xref: /openbmc/linux/sound/core/pcm_lib.c (revision 3c6a73cc)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34 
35 /*
36  * fill ring buffer with silence
37  * runtime->silence_start: starting pointer to silence area
38  * runtime->silence_filled: size filled with silence
39  * runtime->silence_threshold: threshold from application
40  * runtime->silence_size: maximal size from application
41  *
42  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43  */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 	struct snd_pcm_runtime *runtime = substream->runtime;
47 	snd_pcm_uframes_t frames, ofs, transfer;
48 
49 	if (runtime->silence_size < runtime->boundary) {
50 		snd_pcm_sframes_t noise_dist, n;
51 		if (runtime->silence_start != runtime->control->appl_ptr) {
52 			n = runtime->control->appl_ptr - runtime->silence_start;
53 			if (n < 0)
54 				n += runtime->boundary;
55 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 				runtime->silence_filled -= n;
57 			else
58 				runtime->silence_filled = 0;
59 			runtime->silence_start = runtime->control->appl_ptr;
60 		}
61 		if (runtime->silence_filled >= runtime->buffer_size)
62 			return;
63 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 			return;
66 		frames = runtime->silence_threshold - noise_dist;
67 		if (frames > runtime->silence_size)
68 			frames = runtime->silence_size;
69 	} else {
70 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
71 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 			if (avail > runtime->buffer_size)
73 				avail = runtime->buffer_size;
74 			runtime->silence_filled = avail > 0 ? avail : 0;
75 			runtime->silence_start = (runtime->status->hw_ptr +
76 						  runtime->silence_filled) %
77 						 runtime->boundary;
78 		} else {
79 			ofs = runtime->status->hw_ptr;
80 			frames = new_hw_ptr - ofs;
81 			if ((snd_pcm_sframes_t)frames < 0)
82 				frames += runtime->boundary;
83 			runtime->silence_filled -= frames;
84 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 				runtime->silence_filled = 0;
86 				runtime->silence_start = new_hw_ptr;
87 			} else {
88 				runtime->silence_start = ofs;
89 			}
90 		}
91 		frames = runtime->buffer_size - runtime->silence_filled;
92 	}
93 	if (snd_BUG_ON(frames > runtime->buffer_size))
94 		return;
95 	if (frames == 0)
96 		return;
97 	ofs = runtime->silence_start % runtime->buffer_size;
98 	while (frames > 0) {
99 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 			if (substream->ops->silence) {
103 				int err;
104 				err = substream->ops->silence(substream, -1, ofs, transfer);
105 				snd_BUG_ON(err < 0);
106 			} else {
107 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 			}
110 		} else {
111 			unsigned int c;
112 			unsigned int channels = runtime->channels;
113 			if (substream->ops->silence) {
114 				for (c = 0; c < channels; ++c) {
115 					int err;
116 					err = substream->ops->silence(substream, c, ofs, transfer);
117 					snd_BUG_ON(err < 0);
118 				}
119 			} else {
120 				size_t dma_csize = runtime->dma_bytes / channels;
121 				for (c = 0; c < channels; ++c) {
122 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 				}
125 			}
126 		}
127 		runtime->silence_filled += transfer;
128 		frames -= transfer;
129 		ofs = 0;
130 	}
131 }
132 
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 			   char *name, size_t len)
136 {
137 	snprintf(name, len, "pcmC%dD%d%c:%d",
138 		 substream->pcm->card->number,
139 		 substream->pcm->device,
140 		 substream->stream ? 'c' : 'p',
141 		 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145 
146 #define XRUN_DEBUG_BASIC	(1<<0)
147 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
151 #define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
153 
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155 
156 #define xrun_debug(substream, mask) \
157 			((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)	0
160 #endif
161 
162 #define dump_stack_on_xrun(substream) do {			\
163 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
164 			dump_stack();				\
165 	} while (0)
166 
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 	struct snd_pcm_runtime *runtime = substream->runtime;
170 
171 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 		char name[16];
176 		snd_pcm_debug_name(substream, name, sizeof(name));
177 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
178 		dump_stack_on_xrun(substream);
179 	}
180 }
181 
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...)				\
184 	do {								\
185 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
186 			xrun_log_show(substream);			\
187 			pr_err_ratelimited("ALSA: PCM: " fmt, ##args);	\
188 			dump_stack_on_xrun(substream);			\
189 		}							\
190 	} while (0)
191 
192 #define XRUN_LOG_CNT	10
193 
194 struct hwptr_log_entry {
195 	unsigned int in_interrupt;
196 	unsigned long jiffies;
197 	snd_pcm_uframes_t pos;
198 	snd_pcm_uframes_t period_size;
199 	snd_pcm_uframes_t buffer_size;
200 	snd_pcm_uframes_t old_hw_ptr;
201 	snd_pcm_uframes_t hw_ptr_base;
202 };
203 
204 struct snd_pcm_hwptr_log {
205 	unsigned int idx;
206 	unsigned int hit: 1;
207 	struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209 
210 static void xrun_log(struct snd_pcm_substream *substream,
211 		     snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 	struct snd_pcm_runtime *runtime = substream->runtime;
214 	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 	struct hwptr_log_entry *entry;
216 
217 	if (log == NULL) {
218 		log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 		if (log == NULL)
220 			return;
221 		runtime->hwptr_log = log;
222 	} else {
223 		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 			return;
225 	}
226 	entry = &log->entries[log->idx];
227 	entry->in_interrupt = in_interrupt;
228 	entry->jiffies = jiffies;
229 	entry->pos = pos;
230 	entry->period_size = runtime->period_size;
231 	entry->buffer_size = runtime->buffer_size;
232 	entry->old_hw_ptr = runtime->status->hw_ptr;
233 	entry->hw_ptr_base = runtime->hw_ptr_base;
234 	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236 
237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 	struct hwptr_log_entry *entry;
241 	char name[16];
242 	unsigned int idx;
243 	int cnt;
244 
245 	if (log == NULL)
246 		return;
247 	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 		return;
249 	snd_pcm_debug_name(substream, name, sizeof(name));
250 	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 		entry = &log->entries[idx];
252 		if (entry->period_size == 0)
253 			break;
254 		pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 			   "hwptr=%ld/%ld\n",
256 			   name, entry->in_interrupt ? "[Q] " : "",
257 			   entry->jiffies,
258 			   (unsigned long)entry->pos,
259 			   (unsigned long)entry->period_size,
260 			   (unsigned long)entry->buffer_size,
261 			   (unsigned long)entry->old_hw_ptr,
262 			   (unsigned long)entry->hw_ptr_base);
263 		idx++;
264 		idx %= XRUN_LOG_CNT;
265 	}
266 	log->hit = 1;
267 }
268 
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270 
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt)	do { } while (0)
273 #define xrun_log_show(substream)	do { } while (0)
274 
275 #endif
276 
277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 			 struct snd_pcm_runtime *runtime)
279 {
280 	snd_pcm_uframes_t avail;
281 
282 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 		avail = snd_pcm_playback_avail(runtime);
284 	else
285 		avail = snd_pcm_capture_avail(runtime);
286 	if (avail > runtime->avail_max)
287 		runtime->avail_max = avail;
288 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 		if (avail >= runtime->buffer_size) {
290 			snd_pcm_drain_done(substream);
291 			return -EPIPE;
292 		}
293 	} else {
294 		if (avail >= runtime->stop_threshold) {
295 			xrun(substream);
296 			return -EPIPE;
297 		}
298 	}
299 	if (runtime->twake) {
300 		if (avail >= runtime->twake)
301 			wake_up(&runtime->tsleep);
302 	} else if (avail >= runtime->control->avail_min)
303 		wake_up(&runtime->sleep);
304 	return 0;
305 }
306 
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 				  unsigned int in_interrupt)
309 {
310 	struct snd_pcm_runtime *runtime = substream->runtime;
311 	snd_pcm_uframes_t pos;
312 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 	snd_pcm_sframes_t hdelta, delta;
314 	unsigned long jdelta;
315 	unsigned long curr_jiffies;
316 	struct timespec curr_tstamp;
317 	struct timespec audio_tstamp;
318 	int crossed_boundary = 0;
319 
320 	old_hw_ptr = runtime->status->hw_ptr;
321 
322 	/*
323 	 * group pointer, time and jiffies reads to allow for more
324 	 * accurate correlations/corrections.
325 	 * The values are stored at the end of this routine after
326 	 * corrections for hw_ptr position
327 	 */
328 	pos = substream->ops->pointer(substream);
329 	curr_jiffies = jiffies;
330 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
331 		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332 
333 		if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
334 			(substream->ops->wall_clock))
335 			substream->ops->wall_clock(substream, &audio_tstamp);
336 	}
337 
338 	if (pos == SNDRV_PCM_POS_XRUN) {
339 		xrun(substream);
340 		return -EPIPE;
341 	}
342 	if (pos >= runtime->buffer_size) {
343 		if (printk_ratelimit()) {
344 			char name[16];
345 			snd_pcm_debug_name(substream, name, sizeof(name));
346 			xrun_log_show(substream);
347 			pcm_err(substream->pcm,
348 				"XRUN: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349 				name, pos, runtime->buffer_size,
350 				runtime->period_size);
351 		}
352 		pos = 0;
353 	}
354 	pos -= pos % runtime->min_align;
355 	if (xrun_debug(substream, XRUN_DEBUG_LOG))
356 		xrun_log(substream, pos, in_interrupt);
357 	hw_base = runtime->hw_ptr_base;
358 	new_hw_ptr = hw_base + pos;
359 	if (in_interrupt) {
360 		/* we know that one period was processed */
361 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
362 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
363 		if (delta > new_hw_ptr) {
364 			/* check for double acknowledged interrupts */
365 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
367 				hw_base += runtime->buffer_size;
368 				if (hw_base >= runtime->boundary) {
369 					hw_base = 0;
370 					crossed_boundary++;
371 				}
372 				new_hw_ptr = hw_base + pos;
373 				goto __delta;
374 			}
375 		}
376 	}
377 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
378 	/* pointer crosses the end of the ring buffer */
379 	if (new_hw_ptr < old_hw_ptr) {
380 		hw_base += runtime->buffer_size;
381 		if (hw_base >= runtime->boundary) {
382 			hw_base = 0;
383 			crossed_boundary++;
384 		}
385 		new_hw_ptr = hw_base + pos;
386 	}
387       __delta:
388 	delta = new_hw_ptr - old_hw_ptr;
389 	if (delta < 0)
390 		delta += runtime->boundary;
391 	if (xrun_debug(substream, in_interrupt ?
