xref: /openbmc/linux/sound/core/pcm_lib.c (revision 3b64b188)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33 
34 /*
35  * fill ring buffer with silence
36  * runtime->silence_start: starting pointer to silence area
37  * runtime->silence_filled: size filled with silence
38  * runtime->silence_threshold: threshold from application
39  * runtime->silence_size: maximal size from application
40  *
41  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42  */
43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45 	struct snd_pcm_runtime *runtime = substream->runtime;
46 	snd_pcm_uframes_t frames, ofs, transfer;
47 
48 	if (runtime->silence_size < runtime->boundary) {
49 		snd_pcm_sframes_t noise_dist, n;
50 		if (runtime->silence_start != runtime->control->appl_ptr) {
51 			n = runtime->control->appl_ptr - runtime->silence_start;
52 			if (n < 0)
53 				n += runtime->boundary;
54 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 				runtime->silence_filled -= n;
56 			else
57 				runtime->silence_filled = 0;
58 			runtime->silence_start = runtime->control->appl_ptr;
59 		}
60 		if (runtime->silence_filled >= runtime->buffer_size)
61 			return;
62 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 			return;
65 		frames = runtime->silence_threshold - noise_dist;
66 		if (frames > runtime->silence_size)
67 			frames = runtime->silence_size;
68 	} else {
69 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
70 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 			if (avail > runtime->buffer_size)
72 				avail = runtime->buffer_size;
73 			runtime->silence_filled = avail > 0 ? avail : 0;
74 			runtime->silence_start = (runtime->status->hw_ptr +
75 						  runtime->silence_filled) %
76 						 runtime->boundary;
77 		} else {
78 			ofs = runtime->status->hw_ptr;
79 			frames = new_hw_ptr - ofs;
80 			if ((snd_pcm_sframes_t)frames < 0)
81 				frames += runtime->boundary;
82 			runtime->silence_filled -= frames;
83 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 				runtime->silence_filled = 0;
85 				runtime->silence_start = new_hw_ptr;
86 			} else {
87 				runtime->silence_start = ofs;
88 			}
89 		}
90 		frames = runtime->buffer_size - runtime->silence_filled;
91 	}
92 	if (snd_BUG_ON(frames > runtime->buffer_size))
93 		return;
94 	if (frames == 0)
95 		return;
96 	ofs = runtime->silence_start % runtime->buffer_size;
97 	while (frames > 0) {
98 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 			if (substream->ops->silence) {
102 				int err;
103 				err = substream->ops->silence(substream, -1, ofs, transfer);
104 				snd_BUG_ON(err < 0);
105 			} else {
106 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 			}
109 		} else {
110 			unsigned int c;
111 			unsigned int channels = runtime->channels;
112 			if (substream->ops->silence) {
113 				for (c = 0; c < channels; ++c) {
114 					int err;
115 					err = substream->ops->silence(substream, c, ofs, transfer);
116 					snd_BUG_ON(err < 0);
117 				}
118 			} else {
119 				size_t dma_csize = runtime->dma_bytes / channels;
120 				for (c = 0; c < channels; ++c) {
121 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 				}
124 			}
125 		}
126 		runtime->silence_filled += transfer;
127 		frames -= transfer;
128 		ofs = 0;
129 	}
130 }
131 
132 #ifdef CONFIG_SND_DEBUG
133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 			   char *name, size_t len)
135 {
136 	snprintf(name, len, "pcmC%dD%d%c:%d",
137 		 substream->pcm->card->number,
138 		 substream->pcm->device,
139 		 substream->stream ? 'c' : 'p',
140 		 substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144 
145 #define XRUN_DEBUG_BASIC	(1<<0)
146 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
150 #define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
152 
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154 
155 #define xrun_debug(substream, mask) \
156 			((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask)	0
159 #endif
160 
161 #define dump_stack_on_xrun(substream) do {			\
162 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
163 			dump_stack();				\
164 	} while (0)
165 
166 static void xrun(struct snd_pcm_substream *substream)
167 {
168 	struct snd_pcm_runtime *runtime = substream->runtime;
169 
170 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 		char name[16];
175 		snd_pcm_debug_name(substream, name, sizeof(name));
176 		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 		dump_stack_on_xrun(substream);
178 	}
179 }
180 
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...)				\
183 	do {								\
184 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
185 			xrun_log_show(substream);			\
186 			if (printk_ratelimit()) {			\
187 				snd_printd("PCM: " fmt, ##args);	\
188 			}						\
189 			dump_stack_on_xrun(substream);			\
190 		}							\
191 	} while (0)
192 
193 #define XRUN_LOG_CNT	10
194 
195 struct hwptr_log_entry {
196 	unsigned int in_interrupt;
197 	unsigned long jiffies;
198 	snd_pcm_uframes_t pos;
199 	snd_pcm_uframes_t period_size;
200 	snd_pcm_uframes_t buffer_size;
201 	snd_pcm_uframes_t old_hw_ptr;
202 	snd_pcm_uframes_t hw_ptr_base;
203 };
204 
205 struct snd_pcm_hwptr_log {
206 	unsigned int idx;
207 	unsigned int hit: 1;
208 	struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210 
211 static void xrun_log(struct snd_pcm_substream *substream,
212 		     snd_pcm_uframes_t pos, int in_interrupt)
213 {
214 	struct snd_pcm_runtime *runtime = substream->runtime;
215 	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 	struct hwptr_log_entry *entry;
217 
218 	if (log == NULL) {
219 		log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 		if (log == NULL)
221 			return;
222 		runtime->hwptr_log = log;
223 	} else {
224 		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 			return;
226 	}
227 	entry = &log->entries[log->idx];
228 	entry->in_interrupt = in_interrupt;
229 	entry->jiffies = jiffies;
230 	entry->pos = pos;
231 	entry->period_size = runtime->period_size;
232 	entry->buffer_size = runtime->buffer_size;
233 	entry->old_hw_ptr = runtime->status->hw_ptr;
234 	entry->hw_ptr_base = runtime->hw_ptr_base;
235 	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237 
238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240 	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 	struct hwptr_log_entry *entry;
242 	char name[16];
243 	unsigned int idx;
244 	int cnt;
245 
246 	if (log == NULL)
247 		return;
248 	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 		return;
250 	snd_pcm_debug_name(substream, name, sizeof(name));
251 	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 		entry = &log->entries[idx];
253 		if (entry->period_size == 0)
254 			break;
255 		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 			   "hwptr=%ld/%ld\n",
257 			   name, entry->in_interrupt ? "[Q] " : "",
258 			   entry->jiffies,
259 			   (unsigned long)entry->pos,
260 			   (unsigned long)entry->period_size,
261 			   (unsigned long)entry->buffer_size,
262 			   (unsigned long)entry->old_hw_ptr,
263 			   (unsigned long)entry->hw_ptr_base);
264 		idx++;
265 		idx %= XRUN_LOG_CNT;
266 	}
267 	log->hit = 1;
268 }
269 
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271 
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt)	do { } while (0)
274 #define xrun_log_show(substream)	do { } while (0)
275 
276 #endif
277 
278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 			 struct snd_pcm_runtime *runtime)
280 {
281 	snd_pcm_uframes_t avail;
282 
283 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 		avail = snd_pcm_playback_avail(runtime);
285 	else
286 		avail = snd_pcm_capture_avail(runtime);
287 	if (avail > runtime->avail_max)
288 		runtime->avail_max = avail;
289 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 		if (avail >= runtime->buffer_size) {
291 			snd_pcm_drain_done(substream);
292 			return -EPIPE;
293 		}
294 	} else {
295 		if (avail >= runtime->stop_threshold) {
296 			xrun(substream);
297 			return -EPIPE;
298 		}
299 	}
300 	if (runtime->twake) {
301 		if (avail >= runtime->twake)
302 			wake_up(&runtime->tsleep);
303 	} else if (avail >= runtime->control->avail_min)
304 		wake_up(&runtime->sleep);
305 	return 0;
306 }
307 
308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 				  unsigned int in_interrupt)
310 {
311 	struct snd_pcm_runtime *runtime = substream->runtime;
312 	snd_pcm_uframes_t pos;
313 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 	snd_pcm_sframes_t hdelta, delta;
315 	unsigned long jdelta;
316 	unsigned long curr_jiffies;
317 	struct timespec curr_tstamp;
318 
319 	old_hw_ptr = runtime->status->hw_ptr;
320 
321 	/*
322 	 * group pointer, time and jiffies reads to allow for more
323 	 * accurate correlations/corrections.
