xref: /openbmc/linux/sound/core/pcm_lib.c (revision 275876e2)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34 
35 /*
36  * fill ring buffer with silence
37  * runtime->silence_start: starting pointer to silence area
38  * runtime->silence_filled: size filled with silence
39  * runtime->silence_threshold: threshold from application
40  * runtime->silence_size: maximal size from application
41  *
42  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43  */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 	struct snd_pcm_runtime *runtime = substream->runtime;
47 	snd_pcm_uframes_t frames, ofs, transfer;
48 
49 	if (runtime->silence_size < runtime->boundary) {
50 		snd_pcm_sframes_t noise_dist, n;
51 		if (runtime->silence_start != runtime->control->appl_ptr) {
52 			n = runtime->control->appl_ptr - runtime->silence_start;
53 			if (n < 0)
54 				n += runtime->boundary;
55 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 				runtime->silence_filled -= n;
57 			else
58 				runtime->silence_filled = 0;
59 			runtime->silence_start = runtime->control->appl_ptr;
60 		}
61 		if (runtime->silence_filled >= runtime->buffer_size)
62 			return;
63 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 			return;
66 		frames = runtime->silence_threshold - noise_dist;
67 		if (frames > runtime->silence_size)
68 			frames = runtime->silence_size;
69 	} else {
70 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
71 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 			if (avail > runtime->buffer_size)
73 				avail = runtime->buffer_size;
74 			runtime->silence_filled = avail > 0 ? avail : 0;
75 			runtime->silence_start = (runtime->status->hw_ptr +
76 						  runtime->silence_filled) %
77 						 runtime->boundary;
78 		} else {
79 			ofs = runtime->status->hw_ptr;
80 			frames = new_hw_ptr - ofs;
81 			if ((snd_pcm_sframes_t)frames < 0)
82 				frames += runtime->boundary;
83 			runtime->silence_filled -= frames;
84 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 				runtime->silence_filled = 0;
86 				runtime->silence_start = new_hw_ptr;
87 			} else {
88 				runtime->silence_start = ofs;
89 			}
90 		}
91 		frames = runtime->buffer_size - runtime->silence_filled;
92 	}
93 	if (snd_BUG_ON(frames > runtime->buffer_size))
94 		return;
95 	if (frames == 0)
96 		return;
97 	ofs = runtime->silence_start % runtime->buffer_size;
98 	while (frames > 0) {
99 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 			if (substream->ops->silence) {
103 				int err;
104 				err = substream->ops->silence(substream, -1, ofs, transfer);
105 				snd_BUG_ON(err < 0);
106 			} else {
107 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 			}
110 		} else {
111 			unsigned int c;
112 			unsigned int channels = runtime->channels;
113 			if (substream->ops->silence) {
114 				for (c = 0; c < channels; ++c) {
115 					int err;
116 					err = substream->ops->silence(substream, c, ofs, transfer);
117 					snd_BUG_ON(err < 0);
118 				}
119 			} else {
120 				size_t dma_csize = runtime->dma_bytes / channels;
121 				for (c = 0; c < channels; ++c) {
122 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 				}
125 			}
126 		}
127 		runtime->silence_filled += transfer;
128 		frames -= transfer;
129 		ofs = 0;
130 	}
131 }
132 
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 			   char *name, size_t len)
136 {
137 	snprintf(name, len, "pcmC%dD%d%c:%d",
138 		 substream->pcm->card->number,
139 		 substream->pcm->device,
140 		 substream->stream ? 'c' : 'p',
141 		 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145 
146 #define XRUN_DEBUG_BASIC	(1<<0)
147 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
151 #define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
153 
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155 
156 #define xrun_debug(substream, mask) \
157 			((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)	0
160 #endif
161 
162 #define dump_stack_on_xrun(substream) do {			\
163 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
164 			dump_stack();				\
165 	} while (0)
166 
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 	struct snd_pcm_runtime *runtime = substream->runtime;
170 
171 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 		char name[16];
176 		snd_pcm_debug_name(substream, name, sizeof(name));
177 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
178 		dump_stack_on_xrun(substream);
179 	}
180 }
181 
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...)				\
184 	do {								\
185 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
186 			xrun_log_show(substream);			\
187 			pr_err_ratelimited("ALSA: PCM: " fmt, ##args);	\
188 			dump_stack_on_xrun(substream);			\
189 		}							\
190 	} while (0)
191 
192 #define XRUN_LOG_CNT	10
193 
194 struct hwptr_log_entry {
195 	unsigned int in_interrupt;
196 	unsigned long jiffies;
197 	snd_pcm_uframes_t pos;
198 	snd_pcm_uframes_t period_size;
199 	snd_pcm_uframes_t buffer_size;
200 	snd_pcm_uframes_t old_hw_ptr;
201 	snd_pcm_uframes_t hw_ptr_base;
202 };
203 
204 struct snd_pcm_hwptr_log {
205 	unsigned int idx;
206 	unsigned int hit: 1;
207 	struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209 
210 static void xrun_log(struct snd_pcm_substream *substream,
211 		     snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 	struct snd_pcm_runtime *runtime = substream->runtime;
214 	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 	struct hwptr_log_entry *entry;
216 
217 	if (log == NULL) {
218 		log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 		if (log == NULL)
220 			return;
221 		runtime->hwptr_log = log;
222 	} else {
223 		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 			return;
225 	}
226 	entry = &log->entries[log->idx];
227 	entry->in_interrupt = in_interrupt;
228 	entry->jiffies = jiffies;
229 	entry->pos = pos;
230 	entry->period_size = runtime->period_size;
231 	entry->buffer_size = runtime->buffer_size;
232 	entry->old_hw_ptr = runtime->status->hw_ptr;
233 	entry->hw_ptr_base = runtime->hw_ptr_base;
234 	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236 
237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 	struct hwptr_log_entry *entry;
241 	char name[16];
242 	unsigned int idx;
243 	int cnt;
244 
245 	if (log == NULL)
246 		return;
247 	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 		return;
249 	snd_pcm_debug_name(substream, name, sizeof(name));
250 	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 		entry = &log->entries[idx];
252 		if (entry->period_size == 0)
253 			break;
254 		pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 			   "hwptr=%ld/%ld\n",
256 			   name, entry->in_interrupt ? "[Q] " : "",
257 			   entry->jiffies,
258 			   (unsigned long)entry->pos,
259 			   (unsigned long)entry->period_size,
260 			   (unsigned long)entry->buffer_size,
261 			   (unsigned long)entry->old_hw_ptr,
262 			   (unsigned long)entry->hw_ptr_base);
263 		idx++;
264 		idx %= XRUN_LOG_CNT;
265 	}
266 	log->hit = 1;
267 }
268 
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270 
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt)	do { } while (0)
273 #define xrun_log_show(substream)	do { } while (0)
274 
275 #endif
276 
277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 			 struct snd_pcm_runtime *runtime)
279 {
280 	snd_pcm_uframes_t avail;
281 
282 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 		avail = snd_pcm_playback_avail(runtime);
284 	else
285 		avail = snd_pcm_capture_avail(runtime);
286 	if (avail > runtime->avail_max)
287 		runtime->avail_max = avail;
288 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 		if (avail >= runtime->buffer_size) {
290 			snd_pcm_drain_done(substream);
291 			return -EPIPE;
292 		}
293 	} else {
294 		if (avail >= runtime->stop_threshold) {
295 			xrun(substream);
296 			return -EPIPE;
297 		}
298 	}
299 	if (runtime->twake) {
300 		if (avail >= runtime->twake)
301 			wake_up(&runtime->tsleep);
302 	} else if (avail >= runtime->control->avail_min)
303 		wake_up(&runtime->sleep);
304 	return 0;
305 }
306 
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 				  unsigned int in_interrupt)
309 {
310 	struct snd_pcm_runtime *runtime = substream->runtime;
311 	snd_pcm_uframes_t pos;
312 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 	snd_pcm_sframes_t hdelta, delta;
314 	unsigned long jdelta;
315 	unsigned long curr_jiffies;
316 	struct timespec curr_tstamp;
317 	struct timespec audio_tstamp;
318 	int crossed_boundary = 0;
319 
320 	old_hw_ptr = runtime->status->hw_ptr;
321 
322 	/*
323 	 * group pointer, time and jiffies reads to allow for more
324 	 * accurate correlations/corrections.
325 	 * The values are stored at the end of this routine after
326 	 * corrections for hw_ptr position
327 	 */
328 	pos = substream->ops->pointer(substream);
329 	curr_jiffies = jiffies;
330 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
331 		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332 
333 		if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
334 			(substream->ops->wall_clock))
335 			substream->ops->wall_clock(substream, &audio_tstamp);
336 	}
337 
338 	if (pos == SNDRV_PCM_POS_XRUN) {
339 		xrun(substream);
340 		return -EPIPE;
341 	}
342 	if (pos >= runtime->buffer_size) {
343 		if (printk_ratelimit()) {
344 			char name[16];
345 			snd_pcm_debug_name(substream, name, sizeof(name));
346 			xrun_log_show(substream);
347 			pcm_err(substream->pcm,
348 				"XRUN: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349 				name, pos, runtime->buffer_size,
350 				runtime->period_size);
351 		}
352 		pos = 0;
353 	}
354 	pos -= pos % runtime->min_align;
355 	if (xrun_debug(substream, XRUN_DEBUG_LOG))
356 		xrun_log(substream, pos, in_interrupt);
357 	hw_base = runtime->hw_ptr_base;
358 	new_hw_ptr = hw_base + pos;
359 	if (in_interrupt) {
360 		/* we know that one period was processed */
361 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
362 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
363 		if (delta > new_hw_ptr) {
364 			/* check for double acknowledged interrupts */
365 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
367 				hw_base += runtime->buffer_size;
368 				if (hw_base >= runtime->boundary) {
369 					hw_base = 0;
370 					crossed_boundary++;
371 				}
372 				new_hw_ptr = hw_base + pos;
373 				goto __delta;
374 			}
375 		}
376 	}
377 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
378 	/* pointer crosses the end of the ring buffer */
379 	if (new_hw_ptr < old_hw_ptr) {
380 		hw_base += runtime->buffer_size;
381 		if (hw_base >= runtime->boundary) {
382 			hw_base = 0;
383 			crossed_boundary++;
384 		}
385 		new_hw_ptr = hw_base + pos;
386 	}
387       __delta:
388 	delta = new_hw_ptr - old_hw_ptr;
389 	if (delta < 0)
390 		delta += runtime->boundary;
391 	if (xrun_debug(substream, in_interrupt ?
