (i->max - min) % step; 1126 if (n != 0 || i->openmax) { 1127 i->max -= n; 1128 changed = 1; 1129 } 1130 if (snd_interval_checkempty(i)) { 1131 i->empty = 1; 1132 return -EINVAL; 1133 } 1134 return changed; 1135 } 1136 1137 /* Info constraints helpers */ 1138 1139 /** 1140 * snd_pcm_hw_rule_add - add the hw-constraint rule 1141 * @runtime: the pcm runtime instance 1142 * @cond: condition bits 1143 * @var: the variable to evaluate 1144 * @func: the evaluation function 1145 * @private: the private data pointer passed to function 1146 * @dep: the dependent variables 1147 * 1148 * Return: Zero if successful, or a negative error code on failure. 1149 */ 1150 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1151 int var, 1152 snd_pcm_hw_rule_func_t func, void *private, 1153 int dep, ...) 1154 { 1155 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1156 struct snd_pcm_hw_rule *c; 1157 unsigned int k; 1158 va_list args; 1159 va_start(args, dep); 1160 if (constrs->rules_num >= constrs->rules_all) { 1161 struct snd_pcm_hw_rule *new; 1162 unsigned int new_rules = constrs->rules_all + 16; 1163 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1164 if (!new) { 1165 va_end(args); 1166 return -ENOMEM; 1167 } 1168 if (constrs->rules) { 1169 memcpy(new, constrs->rules, 1170 constrs->rules_num * sizeof(*c)); 1171 kfree(constrs->rules); 1172 } 1173 constrs->rules = new; 1174 constrs->rules_all = new_rules; 1175 } 1176 c = &constrs->rules[constrs->rules_num]; 1177 c->cond = cond; 1178 c->func = func; 1179 c->var = var; 1180 c->private = private; 1181 k = 0; 1182 while (1) { 1183 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1184 va_end(args); 1185 return -EINVAL; 1186 } 1187 c->deps[k++] = dep; 1188 if (dep < 0) 1189 break; 1190 dep = va_arg(args, int); 1191 } 1192 constrs->rules_num++; 1193 va_end(args); 1194 return 0; 1195 } 1196 1197 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1198 1199 /** 1200 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1201 * @runtime: PCM runtime instance 1202 * @var: hw_params variable to apply the mask 1203 * @mask: the bitmap mask 1204 * 1205 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1206 * 1207 * Return: Zero if successful, or a negative error code on failure. 1208 */ 1209 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1210 u_int32_t mask) 1211 { 1212 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1213 struct snd_mask *maskp = constrs_mask(constrs, var); 1214 *maskp->bits &= mask; 1215 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1216 if (*maskp->bits == 0) 1217 return -EINVAL; 1218 return 0; 1219 } 1220 1221 /** 1222 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1223 * @runtime: PCM runtime instance 1224 * @var: hw_params variable to apply the mask 1225 * @mask: the 64bit bitmap mask 1226 * 1227 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1228 * 1229 * Return: Zero if successful, or a negative error code on failure. 1230 */ 1231 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1232 u_int64_t mask) 1233 { 1234 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1235 struct snd_mask *maskp = constrs_mask(constrs, var); 1236 maskp->bits[0] &= (u_int32_t)mask; 1237 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1238 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1239 if (! maskp->bits[0] && ! maskp->bits[1]) 1240 return -EINVAL; 1241 return 0; 1242 } 1243 1244 /** 1245 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1246 * @runtime: PCM runtime instance 1247 * @var: hw_params variable to apply the integer constraint 1248 * 1249 * Apply the constraint of integer to an interval parameter. 1250 * 1251 * Return: Positive if the value is changed, zero if it's not changed, or a 1252 * negative error code. 1253 */ 1254 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1255 { 1256 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1257 return snd_interval_setinteger(constrs_interval(constrs, var)); 1258 } 1259 1260 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1261 1262 /** 1263 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1264 * @runtime: PCM runtime instance 1265 * @var: hw_params variable to apply the range 1266 * @min: the minimal value 1267 * @max: the maximal value 1268 * 1269 * Apply the min/max range constraint to an interval parameter. 1270 * 1271 * Return: Positive if the value is changed, zero if it's not changed, or a 1272 * negative error code. 1273 */ 1274 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1275 unsigned int min, unsigned int max) 1276 { 1277 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1278 struct snd_interval t; 1279 t.min = min; 1280 t.max = max; 1281 t.openmin = t.openmax = 0; 1282 t.integer = 0; 1283 return snd_interval_refine(constrs_interval(constrs, var), &t); 1284 } 1285 1286 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1287 1288 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1289 struct snd_pcm_hw_rule *rule) 1290 { 1291 struct snd_pcm_hw_constraint_list *list = rule->private; 1292 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1293 } 1294 1295 1296 /** 1297 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1298 * @runtime: PCM runtime instance 1299 * @cond: condition bits 1300 * @var: hw_params variable to apply the list constraint 1301 * @l: list 1302 * 1303 * Apply the list of constraints to an interval parameter. 1304 * 1305 * Return: Zero if successful, or a negative error code on failure. 