324 	 * The values are stored at the end of this routine after
325 	 * corrections for hw_ptr position
326 	 */
327 	pos = substream->ops->pointer(substream);
328 	curr_jiffies = jiffies;
329 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
330 		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
331 
332 	if (pos == SNDRV_PCM_POS_XRUN) {
333 		xrun(substream);
334 		return -EPIPE;
335 	}
336 	if (pos >= runtime->buffer_size) {
337 		if (printk_ratelimit()) {
338 			char name[16];
339 			snd_pcm_debug_name(substream, name, sizeof(name));
340 			xrun_log_show(substream);
341 			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
342 				   "buffer size = %ld, period size = %ld\n",
343 				   name, pos, runtime->buffer_size,
344 				   runtime->period_size);
345 		}
346 		pos = 0;
347 	}
348 	pos -= pos % runtime->min_align;
349 	if (xrun_debug(substream, XRUN_DEBUG_LOG))
350 		xrun_log(substream, pos, in_interrupt);
351 	hw_base = runtime->hw_ptr_base;
352 	new_hw_ptr = hw_base + pos;
353 	if (in_interrupt) {
354 		/* we know that one period was processed */
355 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
356 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
357 		if (delta > new_hw_ptr) {
358 			/* check for double acknowledged interrupts */
359 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
360 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
361 				hw_base += runtime->buffer_size;
362 				if (hw_base >= runtime->boundary)
363 					hw_base = 0;
364 				new_hw_ptr = hw_base + pos;
365 				goto __delta;
366 			}
367 		}
368 	}
369 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
370 	/* pointer crosses the end of the ring buffer */
371 	if (new_hw_ptr < old_hw_ptr) {
372 		hw_base += runtime->buffer_size;
373 		if (hw_base >= runtime->boundary)
374 			hw_base = 0;
375 		new_hw_ptr = hw_base + pos;
376 	}
377       __delta:
378 	delta = new_hw_ptr - old_hw_ptr;
379 	if (delta < 0)
380 		delta += runtime->boundary;
381 	if (xrun_debug(substream, in_interrupt ?
382 			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
383 		char name[16];
384 		snd_pcm_debug_name(substream, name, sizeof(name));
385 		snd_printd("%s_update: %s: pos=%u/%u/%u, "
386 			   "hwptr=%ld/%ld/%ld/%ld\n",
387 			   in_interrupt ? "period" : "hwptr",
388 			   name,
389 			   (unsigned int)pos,
390 			   (unsigned int)runtime->period_size,
391 			   (unsigned int)runtime->buffer_size,
392 			   (unsigned long)delta,
393 			   (unsigned long)old_hw_ptr,
394 			   (unsigned long)new_hw_ptr,
395 			   (unsigned long)runtime->hw_ptr_base);
396 	}
397 
398 	if (runtime->no_period_wakeup) {
399 		snd_pcm_sframes_t xrun_threshold;
400 		/*
401 		 * Without regular period interrupts, we have to check
402 		 * the elapsed time to detect xruns.
403 		 */
404 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
405 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
406 			goto no_delta_check;
407 		hdelta = jdelta - delta * HZ / runtime->rate;
408 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
409 		while (hdelta > xrun_threshold) {
410 			delta += runtime->buffer_size;
411 			hw_base += runtime->buffer_size;
412 			if (hw_base >= runtime->boundary)
413 				hw_base = 0;
414 			new_hw_ptr = hw_base + pos;
415 			hdelta -= runtime->hw_ptr_buffer_jiffies;
416 		}
417 		goto no_delta_check;
418 	}
419 
420 	/* something must be really wrong */
421 	if (delta >= runtime->buffer_size + runtime->period_size) {
422 		hw_ptr_error(substream,
423 			       "Unexpected hw_pointer value %s"
424 			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
425 			       "old_hw_ptr=%ld)\n",
426 				     in_interrupt ? "[Q] " : "[P]",
427 				     substream->stream, (long)pos,
428 				     (long)new_hw_ptr, (long)old_hw_ptr);
429 		return 0;
430 	}
431 
432 	/* Do jiffies check only in xrun_debug mode */
433 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
434 		goto no_jiffies_check;
435 
436 	/* Skip the jiffies check for hardwares with BATCH flag.
437 	 * Such hardware usually just increases the position at each IRQ,
438 	 * thus it can't give any strange position.
439 	 */
440 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
441 		goto no_jiffies_check;
442 	hdelta = delta;
443 	if (hdelta < runtime->delay)
444 		goto no_jiffies_check;
445 	hdelta -= runtime->delay;
446 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
447 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
448 		delta = jdelta /
449 			(((runtime->period_size * HZ) / runtime->rate)
450 								+ HZ/100);
451 		/* move new_hw_ptr according jiffies not pos variable */
452 		new_hw_ptr = old_hw_ptr;
453 		hw_base = delta;
454 		/* use loop to avoid checks for delta overflows */
455 		/* the delta value is small or zero in most cases */
456 		while (delta > 0) {
457 			new_hw_ptr += runtime->period_size;
458 			if (new_hw_ptr >= runtime->boundary)
459 				new_hw_ptr -= runtime->boundary;
460 			delta--;
461 		}
462 		/* align hw_base to buffer_size */
463 		hw_ptr_error(substream,
464 			     "hw_ptr skipping! %s"
465 			     "(pos=%ld, delta=%ld, period=%ld, "
466 			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
467 			     in_interrupt ? "[Q] " : "",
468 			     (long)pos, (long)hdelta,
469 			     (long)runtime->period_size, jdelta,
470 			     ((hdelta * HZ) / runtime->rate), hw_base,
471 			     (unsigned long)old_hw_ptr,
472 			     (unsigned long)new_hw_ptr);
473 		/* reset values to proper state */
474 		delta = 0;
475 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
476 	}
477  no_jiffies_check:
478 	if (delta > runtime->period_size + runtime->period_size / 2) {
479 		hw_ptr_error(substream,
480 			     "Lost interrupts? %s"
481 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
482 			     "old_hw_ptr=%ld)\n",
483 			     in_interrupt ? "[Q] " : "",
484 			     substream->stream, (long)delta,
485 			     (long)new_hw_ptr,
486 			     (long)old_hw_ptr);
487 	}
488 
489  no_delta_check:
490 	if (runtime->status->hw_ptr == new_hw_ptr)
491 		return 0;
492 
493 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
494 	    runtime->silence_size > 0)
495 		snd_pcm_playback_silence(substream, new_hw_ptr);
496 
497 	if (in_interrupt) {
498 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
499 		if (delta < 0)
500 			delta += runtime->boundary;
501 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
502 		runtime->hw_ptr_interrupt += delta;
503 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
504 			runtime->hw_ptr_interrupt -= runtime->boundary;
505 	}
506 	runtime->hw_ptr_base = hw_base;
507 	runtime->status->hw_ptr = new_hw_ptr;
508 	runtime->hw_ptr_jiffies = curr_jiffies;
509 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
510 		runtime->status->tstamp = curr_tstamp;
511 
512 	return snd_pcm_update_state(substream, runtime);
513 }
514 
515 /* CAUTION: call it with irq disabled */
516 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
517 {
518 	return snd_pcm_update_hw_ptr0(substream, 0);
519 }
520 
521 /**
522  * snd_pcm_set_ops - set the PCM operators
523  * @pcm: the pcm instance
524  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
525  * @ops: the operator table
526  *
527  * Sets the given PCM operators to the pcm instance.
528  */
529 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
530 {
531 	struct snd_pcm_str *stream = &pcm->streams[direction];
532 	struct snd_pcm_substream *substream;
533 
534 	for (substream = stream->substream; substream != NULL; substream = substream->next)
535 		substream->ops = ops;
536 }
537 
538 EXPORT_SYMBOL(snd_pcm_set_ops);
539 
540 /**
541  * snd_pcm_sync - set the PCM sync id
542  * @substream: the pcm substream
543  *
544  * Sets the PCM sync identifier for the card.
545  */
546 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
547 {
548 	struct snd_pcm_runtime *runtime = substream->runtime;
549 
550 	runtime->sync.id32[0] = substream->pcm->card->number;
551 	runtime->sync.id32[1] = -1;
552 	runtime->sync.id32[2] = -1;
553 	runtime->sync.id32[3] = -1;
554 }
555 
556 EXPORT_SYMBOL(snd_pcm_set_sync);
557 
558 /*
559  *  Standard ioctl routine
560  */
561 
562 static inline unsigned int div32(unsigned int a, unsigned int b,
563 				 unsigned int *r)
564 {
565 	if (b == 0) {
566 		*r = 0;
567 		return UINT_MAX;
568 	}
569 	*r = a % b;
570 	return a / b;
571 }
572 
573 static inline unsigned int div_down(unsigned int a, unsigned int b)
574 {
575 	if (b == 0)
576 		return UINT_MAX;
577 	return a / b;
578 }
579 
580 static inline unsigned int div_up(unsigned int a, unsigned int b)
581 {
582 	unsigned int r;
583 	unsigned int q;
584 	if (b == 0)
585 		return UINT_MAX;
586 	q = div32(a, b, &r);
587 	if (r)
588 		++q;
589 	return q;
590 }
591 
592 static inline unsigned int mul(unsigned int a, unsigned int b)
593 {
594 	if (a == 0)
595 		return 0;
596 	if (div_down(UINT_MAX, a) < b)
597 		return UINT_MAX;
598 	return a * b;
599 }
600 
601 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
602 				    unsigned int c, unsigned int *r)
603 {
604 	u_int64_t n = (u_int64_t) a * b;
605 	if (c == 0) {
606 		snd_BUG_ON(!n);
607 		*r = 0;
608 		return UINT_MAX;
609 	}
610 	n = div_u64_rem(n, c, r);
611 	if (n >= UINT_MAX) {
612 		*r = 0;
613 		return UINT_MAX;
614 	}
615 	return n;
616 }
617 
618 /**
619  * snd_interval_refine - refine the interval value of configurator
620  * @i: the interval value to refine
621  * @v: the interval value to refer to
622  *
623  * Refines the interval value with the reference value.
