1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Digital Audio (PCM) abstract layer 4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 5 * Abramo Bagnara <abramo@alsa-project.org> 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 #include <linux/time.h> 11 #include <linux/math64.h> 12 #include <linux/export.h> 13 #include <sound/core.h> 14 #include <sound/control.h> 15 #include <sound/tlv.h> 16 #include <sound/info.h> 17 #include <sound/pcm.h> 18 #include <sound/pcm_params.h> 19 #include <sound/timer.h> 20 21 #include "pcm_local.h" 22 23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 24 #define CREATE_TRACE_POINTS 25 #include "pcm_trace.h" 26 #else 27 #define trace_hwptr(substream, pos, in_interrupt) 28 #define trace_xrun(substream) 29 #define trace_hw_ptr_error(substream, reason) 30 #define trace_applptr(substream, prev, curr) 31 #endif 32 33 static int fill_silence_frames(struct snd_pcm_substream *substream, 34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames); 35 36 /* 37 * fill ring buffer with silence 38 * runtime->silence_start: starting pointer to silence area 39 * runtime->silence_filled: size filled with silence 40 * runtime->silence_threshold: threshold from application 41 * runtime->silence_size: maximal size from application 42 * 43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 44 */ 45 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 46 { 47 struct snd_pcm_runtime *runtime = substream->runtime; 48 snd_pcm_uframes_t frames, ofs, transfer; 49 int err; 50 51 if (runtime->silence_size < runtime->boundary) { 52 snd_pcm_sframes_t noise_dist, n; 53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr); 54 if (runtime->silence_start != appl_ptr) { 55 n = appl_ptr - runtime->silence_start; 56 if (n < 0) 57 n += runtime->boundary; 58 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 59 runtime->silence_filled -= n; 60 else 61 runtime->silence_filled = 0; 62 runtime->silence_start = appl_ptr; 63 } 64 if (runtime->silence_filled >= runtime->buffer_size) 65 return; 66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 68 return; 69 frames = runtime->silence_threshold - noise_dist; 70 if (frames > runtime->silence_size) 71 frames = runtime->silence_size; 72 } else { 73 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 75 if (avail > runtime->buffer_size) 76 avail = runtime->buffer_size; 77 runtime->silence_filled = avail > 0 ? avail : 0; 78 runtime->silence_start = (runtime->status->hw_ptr + 79 runtime->silence_filled) % 80 runtime->boundary; 81 } else { 82 ofs = runtime->status->hw_ptr; 83 frames = new_hw_ptr - ofs; 84 if ((snd_pcm_sframes_t)frames < 0) 85 frames += runtime->boundary; 86 runtime->silence_filled -= frames; 87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 88 runtime->silence_filled = 0; 89 runtime->silence_start = new_hw_ptr; 90 } else { 91 runtime->silence_start = ofs; 92 } 93 } 94 frames = runtime->buffer_size - runtime->silence_filled; 95 } 96 if (snd_BUG_ON(frames > runtime->buffer_size)) 97 return; 98 if (frames == 0) 99 return; 100 ofs = runtime->silence_start % runtime->buffer_size; 101 while (frames > 0) { 102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 103 err = fill_silence_frames(substream, ofs, transfer); 104 snd_BUG_ON(err < 0); 105 runtime->silence_filled += transfer; 106 frames -= transfer; 107 ofs = 0; 108 } 109 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE); 110 } 111 112 #ifdef CONFIG_SND_DEBUG 113 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 114 char *name, size_t len) 115 { 116 snprintf(name, len, "pcmC%dD%d%c:%d", 117 substream->pcm->card->number, 118 substream->pcm->device, 119 substream->stream ? 'c' : 'p', 120 substream->number); 121 } 122 EXPORT_SYMBOL(snd_pcm_debug_name); 123 #endif 124 125 #define XRUN_DEBUG_BASIC (1<<0) 126 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 127 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 128 129 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 130 131 #define xrun_debug(substream, mask) \ 132 ((substream)->pstr->xrun_debug & (mask)) 133 #else 134 #define xrun_debug(substream, mask) 0 135 #endif 136 137 #define dump_stack_on_xrun(substream) do { \ 138 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 139 dump_stack(); \ 140 } while (0) 141 142 /* call with stream lock held */ 143 void __snd_pcm_xrun(struct snd_pcm_substream *substream) 144 { 145 struct snd_pcm_runtime *runtime = substream->runtime; 146 147 trace_xrun(substream); 148 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 149 struct timespec64 tstamp; 150 151 snd_pcm_gettime(runtime, &tstamp); 152 runtime->status->tstamp.tv_sec = tstamp.tv_sec; 153 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec; 154 } 155 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 156 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 157 char name[16]; 158 snd_pcm_debug_name(substream, name, sizeof(name)); 159 pcm_warn(substream->pcm, "XRUN: %s\n", name); 160 dump_stack_on_xrun(substream); 161 } 162 } 163 164 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 165 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 166 do { \ 167 trace_hw_ptr_error(substream, reason); \ 168 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 169 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 170 (in_interrupt) ? 'Q' : 'P', ##args); \ 171 dump_stack_on_xrun(substream); \ 172 } \ 173 } while (0) 174 175 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 176 177 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 178 179 #endif 180 181 int snd_pcm_update_state(struct snd_pcm_substream *substream, 182 struct snd_pcm_runtime *runtime) 183 { 184 snd_pcm_uframes_t avail; 185 186 avail = snd_pcm_avail(substream); 187 if (avail > runtime->avail_max) 188 runtime->avail_max = avail; 189 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 190 if (avail >= runtime->buffer_size) { 191 snd_pcm_drain_done(substream); 192 return -EPIPE; 193 } 194 } else { 195 if (avail >= runtime->stop_threshold) { 196 __snd_pcm_xrun(substream); 197 return -EPIPE; 198 } 199 } 200 if (runtime->twake) { 201 if (avail >= runtime->twake) 202 wake_up(&runtime->tsleep); 203 } else if (avail >= runtime->control->avail_min) 204 wake_up(&runtime->sleep); 205 return 0; 206 } 207 208 static void update_audio_tstamp(struct snd_pcm_substream *substream, 209 struct timespec64 *curr_tstamp, 210 struct timespec64 *audio_tstamp) 211 { 212 struct snd_pcm_runtime *runtime = substream->runtime; 213 u64 audio_frames, audio_nsecs; 214 struct timespec64 driver_tstamp; 215 216 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 217 return; 218 219 if (!(substream->ops->get_time_info) || 220 (runtime->audio_tstamp_report.actual_type == 221 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 222 223 /* 224 * provide audio timestamp derived from pointer position 225 * add delay only if requested 226 */ 227 228 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 229 230 if (runtime->audio_tstamp_config.report_delay) { 231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 232 audio_frames -= runtime->delay; 233 else 234 audio_frames += runtime->delay; 235 } 236 audio_nsecs = div_u64(audio_frames * 1000000000LL, 237 runtime->rate); 238 *audio_tstamp = ns_to_timespec64(audio_nsecs); 239 } 240 241 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec || 242 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) { 243 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec; 244 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec; 245 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec; 246 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec; 247 } 248 249 250 /* 251 * re-take a driver timestamp to let apps detect if the reference tstamp 252 * read by low-level hardware was provided with a delay 253 */ 254 snd_pcm_gettime(substream->runtime, &driver_tstamp); 255 runtime->driver_tstamp = driver_tstamp; 256 } 257 258 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 259 unsigned int in_interrupt) 260 { 261 struct snd_pcm_runtime *runtime = substream->runtime; 262 snd_pcm_uframes_t pos; 263 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 264 snd_pcm_sframes_t hdelta, delta; 265 unsigned long jdelta; 266 unsigned long curr_jiffies; 267 struct timespec64 curr_tstamp; 268 struct timespec64 audio_tstamp; 269 int crossed_boundary = 0; 270 271 old_hw_ptr = runtime->status->hw_ptr; 272 273 /* 274 * group pointer, time and jiffies reads to allow for more 275 * accurate correlations/corrections. 