392 			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
393 		char name[16];
394 		snd_pcm_debug_name(substream, name, sizeof(name));
395 		pcm_dbg(substream->pcm,
396 			"%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397 			   in_interrupt ? "period" : "hwptr",
398 			   name,
399 			   (unsigned int)pos,
400 			   (unsigned int)runtime->period_size,
401 			   (unsigned int)runtime->buffer_size,
402 			   (unsigned long)delta,
403 			   (unsigned long)old_hw_ptr,
404 			   (unsigned long)new_hw_ptr,
405 			   (unsigned long)runtime->hw_ptr_base);
406 	}
407 
408 	if (runtime->no_period_wakeup) {
409 		snd_pcm_sframes_t xrun_threshold;
410 		/*
411 		 * Without regular period interrupts, we have to check
412 		 * the elapsed time to detect xruns.
413 		 */
414 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
415 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
416 			goto no_delta_check;
417 		hdelta = jdelta - delta * HZ / runtime->rate;
418 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
419 		while (hdelta > xrun_threshold) {
420 			delta += runtime->buffer_size;
421 			hw_base += runtime->buffer_size;
422 			if (hw_base >= runtime->boundary) {
423 				hw_base = 0;
424 				crossed_boundary++;
425 			}
426 			new_hw_ptr = hw_base + pos;
427 			hdelta -= runtime->hw_ptr_buffer_jiffies;
428 		}
429 		goto no_delta_check;
430 	}
431 
432 	/* something must be really wrong */
433 	if (delta >= runtime->buffer_size + runtime->period_size) {
434 		hw_ptr_error(substream,
435 			       "Unexpected hw_pointer value %s"
436 			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
437 			       "old_hw_ptr=%ld)\n",
438 				     in_interrupt ? "[Q] " : "[P]",
439 				     substream->stream, (long)pos,
440 				     (long)new_hw_ptr, (long)old_hw_ptr);
441 		return 0;
442 	}
443 
444 	/* Do jiffies check only in xrun_debug mode */
445 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
446 		goto no_jiffies_check;
447 
448 	/* Skip the jiffies check for hardwares with BATCH flag.
449 	 * Such hardware usually just increases the position at each IRQ,
450 	 * thus it can't give any strange position.
451 	 */
452 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
453 		goto no_jiffies_check;
454 	hdelta = delta;
455 	if (hdelta < runtime->delay)
456 		goto no_jiffies_check;
457 	hdelta -= runtime->delay;
458 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
459 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
460 		delta = jdelta /
461 			(((runtime->period_size * HZ) / runtime->rate)
462 								+ HZ/100);
463 		/* move new_hw_ptr according jiffies not pos variable */
464 		new_hw_ptr = old_hw_ptr;
465 		hw_base = delta;
466 		/* use loop to avoid checks for delta overflows */
467 		/* the delta value is small or zero in most cases */
468 		while (delta > 0) {
469 			new_hw_ptr += runtime->period_size;
470 			if (new_hw_ptr >= runtime->boundary) {
471 				new_hw_ptr -= runtime->boundary;
472 				crossed_boundary--;
473 			}
474 			delta--;
475 		}
476 		/* align hw_base to buffer_size */
477 		hw_ptr_error(substream,
478 			     "hw_ptr skipping! %s"
479 			     "(pos=%ld, delta=%ld, period=%ld, "
480 			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481 			     in_interrupt ? "[Q] " : "",
482 			     (long)pos, (long)hdelta,
483 			     (long)runtime->period_size, jdelta,
484 			     ((hdelta * HZ) / runtime->rate), hw_base,
485 			     (unsigned long)old_hw_ptr,
486 			     (unsigned long)new_hw_ptr);
487 		/* reset values to proper state */
488 		delta = 0;
489 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
490 	}
491  no_jiffies_check:
492 	if (delta > runtime->period_size + runtime->period_size / 2) {
493 		hw_ptr_error(substream,
494 			     "Lost interrupts? %s"
495 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
496 			     "old_hw_ptr=%ld)\n",
497 			     in_interrupt ? "[Q] " : "",
498 			     substream->stream, (long)delta,
499 			     (long)new_hw_ptr,
500 			     (long)old_hw_ptr);
501 	}
502 
503  no_delta_check:
504 	if (runtime->status->hw_ptr == new_hw_ptr)
505 		return 0;
506 
507 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
508 	    runtime->silence_size > 0)
509 		snd_pcm_playback_silence(substream, new_hw_ptr);
510 
511 	if (in_interrupt) {
512 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
513 		if (delta < 0)
514 			delta += runtime->boundary;
515 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
516 		runtime->hw_ptr_interrupt += delta;
517 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
518 			runtime->hw_ptr_interrupt -= runtime->boundary;
519 	}
520 	runtime->hw_ptr_base = hw_base;
521 	runtime->status->hw_ptr = new_hw_ptr;
522 	runtime->hw_ptr_jiffies = curr_jiffies;
523 	if (crossed_boundary) {
524 		snd_BUG_ON(crossed_boundary != 1);
525 		runtime->hw_ptr_wrap += runtime->boundary;
526 	}
527 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
528 		runtime->status->tstamp = curr_tstamp;
529 
530 		if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
531 			/*
532 			 * no wall clock available, provide audio timestamp
533 			 * derived from pointer position+delay
534 			 */
535 			u64 audio_frames, audio_nsecs;
536 
537 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
538 				audio_frames = runtime->hw_ptr_wrap
539 					+ runtime->status->hw_ptr
540 					- runtime->delay;
541 			else
542 				audio_frames = runtime->hw_ptr_wrap
543 					+ runtime->status->hw_ptr
544 					+ runtime->delay;
545 			audio_nsecs = div_u64(audio_frames * 1000000000LL,
546 					runtime->rate);
547 			audio_tstamp = ns_to_timespec(audio_nsecs);
548 		}
549 		runtime->status->audio_tstamp = audio_tstamp;
550 	}
551 
552 	return snd_pcm_update_state(substream, runtime);
553 }
554 
555 /* CAUTION: call it with irq disabled */
556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
557 {
558 	return snd_pcm_update_hw_ptr0(substream, 0);
559 }
560 
561 /**
562  * snd_pcm_set_ops - set the PCM operators
563  * @pcm: the pcm instance
564  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565  * @ops: the operator table
566  *
567  * Sets the given PCM operators to the pcm instance.
568  */
569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
570 		     const struct snd_pcm_ops *ops)
571 {
572 	struct snd_pcm_str *stream = &pcm->streams[direction];
573 	struct snd_pcm_substream *substream;
574 
575 	for (substream = stream->substream; substream != NULL; substream = substream->next)
576 		substream->ops = ops;
577 }
578 
579 EXPORT_SYMBOL(snd_pcm_set_ops);
580 
581 /**
582  * snd_pcm_sync - set the PCM sync id
583  * @substream: the pcm substream
584  *
585  * Sets the PCM sync identifier for the card.
586  */
587 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
588 {
589 	struct snd_pcm_runtime *runtime = substream->runtime;
590 
591 	runtime->sync.id32[0] = substream->pcm->card->number;
592 	runtime->sync.id32[1] = -1;
593 	runtime->sync.id32[2] = -1;
594 	runtime->sync.id32[3] = -1;
595 }
596 
597 EXPORT_SYMBOL(snd_pcm_set_sync);
598 
599 /*
600  *  Standard ioctl routine
601  */
602 
603 static inline unsigned int div32(unsigned int a, unsigned int b,
604 				 unsigned int *r)
605 {
606 	if (b == 0) {
607 		*r = 0;
608 		return UINT_MAX;
609 	}
610 	*r = a % b;
611 	return a / b;
612 }
613 
614 static inline unsigned int div_down(unsigned int a, unsigned int b)
615 {
616 	if (b == 0)
617 		return UINT_MAX;
618 	return a / b;
619 }
620 
621 static inline unsigned int div_up(unsigned int a, unsigned int b)
622 {
623 	unsigned int r;
624 	unsigned int q;
625 	if (b == 0)
626 		return UINT_MAX;
627 	q = div32(a, b, &r);
628 	if (r)
629 		++q;
630 	return q;
631 }
632 
633 static inline unsigned int mul(unsigned int a, unsigned int b)
634 {
635 	if (a == 0)
636 		return 0;
637 	if (div_down(UINT_MAX, a) < b)
638 		return UINT_MAX;
639 	return a * b;
640 }
641 
642 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
643 				    unsigned int c, unsigned int *r)
644 {
645 	u_int64_t n = (u_int64_t) a * b;
646 	if (c == 0) {
647 		snd_BUG_ON(!n);
648 		*r = 0;
649 		return UINT_MAX;
650 	}
651 	n = div_u64_rem(n, c, r);
652 	if (n >= UINT_MAX) {
653 		*r = 0;
654 		return UINT_MAX;
655 	}
656 	return n;
657 }
658 
659 /**
660  * snd_interval_refine - refine the interval value of configurator
661  * @i: the interval value to refine
662  * @v: the interval value to refer to
663  *
664  * Refines the interval value with the reference value.
665  * The interval is changed to the range satisfying both intervals.
666  * The interval status (min, max, integer, etc.) are evaluated.
667  *
668  * Return: Positive if the value is changed, zero if it's not changed, or a
669  * negative error code.