392 			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
393 		char name[16];
394 		snd_pcm_debug_name(substream, name, sizeof(name));
395 		pcm_dbg(substream->pcm,
396 			"%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397 			   in_interrupt ? "period" : "hwptr",
398 			   name,
399 			   (unsigned int)pos,
400 			   (unsigned int)runtime->period_size,
401 			   (unsigned int)runtime->buffer_size,
402 			   (unsigned long)delta,
403 			   (unsigned long)old_hw_ptr,
404 			   (unsigned long)new_hw_ptr,
405 			   (unsigned long)runtime->hw_ptr_base);
406 	}
407 
408 	if (runtime->no_period_wakeup) {
409 		snd_pcm_sframes_t xrun_threshold;
410 		/*
411 		 * Without regular period interrupts, we have to check
412 		 * the elapsed time to detect xruns.
413 		 */
414 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
415 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
416 			goto no_delta_check;
417 		hdelta = jdelta - delta * HZ / runtime->rate;
418 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
419 		while (hdelta > xrun_threshold) {
420 			delta += runtime->buffer_size;
421 			hw_base += runtime->buffer_size;
422 			if (hw_base >= runtime->boundary) {
423 				hw_base = 0;
424 				crossed_boundary++;
425 			}
426 			new_hw_ptr = hw_base + pos;
427 			hdelta -= runtime->hw_ptr_buffer_jiffies;
428 		}
429 		goto no_delta_check;
430 	}
431 
432 	/* something must be really wrong */
433 	if (delta >= runtime->buffer_size + runtime->period_size) {
434 		hw_ptr_error(substream,
435 			       "Unexpected hw_pointer value %s"
436 			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
437 			       "old_hw_ptr=%ld)\n",
438 				     in_interrupt ? "[Q] " : "[P]",
439 				     substream->stream, (long)pos,
440 				     (long)new_hw_ptr, (long)old_hw_ptr);
441 		return 0;
442 	}
443 
444 	/* Do jiffies check only in xrun_debug mode */
445 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
446 		goto no_jiffies_check;
447 
448 	/* Skip the jiffies check for hardwares with BATCH flag.
449 	 * Such hardware usually just increases the position at each IRQ,
450 	 * thus it can't give any strange position.
451 	 */
452 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
453 		goto no_jiffies_check;
454 	hdelta = delta;
455 	if (hdelta < runtime->delay)
456 		goto no_jiffies_check;
457 	hdelta -= runtime->delay;
458 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
459 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
460 		delta = jdelta /
461 			(((runtime->period_size * HZ) / runtime->rate)
462 								+ HZ/100);
463 		/* move new_hw_ptr according jiffies not pos variable */
464 		new_hw_ptr = old_hw_ptr;
465 		hw_base = delta;
466 		/* use loop to avoid checks for delta overflows */
467 		/* the delta value is small or zero in most cases */
468 		while (delta > 0) {
469 			new_hw_ptr += runtime->period_size;
470 			if (new_hw_ptr >= runtime->boundary) {
471 				new_hw_ptr -= runtime->boundary;
472 				crossed_boundary--;
473 			}
474 			delta--;
475 		}
476 		/* align hw_base to buffer_size */
477 		hw_ptr_error(substream,
478 			     "hw_ptr skipping! %s"
479 			     "(pos=%ld, delta=%ld, period=%ld, "
480 			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481 			     in_interrupt ? "[Q] " : "",
482 			     (long)pos, (long)hdelta,
483 			     (long)runtime->period_size, jdelta,
484 			     ((hdelta * HZ) / runtime->rate), hw_base,
485 			     (unsigned long)old_hw_ptr,
486 			     (unsigned long)new_hw_ptr);
487 		/* reset values to proper state */
488 		delta = 0;
489 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
490 	}
491  no_jiffies_check:
492 	if (delta > runtime->period_size + runtime->period_size / 2) {
493 		hw_ptr_error(substream,
494 			     "Lost interrupts? %s"
495 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
496 			     "old_hw_ptr=%ld)\n",
497 			     in_interrupt ? "[Q] " : "",
498 			     substream->stream, (long)delta,
499 			     (long)new_hw_ptr,
500 			     (long)old_hw_ptr);
501 	}
502 
503  no_delta_check:
504 	if (runtime->status->hw_ptr == new_hw_ptr)
505 		return 0;
506 
507 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
508 	    runtime->silence_size > 0)
509 		snd_pcm_playback_silence(substream, new_hw_ptr);
510 
511 	if (in_interrupt) {
512 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
513 		if (delta < 0)
514 			delta += runtime->boundary;
515 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
516 		runtime->hw_ptr_interrupt += delta;
517 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
518 			runtime->hw_ptr_interrupt -= runtime->boundary;
519 	}
520 	runtime->hw_ptr_base = hw_base;
521 	runtime->status->hw_ptr = new_hw_ptr;
522 	runtime->hw_ptr_jiffies = curr_jiffies;
523 	if (crossed_boundary) {
524 		snd_BUG_ON(crossed_boundary != 1);
525 		runtime->hw_ptr_wrap += runtime->boundary;
526 	}
527 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
528 		runtime->status->tstamp = curr_tstamp;
529 
530 		if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
531 			/*
532 			 * no wall clock available, provide audio timestamp
533 			 * derived from pointer position+delay
534 			 */
535 			u64 audio_frames, audio_nsecs;
536 
537 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
538 				audio_frames = runtime->hw_ptr_wrap
539 					+ runtime->status->hw_ptr
540 					- runtime->delay;
541 			else
542 				audio_frames = runtime->hw_ptr_wrap
543 					+ runtime->status->hw_ptr
544 					+ runtime->delay;
545 			audio_nsecs = div_u64(audio_frames * 1000000000LL,
546 					runtime->rate);
547 			audio_tstamp = ns_to_timespec(audio_nsecs);
548 		}
549 		runtime->status->audio_tstamp = audio_tstamp;
550 	}
551 
552 	return snd_pcm_update_state(substream, runtime);
553 }
554 
555 /* CAUTION: call it with irq disabled */
556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
557 {
558 	return snd_pcm_update_hw_ptr0(substream, 0);
559 }
560 
561 /**
562  * snd_pcm_set_ops - set the PCM operators
563  * @pcm: the pcm instance
564  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565  * @ops: the operator table
566  *
567  * Sets the given PCM operators to the pcm instance.
568  */
569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
570 		     const struct snd_pcm_ops *ops)
571 {
572 	struct snd_pcm_str *stream = &pcm->streams[direction];
573 	struct snd_pcm_substream *substream;
574 
575 	for (substream = stream->substream; substream != NULL; substream = substream->next)
576 		substream->ops = ops;
577 }
578 
579 EXPORT_SYMBOL(snd_pcm_set_ops);
580 
581 /**
582  * snd_pcm_sync - set the PCM sync id
583  * @substream: the pcm substream
584  *
585  * Sets the PCM sync identifier for the card.
586  */
587 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
588 {
589 	struct snd_pcm_runtime *runtime = substream->runtime;
590 
591 	runtime->sync.id32[0] = substream->pcm->card->number;
592 	runtime->sync.id32[1] = -1;
593 	runtime->sync.id32[2] = -1;
594 	runtime->sync.id32[3] = -1;
595 }
596 
597 EXPORT_SYMBOL(snd_pcm_set_sync);
598 
599 /*
600  *  Standard ioctl routine
601  */
602 
603 static inline unsigned int div32(unsigned int a, unsigned int b,
604 				 unsigned int *r)
605 {
606 	if (b == 0) {
607 		*r = 0;
608 		return UINT_MAX;
609 	}
610 	*r = a % b;
611 	return a / b;
612 }
613 
614 static inline unsigned int div_down(unsigned int a, unsigned int b)
615 {
616 	if (b == 0)
617 		return UINT_MAX;
618 	return a / b;
619 }
620 
621 static inline unsigned int div_up(unsigned int a, unsigned int b)
622 {
623 	unsigned int r;
624 	unsigned int q;
625 	if (b == 0)
626 		return UINT_MAX;
627 	q = div32(a, b, &r);
628 	if (r)
629 		++q;
630 	return q;
631 }
632 
633 static inline unsigned int mul(unsigned int a, unsigned int b)
634 {
635 	if (a == 0)
636 		return 0;
637 	if (div_down(UINT_MAX, a) < b)
638 		return UINT_MAX;
639 	return a * b;
640 }
641 
642 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
643 				    unsigned int c, unsigned int *r)
644 {
645 	u_int64_t n = (u_int64_t) a * b;
646 	if (c == 0) {
647 		snd_BUG_ON(!n);
648 		*r = 0;
649 		return UINT_MAX;
650 	}
651 	n = div_u64_rem(n, c, r);
652 	if (n >= UINT_MAX) {
653 		*r = 0;
654 		return UINT_MAX;
655 	}
656 	return n;
657 }
658 
659 /**
660  * snd_interval_refine - refine the interval value of configurator
661  * @i: the interval value to refine
662  * @v: the interval value to refer to
663  *
664  * Refines the interval value with the reference value.
