xref: /openbmc/linux/sound/core/pcm_lib.c (revision 35267cea)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Digital Audio (PCM) abstract layer
4  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5  *                   Abramo Bagnara <abramo@alsa-project.org>
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20 
21 #include "pcm_local.h"
22 
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32 
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35 
36 /*
37  * fill ring buffer with silence
38  * runtime->silence_start: starting pointer to silence area
39  * runtime->silence_filled: size filled with silence
40  * runtime->silence_threshold: threshold from application
41  * runtime->silence_size: maximal size from application
42  *
43  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44  */
45 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46 {
47 	struct snd_pcm_runtime *runtime = substream->runtime;
48 	snd_pcm_uframes_t frames, ofs, transfer;
49 	int err;
50 
51 	if (runtime->silence_size < runtime->boundary) {
52 		snd_pcm_sframes_t noise_dist, n;
53 		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 		if (runtime->silence_start != appl_ptr) {
55 			n = appl_ptr - runtime->silence_start;
56 			if (n < 0)
57 				n += runtime->boundary;
58 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 				runtime->silence_filled -= n;
60 			else
61 				runtime->silence_filled = 0;
62 			runtime->silence_start = appl_ptr;
63 		}
64 		if (runtime->silence_filled >= runtime->buffer_size)
65 			return;
66 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 			return;
69 		frames = runtime->silence_threshold - noise_dist;
70 		if (frames > runtime->silence_size)
71 			frames = runtime->silence_size;
72 	} else {
73 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
74 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 			if (avail > runtime->buffer_size)
76 				avail = runtime->buffer_size;
77 			runtime->silence_filled = avail > 0 ? avail : 0;
78 			runtime->silence_start = (runtime->status->hw_ptr +
79 						  runtime->silence_filled) %
80 						 runtime->boundary;
81 		} else {
82 			ofs = runtime->status->hw_ptr;
83 			frames = new_hw_ptr - ofs;
84 			if ((snd_pcm_sframes_t)frames < 0)
85 				frames += runtime->boundary;
86 			runtime->silence_filled -= frames;
87 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 				runtime->silence_filled = 0;
89 				runtime->silence_start = new_hw_ptr;
90 			} else {
91 				runtime->silence_start = ofs;
92 			}
93 		}
94 		frames = runtime->buffer_size - runtime->silence_filled;
95 	}
96 	if (snd_BUG_ON(frames > runtime->buffer_size))
97 		return;
98 	if (frames == 0)
99 		return;
100 	ofs = runtime->silence_start % runtime->buffer_size;
101 	while (frames > 0) {
102 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 		err = fill_silence_frames(substream, ofs, transfer);
104 		snd_BUG_ON(err < 0);
105 		runtime->silence_filled += transfer;
106 		frames -= transfer;
107 		ofs = 0;
108 	}
109 }
110 
111 #ifdef CONFIG_SND_DEBUG
112 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 			   char *name, size_t len)
114 {
115 	snprintf(name, len, "pcmC%dD%d%c:%d",
116 		 substream->pcm->card->number,
117 		 substream->pcm->device,
118 		 substream->stream ? 'c' : 'p',
119 		 substream->number);
120 }
121 EXPORT_SYMBOL(snd_pcm_debug_name);
122 #endif
123 
124 #define XRUN_DEBUG_BASIC	(1<<0)
125 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
126 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
127 
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 
130 #define xrun_debug(substream, mask) \
131 			((substream)->pstr->xrun_debug & (mask))
132 #else
133 #define xrun_debug(substream, mask)	0
134 #endif
135 
136 #define dump_stack_on_xrun(substream) do {			\
137 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
138 			dump_stack();				\
139 	} while (0)
140 
141 /* call with stream lock held */
142 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143 {
144 	struct snd_pcm_runtime *runtime = substream->runtime;
145 
146 	trace_xrun(substream);
147 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
148 		struct timespec64 tstamp;
149 
150 		snd_pcm_gettime(runtime, &tstamp);
151 		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
152 		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
153 	}
154 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
155 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
156 		char name[16];
157 		snd_pcm_debug_name(substream, name, sizeof(name));
158 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
159 		dump_stack_on_xrun(substream);
160 	}
161 }
162 
163 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
164 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
165 	do {								\
166 		trace_hw_ptr_error(substream, reason);	\
167 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
168 			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
169 					   (in_interrupt) ? 'Q' : 'P', ##args);	\
170 			dump_stack_on_xrun(substream);			\
171 		}							\
172 	} while (0)
173 
174 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
175 
176 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
177 
178 #endif
179 
180 int snd_pcm_update_state(struct snd_pcm_substream *substream,
181 			 struct snd_pcm_runtime *runtime)
182 {
183 	snd_pcm_uframes_t avail;
184 
185 	avail = snd_pcm_avail(substream);
186 	if (avail > runtime->avail_max)
187 		runtime->avail_max = avail;
188 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
189 		if (avail >= runtime->buffer_size) {
190 			snd_pcm_drain_done(substream);
191 			return -EPIPE;
192 		}
193 	} else {
194 		if (avail >= runtime->stop_threshold) {
195 			__snd_pcm_xrun(substream);
196 			return -EPIPE;
197 		}
198 	}
199 	if (runtime->twake) {
200 		if (avail >= runtime->twake)
201 			wake_up(&runtime->tsleep);
202 	} else if (avail >= runtime->control->avail_min)
203 		wake_up(&runtime->sleep);
204 	return 0;
205 }
206 
207 static void update_audio_tstamp(struct snd_pcm_substream *substream,
208 				struct timespec64 *curr_tstamp,
209 				struct timespec64 *audio_tstamp)
210 {
211 	struct snd_pcm_runtime *runtime = substream->runtime;
212 	u64 audio_frames, audio_nsecs;
213 	struct timespec64 driver_tstamp;
214 
215 	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
216 		return;
217 
218 	if (!(substream->ops->get_time_info) ||
219 		(runtime->audio_tstamp_report.actual_type ==
220 			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
221 
222 		/*
223 		 * provide audio timestamp derived from pointer position
224 		 * add delay only if requested
225 		 */
226 
227 		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
228 
229 		if (runtime->audio_tstamp_config.report_delay) {
230 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
231 				audio_frames -=  runtime->delay;
232 			else
233 				audio_frames +=  runtime->delay;
234 		}
235 		audio_nsecs = div_u64(audio_frames * 1000000000LL,
236 				runtime->rate);
237 		*audio_tstamp = ns_to_timespec64(audio_nsecs);
238 	}
239 
240 	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
241 	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
242 		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
243 		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
244 		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
245 		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
246 	}
247 
248 
249 	/*
250 	 * re-take a driver timestamp to let apps detect if the reference tstamp
251 	 * read by low-level hardware was provided with a delay
252 	 */
253 	snd_pcm_gettime(substream->runtime, &driver_tstamp);
254 	runtime->driver_tstamp = driver_tstamp;
255 }
256 
257 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
258 				  unsigned int in_interrupt)
259 {
260 	struct snd_pcm_runtime *runtime = substream->runtime;
261 	snd_pcm_uframes_t pos;
262 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
263 	snd_pcm_sframes_t hdelta, delta;
264 	unsigned long jdelta;
265 	unsigned long curr_jiffies;
266 	struct timespec64 curr_tstamp;
267 	struct timespec64 audio_tstamp;
268 	int crossed_boundary = 0;
269 
270 	old_hw_ptr = runtime->status->hw_ptr;
271 
272 	/*
273 	 * group pointer, time and jiffies reads to allow for more
274 	 * accurate correlations/corrections.
275 	 * The values are stored at the end of this routine after
276 	 * corrections for hw_ptr position
277 	 */
278 	pos = substream->ops->pointer(substream);
279 	curr_jiffies = jiffies;
280 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
281 		if ((substream->ops->get_time_info) &&
282 			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
283 			substream->ops->get_time_info(substream, &curr_tstamp,
284 						&audio_tstamp,
285 						&runtime->audio_tstamp_config,
286 						&runtime->audio_tstamp_report);
287 
288 			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
289 			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
290 				snd_pcm_gettime(runtime, &curr_tstamp);
291 		} else
292 			snd_pcm_gettime(runtime, &curr_tstamp);
293 	}
294 
295 	if (pos == SNDRV_PCM_POS_XRUN) {
296 		__snd_pcm_xrun(substream);
297 		return -EPIPE;
298 	}
299 	if (pos >= runtime->buffer_size) {
300 		if (printk_ratelimit()) {
301 			char name[16];
302 			snd_pcm_debug_name(substream, name, sizeof(name));
303 			pcm_err(substream->pcm,
304 				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
305 				name, pos, runtime->buffer_size,
306 				runtime->period_size);
307 		}
308 		pos = 0;
309 	}
310 	pos -= pos % runtime->min_align;
311 	trace_hwptr(substream, pos, in_interrupt);
312 	hw_base = runtime->hw_ptr_base;
313 	new_hw_ptr = hw_base + pos;
314 	if (in_interrupt) {
315 		/* we know that one period was processed */
316 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
317 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
318 		if (delta > new_hw_ptr) {
319 			/* check for double acknowledged interrupts */
320 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
321 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
322 				hw_base += runtime->buffer_size;
323 				if (hw_base >= runtime->boundary) {
324 					hw_base = 0;
325 					crossed_boundary++;
326 				}
327 				new_hw_ptr = hw_base + pos;
328 				goto __delta;
329 			}
330 		}
331 	}
332 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
333 	/* pointer crosses the end of the ring buffer */
334 	if (new_hw_ptr < old_hw_ptr) {
335 		hw_base += runtime->buffer_size;
336 		if (hw_base >= runtime->boundary) {
337 			hw_base = 0;
338 			crossed_boundary++;
339 		}
340 		new_hw_ptr = hw_base + pos;
341 	}
342       __delta:
343 	delta = new_hw_ptr - old_hw_ptr;
344 	if (delta < 0)
345 		delta += runtime->boundary;
346 
347 	if (runtime->no_period_wakeup) {
348 		snd_pcm_sframes_t xrun_threshold;
349 		/*
350 		 * Without regular period interrupts, we have to check
351 		 * the elapsed time to detect xruns.