670  */
671 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
672 {
673 	int changed = 0;
674 	if (snd_BUG_ON(snd_interval_empty(i)))
675 		return -EINVAL;
676 	if (i->min < v->min) {
677 		i->min = v->min;
678 		i->openmin = v->openmin;
679 		changed = 1;
680 	} else if (i->min == v->min && !i->openmin && v->openmin) {
681 		i->openmin = 1;
682 		changed = 1;
683 	}
684 	if (i->max > v->max) {
685 		i->max = v->max;
686 		i->openmax = v->openmax;
687 		changed = 1;
688 	} else if (i->max == v->max && !i->openmax && v->openmax) {
689 		i->openmax = 1;
690 		changed = 1;
691 	}
692 	if (!i->integer && v->integer) {
693 		i->integer = 1;
694 		changed = 1;
695 	}
696 	if (i->integer) {
697 		if (i->openmin) {
698 			i->min++;
699 			i->openmin = 0;
700 		}
701 		if (i->openmax) {
702 			i->max--;
703 			i->openmax = 0;
704 		}
705 	} else if (!i->openmin && !i->openmax && i->min == i->max)
706 		i->integer = 1;
707 	if (snd_interval_checkempty(i)) {
708 		snd_interval_none(i);
709 		return -EINVAL;
710 	}
711 	return changed;
712 }
713 
714 EXPORT_SYMBOL(snd_interval_refine);
715 
716 static int snd_interval_refine_first(struct snd_interval *i)
717 {
718 	if (snd_BUG_ON(snd_interval_empty(i)))
719 		return -EINVAL;
720 	if (snd_interval_single(i))
721 		return 0;
722 	i->max = i->min;
723 	i->openmax = i->openmin;
724 	if (i->openmax)
725 		i->max++;
726 	return 1;
727 }
728 
729 static int snd_interval_refine_last(struct snd_interval *i)
730 {
731 	if (snd_BUG_ON(snd_interval_empty(i)))
732 		return -EINVAL;
733 	if (snd_interval_single(i))
734 		return 0;
735 	i->min = i->max;
736 	i->openmin = i->openmax;
737 	if (i->openmin)
738 		i->min--;
739 	return 1;
740 }
741 
742 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
743 {
744 	if (a->empty || b->empty) {
745 		snd_interval_none(c);
746 		return;
747 	}
748 	c->empty = 0;
749 	c->min = mul(a->min, b->min);
750 	c->openmin = (a->openmin || b->openmin);
751 	c->max = mul(a->max,  b->max);
752 	c->openmax = (a->openmax || b->openmax);
753 	c->integer = (a->integer && b->integer);
754 }
755 
756 /**
757  * snd_interval_div - refine the interval value with division
758  * @a: dividend
759  * @b: divisor
760  * @c: quotient
761  *
762  * c = a / b
763  *
764  * Returns non-zero if the value is changed, zero if not changed.
765  */
766 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
767 {
768 	unsigned int r;
769 	if (a->empty || b->empty) {
770 		snd_interval_none(c);
771 		return;
772 	}
773 	c->empty = 0;
774 	c->min = div32(a->min, b->max, &r);
775 	c->openmin = (r || a->openmin || b->openmax);
776 	if (b->min > 0) {
777 		c->max = div32(a->max, b->min, &r);
778 		if (r) {
779 			c->max++;
780 			c->openmax = 1;
781 		} else
782 			c->openmax = (a->openmax || b->openmin);
783 	} else {
784 		c->max = UINT_MAX;
785 		c->openmax = 0;
786 	}
787 	c->integer = 0;
788 }
789 
790 /**
791  * snd_interval_muldivk - refine the interval value
792  * @a: dividend 1
793  * @b: dividend 2
794  * @k: divisor (as integer)
795  * @c: result
796   *
797  * c = a * b / k
798  *
799  * Returns non-zero if the value is changed, zero if not changed.
800  */
801 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
802 		      unsigned int k, struct snd_interval *c)
803 {
804 	unsigned int r;
805 	if (a->empty || b->empty) {
806 		snd_interval_none(c);
807 		return;
808 	}
809 	c->empty = 0;
810 	c->min = muldiv32(a->min, b->min, k, &r);
811 	c->openmin = (r || a->openmin || b->openmin);
812 	c->max = muldiv32(a->max, b->max, k, &r);
813 	if (r) {
814 		c->max++;
815 		c->openmax = 1;
816 	} else
817 		c->openmax = (a->openmax || b->openmax);
818 	c->integer = 0;
819 }
820 
821 /**
822  * snd_interval_mulkdiv - refine the interval value
823  * @a: dividend 1
824  * @k: dividend 2 (as integer)
825  * @b: divisor
826  * @c: result
827  *
828  * c = a * k / b
829  *
830  * Returns non-zero if the value is changed, zero if not changed.
831  */
832 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
833 		      const struct snd_interval *b, struct snd_interval *c)
834 {
835 	unsigned int r;
836 	if (a->empty || b->empty) {
837 		snd_interval_none(c);
838 		return;
839 	}
840 	c->empty = 0;
841 	c->min = muldiv32(a->min, k, b->max, &r);
842 	c->openmin = (r || a->openmin || b->openmax);
843 	if (b->min > 0) {
844 		c->max = muldiv32(a->max, k, b->min, &r);
845 		if (r) {
846 			c->max++;
847 			c->openmax = 1;
848 		} else
849 			c->openmax = (a->openmax || b->openmin);
850 	} else {
851 		c->max = UINT_MAX;
852 		c->openmax = 0;
853 	}
854 	c->integer = 0;
855 }
856 
857 /* ---- */
858 
859 
860 /**
861  * snd_interval_ratnum - refine the interval value
862  * @i: interval to refine
863  * @rats_count: number of ratnum_t
864  * @rats: ratnum_t array
865  * @nump: pointer to store the resultant numerator
866  * @denp: pointer to store the resultant denominator
867  *
868  * Return: Positive if the value is changed, zero if it's not changed, or a
869  * negative error code.
870  */
871 int snd_interval_ratnum(struct snd_interval *i,
872 			unsigned int rats_count, struct snd_ratnum *rats,
873 			unsigned int *nump, unsigned int *denp)
874 {
875 	unsigned int best_num, best_den;
876 	int best_diff;
877 	unsigned int k;
878 	struct snd_interval t;
879 	int err;
880 	unsigned int result_num, result_den;
881 	int result_diff;
882 
883 	best_num = best_den = best_diff = 0;
884 	for (k = 0; k < rats_count; ++k) {
885 		unsigned int num = rats[k].num;
886 		unsigned int den;
887 		unsigned int q = i->min;
888 		int diff;
889 		if (q == 0)
890 			q = 1;
891 		den = div_up(num, q);
892 		if (den < rats[k].den_min)
893 			continue;
894 		if (den > rats[k].den_max)
895 			den = rats[k].den_max;
896 		else {
897 			unsigned int r;
898 			r = (den - rats[k].den_min) % rats[k].den_step;
899 			if (r != 0)
900 				den -= r;
901 		}
902 		diff = num - q * den;
903 		if (diff < 0)
904 			diff = -diff;
905 		if (best_num == 0 ||
906 		    diff * best_den < best_diff * den) {
907 			best_diff = diff;
908 			best_den = den;
909 			best_num = num;
910 		}
911 	}
912 	if (best_den == 0) {
913 		i->empty = 1;
914 		return -EINVAL;
915 	}
916 	t.min = div_down(best_num, best_den);
917 	t.openmin = !!(best_num % best_den);
918 
919 	result_num = best_num;
920 	result_diff = best_diff;
921 	result_den = best_den;
922 	best_num = best_den = best_diff = 0;
923 	for (k = 0; k < rats_count; ++k) {
924 		unsigned int num = rats[k].num;
925 		unsigned int den;
926 		unsigned int q = i->max;
927 		int diff;
928 		if (q == 0) {
929 			i->empty = 1;
930 			return -EINVAL;
931 		}
932 		den = div_down(num, q);
933 		if (den > rats[k].den_max)
934 			continue;
935 		if (den < rats[k].den_min)
936 			den = rats[k].den_min;
937 		else {
938 			unsigned int r;
939 			r = (den - rats[k].den_min) % rats[k].den_step;
940 			if (r != 0)
941 				den += rats[k].den_step - r;
942 		}
943 		diff = q * den - num;
944 		if (diff < 0)
945 			diff = -diff;
946 		if (best_num == 0 ||
947 		    diff * best_den < best_diff * den) {
948 			best_diff = diff;
949 			best_den = den;
950 			best_num = num;
951 		}
952 	}
953 	if (best_den == 0) {
954 		i->empty = 1;
955 		return -EINVAL;
956 	}
957 	t.max = div_up(best_num, best_den);
958 	t.openmax = !!(best_num % best_den);
959 	t.integer = 0;
960 	err = snd_interval_refine(i, &t);
961 	if (err < 0)
962 		return err;
963 
964 	if (snd_interval_single(i)) {
965 		if (best_diff * result_den < result_diff * best_den) {
966 			result_num = best_num;
967 			result_den = best_den;
968 		}
969 		if (nump)
970 			*nump = result_num;
971 		if (denp)
972 			*denp = result_den;
973 	}
974 	return err;
975 }
976 
977 EXPORT_SYMBOL(snd_interval_ratnum);
978 
979 /**
980  * snd_interval_ratden - refine the interval value
981  * @i: interval to refine
982  * @rats_count: number of struct ratden
983  * @rats: struct ratden array
984  * @nump: pointer to store the resultant numerator
985  * @denp: pointer to store the resultant denominator
986  *
987  * Return: Positive if the value is changed, zero if it's not changed, or a
988  * negative error code.