665  * The interval is changed to the range satisfying both intervals.
666  * The interval status (min, max, integer, etc.) are evaluated.
667  *
668  * Return: Positive if the value is changed, zero if it's not changed, or a
669  * negative error code.
670  */
671 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
672 {
673 	int changed = 0;
674 	if (snd_BUG_ON(snd_interval_empty(i)))
675 		return -EINVAL;
676 	if (i->min < v->min) {
677 		i->min = v->min;
678 		i->openmin = v->openmin;
679 		changed = 1;
680 	} else if (i->min == v->min && !i->openmin && v->openmin) {
681 		i->openmin = 1;
682 		changed = 1;
683 	}
684 	if (i->max > v->max) {
685 		i->max = v->max;
686 		i->openmax = v->openmax;
687 		changed = 1;
688 	} else if (i->max == v->max && !i->openmax && v->openmax) {
689 		i->openmax = 1;
690 		changed = 1;
691 	}
692 	if (!i->integer && v->integer) {
693 		i->integer = 1;
694 		changed = 1;
695 	}
696 	if (i->integer) {
697 		if (i->openmin) {
698 			i->min++;
699 			i->openmin = 0;
700 		}
701 		if (i->openmax) {
702 			i->max--;
703 			i->openmax = 0;
704 		}
705 	} else if (!i->openmin && !i->openmax && i->min == i->max)
706 		i->integer = 1;
707 	if (snd_interval_checkempty(i)) {
708 		snd_interval_none(i);
709 		return -EINVAL;
710 	}
711 	return changed;
712 }
713 
714 EXPORT_SYMBOL(snd_interval_refine);
715 
716 static int snd_interval_refine_first(struct snd_interval *i)
717 {
718 	if (snd_BUG_ON(snd_interval_empty(i)))
719 		return -EINVAL;
720 	if (snd_interval_single(i))
721 		return 0;
722 	i->max = i->min;
723 	i->openmax = i->openmin;
724 	if (i->openmax)
725 		i->max++;
726 	return 1;
727 }
728 
729 static int snd_interval_refine_last(struct snd_interval *i)
730 {
731 	if (snd_BUG_ON(snd_interval_empty(i)))
732 		return -EINVAL;
733 	if (snd_interval_single(i))
734 		return 0;
735 	i->min = i->max;
736 	i->openmin = i->openmax;
737 	if (i->openmin)
738 		i->min--;
739 	return 1;
740 }
741 
742 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
743 {
744 	if (a->empty || b->empty) {
745 		snd_interval_none(c);
746 		return;
747 	}
748 	c->empty = 0;
749 	c->min = mul(a->min, b->min);
750 	c->openmin = (a->openmin || b->openmin);
751 	c->max = mul(a->max,  b->max);
752 	c->openmax = (a->openmax || b->openmax);
753 	c->integer = (a->integer && b->integer);
754 }
755 
756 /**
757  * snd_interval_div - refine the interval value with division
758  * @a: dividend
759  * @b: divisor
760  * @c: quotient
761  *
762  * c = a / b
763  *
764  * Returns non-zero if the value is changed, zero if not changed.
765  */
766 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
767 {
768 	unsigned int r;
769 	if (a->empty || b->empty) {
770 		snd_interval_none(c);
771 		return;
772 	}
773 	c->empty = 0;
774 	c->min = div32(a->min, b->max, &r);
775 	c->openmin = (r || a->openmin || b->openmax);
776 	if (b->min > 0) {
777 		c->max = div32(a->max, b->min, &r);
778 		if (r) {
779 			c->max++;
780 			c->openmax = 1;
781 		} else
782 			c->openmax = (a->openmax || b->openmin);
783 	} else {
784 		c->max = UINT_MAX;
785 		c->openmax = 0;
786 	}
787 	c->integer = 0;
788 }
789 
790 /**
791  * snd_interval_muldivk - refine the interval value
792  * @a: dividend 1
793  * @b: dividend 2
794  * @k: divisor (as integer)
795  * @c: result
796   *
797  * c = a * b / k
798  *
799  * Returns non-zero if the value is changed, zero if not changed.
800  */
801 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
802 		      unsigned int k, struct snd_interval *c)
803 {
804 	unsigned int r;
805 	if (a->empty || b->empty) {
806 		snd_interval_none(c);
807 		return;
808 	}
809 	c->empty = 0;
810 	c->min = muldiv32(a->min, b->min, k, &r);
811 	c->openmin = (r || a->openmin || b->openmin);
812 	c->max = muldiv32(a->max, b->max, k, &r);
813 	if (r) {
814 		c->max++;
815 		c->openmax = 1;
816 	} else
817 		c->openmax = (a->openmax || b->openmax);
818 	c->integer = 0;
819 }
820 
821 /**
822  * snd_interval_mulkdiv - refine the interval value
823  * @a: dividend 1
824  * @k: dividend 2 (as integer)
825  * @b: divisor
826  * @c: result
827  *
828  * c = a * k / b
829  *
830  * Returns non-zero if the value is changed, zero if not changed.
831  */
832 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
833 		      const struct snd_interval *b, struct snd_interval *c)
834 {
835 	unsigned int r;
836 	if (a->empty || b->empty) {
837 		snd_interval_none(c);
838 		return;
839 	}
840 	c->empty = 0;
841 	c->min = muldiv32(a->min, k, b->max, &r);
842 	c->openmin = (r || a->openmin || b->openmax);
843 	if (b->min > 0) {
844 		c->max = muldiv32(a->max, k, b->min, &r);
845 		if (r) {
846 			c->max++;
847 			c->openmax = 1;
848 		} else
849 			c->openmax = (a->openmax || b->openmin);
850 	} else {
851 		c->max = UINT_MAX;
852 		c->openmax = 0;
853 	}
854 	c->integer = 0;
855 }
856 
857 /* ---- */
858 
859 
860 /**
861  * snd_interval_ratnum - refine the interval value
862  * @i: interval to refine
863  * @rats_count: number of ratnum_t
864  * @rats: ratnum_t array
865  * @nump: pointer to store the resultant numerator
866  * @denp: pointer to store the resultant denominator
867  *
868  * Return: Positive if the value is changed, zero if it's not changed, or a
869  * negative error code.
870  */
871 int snd_interval_ratnum(struct snd_interval *i,
872 			unsigned int rats_count, struct snd_ratnum *rats,
873 			unsigned int *nump, unsigned int *denp)
874 {
875 	unsigned int best_num, best_den;
876 	int best_diff;
877 	unsigned int k;
878 	struct snd_interval t;
879 	int err;
880 	unsigned int result_num, result_den;
881 	int result_diff;
882 
883 	best_num = best_den = best_diff = 0;
884 	for (k = 0; k < rats_count; ++k) {
885 		unsigned int num = rats[k].num;
886 		unsigned int den;
887 		unsigned int q = i->min;
888 		int diff;
889 		if (q == 0)
890 			q = 1;
891 		den = div_up(num, q);
892 		if (den < rats[k].den_min)
893 			continue;
894 		if (den > rats[k].den_max)
895 			den = rats[k].den_max;
896 		else {
897 			unsigned int r;
898 			r = (den - rats[k].den_min) % rats[k].den_step;
899 			if (r != 0)
900 				den -= r;
901 		}
902 		diff = num - q * den;
903 		if (diff < 0)
904 			diff = -diff;
905 		if (best_num == 0 ||
906 		    diff * best_den < best_diff * den) {
907 			best_diff = diff;
908 			best_den = den;
909 			best_num = num;
910 		}
911 	}
912 	if (best_den == 0) {
913 		i->empty = 1;
914 		return -EINVAL;
915 	}
916 	t.min = div_down(best_num, best_den);
917 	t.openmin = !!(best_num % best_den);
918 
919 	result_num = best_num;
920 	result_diff = best_diff;
921 	result_den = best_den;
922 	best_num = best_den = best_diff = 0;
923 	for (k = 0; k < rats_count; ++k) {
924 		unsigned int num = rats[k].num;
925 		unsigned int den;
926 		unsigned int q = i->max;
927 		int diff;
928 		if (q == 0) {
929 			i->empty = 1;
930 			return -EINVAL;
931 		}
932 		den = div_down(num, q);
933 		if (den > rats[k].den_max)
934 			continue;
935 		if (den < rats[k].den_min)
936 			den = rats[k].den_min;
937 		else {
938 			unsigned int r;
939 			r = (den - rats[k].den_min) % rats[k].den_step;
940 			if (r != 0)
941 				den += rats[k].den_step - r;
942 		}
943 		diff = q * den - num;
944 		if (diff < 0)
945 			diff = -diff;
946 		if (best_num == 0 ||
947 		    diff * best_den < best_diff * den) {
948 			best_diff = diff;
949 			best_den = den;
950 			best_num = num;
951 		}
952 	}
953 	if (best_den == 0) {
954 		i->empty = 1;
955 		return -EINVAL;
956 	}
957 	t.max = div_up(best_num, best_den);
958 	t.openmax = !!(best_num % best_den);
959 	t.integer = 0;
960 	err = snd_interval_refine(i, &t);
961 	if (err < 0)
962 		return err;
963 
964 	if (snd_interval_single(i)) {
965 		if (best_diff * result_den < result_diff * best_den) {
966 			result_num = best_num;
967 			result_den = best_den;
968 		}
969 		if (nump)
970 			*nump = result_num;
971 		if (denp)
972 			*denp = result_den;
973 	}
974 	return err;
975 }
976 
977 EXPORT_SYMBOL(snd_interval_ratnum);
978 
979 /**
980  * snd_interval_ratden - refine the interval value
981  * @i: interval to refine
982  * @rats_count: number of struct ratden
983  * @rats: struct ratden array
984  * @nump: pointer to store the resultant numerator
985  * @denp: pointer to store the resultant denominator
986  *
987  * Return: Positive if the value is changed, zero if it's not changed, or a
988  * negative error code.