352 		 */
353 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
354 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
355 			goto no_delta_check;
356 		hdelta = jdelta - delta * HZ / runtime->rate;
357 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
358 		while (hdelta > xrun_threshold) {
359 			delta += runtime->buffer_size;
360 			hw_base += runtime->buffer_size;
361 			if (hw_base >= runtime->boundary) {
362 				hw_base = 0;
363 				crossed_boundary++;
364 			}
365 			new_hw_ptr = hw_base + pos;
366 			hdelta -= runtime->hw_ptr_buffer_jiffies;
367 		}
368 		goto no_delta_check;
369 	}
370 
371 	/* something must be really wrong */
372 	if (delta >= runtime->buffer_size + runtime->period_size) {
373 		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
374 			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
375 			     substream->stream, (long)pos,
376 			     (long)new_hw_ptr, (long)old_hw_ptr);
377 		return 0;
378 	}
379 
380 	/* Do jiffies check only in xrun_debug mode */
381 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
382 		goto no_jiffies_check;
383 
384 	/* Skip the jiffies check for hardwares with BATCH flag.
385 	 * Such hardware usually just increases the position at each IRQ,
386 	 * thus it can't give any strange position.
387 	 */
388 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
389 		goto no_jiffies_check;
390 	hdelta = delta;
391 	if (hdelta < runtime->delay)
392 		goto no_jiffies_check;
393 	hdelta -= runtime->delay;
394 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
395 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
396 		delta = jdelta /
397 			(((runtime->period_size * HZ) / runtime->rate)
398 								+ HZ/100);
399 		/* move new_hw_ptr according jiffies not pos variable */
400 		new_hw_ptr = old_hw_ptr;
401 		hw_base = delta;
402 		/* use loop to avoid checks for delta overflows */
403 		/* the delta value is small or zero in most cases */
404 		while (delta > 0) {
405 			new_hw_ptr += runtime->period_size;
406 			if (new_hw_ptr >= runtime->boundary) {
407 				new_hw_ptr -= runtime->boundary;
408 				crossed_boundary--;
409 			}
410 			delta--;
411 		}
412 		/* align hw_base to buffer_size */
413 		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
414 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
415 			     (long)pos, (long)hdelta,
416 			     (long)runtime->period_size, jdelta,
417 			     ((hdelta * HZ) / runtime->rate), hw_base,
418 			     (unsigned long)old_hw_ptr,
419 			     (unsigned long)new_hw_ptr);
420 		/* reset values to proper state */
421 		delta = 0;
422 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
423 	}
424  no_jiffies_check:
425 	if (delta > runtime->period_size + runtime->period_size / 2) {
426 		hw_ptr_error(substream, in_interrupt,
427 			     "Lost interrupts?",
428 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
429 			     substream->stream, (long)delta,
430 			     (long)new_hw_ptr,
431 			     (long)old_hw_ptr);
432 	}
433 
434  no_delta_check:
435 	if (runtime->status->hw_ptr == new_hw_ptr) {
436 		runtime->hw_ptr_jiffies = curr_jiffies;
437 		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
438 		return 0;
439 	}
440 
441 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
442 	    runtime->silence_size > 0)
443 		snd_pcm_playback_silence(substream, new_hw_ptr);
444 
445 	if (in_interrupt) {
446 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
447 		if (delta < 0)
448 			delta += runtime->boundary;
449 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
450 		runtime->hw_ptr_interrupt += delta;
451 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
452 			runtime->hw_ptr_interrupt -= runtime->boundary;
453 	}
454 	runtime->hw_ptr_base = hw_base;
455 	runtime->status->hw_ptr = new_hw_ptr;
456 	runtime->hw_ptr_jiffies = curr_jiffies;
457 	if (crossed_boundary) {
458 		snd_BUG_ON(crossed_boundary != 1);
459 		runtime->hw_ptr_wrap += runtime->boundary;
460 	}
461 
462 	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
463 
464 	return snd_pcm_update_state(substream, runtime);
465 }
466 
467 /* CAUTION: call it with irq disabled */
468 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
469 {
470 	return snd_pcm_update_hw_ptr0(substream, 0);
471 }
472 
473 /**
474  * snd_pcm_set_ops - set the PCM operators
475  * @pcm: the pcm instance
476  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
477  * @ops: the operator table
478  *
479  * Sets the given PCM operators to the pcm instance.
480  */
481 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
482 		     const struct snd_pcm_ops *ops)
483 {
484 	struct snd_pcm_str *stream = &pcm->streams[direction];
485 	struct snd_pcm_substream *substream;
486 
487 	for (substream = stream->substream; substream != NULL; substream = substream->next)
488 		substream->ops = ops;
489 }
490 EXPORT_SYMBOL(snd_pcm_set_ops);
491 
492 /**
493  * snd_pcm_set_sync - set the PCM sync id
494  * @substream: the pcm substream
495  *
496  * Sets the PCM sync identifier for the card.
497  */
498 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
499 {
500 	struct snd_pcm_runtime *runtime = substream->runtime;
501 
502 	runtime->sync.id32[0] = substream->pcm->card->number;
503 	runtime->sync.id32[1] = -1;
504 	runtime->sync.id32[2] = -1;
505 	runtime->sync.id32[3] = -1;
506 }
507 EXPORT_SYMBOL(snd_pcm_set_sync);
508 
509 /*
510  *  Standard ioctl routine
511  */
512 
513 static inline unsigned int div32(unsigned int a, unsigned int b,
514 				 unsigned int *r)
515 {
516 	if (b == 0) {
517 		*r = 0;
518 		return UINT_MAX;
519 	}
520 	*r = a % b;
521 	return a / b;
522 }
523 
524 static inline unsigned int div_down(unsigned int a, unsigned int b)
525 {
526 	if (b == 0)
527 		return UINT_MAX;
528 	return a / b;
529 }
530 
531 static inline unsigned int div_up(unsigned int a, unsigned int b)
532 {
533 	unsigned int r;
534 	unsigned int q;
535 	if (b == 0)
536 		return UINT_MAX;
537 	q = div32(a, b, &r);
538 	if (r)
539 		++q;
540 	return q;
541 }
542 
543 static inline unsigned int mul(unsigned int a, unsigned int b)
544 {
545 	if (a == 0)
546 		return 0;
547 	if (div_down(UINT_MAX, a) < b)
548 		return UINT_MAX;
549 	return a * b;
550 }
551 
552 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
553 				    unsigned int c, unsigned int *r)
554 {
555 	u_int64_t n = (u_int64_t) a * b;
556 	if (c == 0) {
557 		*r = 0;
558 		return UINT_MAX;
559 	}
560 	n = div_u64_rem(n, c, r);
561 	if (n >= UINT_MAX) {
562 		*r = 0;
563 		return UINT_MAX;
564 	}
565 	return n;
566 }
567 
568 /**
569  * snd_interval_refine - refine the interval value of configurator
570  * @i: the interval value to refine
571  * @v: the interval value to refer to
572  *
573  * Refines the interval value with the reference value.
574  * The interval is changed to the range satisfying both intervals.
575  * The interval status (min, max, integer, etc.) are evaluated.
576  *
577  * Return: Positive if the value is changed, zero if it's not changed, or a
578  * negative error code.
579  */
580 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
581 {
582 	int changed = 0;
583 	if (snd_BUG_ON(snd_interval_empty(i)))
584 		return -EINVAL;
585 	if (i->min < v->min) {
586 		i->min = v->min;
587 		i->openmin = v->openmin;
588 		changed = 1;
589 	} else if (i->min == v->min && !i->openmin && v->openmin) {
590 		i->openmin = 1;
591 		changed = 1;
592 	}
593 	if (i->max > v->max) {
594 		i->max = v->max;
595 		i->openmax = v->openmax;
596 		changed = 1;
597 	} else if (i->max == v->max && !i->openmax && v->openmax) {
598 		i->openmax = 1;
599 		changed = 1;
600 	}
601 	if (!i->integer && v->integer) {
602 		i->integer = 1;
603 		changed = 1;
604 	}
605 	if (i->integer) {
606 		if (i->openmin) {
607 			i->min++;
608 			i->openmin = 0;
609 		}
610 		if (i->openmax) {
611 			i->max--;
612 			i->openmax = 0;
613 		}
614 	} else if (!i->openmin && !i->openmax && i->min == i->max)
615 		i->integer = 1;
616 	if (snd_interval_checkempty(i)) {
617 		snd_interval_none(i);
618 		return -EINVAL;
619 	}
620 	return changed;
621 }
622 EXPORT_SYMBOL(snd_interval_refine);
623 
624 static int snd_interval_refine_first(struct snd_interval *i)
625 {
626 	const unsigned int last_max = i->max;
627 
628 	if (snd_BUG_ON(snd_interval_empty(i)))
629 		return -EINVAL;
630 	if (snd_interval_single(i))
631 		return 0;
632 	i->max = i->min;
633 	if (i->openmin)
634 		i->max++;
635 	/* only exclude max value if also excluded before refine */
636 	i->openmax = (i->openmax && i->max >= last_max);
637 	return 1;
638 }
639 
640 static int snd_interval_refine_last(struct snd_interval *i)
641 {
642 	const unsigned int last_min = i->min;
643 
644 	if (snd_BUG_ON(snd_interval_empty(i)))
645 		return -EINVAL;
646 	if (snd_interval_single(i))
647 		return 0;
648 	i->min = i->max;
649 	if (i->openmax)
650 		i->min--;
651 	/* only exclude min value if also excluded before refine */
652 	i->openmin = (i->openmin && i->min <= last_min);
653 	return 1;
654 }
655 
656 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
657 {
658 	if (a->empty || b->empty) {
659 		snd_interval_none(c);
660 		return;
661 	}
662 	c->empty = 0;
663 	c->min = mul(a->min, b->min);
664 	c->openmin = (a->openmin || b->openmin);
665 	c->max = mul(a->max,  b->max);
666 	c->openmax = (a->openmax || b->openmax);
667 	c->integer = (a->integer && b->integer);
668 }
669 
670 /**
671  * snd_interval_div - refine the interval value with division
672  * @a: dividend
673  * @b: divisor
674  * @c: quotient
675  *
676  * c = a / b
677  *
678  * Returns non-zero if the value is changed, zero if not changed.