989  */
990 static int snd_interval_ratden(struct snd_interval *i,
991 			       unsigned int rats_count, struct snd_ratden *rats,
992 			       unsigned int *nump, unsigned int *denp)
993 {
994 	unsigned int best_num, best_diff, best_den;
995 	unsigned int k;
996 	struct snd_interval t;
997 	int err;
998 
999 	best_num = best_den = best_diff = 0;
1000 	for (k = 0; k < rats_count; ++k) {
1001 		unsigned int num;
1002 		unsigned int den = rats[k].den;
1003 		unsigned int q = i->min;
1004 		int diff;
1005 		num = mul(q, den);
1006 		if (num > rats[k].num_max)
1007 			continue;
1008 		if (num < rats[k].num_min)
1009 			num = rats[k].num_max;
1010 		else {
1011 			unsigned int r;
1012 			r = (num - rats[k].num_min) % rats[k].num_step;
1013 			if (r != 0)
1014 				num += rats[k].num_step - r;
1015 		}
1016 		diff = num - q * den;
1017 		if (best_num == 0 ||
1018 		    diff * best_den < best_diff * den) {
1019 			best_diff = diff;
1020 			best_den = den;
1021 			best_num = num;
1022 		}
1023 	}
1024 	if (best_den == 0) {
1025 		i->empty = 1;
1026 		return -EINVAL;
1027 	}
1028 	t.min = div_down(best_num, best_den);
1029 	t.openmin = !!(best_num % best_den);
1030 
1031 	best_num = best_den = best_diff = 0;
1032 	for (k = 0; k < rats_count; ++k) {
1033 		unsigned int num;
1034 		unsigned int den = rats[k].den;
1035 		unsigned int q = i->max;
1036 		int diff;
1037 		num = mul(q, den);
1038 		if (num < rats[k].num_min)
1039 			continue;
1040 		if (num > rats[k].num_max)
1041 			num = rats[k].num_max;
1042 		else {
1043 			unsigned int r;
1044 			r = (num - rats[k].num_min) % rats[k].num_step;
1045 			if (r != 0)
1046 				num -= r;
1047 		}
1048 		diff = q * den - num;
1049 		if (best_num == 0 ||
1050 		    diff * best_den < best_diff * den) {
1051 			best_diff = diff;
1052 			best_den = den;
1053 			best_num = num;
1054 		}
1055 	}
1056 	if (best_den == 0) {
1057 		i->empty = 1;
1058 		return -EINVAL;
1059 	}
1060 	t.max = div_up(best_num, best_den);
1061 	t.openmax = !!(best_num % best_den);
1062 	t.integer = 0;
1063 	err = snd_interval_refine(i, &t);
1064 	if (err < 0)
1065 		return err;
1066 
1067 	if (snd_interval_single(i)) {
1068 		if (nump)
1069 			*nump = best_num;
1070 		if (denp)
1071 			*denp = best_den;
1072 	}
1073 	return err;
1074 }
1075 
1076 /**
1077  * snd_interval_list - refine the interval value from the list
1078  * @i: the interval value to refine
1079  * @count: the number of elements in the list
1080  * @list: the value list
1081  * @mask: the bit-mask to evaluate
1082  *
1083  * Refines the interval value from the list.
1084  * When mask is non-zero, only the elements corresponding to bit 1 are
1085  * evaluated.
1086  *
1087  * Return: Positive if the value is changed, zero if it's not changed, or a
1088  * negative error code.
1089  */
1090 int snd_interval_list(struct snd_interval *i, unsigned int count,
1091 		      const unsigned int *list, unsigned int mask)
1092 {
1093         unsigned int k;
1094 	struct snd_interval list_range;
1095 
1096 	if (!count) {
1097 		i->empty = 1;
1098 		return -EINVAL;
1099 	}
1100 	snd_interval_any(&list_range);
1101 	list_range.min = UINT_MAX;
1102 	list_range.max = 0;
1103         for (k = 0; k < count; k++) {
1104 		if (mask && !(mask & (1 << k)))
1105 			continue;
1106 		if (!snd_interval_test(i, list[k]))
1107 			continue;
1108 		list_range.min = min(list_range.min, list[k]);
1109 		list_range.max = max(list_range.max, list[k]);
1110         }
1111 	return snd_interval_refine(i, &list_range);
1112 }
1113 
1114 EXPORT_SYMBOL(snd_interval_list);
1115 
1116 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1117 {
1118 	unsigned int n;
1119 	int changed = 0;
1120 	n = i->min % step;
1121 	if (n != 0 || i->openmin) {
1122 		i->min += step - n;
1123 		i->openmin = 0;
1124 		changed = 1;
1125 	}
1126 	n = i->max % step;
1127 	if (n != 0 || i->openmax) {
1128 		i->max -= n;
1129 		i->openmax = 0;
1130 		changed = 1;
1131 	}
1132 	if (snd_interval_checkempty(i)) {
1133 		i->empty = 1;
1134 		return -EINVAL;
1135 	}
1136 	return changed;
1137 }
1138 
1139 /* Info constraints helpers */
1140 
1141 /**
1142  * snd_pcm_hw_rule_add - add the hw-constraint rule
1143  * @runtime: the pcm runtime instance
1144  * @cond: condition bits
1145  * @var: the variable to evaluate
1146  * @func: the evaluation function
1147  * @private: the private data pointer passed to function
1148  * @dep: the dependent variables
1149  *
1150  * Return: Zero if successful, or a negative error code on failure.
1151  */
1152 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1153 			int var,
1154 			snd_pcm_hw_rule_func_t func, void *private,
1155 			int dep, ...)
1156 {
1157 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1158 	struct snd_pcm_hw_rule *c;
1159 	unsigned int k;
1160 	va_list args;
1161 	va_start(args, dep);
1162 	if (constrs->rules_num >= constrs->rules_all) {
1163 		struct snd_pcm_hw_rule *new;
1164 		unsigned int new_rules = constrs->rules_all + 16;
1165 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1166 		if (!new) {
1167 			va_end(args);
1168 			return -ENOMEM;
1169 		}
1170 		if (constrs->rules) {
1171 			memcpy(new, constrs->rules,
1172 			       constrs->rules_num * sizeof(*c));
1173 			kfree(constrs->rules);
1174 		}
1175 		constrs->rules = new;
1176 		constrs->rules_all = new_rules;
1177 	}
1178 	c = &constrs->rules[constrs->rules_num];
1179 	c->cond = cond;
1180 	c->func = func;
1181 	c->var = var;
1182 	c->private = private;
1183 	k = 0;
1184 	while (1) {
1185 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1186 			va_end(args);
1187 			return -EINVAL;
1188 		}
1189 		c->deps[k++] = dep;
1190 		if (dep < 0)
1191 			break;
1192 		dep = va_arg(args, int);
1193 	}
1194 	constrs->rules_num++;
1195 	va_end(args);
1196 	return 0;
1197 }
1198 
1199 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1200 
1201 /**
1202  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1203  * @runtime: PCM runtime instance
1204  * @var: hw_params variable to apply the mask
1205  * @mask: the bitmap mask
1206  *
1207  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1208  *
1209  * Return: Zero if successful, or a negative error code on failure.
1210  */
1211 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1212 			       u_int32_t mask)
1213 {
1214 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1215 	struct snd_mask *maskp = constrs_mask(constrs, var);
1216 	*maskp->bits &= mask;
1217 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1218 	if (*maskp->bits == 0)
1219 		return -EINVAL;
1220 	return 0;
1221 }
1222 
1223 /**
1224  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1225  * @runtime: PCM runtime instance
1226  * @var: hw_params variable to apply the mask
1227  * @mask: the 64bit bitmap mask
1228  *
1229  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1230  *
1231  * Return: Zero if successful, or a negative error code on failure.
1232  */
1233 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1234 				 u_int64_t mask)
1235 {
1236 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1237 	struct snd_mask *maskp = constrs_mask(constrs, var);
1238 	maskp->bits[0] &= (u_int32_t)mask;
1239 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1240 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1241 	if (! maskp->bits[0] && ! maskp->bits[1])
1242 		return -EINVAL;
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1246 
1247 /**
1248  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1249  * @runtime: PCM runtime instance
1250  * @var: hw_params variable to apply the integer constraint
1251  *
1252  * Apply the constraint of integer to an interval parameter.
1253  *
1254  * Return: Positive if the value is changed, zero if it's not changed, or a
1255  * negative error code.
1256  */
1257 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1258 {
1259 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1260 	return snd_interval_setinteger(constrs_interval(constrs, var));
1261 }
1262 
1263 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1264 
1265 /**
1266  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1267  * @runtime: PCM runtime instance
1268  * @var: hw_params variable to apply the range
1269  * @min: the minimal value
1270  * @max: the maximal value
1271  *
1272  * Apply the min/max range constraint to an interval parameter.
1273  *
1274  * Return: Positive if the value is changed, zero if it's not changed, or a
1275  * negative error code.
1276  */
1277 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1278 				 unsigned int min, unsigned int max)
1279 {
1280 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1281 	struct snd_interval t;
1282 	t.min = min;
1283 	t.max = max;
1284 	t.openmin = t.openmax = 0;
1285 	t.integer = 0;
1286 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1287 }
1288 
1289 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1290 
1291 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1292 				struct snd_pcm_hw_rule *rule)
1293 {
1294 	struct snd_pcm_hw_constraint_list *list = rule->private;
1295 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1296 }
1297 
1298 
1299 /**
1300  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1301  * @runtime: PCM runtime instance
1302  * @cond: condition bits
1303  * @var: hw_params variable to apply the list constraint
1304  * @l: list
1305  *
1306  * Apply the list of constraints to an interval parameter.
1307  *
1308  * Return: Zero if successful, or a negative error code on failure.