1306 */ 1307 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1308 unsigned int cond, 1309 snd_pcm_hw_param_t var, 1310 const struct snd_pcm_hw_constraint_list *l) 1311 { 1312 return snd_pcm_hw_rule_add(runtime, cond, var, 1313 snd_pcm_hw_rule_list, (void *)l, 1314 var, -1); 1315 } 1316 1317 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1318 1319 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1320 struct snd_pcm_hw_rule *rule) 1321 { 1322 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1323 unsigned int num = 0, den = 0; 1324 int err; 1325 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1326 r->nrats, r->rats, &num, &den); 1327 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1328 params->rate_num = num; 1329 params->rate_den = den; 1330 } 1331 return err; 1332 } 1333 1334 /** 1335 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1336 * @runtime: PCM runtime instance 1337 * @cond: condition bits 1338 * @var: hw_params variable to apply the ratnums constraint 1339 * @r: struct snd_ratnums constriants 1340 * 1341 * Return: Zero if successful, or a negative error code on failure. 1342 */ 1343 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1344 unsigned int cond, 1345 snd_pcm_hw_param_t var, 1346 struct snd_pcm_hw_constraint_ratnums *r) 1347 { 1348 return snd_pcm_hw_rule_add(runtime, cond, var, 1349 snd_pcm_hw_rule_ratnums, r, 1350 var, -1); 1351 } 1352 1353 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1354 1355 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1356 struct snd_pcm_hw_rule *rule) 1357 { 1358 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1359 unsigned int num = 0, den = 0; 1360 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1361 r->nrats, r->rats, &num, &den); 1362 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1363 params->rate_num = num; 1364 params->rate_den = den; 1365 } 1366 return err; 1367 } 1368 1369 /** 1370 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1371 * @runtime: PCM runtime instance 1372 * @cond: condition bits 1373 * @var: hw_params variable to apply the ratdens constraint 1374 * @r: struct snd_ratdens constriants 1375 * 1376 * Return: Zero if successful, or a negative error code on failure. 1377 */ 1378 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1379 unsigned int cond, 1380 snd_pcm_hw_param_t var, 1381 struct snd_pcm_hw_constraint_ratdens *r) 1382 { 1383 return snd_pcm_hw_rule_add(runtime, cond, var, 1384 snd_pcm_hw_rule_ratdens, r, 1385 var, -1); 1386 } 1387 1388 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1389 1390 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1391 struct snd_pcm_hw_rule *rule) 1392 { 1393 unsigned int l = (unsigned long) rule->private; 1394 int width = l & 0xffff; 1395 unsigned int msbits = l >> 16; 1396 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1397 if (snd_interval_single(i) && snd_interval_value(i) == width) 1398 params->msbits = msbits; 1399 return 0; 1400 } 1401 1402 /** 1403 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1404 * @runtime: PCM runtime instance 1405 * @cond: condition bits 1406 * @width: sample bits width 1407 * @msbits: msbits width 1408 * 1409 * Return: Zero if successful, or a negative error code on failure. 1410 */ 1411 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1412 unsigned int cond, 1413 unsigned int width, 1414 unsigned int msbits) 1415 { 1416 unsigned long l = (msbits << 16) | width; 1417 return snd_pcm_hw_rule_add(runtime, cond, -1, 1418 snd_pcm_hw_rule_msbits, 1419 (void*) l, 1420 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1421 } 1422 1423 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1424 1425 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1426 struct snd_pcm_hw_rule *rule) 1427 { 1428 unsigned long step = (unsigned long) rule->private; 1429 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1430 } 1431 1432 /** 1433 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1434 * @runtime: PCM runtime instance 1435 * @cond: condition bits 1436 * @var: hw_params variable to apply the step constraint 1437 * @step: step size 1438 * 1439 * Return: Zero if successful, or a negative error code on failure. 1440 */ 1441 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1442 unsigned int cond, 1443 snd_pcm_hw_param_t var, 1444 unsigned long step) 1445 { 1446 return snd_pcm_hw_rule_add(runtime, cond, var, 1447 snd_pcm_hw_rule_step, (void *) step, 1448 var, -1); 1449 } 1450 1451 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1452 1453 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1454 { 1455 static unsigned int pow2_sizes[] = { 1456 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1457 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1458 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1459 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1460 }; 1461 return snd_interval_list(hw_param_interval(params, rule->var), 1462 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1463 } 1464 1465 /** 1466 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1467 * @runtime: PCM runtime instance 1468 * @cond: condition bits 1469 * @var: hw_params variable to apply the power-of-2 constraint 1470 * 1471 * Return: Zero if successful, or a negative error code on failure. 1472 */ 1473 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1474 unsigned int cond, 1475 snd_pcm_hw_param_t var) 1476 { 1477 return snd_pcm_hw_rule_add(runtime, cond, var, 1478 snd_pcm_hw_rule_pow2, NULL, 1479 var, -1); 1480 } 1481 1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1483 1484 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1485 struct snd_pcm_hw_rule *rule) 1486 { 1487 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1488 struct snd_interval *rate; 1489 1490 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1491 return snd_interval_list(rate, 1, &base_rate, 0); 1492 } 1493 1494 /** 1495 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1496 * @runtime: PCM runtime instance 1497 * @base_rate: the rate at which the hardware does not resample 1498 * 1499 * Return: Zero if successful, or a negative error code on failure. 