679  */
680 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
681 {
682 	unsigned int r;
683 	if (a->empty || b->empty) {
684 		snd_interval_none(c);
685 		return;
686 	}
687 	c->empty = 0;
688 	c->min = div32(a->min, b->max, &r);
689 	c->openmin = (r || a->openmin || b->openmax);
690 	if (b->min > 0) {
691 		c->max = div32(a->max, b->min, &r);
692 		if (r) {
693 			c->max++;
694 			c->openmax = 1;
695 		} else
696 			c->openmax = (a->openmax || b->openmin);
697 	} else {
698 		c->max = UINT_MAX;
699 		c->openmax = 0;
700 	}
701 	c->integer = 0;
702 }
703 
704 /**
705  * snd_interval_muldivk - refine the interval value
706  * @a: dividend 1
707  * @b: dividend 2
708  * @k: divisor (as integer)
709  * @c: result
710   *
711  * c = a * b / k
712  *
713  * Returns non-zero if the value is changed, zero if not changed.
714  */
715 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
716 		      unsigned int k, struct snd_interval *c)
717 {
718 	unsigned int r;
719 	if (a->empty || b->empty) {
720 		snd_interval_none(c);
721 		return;
722 	}
723 	c->empty = 0;
724 	c->min = muldiv32(a->min, b->min, k, &r);
725 	c->openmin = (r || a->openmin || b->openmin);
726 	c->max = muldiv32(a->max, b->max, k, &r);
727 	if (r) {
728 		c->max++;
729 		c->openmax = 1;
730 	} else
731 		c->openmax = (a->openmax || b->openmax);
732 	c->integer = 0;
733 }
734 
735 /**
736  * snd_interval_mulkdiv - refine the interval value
737  * @a: dividend 1
738  * @k: dividend 2 (as integer)
739  * @b: divisor
740  * @c: result
741  *
742  * c = a * k / b
743  *
744  * Returns non-zero if the value is changed, zero if not changed.
745  */
746 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
747 		      const struct snd_interval *b, struct snd_interval *c)
748 {
749 	unsigned int r;
750 	if (a->empty || b->empty) {
751 		snd_interval_none(c);
752 		return;
753 	}
754 	c->empty = 0;
755 	c->min = muldiv32(a->min, k, b->max, &r);
756 	c->openmin = (r || a->openmin || b->openmax);
757 	if (b->min > 0) {
758 		c->max = muldiv32(a->max, k, b->min, &r);
759 		if (r) {
760 			c->max++;
761 			c->openmax = 1;
762 		} else
763 			c->openmax = (a->openmax || b->openmin);
764 	} else {
765 		c->max = UINT_MAX;
766 		c->openmax = 0;
767 	}
768 	c->integer = 0;
769 }
770 
771 /* ---- */
772 
773 
774 /**
775  * snd_interval_ratnum - refine the interval value
776  * @i: interval to refine
777  * @rats_count: number of ratnum_t
778  * @rats: ratnum_t array
779  * @nump: pointer to store the resultant numerator
780  * @denp: pointer to store the resultant denominator
781  *
782  * Return: Positive if the value is changed, zero if it's not changed, or a
783  * negative error code.
784  */
785 int snd_interval_ratnum(struct snd_interval *i,
786 			unsigned int rats_count, const struct snd_ratnum *rats,
787 			unsigned int *nump, unsigned int *denp)
788 {
789 	unsigned int best_num, best_den;
790 	int best_diff;
791 	unsigned int k;
792 	struct snd_interval t;
793 	int err;
794 	unsigned int result_num, result_den;
795 	int result_diff;
796 
797 	best_num = best_den = best_diff = 0;
798 	for (k = 0; k < rats_count; ++k) {
799 		unsigned int num = rats[k].num;
800 		unsigned int den;
801 		unsigned int q = i->min;
802 		int diff;
803 		if (q == 0)
804 			q = 1;
805 		den = div_up(num, q);
806 		if (den < rats[k].den_min)
807 			continue;
808 		if (den > rats[k].den_max)
809 			den = rats[k].den_max;
810 		else {
811 			unsigned int r;
812 			r = (den - rats[k].den_min) % rats[k].den_step;
813 			if (r != 0)
814 				den -= r;
815 		}
816 		diff = num - q * den;
817 		if (diff < 0)
818 			diff = -diff;
819 		if (best_num == 0 ||
820 		    diff * best_den < best_diff * den) {
821 			best_diff = diff;
822 			best_den = den;
823 			best_num = num;
824 		}
825 	}
826 	if (best_den == 0) {
827 		i->empty = 1;
828 		return -EINVAL;
829 	}
830 	t.min = div_down(best_num, best_den);
831 	t.openmin = !!(best_num % best_den);
832 
833 	result_num = best_num;
834 	result_diff = best_diff;
835 	result_den = best_den;
836 	best_num = best_den = best_diff = 0;
837 	for (k = 0; k < rats_count; ++k) {
838 		unsigned int num = rats[k].num;
839 		unsigned int den;
840 		unsigned int q = i->max;
841 		int diff;
842 		if (q == 0) {
843 			i->empty = 1;
844 			return -EINVAL;
845 		}
846 		den = div_down(num, q);
847 		if (den > rats[k].den_max)
848 			continue;
849 		if (den < rats[k].den_min)
850 			den = rats[k].den_min;
851 		else {
852 			unsigned int r;
853 			r = (den - rats[k].den_min) % rats[k].den_step;
854 			if (r != 0)
855 				den += rats[k].den_step - r;
856 		}
857 		diff = q * den - num;
858 		if (diff < 0)
859 			diff = -diff;
860 		if (best_num == 0 ||
861 		    diff * best_den < best_diff * den) {
862 			best_diff = diff;
863 			best_den = den;
864 			best_num = num;
865 		}
866 	}
867 	if (best_den == 0) {
868 		i->empty = 1;
869 		return -EINVAL;
870 	}
871 	t.max = div_up(best_num, best_den);
872 	t.openmax = !!(best_num % best_den);
873 	t.integer = 0;
874 	err = snd_interval_refine(i, &t);
875 	if (err < 0)
876 		return err;
877 
878 	if (snd_interval_single(i)) {
879 		if (best_diff * result_den < result_diff * best_den) {
880 			result_num = best_num;
881 			result_den = best_den;
882 		}
883 		if (nump)
884 			*nump = result_num;
885 		if (denp)
886 			*denp = result_den;
887 	}
888 	return err;
889 }
890 EXPORT_SYMBOL(snd_interval_ratnum);
891 
892 /**
893  * snd_interval_ratden - refine the interval value
894  * @i: interval to refine
895  * @rats_count: number of struct ratden
896  * @rats: struct ratden array
897  * @nump: pointer to store the resultant numerator
898  * @denp: pointer to store the resultant denominator
899  *
900  * Return: Positive if the value is changed, zero if it's not changed, or a
901  * negative error code.
902  */
903 static int snd_interval_ratden(struct snd_interval *i,
904 			       unsigned int rats_count,
905 			       const struct snd_ratden *rats,
906 			       unsigned int *nump, unsigned int *denp)
907 {
908 	unsigned int best_num, best_diff, best_den;
909 	unsigned int k;
910 	struct snd_interval t;
911 	int err;
912 
913 	best_num = best_den = best_diff = 0;
914 	for (k = 0; k < rats_count; ++k) {
915 		unsigned int num;
916 		unsigned int den = rats[k].den;
917 		unsigned int q = i->min;
918 		int diff;
919 		num = mul(q, den);
920 		if (num > rats[k].num_max)
921 			continue;
922 		if (num < rats[k].num_min)
923 			num = rats[k].num_max;
924 		else {
925 			unsigned int r;
926 			r = (num - rats[k].num_min) % rats[k].num_step;
927 			if (r != 0)
928 				num += rats[k].num_step - r;
929 		}
930 		diff = num - q * den;
931 		if (best_num == 0 ||
932 		    diff * best_den < best_diff * den) {
933 			best_diff = diff;
934 			best_den = den;
935 			best_num = num;
936 		}
937 	}
938 	if (best_den == 0) {
939 		i->empty = 1;
940 		return -EINVAL;
941 	}
942 	t.min = div_down(best_num, best_den);
943 	t.openmin = !!(best_num % best_den);
944 
945 	best_num = best_den = best_diff = 0;
946 	for (k = 0; k < rats_count; ++k) {
947 		unsigned int num;
948 		unsigned int den = rats[k].den;
949 		unsigned int q = i->max;
950 		int diff;
951 		num = mul(q, den);
952 		if (num < rats[k].num_min)
953 			continue;
954 		if (num > rats[k].num_max)
955 			num = rats[k].num_max;
956 		else {
957 			unsigned int r;
958 			r = (num - rats[k].num_min) % rats[k].num_step;
959 			if (r != 0)
960 				num -= r;
961 		}
962 		diff = q * den - num;
963 		if (best_num == 0 ||
964 		    diff * best_den < best_diff * den) {
965 			best_diff = diff;
966 			best_den = den;
967 			best_num = num;
968 		}
969 	}
970 	if (best_den == 0) {
971 		i->empty = 1;
972 		return -EINVAL;
973 	}
974 	t.max = div_up(best_num, best_den);
975 	t.openmax = !!(best_num % best_den);
976 	t.integer = 0;
977 	err = snd_interval_refine(i, &t);
978 	if (err < 0)
979 		return err;
980 
981 	if (snd_interval_single(i)) {
982 		if (nump)
983 			*nump = best_num;
984 		if (denp)
985 			*denp = best_den;
986 	}
987 	return err;
988 }
989 
990 /**
991  * snd_interval_list - refine the interval value from the list
992  * @i: the interval value to refine
993  * @count: the number of elements in the list
994  * @list: the value list
995  * @mask: the bit-mask to evaluate
996  *
997  * Refines the interval value from the list.