1309  */
1310 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1311 			       unsigned int cond,
1312 			       snd_pcm_hw_param_t var,
1313 			       const struct snd_pcm_hw_constraint_list *l)
1314 {
1315 	return snd_pcm_hw_rule_add(runtime, cond, var,
1316 				   snd_pcm_hw_rule_list, (void *)l,
1317 				   var, -1);
1318 }
1319 
1320 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1321 
1322 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1323 				   struct snd_pcm_hw_rule *rule)
1324 {
1325 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1326 	unsigned int num = 0, den = 0;
1327 	int err;
1328 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1329 				  r->nrats, r->rats, &num, &den);
1330 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1331 		params->rate_num = num;
1332 		params->rate_den = den;
1333 	}
1334 	return err;
1335 }
1336 
1337 /**
1338  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1339  * @runtime: PCM runtime instance
1340  * @cond: condition bits
1341  * @var: hw_params variable to apply the ratnums constraint
1342  * @r: struct snd_ratnums constriants
1343  *
1344  * Return: Zero if successful, or a negative error code on failure.
1345  */
1346 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1347 				  unsigned int cond,
1348 				  snd_pcm_hw_param_t var,
1349 				  struct snd_pcm_hw_constraint_ratnums *r)
1350 {
1351 	return snd_pcm_hw_rule_add(runtime, cond, var,
1352 				   snd_pcm_hw_rule_ratnums, r,
1353 				   var, -1);
1354 }
1355 
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1357 
1358 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1359 				   struct snd_pcm_hw_rule *rule)
1360 {
1361 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1362 	unsigned int num = 0, den = 0;
1363 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1364 				  r->nrats, r->rats, &num, &den);
1365 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1366 		params->rate_num = num;
1367 		params->rate_den = den;
1368 	}
1369 	return err;
1370 }
1371 
1372 /**
1373  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1374  * @runtime: PCM runtime instance
1375  * @cond: condition bits
1376  * @var: hw_params variable to apply the ratdens constraint
1377  * @r: struct snd_ratdens constriants
1378  *
1379  * Return: Zero if successful, or a negative error code on failure.
1380  */
1381 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1382 				  unsigned int cond,
1383 				  snd_pcm_hw_param_t var,
1384 				  struct snd_pcm_hw_constraint_ratdens *r)
1385 {
1386 	return snd_pcm_hw_rule_add(runtime, cond, var,
1387 				   snd_pcm_hw_rule_ratdens, r,
1388 				   var, -1);
1389 }
1390 
1391 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1392 
1393 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1394 				  struct snd_pcm_hw_rule *rule)
1395 {
1396 	unsigned int l = (unsigned long) rule->private;
1397 	int width = l & 0xffff;
1398 	unsigned int msbits = l >> 16;
1399 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1400 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1401 		params->msbits = msbits;
1402 	return 0;
1403 }
1404 
1405 /**
1406  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407  * @runtime: PCM runtime instance
1408  * @cond: condition bits
1409  * @width: sample bits width
1410  * @msbits: msbits width
1411  *
1412  * Return: Zero if successful, or a negative error code on failure.
1413  */
1414 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1415 				 unsigned int cond,
1416 				 unsigned int width,
1417 				 unsigned int msbits)
1418 {
1419 	unsigned long l = (msbits << 16) | width;
1420 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1421 				    snd_pcm_hw_rule_msbits,
1422 				    (void*) l,
1423 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1424 }
1425 
1426 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427 
1428 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429 				struct snd_pcm_hw_rule *rule)
1430 {
1431 	unsigned long step = (unsigned long) rule->private;
1432 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1433 }
1434 
1435 /**
1436  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437  * @runtime: PCM runtime instance
1438  * @cond: condition bits
1439  * @var: hw_params variable to apply the step constraint
1440  * @step: step size
1441  *
1442  * Return: Zero if successful, or a negative error code on failure.
1443  */
1444 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445 			       unsigned int cond,
1446 			       snd_pcm_hw_param_t var,
1447 			       unsigned long step)
1448 {
1449 	return snd_pcm_hw_rule_add(runtime, cond, var,
1450 				   snd_pcm_hw_rule_step, (void *) step,
1451 				   var, -1);
1452 }
1453 
1454 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1455 
1456 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1457 {
1458 	static unsigned int pow2_sizes[] = {
1459 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1460 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1461 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1462 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1463 	};
1464 	return snd_interval_list(hw_param_interval(params, rule->var),
1465 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1466 }
1467 
1468 /**
1469  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1470  * @runtime: PCM runtime instance
1471  * @cond: condition bits
1472  * @var: hw_params variable to apply the power-of-2 constraint
1473  *
1474  * Return: Zero if successful, or a negative error code on failure.
1475  */
1476 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1477 			       unsigned int cond,
1478 			       snd_pcm_hw_param_t var)
1479 {
1480 	return snd_pcm_hw_rule_add(runtime, cond, var,
1481 				   snd_pcm_hw_rule_pow2, NULL,
1482 				   var, -1);
1483 }
1484 
1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1486 
1487 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1488 					   struct snd_pcm_hw_rule *rule)
1489 {
1490 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1491 	struct snd_interval *rate;
1492 
1493 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1494 	return snd_interval_list(rate, 1, &base_rate, 0);
1495 }
1496 
1497 /**
1498  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1499  * @runtime: PCM runtime instance
1500  * @base_rate: the rate at which the hardware does not resample
1501  *
1502  * Return: Zero if successful, or a negative error code on failure.
1503  */
1504 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1505 			       unsigned int base_rate)
1506 {
1507 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1508 				   SNDRV_PCM_HW_PARAM_RATE,
1509 				   snd_pcm_hw_rule_noresample_func,
1510 				   (void *)(uintptr_t)base_rate,
1511 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1512 }
1513 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1514 
1515 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1516 				  snd_pcm_hw_param_t var)
1517 {
1518 	if (hw_is_mask(var)) {
1519 		snd_mask_any(hw_param_mask(params, var));
1520 		params->cmask |= 1 << var;
1521 		params->rmask |= 1 << var;
1522 		return;
1523 	}
1524 	if (hw_is_interval(var)) {
1525 		snd_interval_any(hw_param_interval(params, var));
1526 		params->cmask |= 1 << var;
1527 		params->rmask |= 1 << var;
1528 		return;
1529 	}
1530 	snd_BUG();
1531 }
1532 
1533 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1534 {
1535 	unsigned int k;
1536 	memset(params, 0, sizeof(*params));
1537 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1538 		_snd_pcm_hw_param_any(params, k);
1539 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1540 		_snd_pcm_hw_param_any(params, k);
1541 	params->info = ~0U;
1542 }
1543 
1544 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1545 
1546 /**
1547  * snd_pcm_hw_param_value - return @params field @var value
1548  * @params: the hw_params instance
1549  * @var: parameter to retrieve
1550  * @dir: pointer to the direction (-1,0,1) or %NULL
1551  *
1552  * Return: The value for field @var if it's fixed in configuration space
1553  * defined by @params. -%EINVAL otherwise.
1554  */
1555 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1556 			   snd_pcm_hw_param_t var, int *dir)
1557 {
1558 	if (hw_is_mask(var)) {
1559 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1560 		if (!snd_mask_single(mask))
1561 			return -EINVAL;
1562 		if (dir)
1563 			*dir = 0;
1564 		return snd_mask_value(mask);
1565 	}
1566 	if (hw_is_interval(var)) {
1567 		const struct snd_interval *i = hw_param_interval_c(params, var);
1568 		if (!snd_interval_single(i))
1569 			return -EINVAL;
1570 		if (dir)
1571 			*dir = i->openmin;
1572 		return snd_interval_value(i);
1573 	}
1574 	return -EINVAL;
1575 }
1576 
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1578 
1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1580 				snd_pcm_hw_param_t var)
1581 {
1582 	if (hw_is_mask(var)) {
1583 		snd_mask_none(hw_param_mask(params, var));
1584 		params->cmask |= 1 << var;
1585 		params->rmask |= 1 << var;
1586 	} else if (hw_is_interval(var)) {
1587 		snd_interval_none(hw_param_interval(params, var));
1588 		params->cmask |= 1 << var;
1589 		params->rmask |= 1 << var;
1590 	} else {
1591 		snd_BUG();
1592 	}
1593 }
1594 
1595 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1596 
1597 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1598 				   snd_pcm_hw_param_t var)
1599 {
1600 	int changed;
1601 	if (hw_is_mask(var))
1602 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1603 	else if (hw_is_interval(var))
1604 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1605 	else
1606 		return -EINVAL;
1607 	if (changed) {
1608 		params->cmask |= 1 << var;
1609 		params->rmask |= 1 << var;
1610 	}
1611 	return changed;
1612 }
1613 
1614 
1615 /**
1616  * snd_pcm_hw_param_first - refine config space and return minimum value
1617  * @pcm: PCM instance
1618  * @params: the hw_params instance
1619  * @var: parameter to retrieve
1620  * @dir: pointer to the direction (-1,0,1) or %NULL
1621  *
1622  * Inside configuration space defined by @params remove from @var all
1623  * values > minimum. Reduce configuration space accordingly.
1624  *
1625  * Return: The minimum, or a negative error code on failure.
1626  */
1627 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1628 			   struct snd_pcm_hw_params *params,
1629 			   snd_pcm_hw_param_t var, int *dir)
1630 {
1631 	int changed = _snd_pcm_hw_param_first(params, var);
1632 	if (changed < 0)
1633 		return changed;
1634 	if (params->rmask) {
1635 		int err = snd_pcm_hw_refine(pcm, params);
1636 		if (snd_BUG_ON(err < 0))
1637 			return err;
1638 	}
1639 	return snd_pcm_hw_param_value(params, var, dir);
1640 }
1641 
1642 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1643 
1644 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1645 				  snd_pcm_hw_param_t var)
1646 {
1647 	int changed;
1648 	if (hw_is_mask(var))
1649 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1650 	else if (hw_is_interval(var))
1651 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1652 	else
1653 		return -EINVAL;
1654 	if (changed) {
1655 		params->cmask |= 1 << var;
1656 		params->rmask |= 1 << var;
1657 	}
1658 	return changed;
1659 }
1660 
1661 
1662 /**
1663  * snd_pcm_hw_param_last - refine config space and return maximum value
1664  * @pcm: PCM instance
1665  * @params: the hw_params instance
1666  * @var: parameter to retrieve
1667  * @dir: pointer to the direction (-1,0,1) or %NULL
1668  *
1669  * Inside configuration space defined by @params remove from @var all
1670  * values < maximum. Reduce configuration space accordingly.