989  */
990 static int snd_interval_ratden(struct snd_interval *i,
991 			       unsigned int rats_count, struct snd_ratden *rats,
992 			       unsigned int *nump, unsigned int *denp)
993 {
994 	unsigned int best_num, best_diff, best_den;
995 	unsigned int k;
996 	struct snd_interval t;
997 	int err;
998 
999 	best_num = best_den = best_diff = 0;
1000 	for (k = 0; k < rats_count; ++k) {
1001 		unsigned int num;
1002 		unsigned int den = rats[k].den;
1003 		unsigned int q = i->min;
1004 		int diff;
1005 		num = mul(q, den);
1006 		if (num > rats[k].num_max)
1007 			continue;
1008 		if (num < rats[k].num_min)
1009 			num = rats[k].num_max;
1010 		else {
1011 			unsigned int r;
1012 			r = (num - rats[k].num_min) % rats[k].num_step;
1013 			if (r != 0)
1014 				num += rats[k].num_step - r;
1015 		}
1016 		diff = num - q * den;
1017 		if (best_num == 0 ||
1018 		    diff * best_den < best_diff * den) {
1019 			best_diff = diff;
1020 			best_den = den;
1021 			best_num = num;
1022 		}
1023 	}
1024 	if (best_den == 0) {
1025 		i->empty = 1;
1026 		return -EINVAL;
1027 	}
1028 	t.min = div_down(best_num, best_den);
1029 	t.openmin = !!(best_num % best_den);
1030 
1031 	best_num = best_den = best_diff = 0;
1032 	for (k = 0; k < rats_count; ++k) {
1033 		unsigned int num;
1034 		unsigned int den = rats[k].den;
1035 		unsigned int q = i->max;
1036 		int diff;
1037 		num = mul(q, den);
1038 		if (num < rats[k].num_min)
1039 			continue;
1040 		if (num > rats[k].num_max)
1041 			num = rats[k].num_max;
1042 		else {
1043 			unsigned int r;
1044 			r = (num - rats[k].num_min) % rats[k].num_step;
1045 			if (r != 0)
1046 				num -= r;
1047 		}
1048 		diff = q * den - num;
1049 		if (best_num == 0 ||
1050 		    diff * best_den < best_diff * den) {
1051 			best_diff = diff;
1052 			best_den = den;
1053 			best_num = num;
1054 		}
1055 	}
1056 	if (best_den == 0) {
1057 		i->empty = 1;
1058 		return -EINVAL;
1059 	}
1060 	t.max = div_up(best_num, best_den);
1061 	t.openmax = !!(best_num % best_den);
1062 	t.integer = 0;
1063 	err = snd_interval_refine(i, &t);
1064 	if (err < 0)
1065 		return err;
1066 
1067 	if (snd_interval_single(i)) {
1068 		if (nump)
1069 			*nump = best_num;
1070 		if (denp)
1071 			*denp = best_den;
1072 	}
1073 	return err;
1074 }
1075 
1076 /**
1077  * snd_interval_list - refine the interval value from the list
1078  * @i: the interval value to refine
1079  * @count: the number of elements in the list
1080  * @list: the value list
1081  * @mask: the bit-mask to evaluate
1082  *
1083  * Refines the interval value from the list.
1084  * When mask is non-zero, only the elements corresponding to bit 1 are
1085  * evaluated.
1086  *
1087  * Return: Positive if the value is changed, zero if it's not changed, or a
1088  * negative error code.
1089  */
1090 int snd_interval_list(struct snd_interval *i, unsigned int count,
1091 		      const unsigned int *list, unsigned int mask)
1092 {
1093         unsigned int k;
1094 	struct snd_interval list_range;
1095 
1096 	if (!count) {
1097 		i->empty = 1;
1098 		return -EINVAL;
1099 	}
1100 	snd_interval_any(&list_range);
1101 	list_range.min = UINT_MAX;
1102 	list_range.max = 0;
1103         for (k = 0; k < count; k++) {
1104 		if (mask && !(mask & (1 << k)))
1105 			continue;
1106 		if (!snd_interval_test(i, list[k]))
1107 			continue;
1108 		list_range.min = min(list_range.min, list[k]);
1109 		list_range.max = max(list_range.max, list[k]);
1110         }
1111 	return snd_interval_refine(i, &list_range);
1112 }
1113 
1114 EXPORT_SYMBOL(snd_interval_list);
1115 
1116 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1117 {
1118 	unsigned int n;
1119 	int changed = 0;
1120 	n = (i->min - min) % step;
1121 	if (n != 0 || i->openmin) {
1122 		i->min += step - n;
1123 		changed = 1;
1124 	}
1125 	n = (i->max - min) % step;
1126 	if (n != 0 || i->openmax) {
1127 		i->max -= n;
1128 		changed = 1;
1129 	}
1130 	if (snd_interval_checkempty(i)) {
1131 		i->empty = 1;
1132 		return -EINVAL;
1133 	}
1134 	return changed;
1135 }
1136 
1137 /* Info constraints helpers */
1138 
1139 /**
1140  * snd_pcm_hw_rule_add - add the hw-constraint rule
1141  * @runtime: the pcm runtime instance
1142  * @cond: condition bits
1143  * @var: the variable to evaluate
1144  * @func: the evaluation function
1145  * @private: the private data pointer passed to function
1146  * @dep: the dependent variables
1147  *
1148  * Return: Zero if successful, or a negative error code on failure.
1149  */
1150 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1151 			int var,
1152 			snd_pcm_hw_rule_func_t func, void *private,
1153 			int dep, ...)
1154 {
1155 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1156 	struct snd_pcm_hw_rule *c;
1157 	unsigned int k;
1158 	va_list args;
1159 	va_start(args, dep);
1160 	if (constrs->rules_num >= constrs->rules_all) {
1161 		struct snd_pcm_hw_rule *new;
1162 		unsigned int new_rules = constrs->rules_all + 16;
1163 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1164 		if (!new) {
1165 			va_end(args);
1166 			return -ENOMEM;
1167 		}
1168 		if (constrs->rules) {
1169 			memcpy(new, constrs->rules,
1170 			       constrs->rules_num * sizeof(*c));
1171 			kfree(constrs->rules);
1172 		}
1173 		constrs->rules = new;
1174 		constrs->rules_all = new_rules;
1175 	}
1176 	c = &constrs->rules[constrs->rules_num];
1177 	c->cond = cond;
1178 	c->func = func;
1179 	c->var = var;
1180 	c->private = private;
1181 	k = 0;
1182 	while (1) {
1183 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1184 			va_end(args);
1185 			return -EINVAL;
1186 		}
1187 		c->deps[k++] = dep;
1188 		if (dep < 0)
1189 			break;
1190 		dep = va_arg(args, int);
1191 	}
1192 	constrs->rules_num++;
1193 	va_end(args);
1194 	return 0;
1195 }
1196 
1197 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1198 
1199 /**
1200  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1201  * @runtime: PCM runtime instance
1202  * @var: hw_params variable to apply the mask
1203  * @mask: the bitmap mask
1204  *
1205  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1206  *
1207  * Return: Zero if successful, or a negative error code on failure.
1208  */
1209 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1210 			       u_int32_t mask)
1211 {
1212 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1213 	struct snd_mask *maskp = constrs_mask(constrs, var);
1214 	*maskp->bits &= mask;
1215 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1216 	if (*maskp->bits == 0)
1217 		return -EINVAL;
1218 	return 0;
1219 }
1220 
1221 /**
1222  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1223  * @runtime: PCM runtime instance
1224  * @var: hw_params variable to apply the mask
1225  * @mask: the 64bit bitmap mask
1226  *
1227  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1228  *
1229  * Return: Zero if successful, or a negative error code on failure.
1230  */
1231 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1232 				 u_int64_t mask)
1233 {
1234 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1235 	struct snd_mask *maskp = constrs_mask(constrs, var);
1236 	maskp->bits[0] &= (u_int32_t)mask;
1237 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1238 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1239 	if (! maskp->bits[0] && ! maskp->bits[1])
1240 		return -EINVAL;
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1244 
1245 /**
1246  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1247  * @runtime: PCM runtime instance
1248  * @var: hw_params variable to apply the integer constraint
1249  *
1250  * Apply the constraint of integer to an interval parameter.
1251  *
1252  * Return: Positive if the value is changed, zero if it's not changed, or a
1253  * negative error code.
1254  */
1255 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1256 {
1257 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1258 	return snd_interval_setinteger(constrs_interval(constrs, var));
1259 }
1260 
1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1262 
1263 /**
1264  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1265  * @runtime: PCM runtime instance
1266  * @var: hw_params variable to apply the range
1267  * @min: the minimal value
1268  * @max: the maximal value
1269  *
1270  * Apply the min/max range constraint to an interval parameter.
1271  *
1272  * Return: Positive if the value is changed, zero if it's not changed, or a
1273  * negative error code.
1274  */
1275 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1276 				 unsigned int min, unsigned int max)
1277 {
1278 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1279 	struct snd_interval t;
1280 	t.min = min;
1281 	t.max = max;
1282 	t.openmin = t.openmax = 0;
1283 	t.integer = 0;
1284 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1285 }
1286 
1287 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1288 
1289 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1290 				struct snd_pcm_hw_rule *rule)
1291 {
1292 	struct snd_pcm_hw_constraint_list *list = rule->private;
1293 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294 }
1295 
1296 
1297 /**
1298  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1299  * @runtime: PCM runtime instance
1300  * @cond: condition bits
1301  * @var: hw_params variable to apply the list constraint
1302  * @l: list
1303  *
1304  * Apply the list of constraints to an interval parameter.