1500 */ 1501 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1502 unsigned int base_rate) 1503 { 1504 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1505 SNDRV_PCM_HW_PARAM_RATE, 1506 snd_pcm_hw_rule_noresample_func, 1507 (void *)(uintptr_t)base_rate, 1508 SNDRV_PCM_HW_PARAM_RATE, -1); 1509 } 1510 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1511 1512 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1513 snd_pcm_hw_param_t var) 1514 { 1515 if (hw_is_mask(var)) { 1516 snd_mask_any(hw_param_mask(params, var)); 1517 params->cmask |= 1 << var; 1518 params->rmask |= 1 << var; 1519 return; 1520 } 1521 if (hw_is_interval(var)) { 1522 snd_interval_any(hw_param_interval(params, var)); 1523 params->cmask |= 1 << var; 1524 params->rmask |= 1 << var; 1525 return; 1526 } 1527 snd_BUG(); 1528 } 1529 1530 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1531 { 1532 unsigned int k; 1533 memset(params, 0, sizeof(*params)); 1534 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1535 _snd_pcm_hw_param_any(params, k); 1536 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1537 _snd_pcm_hw_param_any(params, k); 1538 params->info = ~0U; 1539 } 1540 1541 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1542 1543 /** 1544 * snd_pcm_hw_param_value - return @params field @var value 1545 * @params: the hw_params instance 1546 * @var: parameter to retrieve 1547 * @dir: pointer to the direction (-1,0,1) or %NULL 1548 * 1549 * Return: The value for field @var if it's fixed in configuration space 1550 * defined by @params. -%EINVAL otherwise. 1551 */ 1552 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1553 snd_pcm_hw_param_t var, int *dir) 1554 { 1555 if (hw_is_mask(var)) { 1556 const struct snd_mask *mask = hw_param_mask_c(params, var); 1557 if (!snd_mask_single(mask)) 1558 return -EINVAL; 1559 if (dir) 1560 *dir = 0; 1561 return snd_mask_value(mask); 1562 } 1563 if (hw_is_interval(var)) { 1564 const struct snd_interval *i = hw_param_interval_c(params, var); 1565 if (!snd_interval_single(i)) 1566 return -EINVAL; 1567 if (dir) 1568 *dir = i->openmin; 1569 return snd_interval_value(i); 1570 } 1571 return -EINVAL; 1572 } 1573 1574 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1575 1576 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1577 snd_pcm_hw_param_t var) 1578 { 1579 if (hw_is_mask(var)) { 1580 snd_mask_none(hw_param_mask(params, var)); 1581 params->cmask |= 1 << var; 1582 params->rmask |= 1 << var; 1583 } else if (hw_is_interval(var)) { 1584 snd_interval_none(hw_param_interval(params, var)); 1585 params->cmask |= 1 << var; 1586 params->rmask |= 1 << var; 1587 } else { 1588 snd_BUG(); 1589 } 1590 } 1591 1592 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1593 1594 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1595 snd_pcm_hw_param_t var) 1596 { 1597 int changed; 1598 if (hw_is_mask(var)) 1599 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1600 else if (hw_is_interval(var)) 1601 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1602 else 1603 return -EINVAL; 1604 if (changed) { 1605 params->cmask |= 1 << var; 1606 params->rmask |= 1 << var; 1607 } 1608 return changed; 1609 } 1610 1611 1612 /** 1613 * snd_pcm_hw_param_first - refine config space and return minimum value 1614 * @pcm: PCM instance 1615 * @params: the hw_params instance 1616 * @var: parameter to retrieve 1617 * @dir: pointer to the direction (-1,0,1) or %NULL 1618 * 1619 * Inside configuration space defined by @params remove from @var all 1620 * values > minimum. Reduce configuration space accordingly. 1621 * 1622 * Return: The minimum, or a negative error code on failure. 1623 */ 1624 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1625 struct snd_pcm_hw_params *params, 1626 snd_pcm_hw_param_t var, int *dir) 1627 { 1628 int changed = _snd_pcm_hw_param_first(params, var); 1629 if (changed < 0) 1630 return changed; 1631 if (params->rmask) { 1632 int err = snd_pcm_hw_refine(pcm, params); 1633 if (snd_BUG_ON(err < 0)) 1634 return err; 1635 } 1636 return snd_pcm_hw_param_value(params, var, dir); 1637 } 1638 1639 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1640 1641 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1642 snd_pcm_hw_param_t var) 1643 { 1644 int changed; 1645 if (hw_is_mask(var)) 1646 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1647 else if (hw_is_interval(var)) 1648 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1649 else 1650 return -EINVAL; 1651 if (changed) { 1652 params->cmask |= 1 << var; 1653 params->rmask |= 1 << var; 1654 } 1655 return changed; 1656 } 1657 1658 1659 /** 1660 * snd_pcm_hw_param_last - refine config space and return maximum value 1661 * @pcm: PCM instance 1662 * @params: the hw_params instance 1663 * @var: parameter to retrieve 1664 * @dir: pointer to the direction (-1,0,1) or %NULL 1665 * 1666 * Inside configuration space defined by @params remove from @var all 1667 * values < maximum. Reduce configuration space accordingly. 1668 * 1669 * Return: The maximum, or a negative error code on failure. 