1671  *
1672  * Return: The maximum, or a negative error code on failure.
1673  */
1674 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1675 			  struct snd_pcm_hw_params *params,
1676 			  snd_pcm_hw_param_t var, int *dir)
1677 {
1678 	int changed = _snd_pcm_hw_param_last(params, var);
1679 	if (changed < 0)
1680 		return changed;
1681 	if (params->rmask) {
1682 		int err = snd_pcm_hw_refine(pcm, params);
1683 		if (snd_BUG_ON(err < 0))
1684 			return err;
1685 	}
1686 	return snd_pcm_hw_param_value(params, var, dir);
1687 }
1688 
1689 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1690 
1691 /**
1692  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1693  * @pcm: PCM instance
1694  * @params: the hw_params instance
1695  *
1696  * Choose one configuration from configuration space defined by @params.
1697  * The configuration chosen is that obtained fixing in this order:
1698  * first access, first format, first subformat, min channels,
1699  * min rate, min period time, max buffer size, min tick time
1700  *
1701  * Return: Zero if successful, or a negative error code on failure.
1702  */
1703 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1704 			     struct snd_pcm_hw_params *params)
1705 {
1706 	static int vars[] = {
1707 		SNDRV_PCM_HW_PARAM_ACCESS,
1708 		SNDRV_PCM_HW_PARAM_FORMAT,
1709 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1710 		SNDRV_PCM_HW_PARAM_CHANNELS,
1711 		SNDRV_PCM_HW_PARAM_RATE,
1712 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1713 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1714 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1715 		-1
1716 	};
1717 	int err, *v;
1718 
1719 	for (v = vars; *v != -1; v++) {
1720 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1721 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1722 		else
1723 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1724 		if (snd_BUG_ON(err < 0))
1725 			return err;
1726 	}
1727 	return 0;
1728 }
1729 
1730 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1731 				   void *arg)
1732 {
1733 	struct snd_pcm_runtime *runtime = substream->runtime;
1734 	unsigned long flags;
1735 	snd_pcm_stream_lock_irqsave(substream, flags);
1736 	if (snd_pcm_running(substream) &&
1737 	    snd_pcm_update_hw_ptr(substream) >= 0)
1738 		runtime->status->hw_ptr %= runtime->buffer_size;
1739 	else {
1740 		runtime->status->hw_ptr = 0;
1741 		runtime->hw_ptr_wrap = 0;
1742 	}
1743 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1744 	return 0;
1745 }
1746 
1747 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1748 					  void *arg)
1749 {
1750 	struct snd_pcm_channel_info *info = arg;
1751 	struct snd_pcm_runtime *runtime = substream->runtime;
1752 	int width;
1753 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1754 		info->offset = -1;
1755 		return 0;
1756 	}
1757 	width = snd_pcm_format_physical_width(runtime->format);
1758 	if (width < 0)
1759 		return width;
1760 	info->offset = 0;
1761 	switch (runtime->access) {
1762 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1763 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1764 		info->first = info->channel * width;
1765 		info->step = runtime->channels * width;
1766 		break;
1767 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1768 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1769 	{
1770 		size_t size = runtime->dma_bytes / runtime->channels;
1771 		info->first = info->channel * size * 8;
1772 		info->step = width;
1773 		break;
1774 	}
1775 	default:
1776 		snd_BUG();
1777 		break;
1778 	}
1779 	return 0;
1780 }
1781 
1782 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1783 				       void *arg)
1784 {
1785 	struct snd_pcm_hw_params *params = arg;
1786 	snd_pcm_format_t format;
1787 	int channels;
1788 	ssize_t frame_size;
1789 
1790 	params->fifo_size = substream->runtime->hw.fifo_size;
1791 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1792 		format = params_format(params);
1793 		channels = params_channels(params);
1794 		frame_size = snd_pcm_format_size(format, channels);
1795 		if (frame_size > 0)
1796 			params->fifo_size /= (unsigned)frame_size;
1797 	}
1798 	return 0;
1799 }
1800 
1801 /**
1802  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1803  * @substream: the pcm substream instance
1804  * @cmd: ioctl command
1805  * @arg: ioctl argument
1806  *
1807  * Processes the generic ioctl commands for PCM.
1808  * Can be passed as the ioctl callback for PCM ops.
1809  *
1810  * Return: Zero if successful, or a negative error code on failure.
1811  */
1812 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1813 		      unsigned int cmd, void *arg)
1814 {
1815 	switch (cmd) {
1816 	case SNDRV_PCM_IOCTL1_INFO:
1817 		return 0;
1818 	case SNDRV_PCM_IOCTL1_RESET:
1819 		return snd_pcm_lib_ioctl_reset(substream, arg);
1820 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1821 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1822 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1823 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1824 	}
1825 	return -ENXIO;
1826 }
1827 
1828 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1829 
1830 /**
1831  * snd_pcm_period_elapsed - update the pcm status for the next period
1832  * @substream: the pcm substream instance
1833  *
1834  * This function is called from the interrupt handler when the
1835  * PCM has processed the period size.  It will update the current
1836  * pointer, wake up sleepers, etc.
1837  *
1838  * Even if more than one periods have elapsed since the last call, you
1839  * have to call this only once.
1840  */
1841 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842 {
1843 	struct snd_pcm_runtime *runtime;
1844 	unsigned long flags;
1845 
1846 	if (PCM_RUNTIME_CHECK(substream))
1847 		return;
1848 	runtime = substream->runtime;
1849 
1850 	if (runtime->transfer_ack_begin)
1851 		runtime->transfer_ack_begin(substream);
1852 
1853 	snd_pcm_stream_lock_irqsave(substream, flags);
1854 	if (!snd_pcm_running(substream) ||
1855 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1856 		goto _end;
1857 
1858 	if (substream->timer_running)
1859 		snd_timer_interrupt(substream->timer, 1);
1860  _end:
1861 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1862 	if (runtime->transfer_ack_end)
1863 		runtime->transfer_ack_end(substream);
1864 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1865 }
1866 
1867 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1868 
1869 /*
1870  * Wait until avail_min data becomes available
1871  * Returns a negative error code if any error occurs during operation.
1872  * The available space is stored on availp.  When err = 0 and avail = 0
1873  * on the capture stream, it indicates the stream is in DRAINING state.
1874  */
1875 static int wait_for_avail(struct snd_pcm_substream *substream,
1876 			      snd_pcm_uframes_t *availp)
1877 {
1878 	struct snd_pcm_runtime *runtime = substream->runtime;
1879 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1880 	wait_queue_t wait;
1881 	int err = 0;
1882 	snd_pcm_uframes_t avail = 0;
1883 	long wait_time, tout;
1884 
1885 	init_waitqueue_entry(&wait, current);
1886 	set_current_state(TASK_INTERRUPTIBLE);
1887 	add_wait_queue(&runtime->tsleep, &wait);
1888 
1889 	if (runtime->no_period_wakeup)
1890 		wait_time = MAX_SCHEDULE_TIMEOUT;
1891 	else {
1892 		wait_time = 10;
1893 		if (runtime->rate) {
1894 			long t = runtime->period_size * 2 / runtime->rate;
1895 			wait_time = max(t, wait_time);
1896 		}
1897 		wait_time = msecs_to_jiffies(wait_time * 1000);
1898 	}
1899 
1900 	for (;;) {
1901 		if (signal_pending(current)) {
1902 			err = -ERESTARTSYS;
1903 			break;
1904 		}
1905 
1906 		/*
1907 		 * We need to check if space became available already
1908 		 * (and thus the wakeup happened already) first to close
1909 		 * the race of space already having become available.
1910 		 * This check must happen after been added to the waitqueue
1911 		 * and having current state be INTERRUPTIBLE.