998  * When mask is non-zero, only the elements corresponding to bit 1 are
999  * evaluated.
1000  *
1001  * Return: Positive if the value is changed, zero if it's not changed, or a
1002  * negative error code.
1003  */
1004 int snd_interval_list(struct snd_interval *i, unsigned int count,
1005 		      const unsigned int *list, unsigned int mask)
1006 {
1007         unsigned int k;
1008 	struct snd_interval list_range;
1009 
1010 	if (!count) {
1011 		i->empty = 1;
1012 		return -EINVAL;
1013 	}
1014 	snd_interval_any(&list_range);
1015 	list_range.min = UINT_MAX;
1016 	list_range.max = 0;
1017         for (k = 0; k < count; k++) {
1018 		if (mask && !(mask & (1 << k)))
1019 			continue;
1020 		if (!snd_interval_test(i, list[k]))
1021 			continue;
1022 		list_range.min = min(list_range.min, list[k]);
1023 		list_range.max = max(list_range.max, list[k]);
1024         }
1025 	return snd_interval_refine(i, &list_range);
1026 }
1027 EXPORT_SYMBOL(snd_interval_list);
1028 
1029 /**
1030  * snd_interval_ranges - refine the interval value from the list of ranges
1031  * @i: the interval value to refine
1032  * @count: the number of elements in the list of ranges
1033  * @ranges: the ranges list
1034  * @mask: the bit-mask to evaluate
1035  *
1036  * Refines the interval value from the list of ranges.
1037  * When mask is non-zero, only the elements corresponding to bit 1 are
1038  * evaluated.
1039  *
1040  * Return: Positive if the value is changed, zero if it's not changed, or a
1041  * negative error code.
1042  */
1043 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1044 			const struct snd_interval *ranges, unsigned int mask)
1045 {
1046 	unsigned int k;
1047 	struct snd_interval range_union;
1048 	struct snd_interval range;
1049 
1050 	if (!count) {
1051 		snd_interval_none(i);
1052 		return -EINVAL;
1053 	}
1054 	snd_interval_any(&range_union);
1055 	range_union.min = UINT_MAX;
1056 	range_union.max = 0;
1057 	for (k = 0; k < count; k++) {
1058 		if (mask && !(mask & (1 << k)))
1059 			continue;
1060 		snd_interval_copy(&range, &ranges[k]);
1061 		if (snd_interval_refine(&range, i) < 0)
1062 			continue;
1063 		if (snd_interval_empty(&range))
1064 			continue;
1065 
1066 		if (range.min < range_union.min) {
1067 			range_union.min = range.min;
1068 			range_union.openmin = 1;
1069 		}
1070 		if (range.min == range_union.min && !range.openmin)
1071 			range_union.openmin = 0;
1072 		if (range.max > range_union.max) {
1073 			range_union.max = range.max;
1074 			range_union.openmax = 1;
1075 		}
1076 		if (range.max == range_union.max && !range.openmax)
1077 			range_union.openmax = 0;
1078 	}
1079 	return snd_interval_refine(i, &range_union);
1080 }
1081 EXPORT_SYMBOL(snd_interval_ranges);
1082 
1083 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1084 {
1085 	unsigned int n;
1086 	int changed = 0;
1087 	n = i->min % step;
1088 	if (n != 0 || i->openmin) {
1089 		i->min += step - n;
1090 		i->openmin = 0;
1091 		changed = 1;
1092 	}
1093 	n = i->max % step;
1094 	if (n != 0 || i->openmax) {
1095 		i->max -= n;
1096 		i->openmax = 0;
1097 		changed = 1;
1098 	}
1099 	if (snd_interval_checkempty(i)) {
1100 		i->empty = 1;
1101 		return -EINVAL;
1102 	}
1103 	return changed;
1104 }
1105 
1106 /* Info constraints helpers */
1107 
1108 /**
1109  * snd_pcm_hw_rule_add - add the hw-constraint rule
1110  * @runtime: the pcm runtime instance
1111  * @cond: condition bits
1112  * @var: the variable to evaluate
1113  * @func: the evaluation function
1114  * @private: the private data pointer passed to function
1115  * @dep: the dependent variables
1116  *
1117  * Return: Zero if successful, or a negative error code on failure.
1118  */
1119 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1120 			int var,
1121 			snd_pcm_hw_rule_func_t func, void *private,
1122 			int dep, ...)
1123 {
1124 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125 	struct snd_pcm_hw_rule *c;
1126 	unsigned int k;
1127 	va_list args;
1128 	va_start(args, dep);
1129 	if (constrs->rules_num >= constrs->rules_all) {
1130 		struct snd_pcm_hw_rule *new;
1131 		unsigned int new_rules = constrs->rules_all + 16;
1132 		new = krealloc_array(constrs->rules, new_rules,
1133 				     sizeof(*c), GFP_KERNEL);
1134 		if (!new) {
1135 			va_end(args);
1136 			return -ENOMEM;
1137 		}
1138 		constrs->rules = new;
1139 		constrs->rules_all = new_rules;
1140 	}
1141 	c = &constrs->rules[constrs->rules_num];
1142 	c->cond = cond;
1143 	c->func = func;
1144 	c->var = var;
1145 	c->private = private;
1146 	k = 0;
1147 	while (1) {
1148 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1149 			va_end(args);
1150 			return -EINVAL;
1151 		}
1152 		c->deps[k++] = dep;
1153 		if (dep < 0)
1154 			break;
1155 		dep = va_arg(args, int);
1156 	}
1157 	constrs->rules_num++;
1158 	va_end(args);
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1162 
1163 /**
1164  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1165  * @runtime: PCM runtime instance
1166  * @var: hw_params variable to apply the mask
1167  * @mask: the bitmap mask
1168  *
1169  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1170  *
1171  * Return: Zero if successful, or a negative error code on failure.
1172  */
1173 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1174 			       u_int32_t mask)
1175 {
1176 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1177 	struct snd_mask *maskp = constrs_mask(constrs, var);
1178 	*maskp->bits &= mask;
1179 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1180 	if (*maskp->bits == 0)
1181 		return -EINVAL;
1182 	return 0;
1183 }
1184 
1185 /**
1186  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1187  * @runtime: PCM runtime instance
1188  * @var: hw_params variable to apply the mask
1189  * @mask: the 64bit bitmap mask
1190  *
1191  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1192  *
1193  * Return: Zero if successful, or a negative error code on failure.
1194  */
1195 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1196 				 u_int64_t mask)
1197 {
1198 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1199 	struct snd_mask *maskp = constrs_mask(constrs, var);
1200 	maskp->bits[0] &= (u_int32_t)mask;
1201 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1202 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1203 	if (! maskp->bits[0] && ! maskp->bits[1])
1204 		return -EINVAL;
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1208 
1209 /**
1210  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1211  * @runtime: PCM runtime instance
1212  * @var: hw_params variable to apply the integer constraint
1213  *
1214  * Apply the constraint of integer to an interval parameter.
1215  *
1216  * Return: Positive if the value is changed, zero if it's not changed, or a
1217  * negative error code.
1218  */
1219 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1220 {
1221 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1222 	return snd_interval_setinteger(constrs_interval(constrs, var));
1223 }
1224 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1225 
1226 /**
1227  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1228  * @runtime: PCM runtime instance
1229  * @var: hw_params variable to apply the range
1230  * @min: the minimal value
1231  * @max: the maximal value
1232  *
1233  * Apply the min/max range constraint to an interval parameter.
1234  *
1235  * Return: Positive if the value is changed, zero if it's not changed, or a
1236  * negative error code.
1237  */
1238 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1239 				 unsigned int min, unsigned int max)
1240 {
1241 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1242 	struct snd_interval t;
1243 	t.min = min;
1244 	t.max = max;
1245 	t.openmin = t.openmax = 0;
1246 	t.integer = 0;
1247 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1248 }
1249 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1250 
1251 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1252 				struct snd_pcm_hw_rule *rule)
1253 {
1254 	struct snd_pcm_hw_constraint_list *list = rule->private;
1255 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1256 }
1257 
1258 
1259 /**
1260  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1261  * @runtime: PCM runtime instance
1262  * @cond: condition bits
1263  * @var: hw_params variable to apply the list constraint
1264  * @l: list
1265  *
1266  * Apply the list of constraints to an interval parameter.
1267  *
1268  * Return: Zero if successful, or a negative error code on failure.