1670 */ 1671 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1672 struct snd_pcm_hw_params *params, 1673 snd_pcm_hw_param_t var, int *dir) 1674 { 1675 int changed = _snd_pcm_hw_param_last(params, var); 1676 if (changed < 0) 1677 return changed; 1678 if (params->rmask) { 1679 int err = snd_pcm_hw_refine(pcm, params); 1680 if (snd_BUG_ON(err < 0)) 1681 return err; 1682 } 1683 return snd_pcm_hw_param_value(params, var, dir); 1684 } 1685 1686 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1687 1688 /** 1689 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1690 * @pcm: PCM instance 1691 * @params: the hw_params instance 1692 * 1693 * Choose one configuration from configuration space defined by @params. 1694 * The configuration chosen is that obtained fixing in this order: 1695 * first access, first format, first subformat, min channels, 1696 * min rate, min period time, max buffer size, min tick time 1697 * 1698 * Return: Zero if successful, or a negative error code on failure. 1699 */ 1700 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1701 struct snd_pcm_hw_params *params) 1702 { 1703 static int vars[] = { 1704 SNDRV_PCM_HW_PARAM_ACCESS, 1705 SNDRV_PCM_HW_PARAM_FORMAT, 1706 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1707 SNDRV_PCM_HW_PARAM_CHANNELS, 1708 SNDRV_PCM_HW_PARAM_RATE, 1709 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1710 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1711 SNDRV_PCM_HW_PARAM_TICK_TIME, 1712 -1 1713 }; 1714 int err, *v; 1715 1716 for (v = vars; *v != -1; v++) { 1717 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1718 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1719 else 1720 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1721 if (snd_BUG_ON(err < 0)) 1722 return err; 1723 } 1724 return 0; 1725 } 1726 1727 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1728 void *arg) 1729 { 1730 struct snd_pcm_runtime *runtime = substream->runtime; 1731 unsigned long flags; 1732 snd_pcm_stream_lock_irqsave(substream, flags); 1733 if (snd_pcm_running(substream) && 1734 snd_pcm_update_hw_ptr(substream) >= 0) 1735 runtime->status->hw_ptr %= runtime->buffer_size; 1736 else { 1737 runtime->status->hw_ptr = 0; 1738 runtime->hw_ptr_wrap = 0; 1739 } 1740 snd_pcm_stream_unlock_irqrestore(substream, flags); 1741 return 0; 1742 } 1743 1744 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1745 void *arg) 1746 { 1747 struct snd_pcm_channel_info *info = arg; 1748 struct snd_pcm_runtime *runtime = substream->runtime; 1749 int width; 1750 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1751 info->offset = -1; 1752 return 0; 1753 } 1754 width = snd_pcm_format_physical_width(runtime->format); 1755 if (width < 0) 1756 return width; 1757 info->offset = 0; 1758 switch (runtime->access) { 1759 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1760 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1761 info->first = info->channel * width; 1762 info->step = runtime->channels * width; 1763 break; 1764 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1765 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1766 { 1767 size_t size = runtime->dma_bytes / runtime->channels; 1768 info->first = info->channel * size * 8; 1769 info->step = width; 1770 break; 1771 } 1772 default: 1773 snd_BUG(); 1774 break; 1775 } 1776 return 0; 1777 } 1778 1779 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1780 void *arg) 1781 { 1782 struct snd_pcm_hw_params *params = arg; 1783 snd_pcm_format_t format; 1784 int channels, width; 1785 1786 params->fifo_size = substream->runtime->hw.fifo_size; 1787 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1788 format = params_format(params); 1789 channels = params_channels(params); 1790 width = snd_pcm_format_physical_width(format); 1791 params->fifo_size /= width * channels; 1792 } 1793 return 0; 1794 } 1795 1796 /** 1797 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1798 * @substream: the pcm substream instance 1799 * @cmd: ioctl command 1800 * @arg: ioctl argument 1801 * 1802 * Processes the generic ioctl commands for PCM. 1803 * Can be passed as the ioctl callback for PCM ops. 1804 * 1805 * Return: Zero if successful, or a negative error code on failure. 1806 */ 1807 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1808 unsigned int cmd, void *arg) 1809 { 1810 switch (cmd) { 1811 case SNDRV_PCM_IOCTL1_INFO: 1812 return 0; 1813 case SNDRV_PCM_IOCTL1_RESET: 1814 return snd_pcm_lib_ioctl_reset(substream, arg); 1815 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1816 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1817 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1818 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1819 } 1820 return -ENXIO; 1821 } 1822 1823 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1824 1825 /** 1826 * snd_pcm_period_elapsed - update the pcm status for the next period 1827 * @substream: the pcm substream instance 1828 * 1829 * This function is called from the interrupt handler when the 1830 * PCM has processed the period size. It will update the current 1831 * pointer, wake up sleepers, etc. 1832 * 1833 * Even if more than one periods have elapsed since the last call, you 1834 * have to call this only once. 1835 */ 1836 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1837 { 1838 struct snd_pcm_runtime *runtime; 1839 unsigned long flags; 1840 1841 if (PCM_RUNTIME_CHECK(substream)) 1842 return; 1843 runtime = substream->runtime; 1844 1845 if (runtime->transfer_ack_begin) 1846 runtime->transfer_ack_begin(substream); 1847 1848 snd_pcm_stream_lock_irqsave(substream, flags); 1849 if (!snd_pcm_running(substream) || 1850 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1851 goto _end; 1852 1853 if (substream->timer_running) 1854 snd_timer_interrupt(substream->timer, 1); 1855 _end: 1856 snd_pcm_stream_unlock_irqrestore(substream, flags); 1857 if (runtime->transfer_ack_end) 1858 runtime->transfer_ack_end(substream); 1859 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1860 } 1861 1862 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1863 1864 /* 1865 * Wait until avail_min data becomes available 1866 * Returns a negative error code if any error occurs during operation. 