624  * The interval is changed to the range satisfying both intervals.
625  * The interval status (min, max, integer, etc.) are evaluated.
626  *
627  * Returns non-zero if the value is changed, zero if not changed.
628  */
629 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
630 {
631 	int changed = 0;
632 	if (snd_BUG_ON(snd_interval_empty(i)))
633 		return -EINVAL;
634 	if (i->min < v->min) {
635 		i->min = v->min;
636 		i->openmin = v->openmin;
637 		changed = 1;
638 	} else if (i->min == v->min && !i->openmin && v->openmin) {
639 		i->openmin = 1;
640 		changed = 1;
641 	}
642 	if (i->max > v->max) {
643 		i->max = v->max;
644 		i->openmax = v->openmax;
645 		changed = 1;
646 	} else if (i->max == v->max && !i->openmax && v->openmax) {
647 		i->openmax = 1;
648 		changed = 1;
649 	}
650 	if (!i->integer && v->integer) {
651 		i->integer = 1;
652 		changed = 1;
653 	}
654 	if (i->integer) {
655 		if (i->openmin) {
656 			i->min++;
657 			i->openmin = 0;
658 		}
659 		if (i->openmax) {
660 			i->max--;
661 			i->openmax = 0;
662 		}
663 	} else if (!i->openmin && !i->openmax && i->min == i->max)
664 		i->integer = 1;
665 	if (snd_interval_checkempty(i)) {
666 		snd_interval_none(i);
667 		return -EINVAL;
668 	}
669 	return changed;
670 }
671 
672 EXPORT_SYMBOL(snd_interval_refine);
673 
674 static int snd_interval_refine_first(struct snd_interval *i)
675 {
676 	if (snd_BUG_ON(snd_interval_empty(i)))
677 		return -EINVAL;
678 	if (snd_interval_single(i))
679 		return 0;
680 	i->max = i->min;
681 	i->openmax = i->openmin;
682 	if (i->openmax)
683 		i->max++;
684 	return 1;
685 }
686 
687 static int snd_interval_refine_last(struct snd_interval *i)
688 {
689 	if (snd_BUG_ON(snd_interval_empty(i)))
690 		return -EINVAL;
691 	if (snd_interval_single(i))
692 		return 0;
693 	i->min = i->max;
694 	i->openmin = i->openmax;
695 	if (i->openmin)
696 		i->min--;
697 	return 1;
698 }
699 
700 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
701 {
702 	if (a->empty || b->empty) {
703 		snd_interval_none(c);
704 		return;
705 	}
706 	c->empty = 0;
707 	c->min = mul(a->min, b->min);
708 	c->openmin = (a->openmin || b->openmin);
709 	c->max = mul(a->max,  b->max);
710 	c->openmax = (a->openmax || b->openmax);
711 	c->integer = (a->integer && b->integer);
712 }
713 
714 /**
715  * snd_interval_div - refine the interval value with division
716  * @a: dividend
717  * @b: divisor
718  * @c: quotient
719  *
720  * c = a / b
721  *
722  * Returns non-zero if the value is changed, zero if not changed.
723  */
724 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
725 {
726 	unsigned int r;
727 	if (a->empty || b->empty) {
728 		snd_interval_none(c);
729 		return;
730 	}
731 	c->empty = 0;
732 	c->min = div32(a->min, b->max, &r);
733 	c->openmin = (r || a->openmin || b->openmax);
734 	if (b->min > 0) {
735 		c->max = div32(a->max, b->min, &r);
736 		if (r) {
737 			c->max++;
738 			c->openmax = 1;
739 		} else
740 			c->openmax = (a->openmax || b->openmin);
741 	} else {
742 		c->max = UINT_MAX;
743 		c->openmax = 0;
744 	}
745 	c->integer = 0;
746 }
747 
748 /**
749  * snd_interval_muldivk - refine the interval value
750  * @a: dividend 1
751  * @b: dividend 2
752  * @k: divisor (as integer)
753  * @c: result
754   *
755  * c = a * b / k
756  *
757  * Returns non-zero if the value is changed, zero if not changed.
758  */
759 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
760 		      unsigned int k, struct snd_interval *c)
761 {
762 	unsigned int r;
763 	if (a->empty || b->empty) {
764 		snd_interval_none(c);
765 		return;
766 	}
767 	c->empty = 0;
768 	c->min = muldiv32(a->min, b->min, k, &r);
769 	c->openmin = (r || a->openmin || b->openmin);
770 	c->max = muldiv32(a->max, b->max, k, &r);
771 	if (r) {
772 		c->max++;
773 		c->openmax = 1;
774 	} else
775 		c->openmax = (a->openmax || b->openmax);
776 	c->integer = 0;
777 }
778 
779 /**
780  * snd_interval_mulkdiv - refine the interval value
781  * @a: dividend 1
782  * @k: dividend 2 (as integer)
783  * @b: divisor
784  * @c: result
785  *
786  * c = a * k / b
787  *
788  * Returns non-zero if the value is changed, zero if not changed.
789  */
790 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
791 		      const struct snd_interval *b, struct snd_interval *c)
792 {
793 	unsigned int r;
794 	if (a->empty || b->empty) {
795 		snd_interval_none(c);
796 		return;
797 	}
798 	c->empty = 0;
799 	c->min = muldiv32(a->min, k, b->max, &r);
800 	c->openmin = (r || a->openmin || b->openmax);
801 	if (b->min > 0) {
802 		c->max = muldiv32(a->max, k, b->min, &r);
803 		if (r) {
804 			c->max++;
805 			c->openmax = 1;
806 		} else
807 			c->openmax = (a->openmax || b->openmin);
808 	} else {
809 		c->max = UINT_MAX;
810 		c->openmax = 0;
811 	}
812 	c->integer = 0;
813 }
814 
815 /* ---- */
816 
817 
818 /**
819  * snd_interval_ratnum - refine the interval value
820  * @i: interval to refine
821  * @rats_count: number of ratnum_t
822  * @rats: ratnum_t array
823  * @nump: pointer to store the resultant numerator
824  * @denp: pointer to store the resultant denominator
825  *
826  * Returns non-zero if the value is changed, zero if not changed.