276 * The values are stored at the end of this routine after 277 * corrections for hw_ptr position 278 */ 279 pos = substream->ops->pointer(substream); 280 curr_jiffies = jiffies; 281 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 282 if ((substream->ops->get_time_info) && 283 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 284 substream->ops->get_time_info(substream, &curr_tstamp, 285 &audio_tstamp, 286 &runtime->audio_tstamp_config, 287 &runtime->audio_tstamp_report); 288 289 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 290 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 291 snd_pcm_gettime(runtime, &curr_tstamp); 292 } else 293 snd_pcm_gettime(runtime, &curr_tstamp); 294 } 295 296 if (pos == SNDRV_PCM_POS_XRUN) { 297 __snd_pcm_xrun(substream); 298 return -EPIPE; 299 } 300 if (pos >= runtime->buffer_size) { 301 if (printk_ratelimit()) { 302 char name[16]; 303 snd_pcm_debug_name(substream, name, sizeof(name)); 304 pcm_err(substream->pcm, 305 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 306 name, pos, runtime->buffer_size, 307 runtime->period_size); 308 } 309 pos = 0; 310 } 311 pos -= pos % runtime->min_align; 312 trace_hwptr(substream, pos, in_interrupt); 313 hw_base = runtime->hw_ptr_base; 314 new_hw_ptr = hw_base + pos; 315 if (in_interrupt) { 316 /* we know that one period was processed */ 317 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 318 delta = runtime->hw_ptr_interrupt + runtime->period_size; 319 if (delta > new_hw_ptr) { 320 /* check for double acknowledged interrupts */ 321 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 322 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { 323 hw_base += runtime->buffer_size; 324 if (hw_base >= runtime->boundary) { 325 hw_base = 0; 326 crossed_boundary++; 327 } 328 new_hw_ptr = hw_base + pos; 329 goto __delta; 330 } 331 } 332 } 333 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 334 /* pointer crosses the end of the ring buffer */ 335 if (new_hw_ptr < old_hw_ptr) { 336 hw_base += runtime->buffer_size; 337 if (hw_base >= runtime->boundary) { 338 hw_base = 0; 339 crossed_boundary++; 340 } 341 new_hw_ptr = hw_base + pos; 342 } 343 __delta: 344 delta = new_hw_ptr - old_hw_ptr; 345 if (delta < 0) 346 delta += runtime->boundary; 347 348 if (runtime->no_period_wakeup) { 349 snd_pcm_sframes_t xrun_threshold; 350 /* 351 * Without regular period interrupts, we have to check 352 * the elapsed time to detect xruns. 353 */ 354 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 355 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 356 goto no_delta_check; 357 hdelta = jdelta - delta * HZ / runtime->rate; 358 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 359 while (hdelta > xrun_threshold) { 360 delta += runtime->buffer_size; 361 hw_base += runtime->buffer_size; 362 if (hw_base >= runtime->boundary) { 363 hw_base = 0; 364 crossed_boundary++; 365 } 366 new_hw_ptr = hw_base + pos; 367 hdelta -= runtime->hw_ptr_buffer_jiffies; 368 } 369 goto no_delta_check; 370 } 371 372 /* something must be really wrong */ 373 if (delta >= runtime->buffer_size + runtime->period_size) { 374 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 375 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 376 substream->stream, (long)pos, 377 (long)new_hw_ptr, (long)old_hw_ptr); 378 return 0; 379 } 380 381 /* Do jiffies check only in xrun_debug mode */ 382 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 383 goto no_jiffies_check; 384 385 /* Skip the jiffies check for hardwares with BATCH flag. 386 * Such hardware usually just increases the position at each IRQ, 387 * thus it can't give any strange position. 388 */ 389 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 390 goto no_jiffies_check; 391 hdelta = delta; 392 if (hdelta < runtime->delay) 393 goto no_jiffies_check; 394 hdelta -= runtime->delay; 395 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 396 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 397 delta = jdelta / 398 (((runtime->period_size * HZ) / runtime->rate) 399 + HZ/100); 400 /* move new_hw_ptr according jiffies not pos variable */ 401 new_hw_ptr = old_hw_ptr; 402 hw_base = delta; 403 /* use loop to avoid checks for delta overflows */ 404 /* the delta value is small or zero in most cases */ 405 while (delta > 0) { 406 new_hw_ptr += runtime->period_size; 407 if (new_hw_ptr >= runtime->boundary) { 408 new_hw_ptr -= runtime->boundary; 409 crossed_boundary--; 410 } 411 delta--; 412 } 413 /* align hw_base to buffer_size */ 414 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 415 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 416 (long)pos, (long)hdelta, 417 (long)runtime->period_size, jdelta, 418 ((hdelta * HZ) / runtime->rate), hw_base, 419 (unsigned long)old_hw_ptr, 420 (unsigned long)new_hw_ptr); 421 /* reset values to proper state */ 422 delta = 0; 423 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 424 } 425 no_jiffies_check: 426 if (delta > runtime->period_size + runtime->period_size / 2) { 427 hw_ptr_error(substream, in_interrupt, 428 "Lost interrupts?", 429 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 430 substream->stream, (long)delta, 431 (long)new_hw_ptr, 432 (long)old_hw_ptr); 433 } 434 435 no_delta_check: 436 if (runtime->status->hw_ptr == new_hw_ptr) { 437 runtime->hw_ptr_jiffies = curr_jiffies; 438 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 439 return 0; 440 } 441 442 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 443 runtime->silence_size > 0) 444 snd_pcm_playback_silence(substream, new_hw_ptr); 445 446 if (in_interrupt) { 447 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 448 if (delta < 0) 449 delta += runtime->boundary; 450 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 451 runtime->hw_ptr_interrupt += delta; 452 if (runtime->hw_ptr_interrupt >= runtime->boundary) 453 runtime->hw_ptr_interrupt -= runtime->boundary; 454 } 455 runtime->hw_ptr_base = hw_base; 456 runtime->status->hw_ptr = new_hw_ptr; 457 runtime->hw_ptr_jiffies = curr_jiffies; 458 if (crossed_boundary) { 459 snd_BUG_ON(crossed_boundary != 1); 460 runtime->hw_ptr_wrap += runtime->boundary; 461 } 462 463 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 464 465 return snd_pcm_update_state(substream, runtime); 466 } 467 468 /* CAUTION: call it with irq disabled */ 469 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 470 { 471 return snd_pcm_update_hw_ptr0(substream, 0); 472 } 473 474 /** 475 * snd_pcm_set_ops - set the PCM operators 476 * @pcm: the pcm instance 477 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 478 * @ops: the operator table 479 * 480 * Sets the given PCM operators to the pcm instance. 