1867 * The available space is stored on availp. When err = 0 and avail = 0 1868 * on the capture stream, it indicates the stream is in DRAINING state. 1869 */ 1870 static int wait_for_avail(struct snd_pcm_substream *substream, 1871 snd_pcm_uframes_t *availp) 1872 { 1873 struct snd_pcm_runtime *runtime = substream->runtime; 1874 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1875 wait_queue_t wait; 1876 int err = 0; 1877 snd_pcm_uframes_t avail = 0; 1878 long wait_time, tout; 1879 1880 init_waitqueue_entry(&wait, current); 1881 set_current_state(TASK_INTERRUPTIBLE); 1882 add_wait_queue(&runtime->tsleep, &wait); 1883 1884 if (runtime->no_period_wakeup) 1885 wait_time = MAX_SCHEDULE_TIMEOUT; 1886 else { 1887 wait_time = 10; 1888 if (runtime->rate) { 1889 long t = runtime->period_size * 2 / runtime->rate; 1890 wait_time = max(t, wait_time); 1891 } 1892 wait_time = msecs_to_jiffies(wait_time * 1000); 1893 } 1894 1895 for (;;) { 1896 if (signal_pending(current)) { 1897 err = -ERESTARTSYS; 1898 break; 1899 } 1900 1901 /* 1902 * We need to check if space became available already 1903 * (and thus the wakeup happened already) first to close 1904 * the race of space already having become available. 1905 * This check must happen after been added to the waitqueue 1906 * and having current state be INTERRUPTIBLE. 1907 */ 1908 if (is_playback) 1909 avail = snd_pcm_playback_avail(runtime); 1910 else 1911 avail = snd_pcm_capture_avail(runtime); 1912 if (avail >= runtime->twake) 1913 break; 1914 snd_pcm_stream_unlock_irq(substream); 1915 1916 tout = schedule_timeout(wait_time); 1917 1918 snd_pcm_stream_lock_irq(substream); 1919 set_current_state(TASK_INTERRUPTIBLE); 1920 switch (runtime->status->state) { 1921 case SNDRV_PCM_STATE_SUSPENDED: 1922 err = -ESTRPIPE; 1923 goto _endloop; 1924 case SNDRV_PCM_STATE_XRUN: 1925 err = -EPIPE; 1926 goto _endloop; 1927 case SNDRV_PCM_STATE_DRAINING: 1928 if (is_playback) 1929 err = -EPIPE; 1930 else 1931 avail = 0; /* indicate draining */ 1932 goto _endloop; 1933 case SNDRV_PCM_STATE_OPEN: 1934 case SNDRV_PCM_STATE_SETUP: 1935 case SNDRV_PCM_STATE_DISCONNECTED: 1936 err = -EBADFD; 1937 goto _endloop; 1938 case SNDRV_PCM_STATE_PAUSED: 1939 continue; 1940 } 1941 if (!tout) { 1942 pcm_dbg(substream->pcm, 1943 "%s write error (DMA or IRQ trouble?)\n", 1944 is_playback ? "playback" : "capture"); 1945 err = -EIO; 1946 break; 1947 } 1948 } 1949 _endloop: 1950 set_current_state(TASK_RUNNING); 1951 remove_wait_queue(&runtime->tsleep, &wait); 1952 *availp = avail; 1953 return err; 1954 } 1955 1956 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1957 unsigned int hwoff, 1958 unsigned long data, unsigned int off, 1959 snd_pcm_uframes_t frames) 1960 { 1961 struct snd_pcm_runtime *runtime = substream->runtime; 1962 int err; 1963 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1964 if (substream->ops->copy) { 1965 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1966 return err; 1967 } else { 1968 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1969 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1970 return -EFAULT; 1971 } 1972 return 0; 1973 } 1974 1975 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1976 unsigned long data, unsigned int off, 1977 snd_pcm_uframes_t size); 1978 1979 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1980 unsigned long data, 1981 snd_pcm_uframes_t size, 1982 int nonblock, 1983 transfer_f transfer) 1984 { 1985 struct snd_pcm_runtime *runtime = substream->runtime; 1986 snd_pcm_uframes_t xfer = 0; 1987 snd_pcm_uframes_t offset = 0; 1988 snd_pcm_uframes_t avail; 1989 int err = 0; 1990 1991 if (size == 0) 1992 return 0; 1993 1994 snd_pcm_stream_lock_irq(substream); 1995 switch (runtime->status->state) { 1996 case SNDRV_PCM_STATE_PREPARED: 1997 case SNDRV_PCM_STATE_RUNNING: 1998 case SNDRV_PCM_STATE_PAUSED: 1999 break; 2000 case SNDRV_PCM_STATE_XRUN: 2001 err = -EPIPE; 2002 goto _end_unlock; 2003 case SNDRV_PCM_STATE_SUSPENDED: 2004 err = -ESTRPIPE; 2005 goto _end_unlock; 2006 default: 2007 err = -EBADFD; 2008 goto _end_unlock; 2009 } 2010 2011 runtime->twake = runtime->control->avail_min ? : 1; 2012 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2013 snd_pcm_update_hw_ptr(substream); 2014 avail = snd_pcm_playback_avail(runtime); 2015 while (size > 0) { 2016 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2017 snd_pcm_uframes_t cont; 2018 if (!avail) { 2019 if (nonblock) { 2020 err = -EAGAIN; 2021 goto _end_unlock; 2022 } 2023 runtime->twake = min_t(snd_pcm_uframes_t, size, 2024 runtime->control->avail_min ? : 1); 2025 err = wait_for_avail(substream, &avail); 2026 if (err < 0) 2027 goto _end_unlock; 2028 } 2029 frames = size > avail ? avail : size; 2030 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2031 if (frames > cont) 2032 frames = cont; 2033 if (snd_BUG_ON(!frames)) { 2034 runtime->twake = 0; 2035 snd_pcm_stream_unlock_irq(substream); 2036 return -EINVAL; 2037 } 2038 appl_ptr = runtime->control->appl_ptr; 2039 appl_ofs = appl_ptr % runtime->buffer_size; 2040 snd_pcm_stream_unlock_irq(substream); 2041 err = transfer(substream, appl_ofs, data, offset, frames); 2042 snd_pcm_stream_lock_irq(substream); 