827  */
828 int snd_interval_ratnum(struct snd_interval *i,
829 			unsigned int rats_count, struct snd_ratnum *rats,
830 			unsigned int *nump, unsigned int *denp)
831 {
832 	unsigned int best_num, best_den;
833 	int best_diff;
834 	unsigned int k;
835 	struct snd_interval t;
836 	int err;
837 	unsigned int result_num, result_den;
838 	int result_diff;
839 
840 	best_num = best_den = best_diff = 0;
841 	for (k = 0; k < rats_count; ++k) {
842 		unsigned int num = rats[k].num;
843 		unsigned int den;
844 		unsigned int q = i->min;
845 		int diff;
846 		if (q == 0)
847 			q = 1;
848 		den = div_up(num, q);
849 		if (den < rats[k].den_min)
850 			continue;
851 		if (den > rats[k].den_max)
852 			den = rats[k].den_max;
853 		else {
854 			unsigned int r;
855 			r = (den - rats[k].den_min) % rats[k].den_step;
856 			if (r != 0)
857 				den -= r;
858 		}
859 		diff = num - q * den;
860 		if (diff < 0)
861 			diff = -diff;
862 		if (best_num == 0 ||
863 		    diff * best_den < best_diff * den) {
864 			best_diff = diff;
865 			best_den = den;
866 			best_num = num;
867 		}
868 	}
869 	if (best_den == 0) {
870 		i->empty = 1;
871 		return -EINVAL;
872 	}
873 	t.min = div_down(best_num, best_den);
874 	t.openmin = !!(best_num % best_den);
875 
876 	result_num = best_num;
877 	result_diff = best_diff;
878 	result_den = best_den;
879 	best_num = best_den = best_diff = 0;
880 	for (k = 0; k < rats_count; ++k) {
881 		unsigned int num = rats[k].num;
882 		unsigned int den;
883 		unsigned int q = i->max;
884 		int diff;
885 		if (q == 0) {
886 			i->empty = 1;
887 			return -EINVAL;
888 		}
889 		den = div_down(num, q);
890 		if (den > rats[k].den_max)
891 			continue;
892 		if (den < rats[k].den_min)
893 			den = rats[k].den_min;
894 		else {
895 			unsigned int r;
896 			r = (den - rats[k].den_min) % rats[k].den_step;
897 			if (r != 0)
898 				den += rats[k].den_step - r;
899 		}
900 		diff = q * den - num;
901 		if (diff < 0)
902 			diff = -diff;
903 		if (best_num == 0 ||
904 		    diff * best_den < best_diff * den) {
905 			best_diff = diff;
906 			best_den = den;
907 			best_num = num;
908 		}
909 	}
910 	if (best_den == 0) {
911 		i->empty = 1;
912 		return -EINVAL;
913 	}
914 	t.max = div_up(best_num, best_den);
915 	t.openmax = !!(best_num % best_den);
916 	t.integer = 0;
917 	err = snd_interval_refine(i, &t);
918 	if (err < 0)
919 		return err;
920 
921 	if (snd_interval_single(i)) {
922 		if (best_diff * result_den < result_diff * best_den) {
923 			result_num = best_num;
924 			result_den = best_den;
925 		}
926 		if (nump)
927 			*nump = result_num;
928 		if (denp)
929 			*denp = result_den;
930 	}
931 	return err;
932 }
933 
934 EXPORT_SYMBOL(snd_interval_ratnum);
935 
936 /**
937  * snd_interval_ratden - refine the interval value
938  * @i: interval to refine
939  * @rats_count: number of struct ratden
940  * @rats: struct ratden array
941  * @nump: pointer to store the resultant numerator
942  * @denp: pointer to store the resultant denominator
943  *
944  * Returns non-zero if the value is changed, zero if not changed.
945  */
946 static int snd_interval_ratden(struct snd_interval *i,
947 			       unsigned int rats_count, struct snd_ratden *rats,
948 			       unsigned int *nump, unsigned int *denp)
949 {
950 	unsigned int best_num, best_diff, best_den;
951 	unsigned int k;
952 	struct snd_interval t;
953 	int err;
954 
955 	best_num = best_den = best_diff = 0;
956 	for (k = 0; k < rats_count; ++k) {
957 		unsigned int num;
958 		unsigned int den = rats[k].den;
959 		unsigned int q = i->min;
960 		int diff;
961 		num = mul(q, den);
962 		if (num > rats[k].num_max)
963 			continue;
964 		if (num < rats[k].num_min)
965 			num = rats[k].num_max;
966 		else {
967 			unsigned int r;
968 			r = (num - rats[k].num_min) % rats[k].num_step;
969 			if (r != 0)
970 				num += rats[k].num_step - r;
971 		}
972 		diff = num - q * den;
973 		if (best_num == 0 ||
974 		    diff * best_den < best_diff * den) {
975 			best_diff = diff;
976 			best_den = den;
977 			best_num = num;
978 		}
979 	}
980 	if (best_den == 0) {
981 		i->empty = 1;
982 		return -EINVAL;
983 	}
984 	t.min = div_down(best_num, best_den);
985 	t.openmin = !!(best_num % best_den);
986 
987 	best_num = best_den = best_diff = 0;
988 	for (k = 0; k < rats_count; ++k) {
989 		unsigned int num;
990 		unsigned int den = rats[k].den;
991 		unsigned int q = i->max;
992 		int diff;
993 		num = mul(q, den);
994 		if (num < rats[k].num_min)
995 			continue;
996 		if (num > rats[k].num_max)
997 			num = rats[k].num_max;
998 		else {
999 			unsigned int r;
1000 			r = (num - rats[k].num_min) % rats[k].num_step;
1001 			if (r != 0)
1002 				num -= r;
1003 		}
1004 		diff = q * den - num;
1005 		if (best_num == 0 ||
1006 		    diff * best_den < best_diff * den) {
1007 			best_diff = diff;
1008 			best_den = den;
1009 			best_num = num;
1010 		}
1011 	}
1012 	if (best_den == 0) {
1013 		i->empty = 1;
1014 		return -EINVAL;
1015 	}
1016 	t.max = div_up(best_num, best_den);
1017 	t.openmax = !!(best_num % best_den);
1018 	t.integer = 0;
1019 	err = snd_interval_refine(i, &t);
1020 	if (err < 0)
1021 		return err;
1022 
1023 	if (snd_interval_single(i)) {
1024 		if (nump)
1025 			*nump = best_num;
1026 		if (denp)
1027 			*denp = best_den;
1028 	}
1029 	return err;
1030 }
1031 
1032 /**
1033  * snd_interval_list - refine the interval value from the list
1034  * @i: the interval value to refine
1035  * @count: the number of elements in the list
1036  * @list: the value list
1037  * @mask: the bit-mask to evaluate
1038  *
1039  * Refines the interval value from the list.
1040  * When mask is non-zero, only the elements corresponding to bit 1 are
1041  * evaluated.
1042  *
1043  * Returns non-zero if the value is changed, zero if not changed.
1044  */
1045 int snd_interval_list(struct snd_interval *i, unsigned int count,
1046 		      const unsigned int *list, unsigned int mask)
1047 {
1048         unsigned int k;
1049 	struct snd_interval list_range;
1050 
1051 	if (!count) {
1052 		i->empty = 1;
1053 		return -EINVAL;
1054 	}
1055 	snd_interval_any(&list_range);
1056 	list_range.min = UINT_MAX;
1057 	list_range.max = 0;
1058         for (k = 0; k < count; k++) {
1059 		if (mask && !(mask & (1 << k)))
1060 			continue;
1061 		if (!snd_interval_test(i, list[k]))
1062 			continue;
1063 		list_range.min = min(list_range.min, list[k]);
1064 		list_range.max = max(list_range.max, list[k]);
1065         }
1066 	return snd_interval_refine(i, &list_range);
1067 }
1068 
1069 EXPORT_SYMBOL(snd_interval_list);
1070 
1071 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072 {
1073 	unsigned int n;
1074 	int changed = 0;
1075 	n = (i->min - min) % step;
1076 	if (n != 0 || i->openmin) {
1077 		i->min += step - n;
1078 		changed = 1;
1079 	}
1080 	n = (i->max - min) % step;
1081 	if (n != 0 || i->openmax) {
1082 		i->max -= n;
1083 		changed = 1;
1084 	}
1085 	if (snd_interval_checkempty(i)) {
1086 		i->empty = 1;
1087 		return -EINVAL;
1088 	}
1089 	return changed;
1090 }
1091 
1092 /* Info constraints helpers */
1093 
1094 /**
1095  * snd_pcm_hw_rule_add - add the hw-constraint rule
1096  * @runtime: the pcm runtime instance
1097  * @cond: condition bits
1098  * @var: the variable to evaluate
1099  * @func: the evaluation function
1100  * @private: the private data pointer passed to function
1101  * @dep: the dependent variables
1102  *
1103  * Returns zero if successful, or a negative error code on failure.
1104  */
1105 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106 			int var,
1107 			snd_pcm_hw_rule_func_t func, void *private,
1108 			int dep, ...)
1109 {
1110 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111 	struct snd_pcm_hw_rule *c;
1112 	unsigned int k;
1113 	va_list args;
1114 	va_start(args, dep);
1115 	if (constrs->rules_num >= constrs->rules_all) {
1116 		struct snd_pcm_hw_rule *new;
1117 		unsigned int new_rules = constrs->rules_all + 16;
1118 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1119 		if (!new) {
1120 			va_end(args);
1121 			return -ENOMEM;
1122 		}
1123 		if (constrs->rules) {
1124 			memcpy(new, constrs->rules,
1125 			       constrs->rules_num * sizeof(*c));
1126 			kfree(constrs->rules);
1127 		}
1128 		constrs->rules = new;
1129 		constrs->rules_all = new_rules;
1130 	}
1131 	c = &constrs->rules[constrs->rules_num];
1132 	c->cond = cond;
1133 	c->func = func;
1134 	c->var = var;
1135 	c->private = private;
1136 	k = 0;
1137 	while (1) {
1138 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139 			va_end(args);
1140 			return -EINVAL;
1141 		}
1142 		c->deps[k++] = dep;
1143 		if (dep < 0)
1144 			break;
1145 		dep = va_arg(args, int);
1146 	}
1147 	constrs->rules_num++;
1148 	va_end(args);
1149 	return 0;
1150 }
1151 
1152 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153 
1154 /**
1155  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156  * @runtime: PCM runtime instance
1157  * @var: hw_params variable to apply the mask
1158  * @mask: the bitmap mask
1159  *
1160  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1161  */
1162 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 			       u_int32_t mask)
1164 {
1165 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 	struct snd_mask *maskp = constrs_mask(constrs, var);
1167 	*maskp->bits &= mask;
1168 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 	if (*maskp->bits == 0)
1170 		return -EINVAL;
1171 	return 0;
1172 }
1173 
1174 /**
1175  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176  * @runtime: PCM runtime instance
1177  * @var: hw_params variable to apply the mask
1178  * @mask: the 64bit bitmap mask
1179  *
1180  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181  */
1182 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183 				 u_int64_t mask)
1184 {
1185 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186 	struct snd_mask *maskp = constrs_mask(constrs, var);
1187 	maskp->bits[0] &= (u_int32_t)mask;
1188 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190 	if (! maskp->bits[0] && ! maskp->bits[1])
1191 		return -EINVAL;
1192 	return 0;
1193 }
1194 
1195 /**
1196  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197  * @runtime: PCM runtime instance
1198  * @var: hw_params variable to apply the integer constraint
1199  *
1200  * Apply the constraint of integer to an interval parameter.