481 */ 482 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 483 const struct snd_pcm_ops *ops) 484 { 485 struct snd_pcm_str *stream = &pcm->streams[direction]; 486 struct snd_pcm_substream *substream; 487 488 for (substream = stream->substream; substream != NULL; substream = substream->next) 489 substream->ops = ops; 490 } 491 EXPORT_SYMBOL(snd_pcm_set_ops); 492 493 /** 494 * snd_pcm_set_sync - set the PCM sync id 495 * @substream: the pcm substream 496 * 497 * Sets the PCM sync identifier for the card. 498 */ 499 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 500 { 501 struct snd_pcm_runtime *runtime = substream->runtime; 502 503 runtime->sync.id32[0] = substream->pcm->card->number; 504 runtime->sync.id32[1] = -1; 505 runtime->sync.id32[2] = -1; 506 runtime->sync.id32[3] = -1; 507 } 508 EXPORT_SYMBOL(snd_pcm_set_sync); 509 510 /* 511 * Standard ioctl routine 512 */ 513 514 static inline unsigned int div32(unsigned int a, unsigned int b, 515 unsigned int *r) 516 { 517 if (b == 0) { 518 *r = 0; 519 return UINT_MAX; 520 } 521 *r = a % b; 522 return a / b; 523 } 524 525 static inline unsigned int div_down(unsigned int a, unsigned int b) 526 { 527 if (b == 0) 528 return UINT_MAX; 529 return a / b; 530 } 531 532 static inline unsigned int div_up(unsigned int a, unsigned int b) 533 { 534 unsigned int r; 535 unsigned int q; 536 if (b == 0) 537 return UINT_MAX; 538 q = div32(a, b, &r); 539 if (r) 540 ++q; 541 return q; 542 } 543 544 static inline unsigned int mul(unsigned int a, unsigned int b) 545 { 546 if (a == 0) 547 return 0; 548 if (div_down(UINT_MAX, a) < b) 549 return UINT_MAX; 550 return a * b; 551 } 552 553 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 554 unsigned int c, unsigned int *r) 555 { 556 u_int64_t n = (u_int64_t) a * b; 557 if (c == 0) { 558 *r = 0; 559 return UINT_MAX; 560 } 561 n = div_u64_rem(n, c, r); 562 if (n >= UINT_MAX) { 563 *r = 0; 564 return UINT_MAX; 565 } 566 return n; 567 } 568 569 /** 570 * snd_interval_refine - refine the interval value of configurator 571 * @i: the interval value to refine 572 * @v: the interval value to refer to 573 * 574 * Refines the interval value with the reference value. 575 * The interval is changed to the range satisfying both intervals. 576 * The interval status (min, max, integer, etc.) are evaluated. 577 * 578 * Return: Positive if the value is changed, zero if it's not changed, or a 579 * negative error code. 580 */ 581 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 582 { 583 int changed = 0; 584 if (snd_BUG_ON(snd_interval_empty(i))) 585 return -EINVAL; 586 if (i->min < v->min) { 587 i->min = v->min; 588 i->openmin = v->openmin; 589 changed = 1; 590 } else if (i->min == v->min && !i->openmin && v->openmin) { 591 i->openmin = 1; 592 changed = 1; 593 } 594 if (i->max > v->max) { 595 i->max = v->max; 596 i->openmax = v->openmax; 597 changed = 1; 598 } else if (i->max == v->max && !i->openmax && v->openmax) { 599 i->openmax = 1; 600 changed = 1; 601 } 602 if (!i->integer && v->integer) { 603 i->integer = 1; 604 changed = 1; 605 } 606 if (i->integer) { 607 if (i->openmin) { 608 i->min++; 609 i->openmin = 0; 610 } 611 if (i->openmax) { 612 i->max--; 613 i->openmax = 0; 614 } 615 } else if (!i->openmin && !i->openmax && i->min == i->max) 616 i->integer = 1; 617 if (snd_interval_checkempty(i)) { 618 snd_interval_none(i); 619 return -EINVAL; 620 } 621 return changed; 622 } 623 EXPORT_SYMBOL(snd_interval_refine); 624 625 static int snd_interval_refine_first(struct snd_interval *i) 626 { 627 const unsigned int last_max = i->max; 628 629 if (snd_BUG_ON(snd_interval_empty(i))) 630 return -EINVAL; 631 if (snd_interval_single(i)) 632 return 0; 633 i->max = i->min; 634 if (i->openmin) 635 i->max++; 636 /* only exclude max value if also excluded before refine */ 637 i->openmax = (i->openmax && i->max >= last_max); 638 return 1; 639 } 640 641 static int snd_interval_refine_last(struct snd_interval *i) 642 { 643 const unsigned int last_min = i->min; 644 645 if (snd_BUG_ON(snd_interval_empty(i))) 646 return -EINVAL; 647 if (snd_interval_single(i)) 648 return 0; 649 i->min = i->max; 650 if (i->openmax) 651 i->min--; 652 /* only exclude min value if also excluded before refine */ 653 i->openmin = (i->openmin && i->min <= last_min); 654 return 1; 655 } 656 657 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 658 { 659 if (a->empty || b->empty) { 660 snd_interval_none(c); 661 return; 662 } 663 c->empty = 0; 664 c->min = mul(a->min, b->min); 665 c->openmin = (a->openmin || b->openmin); 666 c->max = mul(a->max, b->max); 667 c->openmax = (a->openmax || b->openmax); 668 c->integer = (a->integer && b->integer); 669 } 670 671 /** 672 * snd_interval_div - refine the interval value with division 673 * @a: dividend 674 * @b: divisor 675 * @c: quotient 676 * 677 * c = a / b 678 * 679 * Returns non-zero if the value is changed, zero if not changed. 680 */ 681 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 682 { 683 unsigned int r; 684 if (a->empty || b->empty) { 685 snd_interval_none(c); 686 return; 687 } 688 c->empty = 0; 689 c->min = div32(a->min, b->max, &r); 690 c->openmin = (r || a->openmin || b->openmax); 691 if (b->min > 0) { 692 c->max = div32(a->max, b->min, &r); 693 if (r) { 694 c->max++; 695 c->openmax = 1; 696 } else 697 c->openmax = (a->openmax || b->openmin); 698 } else { 699 c->max = UINT_MAX; 700 c->openmax = 0; 701 } 702 c->integer = 0; 703 } 704 705 /** 706 * snd_interval_muldivk - refine the interval value 707 * @a: dividend 1 708 * @b: dividend 2 709 * @k: divisor (as integer) 710 * @c: result 711 * 712 * c = a * b / k 713 * 714 * Returns non-zero if the value is changed, zero if not changed. 715 */ 716 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 717 unsigned int k, struct snd_interval *c) 718 { 719 unsigned int r; 720 if (a->empty || b->empty) { 721 snd_interval_none(c); 722 return; 723 } 724 c->empty = 0; 725 c->min = muldiv32(a->min, b->min, k, &r); 726 c->openmin = (r || a->openmin || b->openmin); 727 c->max = muldiv32(a->max, b->max, k, &r); 728 if (r) { 729 c->max++; 730 c->openmax = 1; 731 } else 732 c->openmax = (a->openmax || b->openmax); 733 c->integer = 0; 734 } 735 736 /** 737 * snd_interval_mulkdiv - refine the interval value 738 * @a: dividend 1 739 * @k: dividend 2 (as integer) 740 * @b: divisor 741 * @c: result 742 * 743 * c = a * k / b 744 * 745 * Returns non-zero if the value is changed, zero if not changed. 746 */ 747 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 748 const struct snd_interval *b, struct snd_interval *c) 749 { 750 unsigned int r; 751 if (a->empty || b->empty) { 752 snd_interval_none(c); 753 return; 754 } 755 c->empty = 0; 756 c->min = muldiv32(a->min, k, b->max, &r); 757 c->openmin = (r || a->openmin || b->openmax); 758 if (b->min > 0) { 759 c->max = muldiv32(a->max, k, b->min, &r); 760 if (r) { 761 c->max++; 762 c->openmax = 1; 763 } else 764 c->openmax = (a->openmax || b->openmin); 765 } else { 766 c->max = UINT_MAX; 767 c->openmax = 0; 768 } 769 c->integer = 0; 770 } 771 772 /* ---- */ 773 774 775 /** 776 * snd_interval_ratnum - refine the interval value 777 * @i: interval to refine 778 * @rats_count: number of ratnum_t 779 * @rats: ratnum_t array 780 * @nump: pointer to store the resultant numerator 781 * @denp: pointer to store the resultant denominator 782 * 783 * Return: Positive if the value is changed, zero if it's not changed, or a 784 * negative error code. 785 */ 786 int snd_interval_ratnum(struct snd_interval *i, 787 unsigned int rats_count, const struct snd_ratnum *rats, 788 unsigned int *nump, unsigned int *denp) 789 { 790 unsigned int best_num, best_den; 791 int best_diff; 792 unsigned int k; 793 struct snd_interval t; 794 int err; 795 unsigned int result_num, result_den; 796 int result_diff; 797 798 best_num = best_den = best_diff = 0; 799 for (k = 0; k < rats_count; ++k) { 800 unsigned int num = rats[k].num; 801 unsigned int den; 802 unsigned int q = i->min; 803 int diff; 804 if (q == 0) 805 q = 1; 806 den = div_up(num, q); 807 if (den < rats[k].den_min) 808 continue; 809 if (den > rats[k].den_max) 810 den = rats[k].den_max; 811 else { 812 unsigned int r; 813 r = (den - rats[k].den_min) % rats[k].den_step; 814 if (r != 0) 815 den -= r; 816 } 817 diff = num - q * den; 818 if (diff < 0) 819 diff = -diff; 820 if (best_num == 0 || 821 diff * best_den < best_diff * den) { 822 best_diff = diff; 823 best_den = den; 824 best_num = num; 825 } 826 } 827 if (best_den == 0) { 828 i->empty = 1; 829 return -EINVAL; 830 } 831 t.min = div_down(best_num, best_den); 832 t.openmin = !!