2043 if (err < 0) 2044 goto _end_unlock; 2045 switch (runtime->status->state) { 2046 case SNDRV_PCM_STATE_XRUN: 2047 err = -EPIPE; 2048 goto _end_unlock; 2049 case SNDRV_PCM_STATE_SUSPENDED: 2050 err = -ESTRPIPE; 2051 goto _end_unlock; 2052 default: 2053 break; 2054 } 2055 appl_ptr += frames; 2056 if (appl_ptr >= runtime->boundary) 2057 appl_ptr -= runtime->boundary; 2058 runtime->control->appl_ptr = appl_ptr; 2059 if (substream->ops->ack) 2060 substream->ops->ack(substream); 2061 2062 offset += frames; 2063 size -= frames; 2064 xfer += frames; 2065 avail -= frames; 2066 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2067 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2068 err = snd_pcm_start(substream); 2069 if (err < 0) 2070 goto _end_unlock; 2071 } 2072 } 2073 _end_unlock: 2074 runtime->twake = 0; 2075 if (xfer > 0 && err >= 0) 2076 snd_pcm_update_state(substream, runtime); 2077 snd_pcm_stream_unlock_irq(substream); 2078 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2079 } 2080 2081 /* sanity-check for read/write methods */ 2082 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2083 { 2084 struct snd_pcm_runtime *runtime; 2085 if (PCM_RUNTIME_CHECK(substream)) 2086 return -ENXIO; 2087 runtime = substream->runtime; 2088 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 2089 return -EINVAL; 2090 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2091 return -EBADFD; 2092 return 0; 2093 } 2094 2095 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 2096 { 2097 struct snd_pcm_runtime *runtime; 2098 int nonblock; 2099 int err; 2100 2101 err = pcm_sanity_check(substream); 2102 if (err < 0) 2103 return err; 2104 runtime = substream->runtime; 2105 nonblock = !!(substream->f_flags & O_NONBLOCK); 2106 2107 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2108 runtime->channels > 1) 2109 return -EINVAL; 2110 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 2111 snd_pcm_lib_write_transfer); 2112 } 2113 2114 EXPORT_SYMBOL(snd_pcm_lib_write); 2115 2116 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 2117 unsigned int hwoff, 2118 unsigned long data, unsigned int off, 2119 snd_pcm_uframes_t frames) 2120 { 2121 struct snd_pcm_runtime *runtime = substream->runtime; 2122 int err; 2123 void __user **bufs = (void __user **)data; 2124 int channels = runtime->channels; 2125 int c; 2126 if (substream->ops->copy) { 2127 if (snd_BUG_ON(!substream->ops->silence)) 2128 return -EINVAL; 2129 for (c = 0; c < channels; ++c, ++bufs) { 2130 if (*bufs == NULL) { 2131 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 2132 return err; 2133 } else { 2134 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2135 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2136 return err; 2137 } 2138 } 2139 } else { 2140 /* default transfer behaviour */ 2141 size_t dma_csize = runtime->dma_bytes / channels; 2142 for (c = 0; c < channels; ++c, ++bufs) { 2143 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2144 if (*bufs == NULL) { 2145 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 2146 } else { 2147 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2148 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2149 return -EFAULT; 2150 } 2151 } 2152 } 2153 return 0; 2154 } 2155 2156 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2157 void __user **bufs, 2158 snd_pcm_uframes_t frames) 2159 { 2160 struct snd_pcm_runtime *runtime; 2161 int nonblock; 2162 int err; 2163 2164 err = pcm_sanity_check(substream); 2165 if (err < 0) 2166 return err; 2167 runtime = substream->runtime; 2168 nonblock = !!(substream->f_flags & O_NONBLOCK); 2169 2170 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2171 return -EINVAL; 2172 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2173 nonblock, snd_pcm_lib_writev_transfer); 2174 } 2175 2176 EXPORT_SYMBOL(snd_pcm_lib_writev); 2177 2178 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2179 unsigned int hwoff, 2180 unsigned long data, unsigned int off, 2181 snd_pcm_uframes_t frames) 2182 { 2183 struct snd_pcm_runtime *runtime = substream->runtime; 2184 int err; 2185 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2186 if (substream->ops->copy) { 2187 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2188 return err; 2189 } else { 2190 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2191 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2192 return -EFAULT; 2193 } 2194 return 0; 2195 } 2196 2197 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2198 unsigned long data, 2199 snd_pcm_uframes_t size, 2200 int nonblock, 2201 transfer_f transfer) 2202 { 2203 struct snd_pcm_runtime *runtime = substream->runtime; 2204 snd_pcm_uframes_t xfer = 0; 2205 snd_pcm_uframes_t offset = 0; 2206 snd_pcm_uframes_t avail; 2207 int err = 0; 2208 2209 if (size == 0) 2210 return 0; 2211 2212 snd_pcm_stream_lock_irq(substream); 2213 switch (runtime->status->state) { 2214 case SNDRV_PCM_STATE_PREPARED: 2215 if (size >= runtime->start_threshold) { 2216 err = snd_pcm_start(substream); 2217 if (err < 0) 2218 goto _end_unlock; 2219 } 2220 break; 2221 case SNDRV_PCM_STATE_DRAINING: 2222 case SNDRV_PCM_STATE_RUNNING: 2223 case SNDRV_PCM_STATE_PAUSED: 2224 break; 2225 case SNDRV_PCM_STATE_XRUN: 2226 err = -EPIPE; 2227 goto _end_unlock; 2228 case SNDRV_PCM_STATE_SUSPENDED: 2229 err = -ESTRPIPE; 2230 goto _end_unlock; 2231 default: 2232 err = -EBADFD; 2233 goto _end_unlock; 2234 } 2235 2236 runtime->twake = runtime->control->avail_min ? : 1; 2237 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2238 snd_pcm_update_hw_ptr(substream); 2239 avail = snd_pcm_capture_avail(runtime); 