1305  *
1306  * Return: Zero if successful, or a negative error code on failure.
1307  */
1308 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1309 			       unsigned int cond,
1310 			       snd_pcm_hw_param_t var,
1311 			       const struct snd_pcm_hw_constraint_list *l)
1312 {
1313 	return snd_pcm_hw_rule_add(runtime, cond, var,
1314 				   snd_pcm_hw_rule_list, (void *)l,
1315 				   var, -1);
1316 }
1317 
1318 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1319 
1320 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1321 				   struct snd_pcm_hw_rule *rule)
1322 {
1323 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1324 	unsigned int num = 0, den = 0;
1325 	int err;
1326 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1327 				  r->nrats, r->rats, &num, &den);
1328 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1329 		params->rate_num = num;
1330 		params->rate_den = den;
1331 	}
1332 	return err;
1333 }
1334 
1335 /**
1336  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1337  * @runtime: PCM runtime instance
1338  * @cond: condition bits
1339  * @var: hw_params variable to apply the ratnums constraint
1340  * @r: struct snd_ratnums constriants
1341  *
1342  * Return: Zero if successful, or a negative error code on failure.
1343  */
1344 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1345 				  unsigned int cond,
1346 				  snd_pcm_hw_param_t var,
1347 				  struct snd_pcm_hw_constraint_ratnums *r)
1348 {
1349 	return snd_pcm_hw_rule_add(runtime, cond, var,
1350 				   snd_pcm_hw_rule_ratnums, r,
1351 				   var, -1);
1352 }
1353 
1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1355 
1356 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1357 				   struct snd_pcm_hw_rule *rule)
1358 {
1359 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1360 	unsigned int num = 0, den = 0;
1361 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1362 				  r->nrats, r->rats, &num, &den);
1363 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364 		params->rate_num = num;
1365 		params->rate_den = den;
1366 	}
1367 	return err;
1368 }
1369 
1370 /**
1371  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the ratdens constraint
1375  * @r: struct snd_ratdens constriants
1376  *
1377  * Return: Zero if successful, or a negative error code on failure.
1378  */
1379 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1380 				  unsigned int cond,
1381 				  snd_pcm_hw_param_t var,
1382 				  struct snd_pcm_hw_constraint_ratdens *r)
1383 {
1384 	return snd_pcm_hw_rule_add(runtime, cond, var,
1385 				   snd_pcm_hw_rule_ratdens, r,
1386 				   var, -1);
1387 }
1388 
1389 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390 
1391 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392 				  struct snd_pcm_hw_rule *rule)
1393 {
1394 	unsigned int l = (unsigned long) rule->private;
1395 	int width = l & 0xffff;
1396 	unsigned int msbits = l >> 16;
1397 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1398 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1399 		params->msbits = msbits;
1400 	return 0;
1401 }
1402 
1403 /**
1404  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405  * @runtime: PCM runtime instance
1406  * @cond: condition bits
1407  * @width: sample bits width
1408  * @msbits: msbits width
1409  *
1410  * Return: Zero if successful, or a negative error code on failure.
1411  */
1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1413 				 unsigned int cond,
1414 				 unsigned int width,
1415 				 unsigned int msbits)
1416 {
1417 	unsigned long l = (msbits << 16) | width;
1418 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1419 				    snd_pcm_hw_rule_msbits,
1420 				    (void*) l,
1421 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 }
1423 
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425 
1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427 				struct snd_pcm_hw_rule *rule)
1428 {
1429 	unsigned long step = (unsigned long) rule->private;
1430 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1431 }
1432 
1433 /**
1434  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435  * @runtime: PCM runtime instance
1436  * @cond: condition bits
1437  * @var: hw_params variable to apply the step constraint
1438  * @step: step size
1439  *
1440  * Return: Zero if successful, or a negative error code on failure.
1441  */
1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443 			       unsigned int cond,
1444 			       snd_pcm_hw_param_t var,
1445 			       unsigned long step)
1446 {
1447 	return snd_pcm_hw_rule_add(runtime, cond, var,
1448 				   snd_pcm_hw_rule_step, (void *) step,
1449 				   var, -1);
1450 }
1451 
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453 
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456 	static unsigned int pow2_sizes[] = {
1457 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461 	};
1462 	return snd_interval_list(hw_param_interval(params, rule->var),
1463 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }
1465 
1466 /**
1467  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468  * @runtime: PCM runtime instance
1469  * @cond: condition bits
1470  * @var: hw_params variable to apply the power-of-2 constraint
1471  *
1472  * Return: Zero if successful, or a negative error code on failure.
1473  */
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475 			       unsigned int cond,
1476 			       snd_pcm_hw_param_t var)
1477 {
1478 	return snd_pcm_hw_rule_add(runtime, cond, var,
1479 				   snd_pcm_hw_rule_pow2, NULL,
1480 				   var, -1);
1481 }
1482 
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484 
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486 					   struct snd_pcm_hw_rule *rule)
1487 {
1488 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489 	struct snd_interval *rate;
1490 
1491 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492 	return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494 
1495 /**
1496  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497  * @runtime: PCM runtime instance
1498  * @base_rate: the rate at which the hardware does not resample
1499  *
1500  * Return: Zero if successful, or a negative error code on failure.
1501  */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503 			       unsigned int base_rate)
1504 {
1505 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506 				   SNDRV_PCM_HW_PARAM_RATE,
1507 				   snd_pcm_hw_rule_noresample_func,
1508 				   (void *)(uintptr_t)base_rate,
1509 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512 
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514 				  snd_pcm_hw_param_t var)
1515 {
1516 	if (hw_is_mask(var)) {
1517 		snd_mask_any(hw_param_mask(params, var));
1518 		params->cmask |= 1 << var;
1519 		params->rmask |= 1 << var;
1520 		return;
1521 	}
1522 	if (hw_is_interval(var)) {
1523 		snd_interval_any(hw_param_interval(params, var));
1524 		params->cmask |= 1 << var;
1525 		params->rmask |= 1 << var;
1526 		return;
1527 	}
1528 	snd_BUG();
1529 }
1530 
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533 	unsigned int k;
1534 	memset(params, 0, sizeof(*params));
1535 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536 		_snd_pcm_hw_param_any(params, k);
1537 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538 		_snd_pcm_hw_param_any(params, k);
1539 	params->info = ~0U;
1540 }
1541 
1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543 
1544 /**
1545  * snd_pcm_hw_param_value - return @params field @var value
1546  * @params: the hw_params instance
1547  * @var: parameter to retrieve
1548  * @dir: pointer to the direction (-1,0,1) or %NULL
1549  *
1550  * Return: The value for field @var if it's fixed in configuration space
1551  * defined by @params. -%EINVAL otherwise.
1552  */
1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554 			   snd_pcm_hw_param_t var, int *dir)
1555 {
1556 	if (hw_is_mask(var)) {
1557 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1558 		if (!snd_mask_single(mask))
1559 			return -EINVAL;
1560 		if (dir)
1561 			*dir = 0;
1562 		return snd_mask_value(mask);
1563 	}
1564 	if (hw_is_interval(var)) {
1565 		const struct snd_interval *i = hw_param_interval_c(params, var);
1566 		if (!snd_interval_single(i))
1567 			return -EINVAL;
1568 		if (dir)
1569 			*dir = i->openmin;
1570 		return snd_interval_value(i);
1571 	}
1572 	return -EINVAL;
1573 }
1574 
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576 
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578 				snd_pcm_hw_param_t var)
1579 {
1580 	if (hw_is_mask(var)) {
1581 		snd_mask_none(hw_param_mask(params, var));
1582 		params->cmask |= 1 << var;
1583 		params->rmask |= 1 << var;
1584 	} else if (hw_is_interval(var)) {
1585 		snd_interval_none(hw_param_interval(params, var));
1586 		params->cmask |= 1 << var;
1587 		params->rmask |= 1 << var;
1588 	} else {
1589 		snd_BUG();
1590 	}
1591 }
1592 
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594 
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596 				   snd_pcm_hw_param_t var)
1597 {
1598 	int changed;
1599 	if (hw_is_mask(var))
1600 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1601 	else if (hw_is_interval(var))
1602 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1603 	else
1604 		return -EINVAL;
1605 	if (changed) {
1606 		params->cmask |= 1 << var;
1607 		params->rmask |= 1 << var;
1608 	}
1609 	return changed;
1610 }
1611 
1612 
1613 /**
1614  * snd_pcm_hw_param_first - refine config space and return minimum value
1615  * @pcm: PCM instance
1616  * @params: the hw_params instance
1617  * @var: parameter to retrieve
1618  * @dir: pointer to the direction (-1,0,1) or %NULL
1619  *
1620  * Inside configuration space defined by @params remove from @var all
1621  * values > minimum. Reduce configuration space accordingly.
1622  *
1623  * Return: The minimum, or a negative error code on failure.