(best_num % best_den); 833 834 result_num = best_num; 835 result_diff = best_diff; 836 result_den = best_den; 837 best_num = best_den = best_diff = 0; 838 for (k = 0; k < rats_count; ++k) { 839 unsigned int num = rats[k].num; 840 unsigned int den; 841 unsigned int q = i->max; 842 int diff; 843 if (q == 0) { 844 i->empty = 1; 845 return -EINVAL; 846 } 847 den = div_down(num, q); 848 if (den > rats[k].den_max) 849 continue; 850 if (den < rats[k].den_min) 851 den = rats[k].den_min; 852 else { 853 unsigned int r; 854 r = (den - rats[k].den_min) % rats[k].den_step; 855 if (r != 0) 856 den += rats[k].den_step - r; 857 } 858 diff = q * den - num; 859 if (diff < 0) 860 diff = -diff; 861 if (best_num == 0 || 862 diff * best_den < best_diff * den) { 863 best_diff = diff; 864 best_den = den; 865 best_num = num; 866 } 867 } 868 if (best_den == 0) { 869 i->empty = 1; 870 return -EINVAL; 871 } 872 t.max = div_up(best_num, best_den); 873 t.openmax = !!(best_num % best_den); 874 t.integer = 0; 875 err = snd_interval_refine(i, &t); 876 if (err < 0) 877 return err; 878 879 if (snd_interval_single(i)) { 880 if (best_diff * result_den < result_diff * best_den) { 881 result_num = best_num; 882 result_den = best_den; 883 } 884 if (nump) 885 *nump = result_num; 886 if (denp) 887 *denp = result_den; 888 } 889 return err; 890 } 891 EXPORT_SYMBOL(snd_interval_ratnum); 892 893 /** 894 * snd_interval_ratden - refine the interval value 895 * @i: interval to refine 896 * @rats_count: number of struct ratden 897 * @rats: struct ratden array 898 * @nump: pointer to store the resultant numerator 899 * @denp: pointer to store the resultant denominator 900 * 901 * Return: Positive if the value is changed, zero if it's not changed, or a 902 * negative error code. 903 */ 904 static int snd_interval_ratden(struct snd_interval *i, 905 unsigned int rats_count, 906 const struct snd_ratden *rats, 907 unsigned int *nump, unsigned int *denp) 908 { 909 unsigned int best_num, best_diff, best_den; 910 unsigned int k; 911 struct snd_interval t; 912 int err; 913 914 best_num = best_den = best_diff = 0; 915 for (k = 0; k < rats_count; ++k) { 916 unsigned int num; 917 unsigned int den = rats[k].den; 918 unsigned int q = i->min; 919 int diff; 920 num = mul(q, den); 921 if (num > rats[k].num_max) 922 continue; 923 if (num < rats[k].num_min) 924 num = rats[k].num_max; 925 else { 926 unsigned int r; 927 r = (num - rats[k].num_min) % rats[k].num_step; 928 if (r != 0) 929 num += rats[k].num_step - r; 930 } 931 diff = num - q * den; 932 if (best_num == 0 || 933 diff * best_den < best_diff * den) { 934 best_diff = diff; 935 best_den = den; 936 best_num = num; 937 } 938 } 939 if (best_den == 0) { 940 i->empty = 1; 941 return -EINVAL; 942 } 943 t.min = div_down(best_num, best_den); 944 t.openmin = !!(best_num % best_den); 945 946 best_num = best_den = best_diff = 0; 947 for (k = 0; k < rats_count; ++k) { 948 unsigned int num; 949 unsigned int den = rats[k].den; 950 unsigned int q = i->max; 951 int diff; 952 num = mul(q, den); 953 if (num < rats[k].num_min) 954 continue; 955 if (num > rats[k].num_max) 956 num = rats[k].num_max; 957 else { 958 unsigned int r; 959 r = (num - rats[k].num_min) % rats[k].num_step; 960 if (r != 0) 961 num -= r; 962 } 963 diff = q * den - num; 964 if (best_num == 0 || 965 diff * best_den < best_diff * den) { 966 best_diff = diff; 967 best_den = den; 968 best_num = num; 969 } 970 } 971 if (best_den == 0) { 972 i->empty = 1; 973 return -EINVAL; 974 } 975 t.max = div_up(best_num, best_den); 976 t.openmax = !!(best_num % best_den); 977 t.integer = 0; 978 err = snd_interval_refine(i, &t); 979 if (err < 0) 980 return err; 981 982 if (snd_interval_single(i)) { 983 if (nump) 984 *nump = best_num; 985 if (denp) 986 *denp = best_den; 987 } 988 return err; 989 } 990 991 /** 992 * snd_interval_list - refine the interval value from the list 993 * @i: the interval value to refine 994 * @count: the number of elements in the list 995 * @list: the value list 996 * @mask: the bit-mask to evaluate 997 * 998 * Refines the interval value from the list. 999 * When mask is non-zero, only the elements corresponding to bit 1 are 1000 * evaluated. 1001 * 1002 * Return: Positive if the value is changed, zero if it's not changed, or a 1003 * negative error code. 1004 */ 1005 int snd_interval_list(struct snd_interval *i, unsigned int count, 1006 const unsigned int *list, unsigned int mask) 1007 { 1008 unsigned int k; 1009 struct snd_interval list_range; 1010 1011 if (!count) { 1012 i->empty = 1; 1013 return -EINVAL; 1014 } 1015 snd_interval_any(&list_range); 1016 list_range.min = UINT_MAX; 1017 list_range.max = 0; 1018 for (k = 0; k < count; k++) { 1019 if (mask && !(mask & (1 << k))) 1020 continue; 1021 if (!snd_interval_test(i, list[k])) 1022 continue; 1023 list_range.min = min(list_range.min, list[k]); 1024 list_range.max = max(list_range.max, list[k]); 1025 } 1026 return snd_interval_refine(i, &list_range); 1027 } 1028 EXPORT_SYMBOL(snd_interval_list); 1029 1030 /** 1031 * snd_interval_ranges - refine the interval value from the list of ranges 1032 * @i: the interval value to refine 1033 * @count: the number of elements in the list of ranges 1034 * @ranges: the ranges list 1035 * @mask: the bit-mask to evaluate 1036 * 1037 * Refines the interval value from the list of ranges. 1038 * When mask is non-zero, only the elements corresponding to bit 1 are 1039 * evaluated. 1040 * 1041 * Return: Positive if the value is changed, zero if it's not changed, or a 1042 * negative error code. 1043 */ 1044 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1045 const struct snd_interval *ranges, unsigned int mask) 1046 { 1047 unsigned int k; 1048 struct snd_interval range_union; 1049 struct snd_interval range; 1050 1051 if (!count) { 1052 snd_interval_none(i); 1053 return -EINVAL; 1054 } 1055 snd_interval_any(&range_union); 1056 range_union.min = UINT_MAX; 1057 range_union.max = 0; 1058 for (k = 0; k < count; k++) { 1059 if (mask && !(mask & (1 << k))) 1060 continue; 1061 snd_interval_copy(&range, &ranges[k]); 1062 if (snd_interval_refine(&range, i) < 0) 1063 continue; 1064 if (snd_interval_empty(&range)) 1065 continue; 1066 1067 if (range.min < range_union.min) { 1068 range_union.min = range.min; 1069 range_union.openmin = 1; 1070 } 1071 if (range.min == range_union.min && !range.openmin) 1072 range_union.openmin = 0; 1073 if (range.max > range_union.max) { 1074 range_union.max = range.max; 1075 range_union.openmax = 1; 1076 } 1077 if (range.max == range_union.max && !range.openmax) 1078 range_union.openmax = 0; 1079 } 1080 return snd_interval_refine(i, &range_union); 1081 } 1082 EXPORT_SYMBOL(snd_interval_ranges); 1083 1084 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1085 { 1086 unsigned int n; 1087 int changed = 0; 1088 n = i->min % step; 1089 if (n != 0 || i->openmin) { 1090 i->min += step - n; 1091 i->openmin = 0; 1092 changed = 1; 1093 } 1094 n = i->max % step; 1095 if (n != 0 || i->openmax) { 1096 i->max -= n; 1097 i->openmax = 0; 1098 changed = 1; 1099 } 1100 if (snd_interval_checkempty(i)) { 1101 i->empty = 1; 1102 return -EINVAL; 1103 } 1104 return changed; 1105 } 1106 1107 /* Info constraints helpers */ 1108 1109 /** 1110 * snd_pcm_hw_rule_add - add the hw-constraint rule 1111 * @runtime: the pcm runtime instance 1112 * @cond: condition bits 1113 * @var: the variable to evaluate 1114 * @func: the evaluation function 1115 * @private: the private data pointer passed to function 1116 * @dep: the dependent variables 1117 * 1118 * Return: Zero if successful, or a negative error code on failure. 1119 */ 1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1121 int var, 1122 snd_pcm_hw_rule_func_t func, void *private, 1123 int dep, ...) 