2240 while (size > 0) { 2241 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2242 snd_pcm_uframes_t cont; 2243 if (!avail) { 2244 if (runtime->status->state == 2245 SNDRV_PCM_STATE_DRAINING) { 2246 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2247 goto _end_unlock; 2248 } 2249 if (nonblock) { 2250 err = -EAGAIN; 2251 goto _end_unlock; 2252 } 2253 runtime->twake = min_t(snd_pcm_uframes_t, size, 2254 runtime->control->avail_min ? : 1); 2255 err = wait_for_avail(substream, &avail); 2256 if (err < 0) 2257 goto _end_unlock; 2258 if (!avail) 2259 continue; /* draining */ 2260 } 2261 frames = size > avail ? avail : size; 2262 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2263 if (frames > cont) 2264 frames = cont; 2265 if (snd_BUG_ON(!frames)) { 2266 runtime->twake = 0; 2267 snd_pcm_stream_unlock_irq(substream); 2268 return -EINVAL; 2269 } 2270 appl_ptr = runtime->control->appl_ptr; 2271 appl_ofs = appl_ptr % runtime->buffer_size; 2272 snd_pcm_stream_unlock_irq(substream); 2273 err = transfer(substream, appl_ofs, data, offset, frames); 2274 snd_pcm_stream_lock_irq(substream); 2275 if (err < 0) 2276 goto _end_unlock; 2277 switch (runtime->status->state) { 2278 case SNDRV_PCM_STATE_XRUN: 2279 err = -EPIPE; 2280 goto _end_unlock; 2281 case SNDRV_PCM_STATE_SUSPENDED: 2282 err = -ESTRPIPE; 2283 goto _end_unlock; 2284 default: 2285 break; 2286 } 2287 appl_ptr += frames; 2288 if (appl_ptr >= runtime->boundary) 2289 appl_ptr -= runtime->boundary; 2290 runtime->control->appl_ptr = appl_ptr; 2291 if (substream->ops->ack) 2292 substream->ops->ack(substream); 2293 2294 offset += frames; 2295 size -= frames; 2296 xfer += frames; 2297 avail -= frames; 2298 } 2299 _end_unlock: 2300 runtime->twake = 0; 2301 if (xfer > 0 && err >= 0) 2302 snd_pcm_update_state(substream, runtime); 2303 snd_pcm_stream_unlock_irq(substream); 2304 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2305 } 2306 2307 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2308 { 2309 struct snd_pcm_runtime *runtime; 2310 int nonblock; 2311 int err; 2312 2313 err = pcm_sanity_check(substream); 2314 if (err < 0) 2315 return err; 2316 runtime = substream->runtime; 2317 nonblock = !!(substream->f_flags & O_NONBLOCK); 2318 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2319 return -EINVAL; 2320 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2321 } 2322 2323 EXPORT_SYMBOL(snd_pcm_lib_read); 2324 2325 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2326 unsigned int hwoff, 2327 unsigned long data, unsigned int off, 2328 snd_pcm_uframes_t frames) 2329 { 2330 struct snd_pcm_runtime *runtime = substream->runtime; 2331 int err; 2332 void __user **bufs = (void __user **)data; 2333 int channels = runtime->channels; 2334 int c; 2335 if (substream->ops->copy) { 2336 for (c = 0; c < channels; ++c, ++bufs) { 2337 char __user *buf; 2338 if (*bufs == NULL) 2339 continue; 2340 buf = *bufs + samples_to_bytes(runtime, off); 2341 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2342 return err; 2343 } 2344 } else { 2345 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2346 for (c = 0; c < channels; ++c, ++bufs) { 2347 char *hwbuf; 2348 char __user *buf; 2349 if (*bufs == NULL) 2350 continue; 2351 2352 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2353 buf = *bufs + samples_to_bytes(runtime, off); 2354 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2355 return -EFAULT; 2356 } 2357 } 2358 return 0; 2359 } 2360 2361 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2362 void __user **bufs, 2363 snd_pcm_uframes_t frames) 2364 { 2365 struct snd_pcm_runtime *runtime; 2366 int nonblock; 2367 int err; 2368 2369 err = pcm_sanity_check(substream); 2370 if (err < 0) 2371 return err; 2372 runtime = substream->runtime; 2373 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2374 return -EBADFD; 2375 2376 nonblock = !!(substream->f_flags & O_NONBLOCK); 2377 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2378 return -EINVAL; 2379 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2380 } 2381 2382 EXPORT_SYMBOL(snd_pcm_lib_readv); 2383 2384 /* 2385 * standard channel mapping helpers 2386 */ 2387 2388 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2389 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2390 { .channels = 1, 2391 .map = { SNDRV_CHMAP_MONO } }, 2392 { .channels = 2, 2393 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2394 { .channels = 4, 2395 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2396 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2397 { .channels = 6, 2398 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2399 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2400 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2401 { .channels = 8, 2402 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2403 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2404 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2405 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2406 { } 2407 }; 2408 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2409 2410 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2411 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2412 { .channels = 1, 2413 .map = { SNDRV_CHMAP_MONO } }, 2414 { .channels = 2, 2415 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2416 { .channels = 4, 2417 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2418 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2419 { .channels = 6, 2420 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2421 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2422 