1201  */
1202 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203 {
1204 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205 	return snd_interval_setinteger(constrs_interval(constrs, var));
1206 }
1207 
1208 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209 
1210 /**
1211  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212  * @runtime: PCM runtime instance
1213  * @var: hw_params variable to apply the range
1214  * @min: the minimal value
1215  * @max: the maximal value
1216  *
1217  * Apply the min/max range constraint to an interval parameter.
1218  */
1219 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220 				 unsigned int min, unsigned int max)
1221 {
1222 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 	struct snd_interval t;
1224 	t.min = min;
1225 	t.max = max;
1226 	t.openmin = t.openmax = 0;
1227 	t.integer = 0;
1228 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1229 }
1230 
1231 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232 
1233 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234 				struct snd_pcm_hw_rule *rule)
1235 {
1236 	struct snd_pcm_hw_constraint_list *list = rule->private;
1237 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238 }
1239 
1240 
1241 /**
1242  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243  * @runtime: PCM runtime instance
1244  * @cond: condition bits
1245  * @var: hw_params variable to apply the list constraint
1246  * @l: list
1247  *
1248  * Apply the list of constraints to an interval parameter.
1249  */
1250 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251 			       unsigned int cond,
1252 			       snd_pcm_hw_param_t var,
1253 			       const struct snd_pcm_hw_constraint_list *l)
1254 {
1255 	return snd_pcm_hw_rule_add(runtime, cond, var,
1256 				   snd_pcm_hw_rule_list, (void *)l,
1257 				   var, -1);
1258 }
1259 
1260 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1261 
1262 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263 				   struct snd_pcm_hw_rule *rule)
1264 {
1265 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266 	unsigned int num = 0, den = 0;
1267 	int err;
1268 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269 				  r->nrats, r->rats, &num, &den);
1270 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271 		params->rate_num = num;
1272 		params->rate_den = den;
1273 	}
1274 	return err;
1275 }
1276 
1277 /**
1278  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279  * @runtime: PCM runtime instance
1280  * @cond: condition bits
1281  * @var: hw_params variable to apply the ratnums constraint
1282  * @r: struct snd_ratnums constriants
1283  */
1284 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1285 				  unsigned int cond,
1286 				  snd_pcm_hw_param_t var,
1287 				  struct snd_pcm_hw_constraint_ratnums *r)
1288 {
1289 	return snd_pcm_hw_rule_add(runtime, cond, var,
1290 				   snd_pcm_hw_rule_ratnums, r,
1291 				   var, -1);
1292 }
1293 
1294 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295 
1296 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297 				   struct snd_pcm_hw_rule *rule)
1298 {
1299 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300 	unsigned int num = 0, den = 0;
1301 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302 				  r->nrats, r->rats, &num, &den);
1303 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304 		params->rate_num = num;
1305 		params->rate_den = den;
1306 	}
1307 	return err;
1308 }
1309 
1310 /**
1311  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312  * @runtime: PCM runtime instance
1313  * @cond: condition bits
1314  * @var: hw_params variable to apply the ratdens constraint
1315  * @r: struct snd_ratdens constriants
1316  */
1317 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1318 				  unsigned int cond,
1319 				  snd_pcm_hw_param_t var,
1320 				  struct snd_pcm_hw_constraint_ratdens *r)
1321 {
1322 	return snd_pcm_hw_rule_add(runtime, cond, var,
1323 				   snd_pcm_hw_rule_ratdens, r,
1324 				   var, -1);
1325 }
1326 
1327 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328 
1329 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330 				  struct snd_pcm_hw_rule *rule)
1331 {
1332 	unsigned int l = (unsigned long) rule->private;
1333 	int width = l & 0xffff;
1334 	unsigned int msbits = l >> 16;
1335 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1337 		params->msbits = msbits;
1338 	return 0;
1339 }
1340 
1341 /**
1342  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343  * @runtime: PCM runtime instance
1344  * @cond: condition bits
1345  * @width: sample bits width
1346  * @msbits: msbits width
1347  */
1348 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1349 				 unsigned int cond,
1350 				 unsigned int width,
1351 				 unsigned int msbits)
1352 {
1353 	unsigned long l = (msbits << 16) | width;
1354 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1355 				    snd_pcm_hw_rule_msbits,
1356 				    (void*) l,
1357 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358 }
1359 
1360 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361 
1362 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363 				struct snd_pcm_hw_rule *rule)
1364 {
1365 	unsigned long step = (unsigned long) rule->private;
1366 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367 }
1368 
1369 /**
1370  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371  * @runtime: PCM runtime instance
1372  * @cond: condition bits
1373  * @var: hw_params variable to apply the step constraint
1374  * @step: step size
1375  */
1376 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377 			       unsigned int cond,
1378 			       snd_pcm_hw_param_t var,
1379 			       unsigned long step)
1380 {
1381 	return snd_pcm_hw_rule_add(runtime, cond, var,
1382 				   snd_pcm_hw_rule_step, (void *) step,
1383 				   var, -1);
1384 }
1385 
1386 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387 
1388 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389 {
1390 	static unsigned int pow2_sizes[] = {
1391 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395 	};
1396 	return snd_interval_list(hw_param_interval(params, rule->var),
1397 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398 }
1399 
1400 /**
1401  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402  * @runtime: PCM runtime instance
1403  * @cond: condition bits
1404  * @var: hw_params variable to apply the power-of-2 constraint
1405  */
1406 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407 			       unsigned int cond,
1408 			       snd_pcm_hw_param_t var)
1409 {
1410 	return snd_pcm_hw_rule_add(runtime, cond, var,
1411 				   snd_pcm_hw_rule_pow2, NULL,
1412 				   var, -1);
1413 }
1414 
1415 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416 
1417 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418 					   struct snd_pcm_hw_rule *rule)
1419 {
1420 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421 	struct snd_interval *rate;
1422 
1423 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424 	return snd_interval_list(rate, 1, &base_rate, 0);
1425 }
1426 
1427 /**
1428  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429  * @runtime: PCM runtime instance
1430  * @base_rate: the rate at which the hardware does not resample
1431  */
1432 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433 			       unsigned int base_rate)
1434 {
1435 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436 				   SNDRV_PCM_HW_PARAM_RATE,
1437 				   snd_pcm_hw_rule_noresample_func,
1438 				   (void *)(uintptr_t)base_rate,
1439 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1440 }
1441 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442 
1443 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444 				  snd_pcm_hw_param_t var)
1445 {
1446 	if (hw_is_mask(var)) {
1447 		snd_mask_any(hw_param_mask(params, var));
1448 		params->cmask |= 1 << var;
1449 		params->rmask |= 1 << var;
1450 		return;
1451 	}
1452 	if (hw_is_interval(var)) {
1453 		snd_interval_any(hw_param_interval(params, var));
1454 		params->cmask |= 1 << var;
1455 		params->rmask |= 1 << var;
1456 		return;
1457 	}
1458 	snd_BUG();
1459 }
1460 
1461 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462 {
1463 	unsigned int k;
1464 	memset(params, 0, sizeof(*params));
1465 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466 		_snd_pcm_hw_param_any(params, k);
1467 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468 		_snd_pcm_hw_param_any(params, k);
1469 	params->info = ~0U;
1470 }
1471 
1472 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473 
1474 /**
1475  * snd_pcm_hw_param_value - return @params field @var value
1476  * @params: the hw_params instance
1477  * @var: parameter to retrieve
1478  * @dir: pointer to the direction (-1,0,1) or %NULL
1479  *
1480  * Return the value for field @var if it's fixed in configuration space
1481  * defined by @params. Return -%EINVAL otherwise.