1124 { 1125 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1126 struct snd_pcm_hw_rule *c; 1127 unsigned int k; 1128 va_list args; 1129 va_start(args, dep); 1130 if (constrs->rules_num >= constrs->rules_all) { 1131 struct snd_pcm_hw_rule *new; 1132 unsigned int new_rules = constrs->rules_all + 16; 1133 new = krealloc_array(constrs->rules, new_rules, 1134 sizeof(*c), GFP_KERNEL); 1135 if (!new) { 1136 va_end(args); 1137 return -ENOMEM; 1138 } 1139 constrs->rules = new; 1140 constrs->rules_all = new_rules; 1141 } 1142 c = &constrs->rules[constrs->rules_num]; 1143 c->cond = cond; 1144 c->func = func; 1145 c->var = var; 1146 c->private = private; 1147 k = 0; 1148 while (1) { 1149 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1150 va_end(args); 1151 return -EINVAL; 1152 } 1153 c->deps[k++] = dep; 1154 if (dep < 0) 1155 break; 1156 dep = va_arg(args, int); 1157 } 1158 constrs->rules_num++; 1159 va_end(args); 1160 return 0; 1161 } 1162 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1163 1164 /** 1165 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1166 * @runtime: PCM runtime instance 1167 * @var: hw_params variable to apply the mask 1168 * @mask: the bitmap mask 1169 * 1170 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1171 * 1172 * Return: Zero if successful, or a negative error code on failure. 1173 */ 1174 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1175 u_int32_t mask) 1176 { 1177 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1178 struct snd_mask *maskp = constrs_mask(constrs, var); 1179 *maskp->bits &= mask; 1180 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1181 if (*maskp->bits == 0) 1182 return -EINVAL; 1183 return 0; 1184 } 1185 1186 /** 1187 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1188 * @runtime: PCM runtime instance 1189 * @var: hw_params variable to apply the mask 1190 * @mask: the 64bit bitmap mask 1191 * 1192 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1193 * 1194 * Return: Zero if successful, or a negative error code on failure. 1195 */ 1196 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1197 u_int64_t mask) 1198 { 1199 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1200 struct snd_mask *maskp = constrs_mask(constrs, var); 1201 maskp->bits[0] &= (u_int32_t)mask; 1202 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1203 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1204 if (! maskp->bits[0] && ! maskp->bits[1]) 1205 return -EINVAL; 1206 return 0; 1207 } 1208 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1209 1210 /** 1211 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1212 * @runtime: PCM runtime instance 1213 * @var: hw_params variable to apply the integer constraint 1214 * 1215 * Apply the constraint of integer to an interval parameter. 1216 * 1217 * Return: Positive if the value is changed, zero if it's not changed, or a 1218 * negative error code. 1219 */ 1220 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1221 { 1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1223 return snd_interval_setinteger(constrs_interval(constrs, var)); 1224 } 1225 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1226 1227 /** 1228 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1229 * @runtime: PCM runtime instance 1230 * @var: hw_params variable to apply the range 1231 * @min: the minimal value 1232 * @max: the maximal value 1233 * 1234 * Apply the min/max range constraint to an interval parameter. 1235 * 1236 * Return: Positive if the value is changed, zero if it's not changed, or a 1237 * negative error code. 1238 */ 1239 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1240 unsigned int min, unsigned int max) 1241 { 1242 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1243 struct snd_interval t; 1244 t.min = min; 1245 t.max = max; 1246 t.openmin = t.openmax = 0; 1247 t.integer = 0; 1248 return snd_interval_refine(constrs_interval(constrs, var), &t); 1249 } 1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1251 1252 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1253 struct snd_pcm_hw_rule *rule) 1254 { 1255 struct snd_pcm_hw_constraint_list *list = rule->private; 1256 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1257 } 1258 1259 1260 /** 1261 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1262 * @runtime: PCM runtime instance 1263 * @cond: condition bits 1264 * @var: hw_params variable to apply the list constraint 1265 * @l: list 1266 * 1267 * Apply the list of constraints to an interval parameter. 1268 * 1269 * Return: Zero if successful, or a negative error code on failure. 1270 */ 1271 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1272 unsigned int cond, 1273 snd_pcm_hw_param_t var, 1274 const struct snd_pcm_hw_constraint_list *l) 1275 { 1276 return snd_pcm_hw_rule_add(runtime, cond, var, 1277 snd_pcm_hw_rule_list, (void *)l, 1278 var, -1); 1279 } 1280 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1281 1282 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1283 struct snd_pcm_hw_rule *rule) 1284 { 1285 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1286 return snd_interval_ranges(hw_param_interval(params, rule->var), 1287 r->count, r->ranges, r->mask); 1288 } 1289 1290 1291 /** 1292 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1293 * @runtime: PCM runtime instance 1294 * @cond: condition bits 1295 * @var: hw_params variable to apply the list of range constraints 1296 * @r: ranges 1297 * 1298 * Apply the list of range constraints to an interval parameter. 1299 * 1300 * Return: Zero if successful, or a negative error code on failure. 1301 */ 1302 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1303 unsigned int cond, 1304 snd_pcm_hw_param_t var, 1305 const struct snd_pcm_hw_constraint_ranges *r) 1306 { 1307 return snd_pcm_hw_rule_add(runtime, cond, var, 1308 snd_pcm_hw_rule_ranges, (void *)r, 1309 var, -1); 1310 } 1311 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1312 1313 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1314 struct snd_pcm_hw_rule *rule) 1315 { 1316 const struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1317 unsigned int num = 0, den = 0; 1318 int err; 1319 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1320 r->nrats, r->rats, &num, &den); 1321 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1322 params->rate_num = num; 1323 params->rate_den = den; 1324 } 1325 return err; 1326 } 1327 1328 /** 1329 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1330 * @runtime: PCM runtime instance 1331 * @cond: condition bits 1332 * @var: hw_params variable to apply the ratnums constraint 1333 * @r: struct snd_ratnums constriants 1334 * 1335 * Return: Zero if successful, or a negative error code on failure. 1336 */ 1337 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1338 unsigned int cond, 1339 snd_pcm_hw_param_t var, 1340 const struct snd_pcm_hw_constraint_ratnums *r) 1341 { 1342 return snd_pcm_hw_rule_add(runtime, cond, var, 1343 snd_pcm_hw_rule_ratnums, (void *)r, 1344 var, -1); 1345 } 1346 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1347 1348 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1349 struct snd_pcm_hw_rule *rule) 1350 { 1351 const struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1352 unsigned int num = 0, den = 0; 1353 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1354 r->nrats, r->rats, &num, &den); 1355 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1356 params->rate_num = num; 1357 params->rate_den = den; 1358 } 1359 return err; 1360 } 1361 1362 /** 1363 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1364 * @runtime: PCM runtime instance 1365 * @cond: condition bits 1366 * @var: hw_params variable to apply the ratdens constraint 1367 * @r: struct snd_ratdens constriants 1368 * 1369 * Return: Zero if successful, or a negative error code on failure. 