1624  */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1626 			   struct snd_pcm_hw_params *params,
1627 			   snd_pcm_hw_param_t var, int *dir)
1628 {
1629 	int changed = _snd_pcm_hw_param_first(params, var);
1630 	if (changed < 0)
1631 		return changed;
1632 	if (params->rmask) {
1633 		int err = snd_pcm_hw_refine(pcm, params);
1634 		if (snd_BUG_ON(err < 0))
1635 			return err;
1636 	}
1637 	return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639 
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641 
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643 				  snd_pcm_hw_param_t var)
1644 {
1645 	int changed;
1646 	if (hw_is_mask(var))
1647 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1648 	else if (hw_is_interval(var))
1649 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1650 	else
1651 		return -EINVAL;
1652 	if (changed) {
1653 		params->cmask |= 1 << var;
1654 		params->rmask |= 1 << var;
1655 	}
1656 	return changed;
1657 }
1658 
1659 
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1673 			  struct snd_pcm_hw_params *params,
1674 			  snd_pcm_hw_param_t var, int *dir)
1675 {
1676 	int changed = _snd_pcm_hw_param_last(params, var);
1677 	if (changed < 0)
1678 		return changed;
1679 	if (params->rmask) {
1680 		int err = snd_pcm_hw_refine(pcm, params);
1681 		if (snd_BUG_ON(err < 0))
1682 			return err;
1683 	}
1684 	return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686 
1687 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688 
1689 /**
1690  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691  * @pcm: PCM instance
1692  * @params: the hw_params instance
1693  *
1694  * Choose one configuration from configuration space defined by @params.
1695  * The configuration chosen is that obtained fixing in this order:
1696  * first access, first format, first subformat, min channels,
1697  * min rate, min period time, max buffer size, min tick time
1698  *
1699  * Return: Zero if successful, or a negative error code on failure.
1700  */
1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702 			     struct snd_pcm_hw_params *params)
1703 {
1704 	static int vars[] = {
1705 		SNDRV_PCM_HW_PARAM_ACCESS,
1706 		SNDRV_PCM_HW_PARAM_FORMAT,
1707 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708 		SNDRV_PCM_HW_PARAM_CHANNELS,
1709 		SNDRV_PCM_HW_PARAM_RATE,
1710 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1713 		-1
1714 	};
1715 	int err, *v;
1716 
1717 	for (v = vars; *v != -1; v++) {
1718 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720 		else
1721 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722 		if (snd_BUG_ON(err < 0))
1723 			return err;
1724 	}
1725 	return 0;
1726 }
1727 
1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729 				   void *arg)
1730 {
1731 	struct snd_pcm_runtime *runtime = substream->runtime;
1732 	unsigned long flags;
1733 	snd_pcm_stream_lock_irqsave(substream, flags);
1734 	if (snd_pcm_running(substream) &&
1735 	    snd_pcm_update_hw_ptr(substream) >= 0)
1736 		runtime->status->hw_ptr %= runtime->buffer_size;
1737 	else {
1738 		runtime->status->hw_ptr = 0;
1739 		runtime->hw_ptr_wrap = 0;
1740 	}
1741 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1742 	return 0;
1743 }
1744 
1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746 					  void *arg)
1747 {
1748 	struct snd_pcm_channel_info *info = arg;
1749 	struct snd_pcm_runtime *runtime = substream->runtime;
1750 	int width;
1751 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752 		info->offset = -1;
1753 		return 0;
1754 	}
1755 	width = snd_pcm_format_physical_width(runtime->format);
1756 	if (width < 0)
1757 		return width;
1758 	info->offset = 0;
1759 	switch (runtime->access) {
1760 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762 		info->first = info->channel * width;
1763 		info->step = runtime->channels * width;
1764 		break;
1765 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767 	{
1768 		size_t size = runtime->dma_bytes / runtime->channels;
1769 		info->first = info->channel * size * 8;
1770 		info->step = width;
1771 		break;
1772 	}
1773 	default:
1774 		snd_BUG();
1775 		break;
1776 	}
1777 	return 0;
1778 }
1779 
1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781 				       void *arg)
1782 {
1783 	struct snd_pcm_hw_params *params = arg;
1784 	snd_pcm_format_t format;
1785 	int channels, width;
1786 
1787 	params->fifo_size = substream->runtime->hw.fifo_size;
1788 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1789 		format = params_format(params);
1790 		channels = params_channels(params);
1791 		width = snd_pcm_format_physical_width(format);
1792 		params->fifo_size /= width * channels;
1793 	}
1794 	return 0;
1795 }
1796 
1797 /**
1798  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1799  * @substream: the pcm substream instance
1800  * @cmd: ioctl command
1801  * @arg: ioctl argument
1802  *
1803  * Processes the generic ioctl commands for PCM.
1804  * Can be passed as the ioctl callback for PCM ops.
1805  *
1806  * Return: Zero if successful, or a negative error code on failure.
1807  */
1808 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1809 		      unsigned int cmd, void *arg)
1810 {
1811 	switch (cmd) {
1812 	case SNDRV_PCM_IOCTL1_INFO:
1813 		return 0;
1814 	case SNDRV_PCM_IOCTL1_RESET:
1815 		return snd_pcm_lib_ioctl_reset(substream, arg);
1816 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1817 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1818 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1819 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1820 	}
1821 	return -ENXIO;
1822 }
1823 
1824 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1825 
1826 /**
1827  * snd_pcm_period_elapsed - update the pcm status for the next period
1828  * @substream: the pcm substream instance
1829  *
1830  * This function is called from the interrupt handler when the
1831  * PCM has processed the period size.  It will update the current
1832  * pointer, wake up sleepers, etc.
1833  *
1834  * Even if more than one periods have elapsed since the last call, you
1835  * have to call this only once.
1836  */
1837 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1838 {
1839 	struct snd_pcm_runtime *runtime;
1840 	unsigned long flags;
1841 
1842 	if (PCM_RUNTIME_CHECK(substream))
1843 		return;
1844 	runtime = substream->runtime;
1845 
1846 	if (runtime->transfer_ack_begin)
1847 		runtime->transfer_ack_begin(substream);
1848 
1849 	snd_pcm_stream_lock_irqsave(substream, flags);
1850 	if (!snd_pcm_running(substream) ||
1851 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1852 		goto _end;
1853 
1854 	if (substream->timer_running)
1855 		snd_timer_interrupt(substream->timer, 1);
1856  _end:
1857 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1858 	if (runtime->transfer_ack_end)
1859 		runtime->transfer_ack_end(substream);
1860 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1861 }
1862 
1863 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1864 
1865 /*
1866  * Wait until avail_min data becomes available
1867  * Returns a negative error code if any error occurs during operation.
1868  * The available space is stored on availp.  When err = 0 and avail = 0
1869  * on the capture stream, it indicates the stream is in DRAINING state.
1870  */
1871 static int wait_for_avail(struct snd_pcm_substream *substream,
1872 			      snd_pcm_uframes_t *availp)
1873 {
1874 	struct snd_pcm_runtime *runtime = substream->runtime;
1875 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1876 	wait_queue_t wait;
1877 	int err = 0;
1878 	snd_pcm_uframes_t avail = 0;
1879 	long wait_time, tout;
1880 
1881 	init_waitqueue_entry(&wait, current);
1882 	set_current_state(TASK_INTERRUPTIBLE);
1883 	add_wait_queue(&runtime->tsleep, &wait);
1884 
1885 	if (runtime->no_period_wakeup)
1886 		wait_time = MAX_SCHEDULE_TIMEOUT;
1887 	else {
1888 		wait_time = 10;
1889 		if (runtime->rate) {
1890 			long t = runtime->period_size * 2 / runtime->rate;
1891 			wait_time = max(t, wait_time);
1892 		}
1893 		wait_time = msecs_to_jiffies(wait_time * 1000);
1894 	}
1895 
1896 	for (;;) {
1897 		if (signal_pending(current)) {
1898 			err = -ERESTARTSYS;
1899 			break;
1900 		}
1901 
1902 		/*
1903 		 * We need to check if space became available already
1904 		 * (and thus the wakeup happened already) first to close
1905 		 * the race of space already having become available.
1906 		 * This check must happen after been added to the waitqueue
1907 		 * and having current state be INTERRUPTIBLE.