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2423 { .channels = 8, 2424 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2425 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2426 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2427 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2428 { } 2429 }; 2430 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2431 2432 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2433 { 2434 if (ch > info->max_channels) 2435 return false; 2436 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2437 } 2438 2439 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2440 struct snd_ctl_elem_info *uinfo) 2441 { 2442 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2443 2444 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2445 uinfo->count = 0; 2446 uinfo->count = info->max_channels; 2447 uinfo->value.integer.min = 0; 2448 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2449 return 0; 2450 } 2451 2452 /* get callback for channel map ctl element 2453 * stores the channel position firstly matching with the current channels 2454 */ 2455 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2456 struct snd_ctl_elem_value *ucontrol) 2457 { 2458 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2459 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2460 struct snd_pcm_substream *substream; 2461 const struct snd_pcm_chmap_elem *map; 2462 2463 if (snd_BUG_ON(!info->chmap)) 2464 return -EINVAL; 2465 substream = snd_pcm_chmap_substream(info, idx); 2466 if (!substream) 2467 return -ENODEV; 2468 memset(ucontrol->value.integer.value, 0, 2469 sizeof(ucontrol->value.integer.value)); 2470 if (!substream->runtime) 2471 return 0; /* no channels set */ 2472 for (map = info->chmap; map->channels; map++) { 2473 int i; 2474 if (map->channels == substream->runtime->channels && 2475 valid_chmap_channels(info, map->channels)) { 2476 for (i = 0; i < map->channels; i++) 2477 ucontrol->value.integer.value[i] = map->map[i]; 2478 return 0; 2479 } 2480 } 2481 return -EINVAL; 2482 } 2483 2484 /* tlv callback for channel map ctl element 2485 * expands the pre-defined channel maps in a form of TLV 2486 */ 2487 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2488 unsigned int size, unsigned int __user *tlv) 2489 { 2490 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2491 const struct snd_pcm_chmap_elem *map; 2492 unsigned int __user *dst; 2493 int c, count = 0; 2494 2495 if (snd_BUG_ON(!info->chmap)) 2496 return -EINVAL; 2497 if (size < 8) 2498 return -ENOMEM; 2499 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2500 return -EFAULT; 2501 size -= 8; 2502 dst = tlv + 2; 2503 for (map = info->chmap; map->channels; map++) { 2504 int chs_bytes = map->channels * 4; 2505 if (!valid_chmap_channels(info, map->channels)) 2506 continue; 2507 if (size < 8) 2508 return -ENOMEM; 2509 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2510 put_user(chs_bytes, dst + 1)) 2511 return -EFAULT; 2512 dst += 2; 2513 size -= 8; 2514 count += 8; 2515 if (size < chs_bytes) 2516 return -ENOMEM; 2517 size -= chs_bytes; 2518 count += chs_bytes; 2519 for (c = 0; c < map->channels; c++) { 2520 if (put_user(map->map[c], dst)) 2521 return -EFAULT; 2522 dst++; 2523 } 2524 } 2525 if (put_user(count, tlv + 1)) 2526 return -EFAULT; 2527 return 0; 2528 } 2529 2530 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2531 { 2532 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2533 info->pcm->streams[info->stream].chmap_kctl = NULL; 2534 kfree(info); 2535 } 2536 2537 /** 2538 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2539 * @pcm: the assigned PCM instance 2540 * @stream: stream direction 2541 * @chmap: channel map elements (for query) 2542 * @max_channels: the max number of channels for the stream 2543 * @private_value: the value passed to each kcontrol's private_value field 2544 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2545 * 2546 * Create channel-mapping control elements assigned to the given PCM stream(s). 2547 * Return: Zero if successful, or a negative error value. 2548 */ 2549 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2550 const struct snd_pcm_chmap_elem *chmap, 2551 int max_channels, 2552 unsigned long private_value, 2553 struct snd_pcm_chmap **info_ret) 2554 { 2555 struct snd_pcm_chmap *info; 2556 struct snd_kcontrol_new knew = { 2557 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2558 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2559 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2560 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2561 .info = pcm_chmap_ctl_info, 2562 .get = pcm_chmap_ctl_get, 2563 .tlv.c = pcm_chmap_ctl_tlv, 2564 }; 2565 int err; 2566 2567 info = kzalloc(sizeof(*info), GFP_KERNEL); 2568 if (!info) 2569 return -ENOMEM; 2570 info->pcm = pcm; 2571 info->stream = stream; 2572 info->chmap = chmap; 2573 info->max_channels = max_channels; 2574 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2575 knew.name = "Playback Channel Map"; 2576 else 2577 knew.name = "Capture Channel Map"; 2578 knew.device = pcm->device; 2579 knew.count = pcm->streams[stream].substream_count; 2580 knew.private_value = private_value; 2581 info->kctl = snd_ctl_new1(&knew, info); 2582 if (!info->kctl) { 2583 kfree(info); 2584 return -ENOMEM; 2585 } 2586 info->kctl->private_free = pcm_chmap_ctl_private_free; 2587 err = snd_ctl_add(pcm->card, info->kctl); 2588 if (err < 0) 2589 return err; 2590 pcm->streams[stream].chmap_kctl = info->kctl; 2591 if (info_ret) 2592 *info_ret = info; 2593 return 0; 2594 } 2595 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2596