1482  */
1483 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484 			   snd_pcm_hw_param_t var, int *dir)
1485 {
1486 	if (hw_is_mask(var)) {
1487 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1488 		if (!snd_mask_single(mask))
1489 			return -EINVAL;
1490 		if (dir)
1491 			*dir = 0;
1492 		return snd_mask_value(mask);
1493 	}
1494 	if (hw_is_interval(var)) {
1495 		const struct snd_interval *i = hw_param_interval_c(params, var);
1496 		if (!snd_interval_single(i))
1497 			return -EINVAL;
1498 		if (dir)
1499 			*dir = i->openmin;
1500 		return snd_interval_value(i);
1501 	}
1502 	return -EINVAL;
1503 }
1504 
1505 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506 
1507 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508 				snd_pcm_hw_param_t var)
1509 {
1510 	if (hw_is_mask(var)) {
1511 		snd_mask_none(hw_param_mask(params, var));
1512 		params->cmask |= 1 << var;
1513 		params->rmask |= 1 << var;
1514 	} else if (hw_is_interval(var)) {
1515 		snd_interval_none(hw_param_interval(params, var));
1516 		params->cmask |= 1 << var;
1517 		params->rmask |= 1 << var;
1518 	} else {
1519 		snd_BUG();
1520 	}
1521 }
1522 
1523 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524 
1525 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526 				   snd_pcm_hw_param_t var)
1527 {
1528 	int changed;
1529 	if (hw_is_mask(var))
1530 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1531 	else if (hw_is_interval(var))
1532 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1533 	else
1534 		return -EINVAL;
1535 	if (changed) {
1536 		params->cmask |= 1 << var;
1537 		params->rmask |= 1 << var;
1538 	}
1539 	return changed;
1540 }
1541 
1542 
1543 /**
1544  * snd_pcm_hw_param_first - refine config space and return minimum value
1545  * @pcm: PCM instance
1546  * @params: the hw_params instance
1547  * @var: parameter to retrieve
1548  * @dir: pointer to the direction (-1,0,1) or %NULL
1549  *
1550  * Inside configuration space defined by @params remove from @var all
1551  * values > minimum. Reduce configuration space accordingly.
1552  * Return the minimum.
1553  */
1554 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1555 			   struct snd_pcm_hw_params *params,
1556 			   snd_pcm_hw_param_t var, int *dir)
1557 {
1558 	int changed = _snd_pcm_hw_param_first(params, var);
1559 	if (changed < 0)
1560 		return changed;
1561 	if (params->rmask) {
1562 		int err = snd_pcm_hw_refine(pcm, params);
1563 		if (snd_BUG_ON(err < 0))
1564 			return err;
1565 	}
1566 	return snd_pcm_hw_param_value(params, var, dir);
1567 }
1568 
1569 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570 
1571 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572 				  snd_pcm_hw_param_t var)
1573 {
1574 	int changed;
1575 	if (hw_is_mask(var))
1576 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1577 	else if (hw_is_interval(var))
1578 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1579 	else
1580 		return -EINVAL;
1581 	if (changed) {
1582 		params->cmask |= 1 << var;
1583 		params->rmask |= 1 << var;
1584 	}
1585 	return changed;
1586 }
1587 
1588 
1589 /**
1590  * snd_pcm_hw_param_last - refine config space and return maximum value
1591  * @pcm: PCM instance
1592  * @params: the hw_params instance
1593  * @var: parameter to retrieve
1594  * @dir: pointer to the direction (-1,0,1) or %NULL
1595  *
1596  * Inside configuration space defined by @params remove from @var all
1597  * values < maximum. Reduce configuration space accordingly.
1598  * Return the maximum.
1599  */
1600 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1601 			  struct snd_pcm_hw_params *params,
1602 			  snd_pcm_hw_param_t var, int *dir)
1603 {
1604 	int changed = _snd_pcm_hw_param_last(params, var);
1605 	if (changed < 0)
1606 		return changed;
1607 	if (params->rmask) {
1608 		int err = snd_pcm_hw_refine(pcm, params);
1609 		if (snd_BUG_ON(err < 0))
1610 			return err;
1611 	}
1612 	return snd_pcm_hw_param_value(params, var, dir);
1613 }
1614 
1615 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616 
1617 /**
1618  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619  * @pcm: PCM instance
1620  * @params: the hw_params instance
1621  *
1622  * Choose one configuration from configuration space defined by @params.
1623  * The configuration chosen is that obtained fixing in this order:
1624  * first access, first format, first subformat, min channels,
1625  * min rate, min period time, max buffer size, min tick time
1626  */
1627 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628 			     struct snd_pcm_hw_params *params)
1629 {
1630 	static int vars[] = {
1631 		SNDRV_PCM_HW_PARAM_ACCESS,
1632 		SNDRV_PCM_HW_PARAM_FORMAT,
1633 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634 		SNDRV_PCM_HW_PARAM_CHANNELS,
1635 		SNDRV_PCM_HW_PARAM_RATE,
1636 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1639 		-1
1640 	};
1641 	int err, *v;
1642 
1643 	for (v = vars; *v != -1; v++) {
1644 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646 		else
1647 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648 		if (snd_BUG_ON(err < 0))
1649 			return err;
1650 	}
1651 	return 0;
1652 }
1653 
1654 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655 				   void *arg)
1656 {
1657 	struct snd_pcm_runtime *runtime = substream->runtime;
1658 	unsigned long flags;
1659 	snd_pcm_stream_lock_irqsave(substream, flags);
1660 	if (snd_pcm_running(substream) &&
1661 	    snd_pcm_update_hw_ptr(substream) >= 0)
1662 		runtime->status->hw_ptr %= runtime->buffer_size;
1663 	else
1664 		runtime->status->hw_ptr = 0;
1665 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1666 	return 0;
1667 }
1668 
1669 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670 					  void *arg)
1671 {
1672 	struct snd_pcm_channel_info *info = arg;
1673 	struct snd_pcm_runtime *runtime = substream->runtime;
1674 	int width;
1675 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676 		info->offset = -1;
1677 		return 0;
1678 	}
1679 	width = snd_pcm_format_physical_width(runtime->format);
1680 	if (width < 0)
1681 		return width;
1682 	info->offset = 0;
1683 	switch (runtime->access) {
1684 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686 		info->first = info->channel * width;
1687 		info->step = runtime->channels * width;
1688 		break;
1689 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691 	{
1692 		size_t size = runtime->dma_bytes / runtime->channels;
1693 		info->first = info->channel * size * 8;
1694 		info->step = width;
1695 		break;
1696 	}
1697 	default:
1698 		snd_BUG();
1699 		break;
1700 	}
1701 	return 0;
1702 }
1703 
1704 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705 				       void *arg)
1706 {
1707 	struct snd_pcm_hw_params *params = arg;
1708 	snd_pcm_format_t format;
1709 	int channels, width;
1710 
1711 	params->fifo_size = substream->runtime->hw.fifo_size;
1712 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713 		format = params_format(params);
1714 		channels = params_channels(params);
1715 		width = snd_pcm_format_physical_width(format);
1716 		params->fifo_size /= width * channels;
1717 	}
1718 	return 0;
1719 }
1720 
1721 /**
1722  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723  * @substream: the pcm substream instance
1724  * @cmd: ioctl command
1725  * @arg: ioctl argument
1726  *
1727  * Processes the generic ioctl commands for PCM.
1728  * Can be passed as the ioctl callback for PCM ops.
1729  *
1730  * Returns zero if successful, or a negative error code on failure.
1731  */
1732 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733 		      unsigned int cmd, void *arg)
1734 {
1735 	switch (cmd) {
1736 	case SNDRV_PCM_IOCTL1_INFO:
1737 		return 0;
1738 	case SNDRV_PCM_IOCTL1_RESET:
1739 		return snd_pcm_lib_ioctl_reset(substream, arg);
1740 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744 	}
1745 	return -ENXIO;
1746 }
1747 
1748 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749 
1750 /**
1751  * snd_pcm_period_elapsed - update the pcm status for the next period
1752  * @substream: the pcm substream instance
1753  *
1754  * This function is called from the interrupt handler when the
1755  * PCM has processed the period size.  It will update the current
1756  * pointer, wake up sleepers, etc.
1757  *
1758  * Even if more than one periods have elapsed since the last call, you
1759  * have to call this only once.