1269  */
1270 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1271 			       unsigned int cond,
1272 			       snd_pcm_hw_param_t var,
1273 			       const struct snd_pcm_hw_constraint_list *l)
1274 {
1275 	return snd_pcm_hw_rule_add(runtime, cond, var,
1276 				   snd_pcm_hw_rule_list, (void *)l,
1277 				   var, -1);
1278 }
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1280 
1281 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1282 				  struct snd_pcm_hw_rule *rule)
1283 {
1284 	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1285 	return snd_interval_ranges(hw_param_interval(params, rule->var),
1286 				   r->count, r->ranges, r->mask);
1287 }
1288 
1289 
1290 /**
1291  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1292  * @runtime: PCM runtime instance
1293  * @cond: condition bits
1294  * @var: hw_params variable to apply the list of range constraints
1295  * @r: ranges
1296  *
1297  * Apply the list of range constraints to an interval parameter.
1298  *
1299  * Return: Zero if successful, or a negative error code on failure.
1300  */
1301 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1302 				 unsigned int cond,
1303 				 snd_pcm_hw_param_t var,
1304 				 const struct snd_pcm_hw_constraint_ranges *r)
1305 {
1306 	return snd_pcm_hw_rule_add(runtime, cond, var,
1307 				   snd_pcm_hw_rule_ranges, (void *)r,
1308 				   var, -1);
1309 }
1310 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1311 
1312 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1313 				   struct snd_pcm_hw_rule *rule)
1314 {
1315 	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1316 	unsigned int num = 0, den = 0;
1317 	int err;
1318 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1319 				  r->nrats, r->rats, &num, &den);
1320 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1321 		params->rate_num = num;
1322 		params->rate_den = den;
1323 	}
1324 	return err;
1325 }
1326 
1327 /**
1328  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1329  * @runtime: PCM runtime instance
1330  * @cond: condition bits
1331  * @var: hw_params variable to apply the ratnums constraint
1332  * @r: struct snd_ratnums constriants
1333  *
1334  * Return: Zero if successful, or a negative error code on failure.
1335  */
1336 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1337 				  unsigned int cond,
1338 				  snd_pcm_hw_param_t var,
1339 				  const struct snd_pcm_hw_constraint_ratnums *r)
1340 {
1341 	return snd_pcm_hw_rule_add(runtime, cond, var,
1342 				   snd_pcm_hw_rule_ratnums, (void *)r,
1343 				   var, -1);
1344 }
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1346 
1347 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1348 				   struct snd_pcm_hw_rule *rule)
1349 {
1350 	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1351 	unsigned int num = 0, den = 0;
1352 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1353 				  r->nrats, r->rats, &num, &den);
1354 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1355 		params->rate_num = num;
1356 		params->rate_den = den;
1357 	}
1358 	return err;
1359 }
1360 
1361 /**
1362  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1363  * @runtime: PCM runtime instance
1364  * @cond: condition bits
1365  * @var: hw_params variable to apply the ratdens constraint
1366  * @r: struct snd_ratdens constriants
1367  *
1368  * Return: Zero if successful, or a negative error code on failure.
1369  */
1370 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1371 				  unsigned int cond,
1372 				  snd_pcm_hw_param_t var,
1373 				  const struct snd_pcm_hw_constraint_ratdens *r)
1374 {
1375 	return snd_pcm_hw_rule_add(runtime, cond, var,
1376 				   snd_pcm_hw_rule_ratdens, (void *)r,
1377 				   var, -1);
1378 }
1379 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1380 
1381 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1382 				  struct snd_pcm_hw_rule *rule)
1383 {
1384 	unsigned int l = (unsigned long) rule->private;
1385 	int width = l & 0xffff;
1386 	unsigned int msbits = l >> 16;
1387 	const struct snd_interval *i =
1388 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1389 
1390 	if (!snd_interval_single(i))
1391 		return 0;
1392 
1393 	if ((snd_interval_value(i) == width) ||
1394 	    (width == 0 && snd_interval_value(i) > msbits))
1395 		params->msbits = min_not_zero(params->msbits, msbits);
1396 
1397 	return 0;
1398 }
1399 
1400 /**
1401  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1402  * @runtime: PCM runtime instance
1403  * @cond: condition bits
1404  * @width: sample bits width
1405  * @msbits: msbits width
1406  *
1407  * This constraint will set the number of most significant bits (msbits) if a
1408  * sample format with the specified width has been select. If width is set to 0
1409  * the msbits will be set for any sample format with a width larger than the
1410  * specified msbits.
1411  *
1412  * Return: Zero if successful, or a negative error code on failure.
1413  */
1414 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1415 				 unsigned int cond,
1416 				 unsigned int width,
1417 				 unsigned int msbits)
1418 {
1419 	unsigned long l = (msbits << 16) | width;
1420 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1421 				    snd_pcm_hw_rule_msbits,
1422 				    (void*) l,
1423 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1424 }
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1426 
1427 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428 				struct snd_pcm_hw_rule *rule)
1429 {
1430 	unsigned long step = (unsigned long) rule->private;
1431 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1432 }
1433 
1434 /**
1435  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436  * @runtime: PCM runtime instance
1437  * @cond: condition bits
1438  * @var: hw_params variable to apply the step constraint
1439  * @step: step size
1440  *
1441  * Return: Zero if successful, or a negative error code on failure.
1442  */
1443 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1444 			       unsigned int cond,
1445 			       snd_pcm_hw_param_t var,
1446 			       unsigned long step)
1447 {
1448 	return snd_pcm_hw_rule_add(runtime, cond, var,
1449 				   snd_pcm_hw_rule_step, (void *) step,
1450 				   var, -1);
1451 }
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453 
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456 	static const unsigned int pow2_sizes[] = {
1457 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461 	};
1462 	return snd_interval_list(hw_param_interval(params, rule->var),
1463 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }
1465 
1466 /**
1467  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468  * @runtime: PCM runtime instance
1469  * @cond: condition bits
1470  * @var: hw_params variable to apply the power-of-2 constraint
1471  *
1472  * Return: Zero if successful, or a negative error code on failure.
1473  */
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475 			       unsigned int cond,
1476 			       snd_pcm_hw_param_t var)
1477 {
1478 	return snd_pcm_hw_rule_add(runtime, cond, var,
1479 				   snd_pcm_hw_rule_pow2, NULL,
1480 				   var, -1);
1481 }
1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1483 
1484 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1485 					   struct snd_pcm_hw_rule *rule)
1486 {
1487 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1488 	struct snd_interval *rate;
1489 
1490 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1491 	return snd_interval_list(rate, 1, &base_rate, 0);
1492 }
1493 
1494 /**
1495  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1496  * @runtime: PCM runtime instance
1497  * @base_rate: the rate at which the hardware does not resample
1498  *
1499  * Return: Zero if successful, or a negative error code on failure.
1500  */
1501 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1502 			       unsigned int base_rate)
1503 {
1504 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1505 				   SNDRV_PCM_HW_PARAM_RATE,
1506 				   snd_pcm_hw_rule_noresample_func,
1507 				   (void *)(uintptr_t)base_rate,
1508 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1509 }
1510 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1511 
1512 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1513 				  snd_pcm_hw_param_t var)
1514 {
1515 	if (hw_is_mask(var)) {
1516 		snd_mask_any(hw_param_mask(params, var));
1517 		params->cmask |= 1 << var;
1518 		params->rmask |= 1 << var;
1519 		return;
1520 	}
1521 	if (hw_is_interval(var)) {
1522 		snd_interval_any(hw_param_interval(params, var));
1523 		params->cmask |= 1 << var;
1524 		params->rmask |= 1 << var;
1525 		return;
1526 	}
1527 	snd_BUG();
1528 }
1529 
1530 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1531 {
1532 	unsigned int k;
1533 	memset(params, 0, sizeof(*params));
1534 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1535 		_snd_pcm_hw_param_any(params, k);
1536 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1537 		_snd_pcm_hw_param_any(params, k);
1538 	params->info = ~0U;
1539 }
1540 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1541 
1542 /**
1543  * snd_pcm_hw_param_value - return @params field @var value
1544  * @params: the hw_params instance
1545  * @var: parameter to retrieve
1546  * @dir: pointer to the direction (-1,0,1) or %NULL
1547  *
1548  * Return: The value for field @var if it's fixed in configuration space
1549  * defined by @params. -%EINVAL otherwise.
1550  */
1551 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1552 			   snd_pcm_hw_param_t var, int *dir)
1553 {
1554 	if (hw_is_mask(var)) {
1555 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1556 		if (!snd_mask_single(mask))
1557 			return -EINVAL;
1558 		if (dir)
1559 			*dir = 0;
1560 		return snd_mask_value(mask);
1561 	}
1562 	if (hw_is_interval(var)) {
1563 		const struct snd_interval *i = hw_param_interval_c(params, var);
1564 		if (!snd_interval_single(i))
1565 			return -EINVAL;
1566 		if (dir)
1567 			*dir = i->openmin;
1568 		return snd_interval_value(i);
1569 	}
1570 	return -EINVAL;
1571 }
1572 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1573 
1574 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1575 				snd_pcm_hw_param_t var)
1576 {
1577 	if (hw_is_mask(var)) {
1578 		snd_mask_none(hw_param_mask(params, var));
1579 		params->cmask |= 1 << var;
1580 		params->rmask |= 1 << var;
1581 	} else if (hw_is_interval(var)) {
1582 		snd_interval_none(hw_param_interval(params, var));
1583 		params->cmask |= 1 << var;
1584 		params->rmask |= 1 << var;
1585 	} else {
1586 		snd_BUG();
1587 	}
1588 }
1589 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1590 
1591 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1592 				   snd_pcm_hw_param_t var)
1593 {
1594 	int changed;
1595 	if (hw_is_mask(var))
1596 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1597 	else if (hw_is_interval(var))
1598 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1599 	else
1600 		return -EINVAL;
1601 	if (changed > 0) {
1602 		params->cmask |= 1 << var;
1603 		params->rmask |= 1 << var;
1604 	}
1605 	return changed;
1606 }
1607 
1608 
1609 /**
1610  * snd_pcm_hw_param_first - refine config space and return minimum value
1611  * @pcm: PCM instance
1612  * @params: the hw_params instance
1613  * @var: parameter to retrieve
1614  * @dir: pointer to the direction (-1,0,1) or %NULL
1615  *
1616  * Inside configuration space defined by @params remove from @var all
1617  * values > minimum. Reduce configuration space accordingly.