1370 */ 1371 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1372 unsigned int cond, 1373 snd_pcm_hw_param_t var, 1374 const struct snd_pcm_hw_constraint_ratdens *r) 1375 { 1376 return snd_pcm_hw_rule_add(runtime, cond, var, 1377 snd_pcm_hw_rule_ratdens, (void *)r, 1378 var, -1); 1379 } 1380 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1381 1382 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1383 struct snd_pcm_hw_rule *rule) 1384 { 1385 unsigned int l = (unsigned long) rule->private; 1386 int width = l & 0xffff; 1387 unsigned int msbits = l >> 16; 1388 const struct snd_interval *i = 1389 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1390 1391 if (!snd_interval_single(i)) 1392 return 0; 1393 1394 if ((snd_interval_value(i) == width) || 1395 (width == 0 && snd_interval_value(i) > msbits)) 1396 params->msbits = min_not_zero(params->msbits, msbits); 1397 1398 return 0; 1399 } 1400 1401 /** 1402 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1403 * @runtime: PCM runtime instance 1404 * @cond: condition bits 1405 * @width: sample bits width 1406 * @msbits: msbits width 1407 * 1408 * This constraint will set the number of most significant bits (msbits) if a 1409 * sample format with the specified width has been select. If width is set to 0 1410 * the msbits will be set for any sample format with a width larger than the 1411 * specified msbits. 1412 * 1413 * Return: Zero if successful, or a negative error code on failure. 1414 */ 1415 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1416 unsigned int cond, 1417 unsigned int width, 1418 unsigned int msbits) 1419 { 1420 unsigned long l = (msbits << 16) | width; 1421 return snd_pcm_hw_rule_add(runtime, cond, -1, 1422 snd_pcm_hw_rule_msbits, 1423 (void*) l, 1424 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1425 } 1426 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1427 1428 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1429 struct snd_pcm_hw_rule *rule) 1430 { 1431 unsigned long step = (unsigned long) rule->private; 1432 return snd_interval_step(hw_param_interval(params, rule->var), step); 1433 } 1434 1435 /** 1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1437 * @runtime: PCM runtime instance 1438 * @cond: condition bits 1439 * @var: hw_params variable to apply the step constraint 1440 * @step: step size 1441 * 1442 * Return: Zero if successful, or a negative error code on failure. 1443 */ 1444 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1445 unsigned int cond, 1446 snd_pcm_hw_param_t var, 1447 unsigned long step) 1448 { 1449 return snd_pcm_hw_rule_add(runtime, cond, var, 1450 snd_pcm_hw_rule_step, (void *) step, 1451 var, -1); 1452 } 1453 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1454 1455 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1456 { 1457 static const unsigned int pow2_sizes[] = { 1458 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1459 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1460 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1461 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1462 }; 1463 return snd_interval_list(hw_param_interval(params, rule->var), 1464 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1465 } 1466 1467 /** 1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1469 * @runtime: PCM runtime instance 1470 * @cond: condition bits 1471 * @var: hw_params variable to apply the power-of-2 constraint 1472 * 1473 * Return: Zero if successful, or a negative error code on failure. 1474 */ 1475 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1476 unsigned int cond, 1477 snd_pcm_hw_param_t var) 1478 { 1479 return snd_pcm_hw_rule_add(runtime, cond, var, 1480 snd_pcm_hw_rule_pow2, NULL, 1481 var, -1); 1482 } 1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1484 1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1486 struct snd_pcm_hw_rule *rule) 1487 { 1488 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1489 struct snd_interval *rate; 1490 1491 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1492 return snd_interval_list(rate, 1, &base_rate, 0); 1493 } 1494 1495 /** 1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1497 * @runtime: PCM runtime instance 1498 * @base_rate: the rate at which the hardware does not resample 1499 * 1500 * Return: Zero if successful, or a negative error code on failure. 1501 */ 1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1503 unsigned int base_rate) 1504 { 1505 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1506 SNDRV_PCM_HW_PARAM_RATE, 1507 snd_pcm_hw_rule_noresample_func, 1508 (void *)(uintptr_t)base_rate, 1509 SNDRV_PCM_HW_PARAM_RATE, -1); 1510 } 1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1512 1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1514 snd_pcm_hw_param_t var) 1515 { 1516 if (hw_is_mask(var)) { 1517 snd_mask_any(hw_param_mask(params, var)); 1518 params->cmask |= 1 << var; 1519 params->rmask |= 1 << var; 1520 return; 1521 } 1522 if (hw_is_interval(var)) { 1523 snd_interval_any(hw_param_interval(params, var)); 1524 params->cmask |= 1 << var; 1525 params->rmask |= 1 << var; 1526 return; 1527 } 1528 snd_BUG(); 1529 } 1530 1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1532 { 1533 unsigned int k; 1534 memset(params, 0, sizeof(*params)); 1535 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1536 _snd_pcm_hw_param_any(params, k); 1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1538 _snd_pcm_hw_param_any(params, k); 1539 params->info = ~0U; 1540 } 1541 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1542 1543 /** 1544 * snd_pcm_hw_param_value - return @params field @var value 1545 * @params: the hw_params instance 1546 * @var: parameter to retrieve 1547 * @dir: pointer to the direction (-1,0,1) or %NULL 1548 * 1549 * Return: The value for field @var if it's fixed in configuration space 1550 * defined by @params. -%EINVAL otherwise. 1551 */ 1552 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1553 snd_pcm_hw_param_t var, int *dir) 1554 { 1555 if (hw_is_mask(var)) { 1556 const struct snd_mask *mask = hw_param_mask_c(params, var); 1557 if (!snd_mask_single(mask)) 1558 return -EINVAL; 1559 if (dir) 1560 *dir = 0; 1561 return snd_mask_value(mask); 1562 } 1563 if (hw_is_interval(var)) { 1564 const struct snd_interval *i = hw_param_interval_c(params, var); 1565 if (!snd_interval_single(i)) 1566 return -EINVAL; 1567 if (dir) 1568 *dir = i->openmin; 1569 return snd_interval_value(i); 1570 } 1571 return -EINVAL; 1572 } 1573 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1574 1575 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1576 snd_pcm_hw_param_t var) 1577 { 1578 if (hw_is_mask(var)) { 1579 snd_mask_none(hw_param_mask(params, var)); 1580 params->cmask |= 1 << var; 1581 params->rmask |= 1 << var; 1582 } else if (hw_is_interval(var)) { 1583 snd_interval_none(hw_param_interval(params, var)); 1584 params->cmask |= 1 << var; 1585 params->rmask |= 1 << var; 1586 } else { 1587 snd_BUG(); 1588 } 1589 } 1590 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1591 1592 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1593 snd_pcm_hw_param_t var) 1594 { 1595 int changed; 1596 if (hw_is_mask(var)) 1597 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1598 else if (hw_is_interval(var)) 1599 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1600 else 1601 return -EINVAL; 1602 if (changed > 0) { 1603 params->cmask |= 1 << var; 1604 params->rmask |= 1 << var; 1605 } 1606 return changed; 1607 } 1608 1609 1610 /** 1611 * snd_pcm_hw_param_first - refine config space and return minimum value 1612 * @pcm: PCM instance 1613 * @params: the hw_params instance 1614 * @var: parameter to retrieve 1615 * @dir: pointer to the direction (-1,0,1) or %NULL 1616 * 1617 * Inside configuration space defined by @params remove from @var all 1618 * values > minimum. Reduce configuration space accordingly. 