1760  */
1761 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762 {
1763 	struct snd_pcm_runtime *runtime;
1764 	unsigned long flags;
1765 
1766 	if (PCM_RUNTIME_CHECK(substream))
1767 		return;
1768 	runtime = substream->runtime;
1769 
1770 	if (runtime->transfer_ack_begin)
1771 		runtime->transfer_ack_begin(substream);
1772 
1773 	snd_pcm_stream_lock_irqsave(substream, flags);
1774 	if (!snd_pcm_running(substream) ||
1775 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776 		goto _end;
1777 
1778 	if (substream->timer_running)
1779 		snd_timer_interrupt(substream->timer, 1);
1780  _end:
1781 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1782 	if (runtime->transfer_ack_end)
1783 		runtime->transfer_ack_end(substream);
1784 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785 }
1786 
1787 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788 
1789 /*
1790  * Wait until avail_min data becomes available
1791  * Returns a negative error code if any error occurs during operation.
1792  * The available space is stored on availp.  When err = 0 and avail = 0
1793  * on the capture stream, it indicates the stream is in DRAINING state.
1794  */
1795 static int wait_for_avail(struct snd_pcm_substream *substream,
1796 			      snd_pcm_uframes_t *availp)
1797 {
1798 	struct snd_pcm_runtime *runtime = substream->runtime;
1799 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800 	wait_queue_t wait;
1801 	int err = 0;
1802 	snd_pcm_uframes_t avail = 0;
1803 	long wait_time, tout;
1804 
1805 	init_waitqueue_entry(&wait, current);
1806 	set_current_state(TASK_INTERRUPTIBLE);
1807 	add_wait_queue(&runtime->tsleep, &wait);
1808 
1809 	if (runtime->no_period_wakeup)
1810 		wait_time = MAX_SCHEDULE_TIMEOUT;
1811 	else {
1812 		wait_time = 10;
1813 		if (runtime->rate) {
1814 			long t = runtime->period_size * 2 / runtime->rate;
1815 			wait_time = max(t, wait_time);
1816 		}
1817 		wait_time = msecs_to_jiffies(wait_time * 1000);
1818 	}
1819 
1820 	for (;;) {
1821 		if (signal_pending(current)) {
1822 			err = -ERESTARTSYS;
1823 			break;
1824 		}
1825 
1826 		/*
1827 		 * We need to check if space became available already
1828 		 * (and thus the wakeup happened already) first to close
1829 		 * the race of space already having become available.
1830 		 * This check must happen after been added to the waitqueue
1831 		 * and having current state be INTERRUPTIBLE.
1832 		 */
1833 		if (is_playback)
1834 			avail = snd_pcm_playback_avail(runtime);
1835 		else
1836 			avail = snd_pcm_capture_avail(runtime);
1837 		if (avail >= runtime->twake)
1838 			break;
1839 		snd_pcm_stream_unlock_irq(substream);
1840 
1841 		tout = schedule_timeout(wait_time);
1842 
1843 		snd_pcm_stream_lock_irq(substream);
1844 		set_current_state(TASK_INTERRUPTIBLE);
1845 		switch (runtime->status->state) {
1846 		case SNDRV_PCM_STATE_SUSPENDED:
1847 			err = -ESTRPIPE;
1848 			goto _endloop;
1849 		case SNDRV_PCM_STATE_XRUN:
1850 			err = -EPIPE;
1851 			goto _endloop;
1852 		case SNDRV_PCM_STATE_DRAINING:
1853 			if (is_playback)
1854 				err = -EPIPE;
1855 			else
1856 				avail = 0; /* indicate draining */
1857 			goto _endloop;
1858 		case SNDRV_PCM_STATE_OPEN:
1859 		case SNDRV_PCM_STATE_SETUP:
1860 		case SNDRV_PCM_STATE_DISCONNECTED:
1861 			err = -EBADFD;
1862 			goto _endloop;
1863 		}
1864 		if (!tout) {
1865 			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866 				   is_playback ? "playback" : "capture");
1867 			err = -EIO;
1868 			break;
1869 		}
1870 	}
1871  _endloop:
1872 	set_current_state(TASK_RUNNING);
1873 	remove_wait_queue(&runtime->tsleep, &wait);
1874 	*availp = avail;
1875 	return err;
1876 }
1877 
1878 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879 				      unsigned int hwoff,
1880 				      unsigned long data, unsigned int off,
1881 				      snd_pcm_uframes_t frames)
1882 {
1883 	struct snd_pcm_runtime *runtime = substream->runtime;
1884 	int err;
1885 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886 	if (substream->ops->copy) {
1887 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888 			return err;
1889 	} else {
1890 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892 			return -EFAULT;
1893 	}
1894 	return 0;
1895 }
1896 
1897 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898 			  unsigned long data, unsigned int off,
1899 			  snd_pcm_uframes_t size);
1900 
1901 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1902 					    unsigned long data,
1903 					    snd_pcm_uframes_t size,
1904 					    int nonblock,
1905 					    transfer_f transfer)
1906 {
1907 	struct snd_pcm_runtime *runtime = substream->runtime;
1908 	snd_pcm_uframes_t xfer = 0;
1909 	snd_pcm_uframes_t offset = 0;
1910 	snd_pcm_uframes_t avail;
1911 	int err = 0;
1912 
1913 	if (size == 0)
1914 		return 0;
1915 
1916 	snd_pcm_stream_lock_irq(substream);
1917 	switch (runtime->status->state) {
1918 	case SNDRV_PCM_STATE_PREPARED:
1919 	case SNDRV_PCM_STATE_RUNNING:
1920 	case SNDRV_PCM_STATE_PAUSED:
1921 		break;
1922 	case SNDRV_PCM_STATE_XRUN:
1923 		err = -EPIPE;
1924 		goto _end_unlock;
1925 	case SNDRV_PCM_STATE_SUSPENDED:
1926 		err = -ESTRPIPE;
1927 		goto _end_unlock;
1928 	default:
1929 		err = -EBADFD;
1930 		goto _end_unlock;
1931 	}
1932 
1933 	runtime->twake = runtime->control->avail_min ? : 1;
1934 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935 		snd_pcm_update_hw_ptr(substream);
1936 	avail = snd_pcm_playback_avail(runtime);
1937 	while (size > 0) {
1938 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939 		snd_pcm_uframes_t cont;
1940 		if (!avail) {
1941 			if (nonblock) {
1942 				err = -EAGAIN;
1943 				goto _end_unlock;
1944 			}
1945 			runtime->twake = min_t(snd_pcm_uframes_t, size,
1946 					runtime->control->avail_min ? : 1);
1947 			err = wait_for_avail(substream, &avail);
1948 			if (err < 0)
1949 				goto _end_unlock;
1950 		}
1951 		frames = size > avail ? avail : size;
1952 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953 		if (frames > cont)
1954 			frames = cont;
1955 		if (snd_BUG_ON(!frames)) {
1956 			runtime->twake = 0;
1957 			snd_pcm_stream_unlock_irq(substream);
1958 			return -EINVAL;
1959 		}
1960 		appl_ptr = runtime->control->appl_ptr;
1961 		appl_ofs = appl_ptr % runtime->buffer_size;
1962 		snd_pcm_stream_unlock_irq(substream);
1963 		err = transfer(substream, appl_ofs, data, offset, frames);
1964 		snd_pcm_stream_lock_irq(substream);
1965 		if (err < 0)
1966 			goto _end_unlock;
1967 		switch (runtime->status->state) {
1968 		case SNDRV_PCM_STATE_XRUN:
1969 			err = -EPIPE;
1970 			goto _end_unlock;
1971 		case SNDRV_PCM_STATE_SUSPENDED:
1972 			err = -ESTRPIPE;
1973 			goto _end_unlock;
1974 		default:
1975 			break;
1976 		}
1977 		appl_ptr += frames;
1978 		if (appl_ptr >= runtime->boundary)
1979 			appl_ptr -= runtime->boundary;
1980 		runtime->control->appl_ptr = appl_ptr;
1981 		if (substream->ops->ack)
1982 			substream->ops->ack(substream);
1983 
1984 		offset += frames;
1985 		size -= frames;
1986 		xfer += frames;
1987 		avail -= frames;
1988 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990 			err = snd_pcm_start(substream);
1991 			if (err < 0)
1992 				goto _end_unlock;
1993 		}
1994 	}
1995  _end_unlock:
1996 	runtime->twake = 0;
1997 	if (xfer > 0 && err >= 0)
1998 		snd_pcm_update_state(substream, runtime);
1999 	snd_pcm_stream_unlock_irq(substream);
2000 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001 }
2002 
2003 /* sanity-check for read/write methods */
2004 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005 {
2006 	struct snd_pcm_runtime *runtime;
2007 	if (PCM_RUNTIME_CHECK(substream))
2008 		return -ENXIO;
2009 	runtime = substream->runtime;
2010 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011 		return -EINVAL;
2012 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013 		return -EBADFD;
2014 	return 0;
2015 }
2016 
2017 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018 {
2019 	struct snd_pcm_runtime *runtime;
2020 	int nonblock;
2021 	int err;
2022 
2023 	err = pcm_sanity_check(substream);
2024 	if (err < 0)
2025 		return err;
2026 	runtime = substream->runtime;
2027 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2028 
2029 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030 	    runtime->channels > 1)