1618  *
1619  * Return: The minimum, or a negative error code on failure.
1620  */
1621 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1622 			   struct snd_pcm_hw_params *params,
1623 			   snd_pcm_hw_param_t var, int *dir)
1624 {
1625 	int changed = _snd_pcm_hw_param_first(params, var);
1626 	if (changed < 0)
1627 		return changed;
1628 	if (params->rmask) {
1629 		int err = snd_pcm_hw_refine(pcm, params);
1630 		if (err < 0)
1631 			return err;
1632 	}
1633 	return snd_pcm_hw_param_value(params, var, dir);
1634 }
1635 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1636 
1637 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1638 				  snd_pcm_hw_param_t var)
1639 {
1640 	int changed;
1641 	if (hw_is_mask(var))
1642 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1643 	else if (hw_is_interval(var))
1644 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1645 	else
1646 		return -EINVAL;
1647 	if (changed > 0) {
1648 		params->cmask |= 1 << var;
1649 		params->rmask |= 1 << var;
1650 	}
1651 	return changed;
1652 }
1653 
1654 
1655 /**
1656  * snd_pcm_hw_param_last - refine config space and return maximum value
1657  * @pcm: PCM instance
1658  * @params: the hw_params instance
1659  * @var: parameter to retrieve
1660  * @dir: pointer to the direction (-1,0,1) or %NULL
1661  *
1662  * Inside configuration space defined by @params remove from @var all
1663  * values < maximum. Reduce configuration space accordingly.
1664  *
1665  * Return: The maximum, or a negative error code on failure.
1666  */
1667 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1668 			  struct snd_pcm_hw_params *params,
1669 			  snd_pcm_hw_param_t var, int *dir)
1670 {
1671 	int changed = _snd_pcm_hw_param_last(params, var);
1672 	if (changed < 0)
1673 		return changed;
1674 	if (params->rmask) {
1675 		int err = snd_pcm_hw_refine(pcm, params);
1676 		if (err < 0)
1677 			return err;
1678 	}
1679 	return snd_pcm_hw_param_value(params, var, dir);
1680 }
1681 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1682 
1683 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1684 				   void *arg)
1685 {
1686 	struct snd_pcm_runtime *runtime = substream->runtime;
1687 	unsigned long flags;
1688 	snd_pcm_stream_lock_irqsave(substream, flags);
1689 	if (snd_pcm_running(substream) &&
1690 	    snd_pcm_update_hw_ptr(substream) >= 0)
1691 		runtime->status->hw_ptr %= runtime->buffer_size;
1692 	else {
1693 		runtime->status->hw_ptr = 0;
1694 		runtime->hw_ptr_wrap = 0;
1695 	}
1696 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1697 	return 0;
1698 }
1699 
1700 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1701 					  void *arg)
1702 {
1703 	struct snd_pcm_channel_info *info = arg;
1704 	struct snd_pcm_runtime *runtime = substream->runtime;
1705 	int width;
1706 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1707 		info->offset = -1;
1708 		return 0;
1709 	}
1710 	width = snd_pcm_format_physical_width(runtime->format);
1711 	if (width < 0)
1712 		return width;
1713 	info->offset = 0;
1714 	switch (runtime->access) {
1715 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1716 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1717 		info->first = info->channel * width;
1718 		info->step = runtime->channels * width;
1719 		break;
1720 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1721 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1722 	{
1723 		size_t size = runtime->dma_bytes / runtime->channels;
1724 		info->first = info->channel * size * 8;
1725 		info->step = width;
1726 		break;
1727 	}
1728 	default:
1729 		snd_BUG();
1730 		break;
1731 	}
1732 	return 0;
1733 }
1734 
1735 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1736 				       void *arg)
1737 {
1738 	struct snd_pcm_hw_params *params = arg;
1739 	snd_pcm_format_t format;
1740 	int channels;
1741 	ssize_t frame_size;
1742 
1743 	params->fifo_size = substream->runtime->hw.fifo_size;
1744 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1745 		format = params_format(params);
1746 		channels = params_channels(params);
1747 		frame_size = snd_pcm_format_size(format, channels);
1748 		if (frame_size > 0)
1749 			params->fifo_size /= (unsigned)frame_size;
1750 	}
1751 	return 0;
1752 }
1753 
1754 /**
1755  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1756  * @substream: the pcm substream instance
1757  * @cmd: ioctl command
1758  * @arg: ioctl argument
1759  *
1760  * Processes the generic ioctl commands for PCM.
1761  * Can be passed as the ioctl callback for PCM ops.
1762  *
1763  * Return: Zero if successful, or a negative error code on failure.
1764  */
1765 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1766 		      unsigned int cmd, void *arg)
1767 {
1768 	switch (cmd) {
1769 	case SNDRV_PCM_IOCTL1_RESET:
1770 		return snd_pcm_lib_ioctl_reset(substream, arg);
1771 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1772 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1773 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1774 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1775 	}
1776 	return -ENXIO;
1777 }
1778 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1779 
1780 /**
1781  * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1782  *						under acquired lock of PCM substream.
1783  * @substream: the instance of pcm substream.
1784  *
1785  * This function is called when the batch of audio data frames as the same size as the period of
1786  * buffer is already processed in audio data transmission.
1787  *
1788  * The call of function updates the status of runtime with the latest position of audio data
1789  * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1790  * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1791  * substream according to configured threshold.
1792  *
1793  * The function is intended to use for the case that PCM driver operates audio data frames under
1794  * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1795  * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1796  * since lock of PCM substream should be acquired in advance.
1797  *
1798  * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1799  * function:
1800  *
1801  * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1802  * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1803  * - .get_time_info - to retrieve audio time stamp if needed.
1804  *
1805  * Even if more than one periods have elapsed since the last call, you have to call this only once.
1806  */
1807 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1808 {
1809 	struct snd_pcm_runtime *runtime;
1810 
1811 	if (PCM_RUNTIME_CHECK(substream))
1812 		return;
1813 	runtime = substream->runtime;
1814 
1815 	if (!snd_pcm_running(substream) ||
1816 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1817 		goto _end;
1818 
1819 #ifdef CONFIG_SND_PCM_TIMER
1820 	if (substream->timer_running)
1821 		snd_timer_interrupt(substream->timer, 1);
1822 #endif
1823  _end:
1824 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1825 }
1826 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1827 
1828 /**
1829  * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1830  *			      PCM substream.
1831  * @substream: the instance of PCM substream.
1832  *
1833  * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1834  * acquiring lock of PCM substream voluntarily.
1835  *
1836  * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1837  * the batch of audio data frames as the same size as the period of buffer is already processed in
1838  * audio data transmission.
1839  */
1840 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1841 {
1842 	unsigned long flags;
1843 
1844 	if (snd_BUG_ON(!substream))
1845 		return;
1846 
1847 	snd_pcm_stream_lock_irqsave(substream, flags);
1848 	snd_pcm_period_elapsed_under_stream_lock(substream);
1849 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1850 }
1851 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1852 
1853 /*
1854  * Wait until avail_min data becomes available
1855  * Returns a negative error code if any error occurs during operation.
1856  * The available space is stored on availp.  When err = 0 and avail = 0
1857  * on the capture stream, it indicates the stream is in DRAINING state.
1858  */
1859 static int wait_for_avail(struct snd_pcm_substream *substream,
1860 			      snd_pcm_uframes_t *availp)
1861 {
1862 	struct snd_pcm_runtime *runtime = substream->runtime;
1863 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1864 	wait_queue_entry_t wait;
1865 	int err = 0;
1866 	snd_pcm_uframes_t avail = 0;
1867 	long wait_time, tout;
1868 
1869 	init_waitqueue_entry(&wait, current);
1870 	set_current_state(TASK_INTERRUPTIBLE);
1871 	add_wait_queue(&runtime->tsleep, &wait);
1872 
1873 	if (runtime->no_period_wakeup)
1874 		wait_time = MAX_SCHEDULE_TIMEOUT;
1875 	else {
1876 		/* use wait time from substream if available */
1877 		if (substream->wait_time) {
1878 			wait_time = substream->wait_time;
1879 		} else {
1880 			wait_time = 10;
1881 
1882 			if (runtime->rate) {
1883 				long t = runtime->period_size * 2 /
1884 					 runtime->rate;
1885 				wait_time = max(t, wait_time);
1886 			}
1887 			wait_time = msecs_to_jiffies(wait_time * 1000);
1888 		}
1889 	}
1890 
1891 	for (;;) {
1892 		if (signal_pending(current)) {
1893 			err = -ERESTARTSYS;
1894 			break;
1895 		}
1896 
1897 		/*
1898 		 * We need to check if space became available already
1899 		 * (and thus the wakeup happened already) first to close
1900 		 * the race of space already having become available.
1901 		 * This check must happen after been added to the waitqueue
1902 		 * and having current state be INTERRUPTIBLE.