1619 * 1620 * Return: The minimum, or a negative error code on failure. 1621 */ 1622 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1623 struct snd_pcm_hw_params *params, 1624 snd_pcm_hw_param_t var, int *dir) 1625 { 1626 int changed = _snd_pcm_hw_param_first(params, var); 1627 if (changed < 0) 1628 return changed; 1629 if (params->rmask) { 1630 int err = snd_pcm_hw_refine(pcm, params); 1631 if (err < 0) 1632 return err; 1633 } 1634 return snd_pcm_hw_param_value(params, var, dir); 1635 } 1636 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1637 1638 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1639 snd_pcm_hw_param_t var) 1640 { 1641 int changed; 1642 if (hw_is_mask(var)) 1643 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1644 else if (hw_is_interval(var)) 1645 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1646 else 1647 return -EINVAL; 1648 if (changed > 0) { 1649 params->cmask |= 1 << var; 1650 params->rmask |= 1 << var; 1651 } 1652 return changed; 1653 } 1654 1655 1656 /** 1657 * snd_pcm_hw_param_last - refine config space and return maximum value 1658 * @pcm: PCM instance 1659 * @params: the hw_params instance 1660 * @var: parameter to retrieve 1661 * @dir: pointer to the direction (-1,0,1) or %NULL 1662 * 1663 * Inside configuration space defined by @params remove from @var all 1664 * values < maximum. Reduce configuration space accordingly. 1665 * 1666 * Return: The maximum, or a negative error code on failure. 1667 */ 1668 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1669 struct snd_pcm_hw_params *params, 1670 snd_pcm_hw_param_t var, int *dir) 1671 { 1672 int changed = _snd_pcm_hw_param_last(params, var); 1673 if (changed < 0) 1674 return changed; 1675 if (params->rmask) { 1676 int err = snd_pcm_hw_refine(pcm, params); 1677 if (err < 0) 1678 return err; 1679 } 1680 return snd_pcm_hw_param_value(params, var, dir); 1681 } 1682 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1683 1684 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1685 void *arg) 1686 { 1687 struct snd_pcm_runtime *runtime = substream->runtime; 1688 unsigned long flags; 1689 snd_pcm_stream_lock_irqsave(substream, flags); 1690 if (snd_pcm_running(substream) && 1691 snd_pcm_update_hw_ptr(substream) >= 0) 1692 runtime->status->hw_ptr %= runtime->buffer_size; 1693 else { 1694 runtime->status->hw_ptr = 0; 1695 runtime->hw_ptr_wrap = 0; 1696 } 1697 snd_pcm_stream_unlock_irqrestore(substream, flags); 1698 return 0; 1699 } 1700 1701 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1702 void *arg) 1703 { 1704 struct snd_pcm_channel_info *info = arg; 1705 struct snd_pcm_runtime *runtime = substream->runtime; 1706 int width; 1707 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1708 info->offset = -1; 1709 return 0; 1710 } 1711 width = snd_pcm_format_physical_width(runtime->format); 1712 if (width < 0) 1713 return width; 1714 info->offset = 0; 1715 switch (runtime->access) { 1716 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1717 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1718 info->first = info->channel * width; 1719 info->step = runtime->channels * width; 1720 break; 1721 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1722 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1723 { 1724 size_t size = runtime->dma_bytes / runtime->channels; 1725 info->first = info->channel * size * 8; 1726 info->step = width; 1727 break; 1728 } 1729 default: 1730 snd_BUG(); 1731 break; 1732 } 1733 return 0; 1734 } 1735 1736 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1737 void *arg) 1738 { 1739 struct snd_pcm_hw_params *params = arg; 1740 snd_pcm_format_t format; 1741 int channels; 1742 ssize_t frame_size; 1743 1744 params->fifo_size = substream->runtime->hw.fifo_size; 1745 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1746 format = params_format(params); 1747 channels = params_channels(params); 1748 frame_size = snd_pcm_format_size(format, channels); 1749 if (frame_size > 0) 1750 params->fifo_size /= frame_size; 1751 } 1752 return 0; 1753 } 1754 1755 /** 1756 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1757 * @substream: the pcm substream instance 1758 * @cmd: ioctl command 1759 * @arg: ioctl argument 1760 * 1761 * Processes the generic ioctl commands for PCM. 1762 * Can be passed as the ioctl callback for PCM ops. 1763 * 1764 * Return: Zero if successful, or a negative error code on failure. 1765 */ 1766 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1767 unsigned int cmd, void *arg) 1768 { 1769 switch (cmd) { 1770 case SNDRV_PCM_IOCTL1_RESET: 1771 return snd_pcm_lib_ioctl_reset(substream, arg); 1772 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1773 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1774 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1775 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1776 } 1777 return -ENXIO; 1778 } 1779 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1780 1781 /** 1782 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period 1783 * under acquired lock of PCM substream. 1784 * @substream: the instance of pcm substream. 1785 * 1786 * This function is called when the batch of audio data frames as the same size as the period of 1787 * buffer is already processed in audio data transmission. 1788 * 1789 * The call of function updates the status of runtime with the latest position of audio data 1790 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for 1791 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM 1792 * substream according to configured threshold. 1793 * 1794 * The function is intended to use for the case that PCM driver operates audio data frames under 1795 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process 1796 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead 1797 * since lock of PCM substream should be acquired in advance. 1798 * 1799 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of 1800 * function: 1801 * 1802 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state. 1803 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state. 1804 * - .get_time_info - to retrieve audio time stamp if needed. 1805 * 1806 * Even if more than one periods have elapsed since the last call, you have to call this only once. 1807 */ 1808 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream) 1809 { 1810 struct snd_pcm_runtime *runtime; 1811 1812 if (PCM_RUNTIME_CHECK(substream)) 1813 return; 1814 runtime = substream->runtime; 1815 1816 if (!snd_pcm_running(substream) || 1817 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1818 goto _end; 1819 1820 #ifdef CONFIG_SND_PCM_TIMER 1821 if (substream->timer_running) 1822 snd_timer_interrupt(substream->timer, 1); 1823 #endif 1824 _end: 1825 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1826 } 1827 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock); 1828 1829 /** 1830 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of 1831 * PCM substream. 1832 * @substream: the instance of PCM substream. 1833 * 1834 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for 1835 * acquiring lock of PCM substream voluntarily. 1836 * 1837 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that 1838 * the batch of audio data frames as the same size as the period of buffer is already processed in 1839 * audio data transmission. 1840 */ 1841 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1842 { 1843 unsigned long flags; 1844 1845 if (snd_BUG_ON(!substream)) 1846 return; 1847 1848 snd_pcm_stream_lock_irqsave(substream, flags); 1849 snd_pcm_period_elapsed_under_stream_lock(substream); 1850 snd_pcm_stream_unlock_irqrestore(substream, flags); 1851 } 1852 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1853 1854 /* 1855 * Wait until avail_min data becomes available 1856 * Returns a negative error code if any error occurs during operation. 