1908 		 */
1909 		if (is_playback)
1910 			avail = snd_pcm_playback_avail(runtime);
1911 		else
1912 			avail = snd_pcm_capture_avail(runtime);
1913 		if (avail >= runtime->twake)
1914 			break;
1915 		snd_pcm_stream_unlock_irq(substream);
1916 
1917 		tout = schedule_timeout(wait_time);
1918 
1919 		snd_pcm_stream_lock_irq(substream);
1920 		set_current_state(TASK_INTERRUPTIBLE);
1921 		switch (runtime->status->state) {
1922 		case SNDRV_PCM_STATE_SUSPENDED:
1923 			err = -ESTRPIPE;
1924 			goto _endloop;
1925 		case SNDRV_PCM_STATE_XRUN:
1926 			err = -EPIPE;
1927 			goto _endloop;
1928 		case SNDRV_PCM_STATE_DRAINING:
1929 			if (is_playback)
1930 				err = -EPIPE;
1931 			else
1932 				avail = 0; /* indicate draining */
1933 			goto _endloop;
1934 		case SNDRV_PCM_STATE_OPEN:
1935 		case SNDRV_PCM_STATE_SETUP:
1936 		case SNDRV_PCM_STATE_DISCONNECTED:
1937 			err = -EBADFD;
1938 			goto _endloop;
1939 		case SNDRV_PCM_STATE_PAUSED:
1940 			continue;
1941 		}
1942 		if (!tout) {
1943 			pcm_dbg(substream->pcm,
1944 				"%s write error (DMA or IRQ trouble?)\n",
1945 				is_playback ? "playback" : "capture");
1946 			err = -EIO;
1947 			break;
1948 		}
1949 	}
1950  _endloop:
1951 	set_current_state(TASK_RUNNING);
1952 	remove_wait_queue(&runtime->tsleep, &wait);
1953 	*availp = avail;
1954 	return err;
1955 }
1956 
1957 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1958 				      unsigned int hwoff,
1959 				      unsigned long data, unsigned int off,
1960 				      snd_pcm_uframes_t frames)
1961 {
1962 	struct snd_pcm_runtime *runtime = substream->runtime;
1963 	int err;
1964 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1965 	if (substream->ops->copy) {
1966 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1967 			return err;
1968 	} else {
1969 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1970 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1971 			return -EFAULT;
1972 	}
1973 	return 0;
1974 }
1975 
1976 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1977 			  unsigned long data, unsigned int off,
1978 			  snd_pcm_uframes_t size);
1979 
1980 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1981 					    unsigned long data,
1982 					    snd_pcm_uframes_t size,
1983 					    int nonblock,
1984 					    transfer_f transfer)
1985 {
1986 	struct snd_pcm_runtime *runtime = substream->runtime;
1987 	snd_pcm_uframes_t xfer = 0;
1988 	snd_pcm_uframes_t offset = 0;
1989 	snd_pcm_uframes_t avail;
1990 	int err = 0;
1991 
1992 	if (size == 0)
1993 		return 0;
1994 
1995 	snd_pcm_stream_lock_irq(substream);
1996 	switch (runtime->status->state) {
1997 	case SNDRV_PCM_STATE_PREPARED:
1998 	case SNDRV_PCM_STATE_RUNNING:
1999 	case SNDRV_PCM_STATE_PAUSED:
2000 		break;
2001 	case SNDRV_PCM_STATE_XRUN:
2002 		err = -EPIPE;
2003 		goto _end_unlock;
2004 	case SNDRV_PCM_STATE_SUSPENDED:
2005 		err = -ESTRPIPE;
2006 		goto _end_unlock;
2007 	default:
2008 		err = -EBADFD;
2009 		goto _end_unlock;
2010 	}
2011 
2012 	runtime->twake = runtime->control->avail_min ? : 1;
2013 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2014 		snd_pcm_update_hw_ptr(substream);
2015 	avail = snd_pcm_playback_avail(runtime);
2016 	while (size > 0) {
2017 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2018 		snd_pcm_uframes_t cont;
2019 		if (!avail) {
2020 			if (nonblock) {
2021 				err = -EAGAIN;
2022 				goto _end_unlock;
2023 			}
2024 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2025 					runtime->control->avail_min ? : 1);
2026 			err = wait_for_avail(substream, &avail);
2027 			if (err < 0)
2028 				goto _end_unlock;
2029 		}
2030 		frames = size > avail ? avail : size;
2031 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2032 		if (frames > cont)
2033 			frames = cont;
2034 		if (snd_BUG_ON(!frames)) {
2035 			runtime->twake = 0;
2036 			snd_pcm_stream_unlock_irq(substream);
2037 			return -EINVAL;
2038 		}
2039 		appl_ptr = runtime->control->appl_ptr;
2040 		appl_ofs = appl_ptr % runtime->buffer_size;
2041 		snd_pcm_stream_unlock_irq(substream);
2042 		err = transfer(substream, appl_ofs, data, offset, frames);
2043 		snd_pcm_stream_lock_irq(substream);
2044 		if (err < 0)
2045 			goto _end_unlock;
2046 		switch (runtime->status->state) {
2047 		case SNDRV_PCM_STATE_XRUN:
2048 			err = -EPIPE;
2049 			goto _end_unlock;
2050 		case SNDRV_PCM_STATE_SUSPENDED:
2051 			err = -ESTRPIPE;
2052 			goto _end_unlock;
2053 		default:
2054 			break;
2055 		}
2056 		appl_ptr += frames;
2057 		if (appl_ptr >= runtime->boundary)
2058 			appl_ptr -= runtime->boundary;
2059 		runtime->control->appl_ptr = appl_ptr;
2060 		if (substream->ops->ack)
2061 			substream->ops->ack(substream);
2062 
2063 		offset += frames;
2064 		size -= frames;
2065 		xfer += frames;
2066 		avail -= frames;
2067 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2068 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2069 			err = snd_pcm_start(substream);
2070 			if (err < 0)
2071 				goto _end_unlock;
2072 		}
2073 	}
2074  _end_unlock:
2075 	runtime->twake = 0;
2076 	if (xfer > 0 && err >= 0)
2077 		snd_pcm_update_state(substream, runtime);
2078 	snd_pcm_stream_unlock_irq(substream);
2079 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2080 }
2081 
2082 /* sanity-check for read/write methods */
2083 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2084 {
2085 	struct snd_pcm_runtime *runtime;
2086 	if (PCM_RUNTIME_CHECK(substream))
2087 		return -ENXIO;
2088 	runtime = substream->runtime;
2089 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2090 		return -EINVAL;
2091 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2092 		return -EBADFD;
2093 	return 0;
2094 }
2095 
2096 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2097 {
2098 	struct snd_pcm_runtime *runtime;
2099 	int nonblock;
2100 	int err;
2101 
2102 	err = pcm_sanity_check(substream);
2103 	if (err < 0)
2104 		return err;
2105 	runtime = substream->runtime;
2106 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2107 
2108 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2109 	    runtime->channels > 1)
2110 		return -EINVAL;
2111 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2112 				  snd_pcm_lib_write_transfer);
2113 }
2114 
2115 EXPORT_SYMBOL(snd_pcm_lib_write);
2116 
2117 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2118 				       unsigned int hwoff,
2119 				       unsigned long data, unsigned int off,
2120 				       snd_pcm_uframes_t frames)
2121 {
2122 	struct snd_pcm_runtime *runtime = substream->runtime;
2123 	int err;
2124 	void __user **bufs = (void __user **)data;
2125 	int channels = runtime->channels;
2126 	int c;
2127 	if (substream->ops->copy) {
2128 		if (snd_BUG_ON(!substream->ops->silence))
2129 			return -EINVAL;
2130 		for (c = 0; c < channels; ++c, ++bufs) {
2131 			if (*bufs == NULL) {
2132 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2133 					return err;
2134 			} else {
2135 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2136 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2137 					return err;
2138 			}
2139 		}
2140 	} else {
2141 		/* default transfer behaviour */
2142 		size_t dma_csize = runtime->dma_bytes / channels;
2143 		for (c = 0; c < channels; ++c, ++bufs) {
2144 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2145 			if (*bufs == NULL) {
2146 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2147 			} else {
2148 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2149 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2150 					return -EFAULT;
2151 			}
2152 		}
2153 	}
2154 	return 0;
2155 }
2156 
2157 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2158 				     void __user **bufs,
2159 				     snd_pcm_uframes_t frames)
2160 {
2161 	struct snd_pcm_runtime *runtime;
2162 	int nonblock;
2163 	int err;
2164 
2165 	err = pcm_sanity_check(substream);
2166 	if (err < 0)
2167 		return err;
2168 	runtime = substream->runtime;
2169 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2170 
2171 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2172 		return -EINVAL;
2173 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2174 				  nonblock, snd_pcm_lib_writev_transfer);
2175 }
2176 
2177 EXPORT_SYMBOL(snd_pcm_lib_writev);
2178 
2179 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2180 				     unsigned int hwoff,
2181 				     unsigned long data, unsigned int off,
2182 				     snd_pcm_uframes_t frames)
2183 {
2184 	struct snd_pcm_runtime *runtime = substream->runtime;
2185 	int err;
2186 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2187 	if (substream->ops->copy) {
2188 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2189 			return err;
2190 	} else {
2191 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2192 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2193 			return -EFAULT;
2194 	}
2195 	return 0;
2196 }
2197 
2198 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2199 					   unsigned long data,
2200 					   snd_pcm_uframes_t size,
2201 					   int nonblock,
2202 					   transfer_f transfer)
2203 {
2204 	struct snd_pcm_runtime *runtime = substream->runtime;
2205 	snd_pcm_uframes_t xfer = 0;
2206 	snd_pcm_uframes_t offset = 0;
2207 	snd_pcm_uframes_t avail;
2208 	int err = 0;
2209 
2210 	if (size == 0)
2211 		return 0;
2212 
2213 	snd_pcm_stream_lock_irq(substream);
2214 	switch (runtime->status->state) {
2215 	case SNDRV_PCM_STATE_PREPARED:
2216 		if (size >= runtime->start_threshold) {
2217 			err = snd_pcm_start(substream);
2218 			if (err < 0)
2219 				goto _end_unlock;
2220 		}
2221 		break;
2222 	case SNDRV_PCM_STATE_DRAINING:
2223 	case SNDRV_PCM_STATE_RUNNING:
2224 	case SNDRV_PCM_STATE_PAUSED:
2225 		break;
2226 	case SNDRV_PCM_STATE_XRUN:
2227 		err = -EPIPE;
2228 		goto _end_unlock;
2229 	case SNDRV_PCM_STATE_SUSPENDED:
2230 		err = -ESTRPIPE;
2231 		goto _end_unlock;
2232 	default:
2233 		err = -EBADFD;
2234 		goto _end_unlock;
2235 	}
2236 
2237 	runtime->twake = runtime->control->avail_min ? : 1;
2238 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2239 		snd_pcm_update_hw_ptr(substream);
2240 	avail = snd_pcm_capture_avail(runtime);
2241 	while (size > 0) {
2242 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2243 		snd_pcm_uframes_t cont;
2244 		if (!avail) {
2245 			if (runtime->status->state ==
2246 			    SNDRV_PCM_STATE_DRAINING) {
2247 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2248 				goto _end_unlock;
2249 			}
2250 			if (nonblock) {
2251 				err = -EAGAIN;
2252 				goto _end_unlock;
2253 			}