1903 		 */
1904 		avail = snd_pcm_avail(substream);
1905 		if (avail >= runtime->twake)
1906 			break;
1907 		snd_pcm_stream_unlock_irq(substream);
1908 
1909 		tout = schedule_timeout(wait_time);
1910 
1911 		snd_pcm_stream_lock_irq(substream);
1912 		set_current_state(TASK_INTERRUPTIBLE);
1913 		switch (runtime->status->state) {
1914 		case SNDRV_PCM_STATE_SUSPENDED:
1915 			err = -ESTRPIPE;
1916 			goto _endloop;
1917 		case SNDRV_PCM_STATE_XRUN:
1918 			err = -EPIPE;
1919 			goto _endloop;
1920 		case SNDRV_PCM_STATE_DRAINING:
1921 			if (is_playback)
1922 				err = -EPIPE;
1923 			else
1924 				avail = 0; /* indicate draining */
1925 			goto _endloop;
1926 		case SNDRV_PCM_STATE_OPEN:
1927 		case SNDRV_PCM_STATE_SETUP:
1928 		case SNDRV_PCM_STATE_DISCONNECTED:
1929 			err = -EBADFD;
1930 			goto _endloop;
1931 		case SNDRV_PCM_STATE_PAUSED:
1932 			continue;
1933 		}
1934 		if (!tout) {
1935 			pcm_dbg(substream->pcm,
1936 				"%s write error (DMA or IRQ trouble?)\n",
1937 				is_playback ? "playback" : "capture");
1938 			err = -EIO;
1939 			break;
1940 		}
1941 	}
1942  _endloop:
1943 	set_current_state(TASK_RUNNING);
1944 	remove_wait_queue(&runtime->tsleep, &wait);
1945 	*availp = avail;
1946 	return err;
1947 }
1948 
1949 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1950 			      int channel, unsigned long hwoff,
1951 			      void *buf, unsigned long bytes);
1952 
1953 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1954 			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1955 
1956 /* calculate the target DMA-buffer position to be written/read */
1957 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1958 			   int channel, unsigned long hwoff)
1959 {
1960 	return runtime->dma_area + hwoff +
1961 		channel * (runtime->dma_bytes / runtime->channels);
1962 }
1963 
1964 /* default copy_user ops for write; used for both interleaved and non- modes */
1965 static int default_write_copy(struct snd_pcm_substream *substream,
1966 			      int channel, unsigned long hwoff,
1967 			      void *buf, unsigned long bytes)
1968 {
1969 	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1970 			   (void __user *)buf, bytes))
1971 		return -EFAULT;
1972 	return 0;
1973 }
1974 
1975 /* default copy_kernel ops for write */
1976 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1977 				     int channel, unsigned long hwoff,
1978 				     void *buf, unsigned long bytes)
1979 {
1980 	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1981 	return 0;
1982 }
1983 
1984 /* fill silence instead of copy data; called as a transfer helper
1985  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1986  * a NULL buffer is passed
1987  */
1988 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1989 			unsigned long hwoff, void *buf, unsigned long bytes)
1990 {
1991 	struct snd_pcm_runtime *runtime = substream->runtime;
1992 
1993 	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1994 		return 0;
1995 	if (substream->ops->fill_silence)
1996 		return substream->ops->fill_silence(substream, channel,
1997 						    hwoff, bytes);
1998 
1999 	snd_pcm_format_set_silence(runtime->format,
2000 				   get_dma_ptr(runtime, channel, hwoff),
2001 				   bytes_to_samples(runtime, bytes));
2002 	return 0;
2003 }
2004 
2005 /* default copy_user ops for read; used for both interleaved and non- modes */
2006 static int default_read_copy(struct snd_pcm_substream *substream,
2007 			     int channel, unsigned long hwoff,
2008 			     void *buf, unsigned long bytes)
2009 {
2010 	if (copy_to_user((void __user *)buf,
2011 			 get_dma_ptr(substream->runtime, channel, hwoff),
2012 			 bytes))
2013 		return -EFAULT;
2014 	return 0;
2015 }
2016 
2017 /* default copy_kernel ops for read */
2018 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2019 				    int channel, unsigned long hwoff,
2020 				    void *buf, unsigned long bytes)
2021 {
2022 	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2023 	return 0;
2024 }
2025 
2026 /* call transfer function with the converted pointers and sizes;
2027  * for interleaved mode, it's one shot for all samples
2028  */
2029 static int interleaved_copy(struct snd_pcm_substream *substream,
2030 			    snd_pcm_uframes_t hwoff, void *data,
2031 			    snd_pcm_uframes_t off,
2032 			    snd_pcm_uframes_t frames,
2033 			    pcm_transfer_f transfer)
2034 {
2035 	struct snd_pcm_runtime *runtime = substream->runtime;
2036 
2037 	/* convert to bytes */
2038 	hwoff = frames_to_bytes(runtime, hwoff);
2039 	off = frames_to_bytes(runtime, off);
2040 	frames = frames_to_bytes(runtime, frames);
2041 	return transfer(substream, 0, hwoff, data + off, frames);
2042 }
2043 
2044 /* call transfer function with the converted pointers and sizes for each
2045  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2046  */
2047 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2048 			       snd_pcm_uframes_t hwoff, void *data,
2049 			       snd_pcm_uframes_t off,
2050 			       snd_pcm_uframes_t frames,
2051 			       pcm_transfer_f transfer)
2052 {
2053 	struct snd_pcm_runtime *runtime = substream->runtime;
2054 	int channels = runtime->channels;
2055 	void **bufs = data;
2056 	int c, err;
2057 
2058 	/* convert to bytes; note that it's not frames_to_bytes() here.
2059 	 * in non-interleaved mode, we copy for each channel, thus
2060 	 * each copy is n_samples bytes x channels = whole frames.
2061 	 */
2062 	off = samples_to_bytes(runtime, off);
2063 	frames = samples_to_bytes(runtime, frames);
2064 	hwoff = samples_to_bytes(runtime, hwoff);
2065 	for (c = 0; c < channels; ++c, ++bufs) {
2066 		if (!data || !*bufs)
2067 			err = fill_silence(substream, c, hwoff, NULL, frames);
2068 		else
2069 			err = transfer(substream, c, hwoff, *bufs + off,
2070 				       frames);
2071 		if (err < 0)
2072 			return err;
2073 	}
2074 	return 0;
2075 }
2076 
2077 /* fill silence on the given buffer position;
2078  * called from snd_pcm_playback_silence()
2079  */
2080 static int fill_silence_frames(struct snd_pcm_substream *substream,
2081 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2082 {
2083 	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2084 	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2085 		return interleaved_copy(substream, off, NULL, 0, frames,
2086 					fill_silence);
2087 	else
2088 		return noninterleaved_copy(substream, off, NULL, 0, frames,
2089 					   fill_silence);
2090 }
2091 
2092 /* sanity-check for read/write methods */
2093 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2094 {
2095 	struct snd_pcm_runtime *runtime;
2096 	if (PCM_RUNTIME_CHECK(substream))
2097 		return -ENXIO;
2098 	runtime = substream->runtime;
2099 	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2100 		return -EINVAL;
2101 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2102 		return -EBADFD;
2103 	return 0;
2104 }
2105 
2106 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2107 {
2108 	switch (runtime->status->state) {
2109 	case SNDRV_PCM_STATE_PREPARED:
2110 	case SNDRV_PCM_STATE_RUNNING:
2111 	case SNDRV_PCM_STATE_PAUSED:
2112 		return 0;
2113 	case SNDRV_PCM_STATE_XRUN:
2114 		return -EPIPE;
2115 	case SNDRV_PCM_STATE_SUSPENDED:
2116 		return -ESTRPIPE;
2117 	default:
2118 		return -EBADFD;
2119 	}
2120 }
2121 
2122 /* update to the given appl_ptr and call ack callback if needed;
2123  * when an error is returned, take back to the original value
2124  */
2125 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2126 			   snd_pcm_uframes_t appl_ptr)
2127 {
2128 	struct snd_pcm_runtime *runtime = substream->runtime;
2129 	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2130 	int ret;
2131 
2132 	if (old_appl_ptr == appl_ptr)
2133 		return 0;
2134 
2135 	runtime->control->appl_ptr = appl_ptr;
2136 	if (substream->ops->ack) {
2137 		ret = substream->ops->ack(substream);
2138 		if (ret < 0) {
2139 			runtime->control->appl_ptr = old_appl_ptr;
2140 			return ret;
2141 		}
2142 	}
2143 
2144 	trace_applptr(substream, old_appl_ptr, appl_ptr);
2145 
2146 	return 0;
2147 }
2148 
2149 /* the common loop for read/write data */
2150 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2151 				     void *data, bool interleaved,
2152 				     snd_pcm_uframes_t size, bool in_kernel)
2153 {
2154 	struct snd_pcm_runtime *runtime = substream->runtime;
2155 	snd_pcm_uframes_t xfer = 0;
2156 	snd_pcm_uframes_t offset = 0;
2157 	snd_pcm_uframes_t avail;
2158 	pcm_copy_f writer;
2159 	pcm_transfer_f transfer;
2160 	bool nonblock;
2161 	bool is_playback;
2162 	int err;
2163 
2164 	err = pcm_sanity_check(substream);
2165 	if (err < 0)
2166 		return err;
2167 
2168 	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2169 	if (interleaved) {
2170 		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2171 		    runtime->channels > 1)
2172 			return -EINVAL;
2173 		writer = interleaved_copy;
2174 	} else {
2175 		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2176 			return -EINVAL;
2177 		writer = noninterleaved_copy;
2178 	}
2179 
2180 	if (!data) {
2181 		if (is_playback)
2182 			transfer = fill_silence;
2183 		else
2184 			return -EINVAL;
2185 	} else if (in_kernel) {
2186 		if (substream->ops->copy_kernel)
2187 			transfer = substream->ops->copy_kernel;
2188 		else
2189 			transfer = is_playback ?