1912 		 */
1913 		if (is_playback)
1914 			avail = snd_pcm_playback_avail(runtime);
1915 		else
1916 			avail = snd_pcm_capture_avail(runtime);
1917 		if (avail >= runtime->twake)
1918 			break;
1919 		snd_pcm_stream_unlock_irq(substream);
1920 
1921 		tout = schedule_timeout(wait_time);
1922 
1923 		snd_pcm_stream_lock_irq(substream);
1924 		set_current_state(TASK_INTERRUPTIBLE);
1925 		switch (runtime->status->state) {
1926 		case SNDRV_PCM_STATE_SUSPENDED:
1927 			err = -ESTRPIPE;
1928 			goto _endloop;
1929 		case SNDRV_PCM_STATE_XRUN:
1930 			err = -EPIPE;
1931 			goto _endloop;
1932 		case SNDRV_PCM_STATE_DRAINING:
1933 			if (is_playback)
1934 				err = -EPIPE;
1935 			else
1936 				avail = 0; /* indicate draining */
1937 			goto _endloop;
1938 		case SNDRV_PCM_STATE_OPEN:
1939 		case SNDRV_PCM_STATE_SETUP:
1940 		case SNDRV_PCM_STATE_DISCONNECTED:
1941 			err = -EBADFD;
1942 			goto _endloop;
1943 		case SNDRV_PCM_STATE_PAUSED:
1944 			continue;
1945 		}
1946 		if (!tout) {
1947 			pcm_dbg(substream->pcm,
1948 				"%s write error (DMA or IRQ trouble?)\n",
1949 				is_playback ? "playback" : "capture");
1950 			err = -EIO;
1951 			break;
1952 		}
1953 	}
1954  _endloop:
1955 	set_current_state(TASK_RUNNING);
1956 	remove_wait_queue(&runtime->tsleep, &wait);
1957 	*availp = avail;
1958 	return err;
1959 }
1960 
1961 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1962 				      unsigned int hwoff,
1963 				      unsigned long data, unsigned int off,
1964 				      snd_pcm_uframes_t frames)
1965 {
1966 	struct snd_pcm_runtime *runtime = substream->runtime;
1967 	int err;
1968 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1969 	if (substream->ops->copy) {
1970 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1971 			return err;
1972 	} else {
1973 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1974 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1975 			return -EFAULT;
1976 	}
1977 	return 0;
1978 }
1979 
1980 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1981 			  unsigned long data, unsigned int off,
1982 			  snd_pcm_uframes_t size);
1983 
1984 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1985 					    unsigned long data,
1986 					    snd_pcm_uframes_t size,
1987 					    int nonblock,
1988 					    transfer_f transfer)
1989 {
1990 	struct snd_pcm_runtime *runtime = substream->runtime;
1991 	snd_pcm_uframes_t xfer = 0;
1992 	snd_pcm_uframes_t offset = 0;
1993 	snd_pcm_uframes_t avail;
1994 	int err = 0;
1995 
1996 	if (size == 0)
1997 		return 0;
1998 
1999 	snd_pcm_stream_lock_irq(substream);
2000 	switch (runtime->status->state) {
2001 	case SNDRV_PCM_STATE_PREPARED:
2002 	case SNDRV_PCM_STATE_RUNNING:
2003 	case SNDRV_PCM_STATE_PAUSED:
2004 		break;
2005 	case SNDRV_PCM_STATE_XRUN:
2006 		err = -EPIPE;
2007 		goto _end_unlock;
2008 	case SNDRV_PCM_STATE_SUSPENDED:
2009 		err = -ESTRPIPE;
2010 		goto _end_unlock;
2011 	default:
2012 		err = -EBADFD;
2013 		goto _end_unlock;
2014 	}
2015 
2016 	runtime->twake = runtime->control->avail_min ? : 1;
2017 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2018 		snd_pcm_update_hw_ptr(substream);
2019 	avail = snd_pcm_playback_avail(runtime);
2020 	while (size > 0) {
2021 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2022 		snd_pcm_uframes_t cont;
2023 		if (!avail) {
2024 			if (nonblock) {
2025 				err = -EAGAIN;
2026 				goto _end_unlock;
2027 			}
2028 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2029 					runtime->control->avail_min ? : 1);
2030 			err = wait_for_avail(substream, &avail);
2031 			if (err < 0)
2032 				goto _end_unlock;
2033 		}
2034 		frames = size > avail ? avail : size;
2035 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2036 		if (frames > cont)
2037 			frames = cont;
2038 		if (snd_BUG_ON(!frames)) {
2039 			runtime->twake = 0;
2040 			snd_pcm_stream_unlock_irq(substream);
2041 			return -EINVAL;
2042 		}
2043 		appl_ptr = runtime->control->appl_ptr;
2044 		appl_ofs = appl_ptr % runtime->buffer_size;
2045 		snd_pcm_stream_unlock_irq(substream);
2046 		err = transfer(substream, appl_ofs, data, offset, frames);
2047 		snd_pcm_stream_lock_irq(substream);
2048 		if (err < 0)
2049 			goto _end_unlock;
2050 		switch (runtime->status->state) {
2051 		case SNDRV_PCM_STATE_XRUN:
2052 			err = -EPIPE;
2053 			goto _end_unlock;
2054 		case SNDRV_PCM_STATE_SUSPENDED:
2055 			err = -ESTRPIPE;
2056 			goto _end_unlock;
2057 		default:
2058 			break;
2059 		}
2060 		appl_ptr += frames;
2061 		if (appl_ptr >= runtime->boundary)
2062 			appl_ptr -= runtime->boundary;
2063 		runtime->control->appl_ptr = appl_ptr;
2064 		if (substream->ops->ack)
2065 			substream->ops->ack(substream);
2066 
2067 		offset += frames;
2068 		size -= frames;
2069 		xfer += frames;
2070 		avail -= frames;
2071 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2072 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2073 			err = snd_pcm_start(substream);
2074 			if (err < 0)
2075 				goto _end_unlock;
2076 		}
2077 	}
2078  _end_unlock:
2079 	runtime->twake = 0;
2080 	if (xfer > 0 && err >= 0)
2081 		snd_pcm_update_state(substream, runtime);
2082 	snd_pcm_stream_unlock_irq(substream);
2083 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2084 }
2085 
2086 /* sanity-check for read/write methods */
2087 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2088 {
2089 	struct snd_pcm_runtime *runtime;
2090 	if (PCM_RUNTIME_CHECK(substream))
2091 		return -ENXIO;
2092 	runtime = substream->runtime;
2093 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2094 		return -EINVAL;
2095 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2096 		return -EBADFD;
2097 	return 0;
2098 }
2099 
2100 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2101 {
2102 	struct snd_pcm_runtime *runtime;
2103 	int nonblock;
2104 	int err;
2105 
2106 	err = pcm_sanity_check(substream);
2107 	if (err < 0)
2108 		return err;
2109 	runtime = substream->runtime;
2110 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2111 
2112 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2113 	    runtime->channels > 1)
2114 		return -EINVAL;
2115 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2116 				  snd_pcm_lib_write_transfer);
2117 }
2118 
2119 EXPORT_SYMBOL(snd_pcm_lib_write);
2120 
2121 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2122 				       unsigned int hwoff,
2123 				       unsigned long data, unsigned int off,
2124 				       snd_pcm_uframes_t frames)
2125 {
2126 	struct snd_pcm_runtime *runtime = substream->runtime;
2127 	int err;
2128 	void __user **bufs = (void __user **)data;
2129 	int channels = runtime->channels;
2130 	int c;
2131 	if (substream->ops->copy) {
2132 		if (snd_BUG_ON(!substream->ops->silence))
2133 			return -EINVAL;
2134 		for (c = 0; c < channels; ++c, ++bufs) {
2135 			if (*bufs == NULL) {
2136 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2137 					return err;
2138 			} else {
2139 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2140 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2141 					return err;
2142 			}
2143 		}
2144 	} else {
2145 		/* default transfer behaviour */
2146 		size_t dma_csize = runtime->dma_bytes / channels;
2147 		for (c = 0; c < channels; ++c, ++bufs) {
2148 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2149 			if (*bufs == NULL) {
2150 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2151 			} else {
2152 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2153 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2154 					return -EFAULT;
2155 			}
2156 		}
2157 	}
2158 	return 0;
2159 }
2160 
2161 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2162 				     void __user **bufs,
2163 				     snd_pcm_uframes_t frames)
2164 {
2165 	struct snd_pcm_runtime *runtime;
2166 	int nonblock;
2167 	int err;
2168 
2169 	err = pcm_sanity_check(substream);
2170 	if (err < 0)
2171 		return err;
2172 	runtime = substream->runtime;
2173 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2174 
2175 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2176 		return -EINVAL;
2177 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2178 				  nonblock, snd_pcm_lib_writev_transfer);
2179 }
2180 
2181 EXPORT_SYMBOL(snd_pcm_lib_writev);
2182 
2183 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2184 				     unsigned int hwoff,
2185 				     unsigned long data, unsigned int off,
2186 				     snd_pcm_uframes_t frames)
2187 {
2188 	struct snd_pcm_runtime *runtime = substream->runtime;
2189 	int err;
2190 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2191 	if (substream->ops->copy) {
2192 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2193 			return err;
2194 	} else {
2195 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2196 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2197 			return -EFAULT;
2198 	}
2199 	return 0;
2200 }
2201 
2202 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2203 					   unsigned long data,
2204 					   snd_pcm_uframes_t size,
2205 					   int nonblock,
2206 					   transfer_f transfer)
2207 {
2208 	struct snd_pcm_runtime *runtime = substream->runtime;
2209 	snd_pcm_uframes_t xfer = 0;
2210 	snd_pcm_uframes_t offset = 0;
2211 	snd_pcm_uframes_t avail;
2212 	int err = 0;
2213 
2214 	if (size == 0)
2215 		return 0;
2216 
2217 	snd_pcm_stream_lock_irq(substream);
2218 	switch (runtime->status->state) {
2219 	case SNDRV_PCM_STATE_PREPARED:
2220 		if (size >= runtime->start_threshold) {
2221 			err = snd_pcm_start(substream);
2222 			if (err < 0)
2223 				goto _end_unlock;
2224 		}
2225 		break;
2226 	case SNDRV_PCM_STATE_DRAINING:
2227 	case SNDRV_PCM_STATE_RUNNING:
2228 	case SNDRV_PCM_STATE_PAUSED:
2229 		break;
2230 	case SNDRV_PCM_STATE_XRUN:
2231 		err = -EPIPE;
2232 		goto _end_unlock;
2233 	case SNDRV_PCM_STATE_SUSPENDED:
2234 		err = -ESTRPIPE;
2235 		goto _end_unlock;
2236 	default:
2237 		err = -EBADFD;
2238 		goto _end_unlock;
2239 	}
2240 
2241 	runtime->twake = runtime->control->avail_min ? : 1;
2242 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2243 		snd_pcm_update_hw_ptr(substream);
2244 	avail = snd_pcm_capture_avail(runtime);
2245 	while (size > 0) {
2246 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2247 		snd_pcm_uframes_t cont;
2248 		if (!avail) {
2249 			if (runtime->status->state ==
2250 			    SNDRV_PCM_STATE_DRAINING) {
2251 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2252 				goto _end_unlock;
2253 			}
2254 			if (nonblock) {
2255 				err = -EAGAIN;
2256 				goto _end_unlock;
2257 			}
2258 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2259 					runtime->control->avail_min ? : 1);
2260 			err = wait_for_avail(substream, &avail);
2261 			if (err < 0)
2262 				goto _end_unlock;
2263 			if (!avail)
2264 				continue; /* draining */
2265 		}
2266 		frames = size > avail ? avail : size;