2031 		return -EINVAL;
2032 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033 				  snd_pcm_lib_write_transfer);
2034 }
2035 
2036 EXPORT_SYMBOL(snd_pcm_lib_write);
2037 
2038 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039 				       unsigned int hwoff,
2040 				       unsigned long data, unsigned int off,
2041 				       snd_pcm_uframes_t frames)
2042 {
2043 	struct snd_pcm_runtime *runtime = substream->runtime;
2044 	int err;
2045 	void __user **bufs = (void __user **)data;
2046 	int channels = runtime->channels;
2047 	int c;
2048 	if (substream->ops->copy) {
2049 		if (snd_BUG_ON(!substream->ops->silence))
2050 			return -EINVAL;
2051 		for (c = 0; c < channels; ++c, ++bufs) {
2052 			if (*bufs == NULL) {
2053 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054 					return err;
2055 			} else {
2056 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058 					return err;
2059 			}
2060 		}
2061 	} else {
2062 		/* default transfer behaviour */
2063 		size_t dma_csize = runtime->dma_bytes / channels;
2064 		for (c = 0; c < channels; ++c, ++bufs) {
2065 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066 			if (*bufs == NULL) {
2067 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068 			} else {
2069 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071 					return -EFAULT;
2072 			}
2073 		}
2074 	}
2075 	return 0;
2076 }
2077 
2078 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079 				     void __user **bufs,
2080 				     snd_pcm_uframes_t frames)
2081 {
2082 	struct snd_pcm_runtime *runtime;
2083 	int nonblock;
2084 	int err;
2085 
2086 	err = pcm_sanity_check(substream);
2087 	if (err < 0)
2088 		return err;
2089 	runtime = substream->runtime;
2090 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2091 
2092 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093 		return -EINVAL;
2094 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095 				  nonblock, snd_pcm_lib_writev_transfer);
2096 }
2097 
2098 EXPORT_SYMBOL(snd_pcm_lib_writev);
2099 
2100 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2101 				     unsigned int hwoff,
2102 				     unsigned long data, unsigned int off,
2103 				     snd_pcm_uframes_t frames)
2104 {
2105 	struct snd_pcm_runtime *runtime = substream->runtime;
2106 	int err;
2107 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108 	if (substream->ops->copy) {
2109 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110 			return err;
2111 	} else {
2112 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114 			return -EFAULT;
2115 	}
2116 	return 0;
2117 }
2118 
2119 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120 					   unsigned long data,
2121 					   snd_pcm_uframes_t size,
2122 					   int nonblock,
2123 					   transfer_f transfer)
2124 {
2125 	struct snd_pcm_runtime *runtime = substream->runtime;
2126 	snd_pcm_uframes_t xfer = 0;
2127 	snd_pcm_uframes_t offset = 0;
2128 	snd_pcm_uframes_t avail;
2129 	int err = 0;
2130 
2131 	if (size == 0)
2132 		return 0;
2133 
2134 	snd_pcm_stream_lock_irq(substream);
2135 	switch (runtime->status->state) {
2136 	case SNDRV_PCM_STATE_PREPARED:
2137 		if (size >= runtime->start_threshold) {
2138 			err = snd_pcm_start(substream);
2139 			if (err < 0)
2140 				goto _end_unlock;
2141 		}
2142 		break;
2143 	case SNDRV_PCM_STATE_DRAINING:
2144 	case SNDRV_PCM_STATE_RUNNING:
2145 	case SNDRV_PCM_STATE_PAUSED:
2146 		break;
2147 	case SNDRV_PCM_STATE_XRUN:
2148 		err = -EPIPE;
2149 		goto _end_unlock;
2150 	case SNDRV_PCM_STATE_SUSPENDED:
2151 		err = -ESTRPIPE;
2152 		goto _end_unlock;
2153 	default:
2154 		err = -EBADFD;
2155 		goto _end_unlock;
2156 	}
2157 
2158 	runtime->twake = runtime->control->avail_min ? : 1;
2159 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160 		snd_pcm_update_hw_ptr(substream);
2161 	avail = snd_pcm_capture_avail(runtime);
2162 	while (size > 0) {
2163 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164 		snd_pcm_uframes_t cont;
2165 		if (!avail) {
2166 			if (runtime->status->state ==
2167 			    SNDRV_PCM_STATE_DRAINING) {
2168 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169 				goto _end_unlock;
2170 			}
2171 			if (nonblock) {
2172 				err = -EAGAIN;
2173 				goto _end_unlock;
2174 			}
2175 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2176 					runtime->control->avail_min ? : 1);
2177 			err = wait_for_avail(substream, &avail);
2178 			if (err < 0)
2179 				goto _end_unlock;
2180 			if (!avail)
2181 				continue; /* draining */
2182 		}
2183 		frames = size > avail ? avail : size;
2184 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2185 		if (frames > cont)
2186 			frames = cont;
2187 		if (snd_BUG_ON(!frames)) {
2188 			runtime->twake = 0;
2189 			snd_pcm_stream_unlock_irq(substream);
2190 			return -EINVAL;
2191 		}
2192 		appl_ptr = runtime->control->appl_ptr;
2193 		appl_ofs = appl_ptr % runtime->buffer_size;
2194 		snd_pcm_stream_unlock_irq(substream);
2195 		err = transfer(substream, appl_ofs, data, offset, frames);
2196 		snd_pcm_stream_lock_irq(substream);
2197 		if (err < 0)
2198 			goto _end_unlock;
2199 		switch (runtime->status->state) {
2200 		case SNDRV_PCM_STATE_XRUN:
2201 			err = -EPIPE;
2202 			goto _end_unlock;
2203 		case SNDRV_PCM_STATE_SUSPENDED:
2204 			err = -ESTRPIPE;
2205 			goto _end_unlock;
2206 		default:
2207 			break;
2208 		}
2209 		appl_ptr += frames;
2210 		if (appl_ptr >= runtime->boundary)
2211 			appl_ptr -= runtime->boundary;
2212 		runtime->control->appl_ptr = appl_ptr;
2213 		if (substream->ops->ack)
2214 			substream->ops->ack(substream);
2215 
2216 		offset += frames;
2217 		size -= frames;
2218 		xfer += frames;
2219 		avail -= frames;
2220 	}
2221  _end_unlock:
2222 	runtime->twake = 0;
2223 	if (xfer > 0 && err >= 0)
2224 		snd_pcm_update_state(substream, runtime);
2225 	snd_pcm_stream_unlock_irq(substream);
2226 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227 }
2228 
2229 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230 {
2231 	struct snd_pcm_runtime *runtime;
2232 	int nonblock;
2233 	int err;
2234 
2235 	err = pcm_sanity_check(substream);
2236 	if (err < 0)
2237 		return err;
2238 	runtime = substream->runtime;
2239 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2240 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241 		return -EINVAL;
2242 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243 }
2244 
2245 EXPORT_SYMBOL(snd_pcm_lib_read);
2246 
2247 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248 				      unsigned int hwoff,
2249 				      unsigned long data, unsigned int off,
2250 				      snd_pcm_uframes_t frames)
2251 {
2252 	struct snd_pcm_runtime *runtime = substream->runtime;
2253 	int err;
2254 	void __user **bufs = (void __user **)data;
2255 	int channels = runtime->channels;
2256 	int c;
2257 	if (substream->ops->copy) {
2258 		for (c = 0; c < channels; ++c, ++bufs) {
2259 			char __user *buf;
2260 			if (*bufs == NULL)
2261 				continue;
2262 			buf = *bufs + samples_to_bytes(runtime, off);
2263 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264 				return err;
2265 		}
2266 	} else {
2267 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268 		for (c = 0; c < channels; ++c, ++bufs) {
2269 			char *hwbuf;
2270 			char __user *buf;
2271 			if (*bufs == NULL)
2272 				continue;
2273 
2274 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275 			buf = *bufs + samples_to_bytes(runtime, off);
2276 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2277 				return -EFAULT;
2278 		}
2279 	}
2280 	return 0;
2281 }
2282 
2283 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284 				    void __user **bufs,
2285 				    snd_pcm_uframes_t frames)
2286 {
2287 	struct snd_pcm_runtime *runtime;
2288 	int nonblock;
2289 	int err;
2290 
2291 	err = pcm_sanity_check(substream);
2292 	if (err < 0)
2293 		return err;
2294 	runtime = substream->runtime;
2295 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296 		return -EBADFD;
2297 
2298 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2299 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300 		return -EINVAL;
2301 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302 }
2303 
2304 EXPORT_SYMBOL(snd_pcm_lib_readv);
2305