2190 				default_write_copy_kernel : default_read_copy_kernel;
2191 	} else {
2192 		if (substream->ops->copy_user)
2193 			transfer = (pcm_transfer_f)substream->ops->copy_user;
2194 		else
2195 			transfer = is_playback ?
2196 				default_write_copy : default_read_copy;
2197 	}
2198 
2199 	if (size == 0)
2200 		return 0;
2201 
2202 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2203 
2204 	snd_pcm_stream_lock_irq(substream);
2205 	err = pcm_accessible_state(runtime);
2206 	if (err < 0)
2207 		goto _end_unlock;
2208 
2209 	runtime->twake = runtime->control->avail_min ? : 1;
2210 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2211 		snd_pcm_update_hw_ptr(substream);
2212 
2213 	/*
2214 	 * If size < start_threshold, wait indefinitely. Another
2215 	 * thread may start capture
2216 	 */
2217 	if (!is_playback &&
2218 	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2219 	    size >= runtime->start_threshold) {
2220 		err = snd_pcm_start(substream);
2221 		if (err < 0)
2222 			goto _end_unlock;
2223 	}
2224 
2225 	avail = snd_pcm_avail(substream);
2226 
2227 	while (size > 0) {
2228 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2229 		snd_pcm_uframes_t cont;
2230 		if (!avail) {
2231 			if (!is_playback &&
2232 			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2233 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2234 				goto _end_unlock;
2235 			}
2236 			if (nonblock) {
2237 				err = -EAGAIN;
2238 				goto _end_unlock;
2239 			}
2240 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2241 					runtime->control->avail_min ? : 1);
2242 			err = wait_for_avail(substream, &avail);
2243 			if (err < 0)
2244 				goto _end_unlock;
2245 			if (!avail)
2246 				continue; /* draining */
2247 		}
2248 		frames = size > avail ? avail : size;
2249 		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2250 		appl_ofs = appl_ptr % runtime->buffer_size;
2251 		cont = runtime->buffer_size - appl_ofs;
2252 		if (frames > cont)
2253 			frames = cont;
2254 		if (snd_BUG_ON(!frames)) {
2255 			err = -EINVAL;
2256 			goto _end_unlock;
2257 		}
2258 		snd_pcm_stream_unlock_irq(substream);
2259 		err = writer(substream, appl_ofs, data, offset, frames,
2260 			     transfer);
2261 		snd_pcm_stream_lock_irq(substream);
2262 		if (err < 0)
2263 			goto _end_unlock;
2264 		err = pcm_accessible_state(runtime);
2265 		if (err < 0)
2266 			goto _end_unlock;
2267 		appl_ptr += frames;
2268 		if (appl_ptr >= runtime->boundary)
2269 			appl_ptr -= runtime->boundary;
2270 		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2271 		if (err < 0)
2272 			goto _end_unlock;
2273 
2274 		offset += frames;
2275 		size -= frames;
2276 		xfer += frames;
2277 		avail -= frames;
2278 		if (is_playback &&
2279 		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2280 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2281 			err = snd_pcm_start(substream);
2282 			if (err < 0)
2283 				goto _end_unlock;
2284 		}
2285 	}
2286  _end_unlock:
2287 	runtime->twake = 0;
2288 	if (xfer > 0 && err >= 0)
2289 		snd_pcm_update_state(substream, runtime);
2290 	snd_pcm_stream_unlock_irq(substream);
2291 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2292 }
2293 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2294 
2295 /*
2296  * standard channel mapping helpers
2297  */
2298 
2299 /* default channel maps for multi-channel playbacks, up to 8 channels */
2300 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2301 	{ .channels = 1,
2302 	  .map = { SNDRV_CHMAP_MONO } },
2303 	{ .channels = 2,
2304 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2305 	{ .channels = 4,
2306 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2307 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2308 	{ .channels = 6,
2309 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2310 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2311 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2312 	{ .channels = 8,
2313 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2314 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2315 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2316 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2317 	{ }
2318 };
2319 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2320 
2321 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2322 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2323 	{ .channels = 1,
2324 	  .map = { SNDRV_CHMAP_MONO } },
2325 	{ .channels = 2,
2326 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2327 	{ .channels = 4,
2328 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2329 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2330 	{ .channels = 6,
2331 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2332 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2333 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2334 	{ .channels = 8,
2335 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2336 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2337 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2339 	{ }
2340 };
2341 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2342 
2343 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2344 {
2345 	if (ch > info->max_channels)
2346 		return false;
2347 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2348 }
2349 
2350 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2351 			      struct snd_ctl_elem_info *uinfo)
2352 {
2353 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2354 
2355 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2356 	uinfo->count = info->max_channels;
2357 	uinfo->value.integer.min = 0;
2358 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2359 	return 0;
2360 }
2361 
2362 /* get callback for channel map ctl element
2363  * stores the channel position firstly matching with the current channels
2364  */
2365 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2366 			     struct snd_ctl_elem_value *ucontrol)
2367 {
2368 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2369 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2370 	struct snd_pcm_substream *substream;
2371 	const struct snd_pcm_chmap_elem *map;
2372 
2373 	if (!info->chmap)
2374 		return -EINVAL;
2375 	substream = snd_pcm_chmap_substream(info, idx);
2376 	if (!substream)
2377 		return -ENODEV;
2378 	memset(ucontrol->value.integer.value, 0,
2379 	       sizeof(long) * info->max_channels);
2380 	if (!substream->runtime)
2381 		return 0; /* no channels set */
2382 	for (map = info->chmap; map->channels; map++) {
2383 		int i;
2384 		if (map->channels == substream->runtime->channels &&
2385 		    valid_chmap_channels(info, map->channels)) {
2386 			for (i = 0; i < map->channels; i++)
2387 				ucontrol->value.integer.value[i] = map->map[i];
2388 			return 0;
2389 		}
2390 	}
2391 	return -EINVAL;
2392 }
2393 
2394 /* tlv callback for channel map ctl element
2395  * expands the pre-defined channel maps in a form of TLV
2396  */
2397 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2398 			     unsigned int size, unsigned int __user *tlv)
2399 {
2400 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2401 	const struct snd_pcm_chmap_elem *map;
2402 	unsigned int __user *dst;
2403 	int c, count = 0;
2404 
2405 	if (!info->chmap)
2406 		return -EINVAL;
2407 	if (size < 8)
2408 		return -ENOMEM;
2409 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2410 		return -EFAULT;
2411 	size -= 8;
2412 	dst = tlv + 2;
2413 	for (map = info->chmap; map->channels; map++) {
2414 		int chs_bytes = map->channels * 4;
2415 		if (!valid_chmap_channels(info, map->channels))
2416 			continue;
2417 		if (size < 8)
2418 			return -ENOMEM;
2419 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2420 		    put_user(chs_bytes, dst + 1))
2421 			return -EFAULT;
2422 		dst += 2;
2423 		size -= 8;
2424 		count += 8;
2425 		if (size < chs_bytes)
2426 			return -ENOMEM;
2427 		size -= chs_bytes;
2428 		count += chs_bytes;
2429 		for (c = 0; c < map->channels; c++) {
2430 			if (put_user(map->map[c], dst))
2431 				return -EFAULT;
2432 			dst++;
2433 		}
2434 	}
2435 	if (put_user(count, tlv + 1))
2436 		return -EFAULT;
2437 	return 0;
2438 }
2439 
2440 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2441 {
2442 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2443 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2444 	kfree(info);
2445 }
2446 
2447 /**
2448  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2449  * @pcm: the assigned PCM instance
2450  * @stream: stream direction
2451  * @chmap: channel map elements (for query)
2452  * @max_channels: the max number of channels for the stream
2453  * @private_value: the value passed to each kcontrol's private_value field
2454  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2455  *
2456  * Create channel-mapping control elements assigned to the given PCM stream(s).
2457  * Return: Zero if successful, or a negative error value.
2458  */
2459 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2460 			   const struct snd_pcm_chmap_elem *chmap,
2461 			   int max_channels,
2462 			   unsigned long private_value,
2463 			   struct snd_pcm_chmap **info_ret)
2464 {
2465 	struct snd_pcm_chmap *info;
2466 	struct snd_kcontrol_new knew = {
2467 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2468 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2469 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2470 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2471 		.info = pcm_chmap_ctl_info,
2472 		.get = pcm_chmap_ctl_get,
2473 		.tlv.c = pcm_chmap_ctl_tlv,
2474 	};
2475 	int err;
2476 
2477 	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2478 		return -EBUSY;
2479 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2480 	if (!info)
2481 		return -ENOMEM;
2482 	info->pcm = pcm;
2483 	info->stream = stream;
2484 	info->chmap = chmap;
2485 	info->max_channels = max_channels;
2486 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2487 		knew.name = "Playback Channel Map";
2488 	else
2489 		knew.name = "Capture Channel Map";
2490 	knew.device = pcm->device;
2491 	knew.count = pcm->streams[stream].substream_count;
2492 	knew.private_value = private_value;
2493 	info->kctl = snd_ctl_new1(&knew, info);
2494 	if (!info->kctl) {
2495 		kfree(info);
2496 		return -ENOMEM;
2497 	}
2498 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2499 	err = snd_ctl_add(pcm->card, info->kctl);
2500 	if (err < 0)
2501 		return err;
2502 	pcm->streams[stream].chmap_kctl = info->kctl;
2503 	if (info_ret)
2504 		*info_ret = info;
2505 	return 0;
2506 }
2507 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2508