2267 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2268 		if (frames > cont)
2269 			frames = cont;
2270 		if (snd_BUG_ON(!frames)) {
2271 			runtime->twake = 0;
2272 			snd_pcm_stream_unlock_irq(substream);
2273 			return -EINVAL;
2274 		}
2275 		appl_ptr = runtime->control->appl_ptr;
2276 		appl_ofs = appl_ptr % runtime->buffer_size;
2277 		snd_pcm_stream_unlock_irq(substream);
2278 		err = transfer(substream, appl_ofs, data, offset, frames);
2279 		snd_pcm_stream_lock_irq(substream);
2280 		if (err < 0)
2281 			goto _end_unlock;
2282 		switch (runtime->status->state) {
2283 		case SNDRV_PCM_STATE_XRUN:
2284 			err = -EPIPE;
2285 			goto _end_unlock;
2286 		case SNDRV_PCM_STATE_SUSPENDED:
2287 			err = -ESTRPIPE;
2288 			goto _end_unlock;
2289 		default:
2290 			break;
2291 		}
2292 		appl_ptr += frames;
2293 		if (appl_ptr >= runtime->boundary)
2294 			appl_ptr -= runtime->boundary;
2295 		runtime->control->appl_ptr = appl_ptr;
2296 		if (substream->ops->ack)
2297 			substream->ops->ack(substream);
2298 
2299 		offset += frames;
2300 		size -= frames;
2301 		xfer += frames;
2302 		avail -= frames;
2303 	}
2304  _end_unlock:
2305 	runtime->twake = 0;
2306 	if (xfer > 0 && err >= 0)
2307 		snd_pcm_update_state(substream, runtime);
2308 	snd_pcm_stream_unlock_irq(substream);
2309 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2310 }
2311 
2312 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2313 {
2314 	struct snd_pcm_runtime *runtime;
2315 	int nonblock;
2316 	int err;
2317 
2318 	err = pcm_sanity_check(substream);
2319 	if (err < 0)
2320 		return err;
2321 	runtime = substream->runtime;
2322 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2323 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2324 		return -EINVAL;
2325 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2326 }
2327 
2328 EXPORT_SYMBOL(snd_pcm_lib_read);
2329 
2330 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2331 				      unsigned int hwoff,
2332 				      unsigned long data, unsigned int off,
2333 				      snd_pcm_uframes_t frames)
2334 {
2335 	struct snd_pcm_runtime *runtime = substream->runtime;
2336 	int err;
2337 	void __user **bufs = (void __user **)data;
2338 	int channels = runtime->channels;
2339 	int c;
2340 	if (substream->ops->copy) {
2341 		for (c = 0; c < channels; ++c, ++bufs) {
2342 			char __user *buf;
2343 			if (*bufs == NULL)
2344 				continue;
2345 			buf = *bufs + samples_to_bytes(runtime, off);
2346 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2347 				return err;
2348 		}
2349 	} else {
2350 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2351 		for (c = 0; c < channels; ++c, ++bufs) {
2352 			char *hwbuf;
2353 			char __user *buf;
2354 			if (*bufs == NULL)
2355 				continue;
2356 
2357 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2358 			buf = *bufs + samples_to_bytes(runtime, off);
2359 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2360 				return -EFAULT;
2361 		}
2362 	}
2363 	return 0;
2364 }
2365 
2366 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2367 				    void __user **bufs,
2368 				    snd_pcm_uframes_t frames)
2369 {
2370 	struct snd_pcm_runtime *runtime;
2371 	int nonblock;
2372 	int err;
2373 
2374 	err = pcm_sanity_check(substream);
2375 	if (err < 0)
2376 		return err;
2377 	runtime = substream->runtime;
2378 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2379 		return -EBADFD;
2380 
2381 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2382 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2383 		return -EINVAL;
2384 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2385 }
2386 
2387 EXPORT_SYMBOL(snd_pcm_lib_readv);
2388 
2389 /*
2390  * standard channel mapping helpers
2391  */
2392 
2393 /* default channel maps for multi-channel playbacks, up to 8 channels */
2394 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2395 	{ .channels = 1,
2396 	  .map = { SNDRV_CHMAP_MONO } },
2397 	{ .channels = 2,
2398 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2399 	{ .channels = 4,
2400 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2401 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2402 	{ .channels = 6,
2403 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2406 	{ .channels = 8,
2407 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2408 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2409 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2410 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2411 	{ }
2412 };
2413 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2414 
2415 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2416 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2417 	{ .channels = 1,
2418 	  .map = { SNDRV_CHMAP_MONO } },
2419 	{ .channels = 2,
2420 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2421 	{ .channels = 4,
2422 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2423 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424 	{ .channels = 6,
2425 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428 	{ .channels = 8,
2429 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2431 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2432 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2433 	{ }
2434 };
2435 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2436 
2437 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2438 {
2439 	if (ch > info->max_channels)
2440 		return false;
2441 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2442 }
2443 
2444 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2445 			      struct snd_ctl_elem_info *uinfo)
2446 {
2447 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2448 
2449 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2450 	uinfo->count = 0;
2451 	uinfo->count = info->max_channels;
2452 	uinfo->value.integer.min = 0;
2453 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2454 	return 0;
2455 }
2456 
2457 /* get callback for channel map ctl element
2458  * stores the channel position firstly matching with the current channels
2459  */
2460 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2461 			     struct snd_ctl_elem_value *ucontrol)
2462 {
2463 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2464 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2465 	struct snd_pcm_substream *substream;
2466 	const struct snd_pcm_chmap_elem *map;
2467 
2468 	if (snd_BUG_ON(!info->chmap))
2469 		return -EINVAL;
2470 	substream = snd_pcm_chmap_substream(info, idx);
2471 	if (!substream)
2472 		return -ENODEV;
2473 	memset(ucontrol->value.integer.value, 0,
2474 	       sizeof(ucontrol->value.integer.value));
2475 	if (!substream->runtime)
2476 		return 0; /* no channels set */
2477 	for (map = info->chmap; map->channels; map++) {
2478 		int i;
2479 		if (map->channels == substream->runtime->channels &&
2480 		    valid_chmap_channels(info, map->channels)) {
2481 			for (i = 0; i < map->channels; i++)
2482 				ucontrol->value.integer.value[i] = map->map[i];
2483 			return 0;
2484 		}
2485 	}
2486 	return -EINVAL;
2487 }
2488 
2489 /* tlv callback for channel map ctl element
2490  * expands the pre-defined channel maps in a form of TLV
2491  */
2492 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2493 			     unsigned int size, unsigned int __user *tlv)
2494 {
2495 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2496 	const struct snd_pcm_chmap_elem *map;
2497 	unsigned int __user *dst;
2498 	int c, count = 0;
2499 
2500 	if (snd_BUG_ON(!info->chmap))
2501 		return -EINVAL;
2502 	if (size < 8)
2503 		return -ENOMEM;
2504 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2505 		return -EFAULT;
2506 	size -= 8;
2507 	dst = tlv + 2;
2508 	for (map = info->chmap; map->channels; map++) {
2509 		int chs_bytes = map->channels * 4;
2510 		if (!valid_chmap_channels(info, map->channels))
2511 			continue;
2512 		if (size < 8)
2513 			return -ENOMEM;
2514 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2515 		    put_user(chs_bytes, dst + 1))
2516 			return -EFAULT;
2517 		dst += 2;
2518 		size -= 8;
2519 		count += 8;
2520 		if (size < chs_bytes)
2521 			return -ENOMEM;
2522 		size -= chs_bytes;
2523 		count += chs_bytes;
2524 		for (c = 0; c < map->channels; c++) {
2525 			if (put_user(map->map[c], dst))
2526 				return -EFAULT;
2527 			dst++;
2528 		}
2529 	}
2530 	if (put_user(count, tlv + 1))
2531 		return -EFAULT;
2532 	return 0;
2533 }
2534 
2535 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2536 {
2537 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2538 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2539 	kfree(info);
2540 }
2541 
2542 /**
2543  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2544  * @pcm: the assigned PCM instance
2545  * @stream: stream direction
2546  * @chmap: channel map elements (for query)
2547  * @max_channels: the max number of channels for the stream
2548  * @private_value: the value passed to each kcontrol's private_value field
2549  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2550  *
2551  * Create channel-mapping control elements assigned to the given PCM stream(s).
2552  * Return: Zero if successful, or a negative error value.
2553  */
2554 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2555 			   const struct snd_pcm_chmap_elem *chmap,
2556 			   int max_channels,
2557 			   unsigned long private_value,
2558 			   struct snd_pcm_chmap **info_ret)
2559 {
2560 	struct snd_pcm_chmap *info;
2561 	struct snd_kcontrol_new knew = {
2562 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2563 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2564 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2565 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2566 		.info = pcm_chmap_ctl_info,
2567 		.get = pcm_chmap_ctl_get,
2568 		.tlv.c = pcm_chmap_ctl_tlv,
2569 	};
2570 	int err;
2571 
2572 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2573 	if (!info)
2574 		return -ENOMEM;
2575 	info->pcm = pcm;
2576 	info->stream = stream;
2577 	info->chmap = chmap;
2578 	info->max_channels = max_channels;
2579 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2580 		knew.name = "Playback Channel Map";
2581 	else
2582 		knew.name = "Capture Channel Map";
2583 	knew.device = pcm->device;
2584 	knew.count = pcm->streams[stream].substream_count;
2585 	knew.private_value = private_value;
2586 	info->kctl = snd_ctl_new1(&knew, info);
2587 	if (!info->kctl) {
2588 		kfree(info);
2589 		return -ENOMEM;
2590 	}
2591 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2592 	err = snd_ctl_add(pcm->card, info->kctl);
2593 	if (err < 0)
2594 		return err;
2595 	pcm->streams[stream].chmap_kctl = info->kctl;
2596 	if (info_ret)
2597 		*info_ret = info;
2598 	return 0;
2599 }
2600 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2601