2254 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2255 					runtime->control->avail_min ? : 1);
2256 			err = wait_for_avail(substream, &avail);
2257 			if (err < 0)
2258 				goto _end_unlock;
2259 			if (!avail)
2260 				continue; /* draining */
2261 		}
2262 		frames = size > avail ? avail : size;
2263 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2264 		if (frames > cont)
2265 			frames = cont;
2266 		if (snd_BUG_ON(!frames)) {
2267 			runtime->twake = 0;
2268 			snd_pcm_stream_unlock_irq(substream);
2269 			return -EINVAL;
2270 		}
2271 		appl_ptr = runtime->control->appl_ptr;
2272 		appl_ofs = appl_ptr % runtime->buffer_size;
2273 		snd_pcm_stream_unlock_irq(substream);
2274 		err = transfer(substream, appl_ofs, data, offset, frames);
2275 		snd_pcm_stream_lock_irq(substream);
2276 		if (err < 0)
2277 			goto _end_unlock;
2278 		switch (runtime->status->state) {
2279 		case SNDRV_PCM_STATE_XRUN:
2280 			err = -EPIPE;
2281 			goto _end_unlock;
2282 		case SNDRV_PCM_STATE_SUSPENDED:
2283 			err = -ESTRPIPE;
2284 			goto _end_unlock;
2285 		default:
2286 			break;
2287 		}
2288 		appl_ptr += frames;
2289 		if (appl_ptr >= runtime->boundary)
2290 			appl_ptr -= runtime->boundary;
2291 		runtime->control->appl_ptr = appl_ptr;
2292 		if (substream->ops->ack)
2293 			substream->ops->ack(substream);
2294 
2295 		offset += frames;
2296 		size -= frames;
2297 		xfer += frames;
2298 		avail -= frames;
2299 	}
2300  _end_unlock:
2301 	runtime->twake = 0;
2302 	if (xfer > 0 && err >= 0)
2303 		snd_pcm_update_state(substream, runtime);
2304 	snd_pcm_stream_unlock_irq(substream);
2305 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2306 }
2307 
2308 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2309 {
2310 	struct snd_pcm_runtime *runtime;
2311 	int nonblock;
2312 	int err;
2313 
2314 	err = pcm_sanity_check(substream);
2315 	if (err < 0)
2316 		return err;
2317 	runtime = substream->runtime;
2318 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2319 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2320 		return -EINVAL;
2321 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2322 }
2323 
2324 EXPORT_SYMBOL(snd_pcm_lib_read);
2325 
2326 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2327 				      unsigned int hwoff,
2328 				      unsigned long data, unsigned int off,
2329 				      snd_pcm_uframes_t frames)
2330 {
2331 	struct snd_pcm_runtime *runtime = substream->runtime;
2332 	int err;
2333 	void __user **bufs = (void __user **)data;
2334 	int channels = runtime->channels;
2335 	int c;
2336 	if (substream->ops->copy) {
2337 		for (c = 0; c < channels; ++c, ++bufs) {
2338 			char __user *buf;
2339 			if (*bufs == NULL)
2340 				continue;
2341 			buf = *bufs + samples_to_bytes(runtime, off);
2342 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2343 				return err;
2344 		}
2345 	} else {
2346 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2347 		for (c = 0; c < channels; ++c, ++bufs) {
2348 			char *hwbuf;
2349 			char __user *buf;
2350 			if (*bufs == NULL)
2351 				continue;
2352 
2353 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2354 			buf = *bufs + samples_to_bytes(runtime, off);
2355 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2356 				return -EFAULT;
2357 		}
2358 	}
2359 	return 0;
2360 }
2361 
2362 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2363 				    void __user **bufs,
2364 				    snd_pcm_uframes_t frames)
2365 {
2366 	struct snd_pcm_runtime *runtime;
2367 	int nonblock;
2368 	int err;
2369 
2370 	err = pcm_sanity_check(substream);
2371 	if (err < 0)
2372 		return err;
2373 	runtime = substream->runtime;
2374 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2375 		return -EBADFD;
2376 
2377 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2378 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2379 		return -EINVAL;
2380 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2381 }
2382 
2383 EXPORT_SYMBOL(snd_pcm_lib_readv);
2384 
2385 /*
2386  * standard channel mapping helpers
2387  */
2388 
2389 /* default channel maps for multi-channel playbacks, up to 8 channels */
2390 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391 	{ .channels = 1,
2392 	  .map = { SNDRV_CHMAP_MONO } },
2393 	{ .channels = 2,
2394 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395 	{ .channels = 4,
2396 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398 	{ .channels = 6,
2399 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402 	{ .channels = 8,
2403 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407 	{ }
2408 };
2409 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410 
2411 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413 	{ .channels = 1,
2414 	  .map = { SNDRV_CHMAP_MONO } },
2415 	{ .channels = 2,
2416 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417 	{ .channels = 4,
2418 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420 	{ .channels = 6,
2421 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424 	{ .channels = 8,
2425 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429 	{ }
2430 };
2431 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432 
2433 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434 {
2435 	if (ch > info->max_channels)
2436 		return false;
2437 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2438 }
2439 
2440 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441 			      struct snd_ctl_elem_info *uinfo)
2442 {
2443 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444 
2445 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446 	uinfo->count = 0;
2447 	uinfo->count = info->max_channels;
2448 	uinfo->value.integer.min = 0;
2449 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2450 	return 0;
2451 }
2452 
2453 /* get callback for channel map ctl element
2454  * stores the channel position firstly matching with the current channels
2455  */
2456 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2457 			     struct snd_ctl_elem_value *ucontrol)
2458 {
2459 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2460 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2461 	struct snd_pcm_substream *substream;
2462 	const struct snd_pcm_chmap_elem *map;
2463 
2464 	if (snd_BUG_ON(!info->chmap))
2465 		return -EINVAL;
2466 	substream = snd_pcm_chmap_substream(info, idx);
2467 	if (!substream)
2468 		return -ENODEV;
2469 	memset(ucontrol->value.integer.value, 0,
2470 	       sizeof(ucontrol->value.integer.value));
2471 	if (!substream->runtime)
2472 		return 0; /* no channels set */
2473 	for (map = info->chmap; map->channels; map++) {
2474 		int i;
2475 		if (map->channels == substream->runtime->channels &&
2476 		    valid_chmap_channels(info, map->channels)) {
2477 			for (i = 0; i < map->channels; i++)
2478 				ucontrol->value.integer.value[i] = map->map[i];
2479 			return 0;
2480 		}
2481 	}
2482 	return -EINVAL;
2483 }
2484 
2485 /* tlv callback for channel map ctl element
2486  * expands the pre-defined channel maps in a form of TLV
2487  */
2488 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2489 			     unsigned int size, unsigned int __user *tlv)
2490 {
2491 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492 	const struct snd_pcm_chmap_elem *map;
2493 	unsigned int __user *dst;
2494 	int c, count = 0;
2495 
2496 	if (snd_BUG_ON(!info->chmap))
2497 		return -EINVAL;
2498 	if (size < 8)
2499 		return -ENOMEM;
2500 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2501 		return -EFAULT;
2502 	size -= 8;
2503 	dst = tlv + 2;
2504 	for (map = info->chmap; map->channels; map++) {
2505 		int chs_bytes = map->channels * 4;
2506 		if (!valid_chmap_channels(info, map->channels))
2507 			continue;
2508 		if (size < 8)
2509 			return -ENOMEM;
2510 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2511 		    put_user(chs_bytes, dst + 1))
2512 			return -EFAULT;
2513 		dst += 2;
2514 		size -= 8;
2515 		count += 8;
2516 		if (size < chs_bytes)
2517 			return -ENOMEM;
2518 		size -= chs_bytes;
2519 		count += chs_bytes;
2520 		for (c = 0; c < map->channels; c++) {
2521 			if (put_user(map->map[c], dst))
2522 				return -EFAULT;
2523 			dst++;
2524 		}
2525 	}
2526 	if (put_user(count, tlv + 1))
2527 		return -EFAULT;
2528 	return 0;
2529 }
2530 
2531 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2532 {
2533 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2534 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2535 	kfree(info);
2536 }
2537 
2538 /**
2539  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2540  * @pcm: the assigned PCM instance
2541  * @stream: stream direction
2542  * @chmap: channel map elements (for query)
2543  * @max_channels: the max number of channels for the stream
2544  * @private_value: the value passed to each kcontrol's private_value field
2545  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2546  *
2547  * Create channel-mapping control elements assigned to the given PCM stream(s).
2548  * Return: Zero if successful, or a negative error value.
2549  */
2550 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2551 			   const struct snd_pcm_chmap_elem *chmap,
2552 			   int max_channels,
2553 			   unsigned long private_value,
2554 			   struct snd_pcm_chmap **info_ret)
2555 {
2556 	struct snd_pcm_chmap *info;
2557 	struct snd_kcontrol_new knew = {
2558 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2559 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2560 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2561 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2562 		.info = pcm_chmap_ctl_info,
2563 		.get = pcm_chmap_ctl_get,
2564 		.tlv.c = pcm_chmap_ctl_tlv,
2565 	};
2566 	int err;
2567 
2568 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2569 	if (!info)
2570 		return -ENOMEM;
2571 	info->pcm = pcm;
2572 	info->stream = stream;
2573 	info->chmap = chmap;
2574 	info->max_channels = max_channels;
2575 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2576 		knew.name = "Playback Channel Map";
2577 	else
2578 		knew.name = "Capture Channel Map";
2579 	knew.device = pcm->device;
2580 	knew.count = pcm->streams[stream].substream_count;
2581 	knew.private_value = private_value;
2582 	info->kctl = snd_ctl_new1(&knew, info);
2583 	if (!info->kctl) {
2584 		kfree(info);
2585 		return -ENOMEM;
2586 	}
2587 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2588 	err = snd_ctl_add(pcm->card, info->kctl);
2589 	if (err < 0)
2590 		return err;
2591 	pcm->streams[stream].chmap_kctl = info->kctl;
2592 	if (info_ret)
2593 		*info_ret = info;
2594 	return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2597