1857 * The available space is stored on availp. When err = 0 and avail = 0 1858 * on the capture stream, it indicates the stream is in DRAINING state. 1859 */ 1860 static int wait_for_avail(struct snd_pcm_substream *substream, 1861 snd_pcm_uframes_t *availp) 1862 { 1863 struct snd_pcm_runtime *runtime = substream->runtime; 1864 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1865 wait_queue_entry_t wait; 1866 int err = 0; 1867 snd_pcm_uframes_t avail = 0; 1868 long wait_time, tout; 1869 1870 init_waitqueue_entry(&wait, current); 1871 set_current_state(TASK_INTERRUPTIBLE); 1872 add_wait_queue(&runtime->tsleep, &wait); 1873 1874 if (runtime->no_period_wakeup) 1875 wait_time = MAX_SCHEDULE_TIMEOUT; 1876 else { 1877 /* use wait time from substream if available */ 1878 if (substream->wait_time) { 1879 wait_time = substream->wait_time; 1880 } else { 1881 wait_time = 10; 1882 1883 if (runtime->rate) { 1884 long t = runtime->period_size * 2 / 1885 runtime->rate; 1886 wait_time = max(t, wait_time); 1887 } 1888 wait_time = msecs_to_jiffies(wait_time * 1000); 1889 } 1890 } 1891 1892 for (;;) { 1893 if (signal_pending(current)) { 1894 err = -ERESTARTSYS; 1895 break; 1896 } 1897 1898 /* 1899 * We need to check if space became available already 1900 * (and thus the wakeup happened already) first to close 1901 * the race of space already having become available. 1902 * This check must happen after been added to the waitqueue 1903 * and having current state be INTERRUPTIBLE. 1904 */ 1905 avail = snd_pcm_avail(substream); 1906 if (avail >= runtime->twake) 1907 break; 1908 snd_pcm_stream_unlock_irq(substream); 1909 mutex_unlock(&runtime->buffer_mutex); 1910 1911 tout = schedule_timeout(wait_time); 1912 1913 mutex_lock(&runtime->buffer_mutex); 1914 snd_pcm_stream_lock_irq(substream); 1915 set_current_state(TASK_INTERRUPTIBLE); 1916 switch (runtime->status->state) { 1917 case SNDRV_PCM_STATE_SUSPENDED: 1918 err = -ESTRPIPE; 1919 goto _endloop; 1920 case SNDRV_PCM_STATE_XRUN: 1921 err = -EPIPE; 1922 goto _endloop; 1923 case SNDRV_PCM_STATE_DRAINING: 1924 if (is_playback) 1925 err = -EPIPE; 1926 else 1927 avail = 0; /* indicate draining */ 1928 goto _endloop; 1929 case SNDRV_PCM_STATE_OPEN: 1930 case SNDRV_PCM_STATE_SETUP: 1931 case SNDRV_PCM_STATE_DISCONNECTED: 1932 err = -EBADFD; 1933 goto _endloop; 1934 case SNDRV_PCM_STATE_PAUSED: 1935 continue; 1936 } 1937 if (!tout) { 1938 pcm_dbg(substream->pcm, 1939 "%s write error (DMA or IRQ trouble?)\n", 1940 is_playback ? "playback" : "capture"); 1941 err = -EIO; 1942 break; 1943 } 1944 } 1945 _endloop: 1946 set_current_state(TASK_RUNNING); 1947 remove_wait_queue(&runtime->tsleep, &wait); 1948 *availp = avail; 1949 return err; 1950 } 1951 1952 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, 1953 int channel, unsigned long hwoff, 1954 void *buf, unsigned long bytes); 1955 1956 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, 1957 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f); 1958 1959 /* calculate the target DMA-buffer position to be written/read */ 1960 static void *get_dma_ptr(struct snd_pcm_runtime *runtime, 1961 int channel, unsigned long hwoff) 1962 { 1963 return runtime->dma_area + hwoff + 1964 channel * (runtime->dma_bytes / runtime->channels); 1965 } 1966 1967 /* default copy_user ops for write; used for both interleaved and non- modes */ 1968 static int default_write_copy(struct snd_pcm_substream *substream, 1969 int channel, unsigned long hwoff, 1970 void *buf, unsigned long bytes) 1971 { 1972 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff), 1973 (void __user *)buf, bytes)) 1974 return -EFAULT; 1975 return 0; 1976 } 1977 1978 /* default copy_kernel ops for write */ 1979 static int default_write_copy_kernel(struct snd_pcm_substream *substream, 1980 int channel, unsigned long hwoff, 1981 void *buf, unsigned long bytes) 1982 { 1983 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes); 1984 return 0; 1985 } 1986 1987 /* fill silence instead of copy data; called as a transfer helper 1988 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when 1989 * a NULL buffer is passed 1990 */ 1991 static int fill_silence(struct snd_pcm_substream *substream, int channel, 1992 unsigned long hwoff, void *buf, unsigned long bytes) 1993 { 1994 struct snd_pcm_runtime *runtime = substream->runtime; 1995 1996 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 1997 return 0; 1998 if (substream->ops->fill_silence) 1999 return substream->ops->fill_silence(substream, channel, 2000 hwoff, bytes); 2001 2002 snd_pcm_format_set_silence(runtime->format, 2003 get_dma_ptr(runtime, channel, hwoff), 2004 bytes_to_samples(runtime, bytes)); 2005 return 0; 2006 } 2007 2008 /* default copy_user ops for read; used for both interleaved and non- modes */ 2009 static int default_read_copy(struct snd_pcm_substream *substream, 2010 int channel, unsigned long hwoff, 2011 void *buf, unsigned long bytes) 2012 { 2013 if (copy_to_user((void __user *)buf, 2014 get_dma_ptr(substream->runtime, channel, hwoff), 2015 bytes)) 2016 return -EFAULT; 2017 return 0; 2018 } 2019 2020 /* default copy_kernel ops for read */ 2021 static int default_read_copy_kernel(struct snd_pcm_substream *substream, 2022 int channel, unsigned long hwoff, 2023 void *buf, unsigned long bytes) 2024 { 2025 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes); 2026 return 0; 2027 } 2028 2029 /* call transfer function with the converted pointers and sizes; 2030 * for interleaved mode, it's one shot for all samples 2031 */ 2032 static int interleaved_copy(struct snd_pcm_substream *substream, 2033 snd_pcm_uframes_t hwoff, void *data, 2034 snd_pcm_uframes_t off, 2035 snd_pcm_uframes_t frames, 2036 pcm_transfer_f transfer) 2037 { 2038 struct snd_pcm_runtime *runtime = substream->runtime; 2039 2040 /* convert to bytes */ 2041 hwoff = frames_to_bytes(runtime, hwoff); 2042 off = frames_to_bytes(runtime, off); 2043 frames = frames_to_bytes(runtime, frames); 2044 return transfer(substream, 0, hwoff, data + off, frames); 2045 } 2046 2047 /* call transfer function with the converted pointers and sizes for each 2048 * non-interleaved channel; when buffer is NULL, silencing instead of copying 2049 */ 2050 static int noninterleaved_copy(struct snd_pcm_substream *substream, 2051 snd_pcm_uframes_t hwoff, void *data, 2052 snd_pcm_uframes_t off, 2053 snd_pcm_uframes_t frames, 2054 pcm_transfer_f transfer) 2055 { 2056 struct snd_pcm_runtime *runtime = substream->runtime; 2057 int channels = runtime->channels; 2058 void **bufs = data; 2059 int c, err; 2060 2061 /* convert to bytes; note that it's not frames_to_bytes() here. 2062 * in non-interleaved mode, we copy for each channel, thus 2063 * each copy is n_samples bytes x channels = whole frames. 2064 */ 2065 off = samples_to_bytes(runtime, off); 2066 frames = samples_to_bytes(runtime, frames); 2067 hwoff = samples_to_bytes(runtime, hwoff); 2068 for (c = 0; c < channels; ++c, ++bufs) { 2069 if (!data || !*bufs) 2070 err = fill_silence(substream, c, hwoff, NULL, frames); 2071 else 2072 err = transfer(substream, c, hwoff, *bufs + off, 2073 frames); 2074 if (err < 0) 2075 return err; 2076 } 2077 return 0; 2078 } 2079 2080 /* fill silence on the given buffer position; 2081 * called from snd_pcm_playback_silence() 2082 */ 2083 static int fill_silence_frames(struct snd_pcm_substream *substream, 2084 snd_pcm_uframes_t off, snd_pcm_uframes_t frames) 2085 { 2086 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 2087 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) 2088 return interleaved_copy(substream, off, NULL, 0, frames, 2089 fill_silence); 2090 else 2091 return noninterleaved_copy(substream, off, NULL, 0, frames, 2092 fill_silence); 2093 } 2094 2095 /* sanity-check for read/write methods */ 2096 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2097 { 2098 struct snd_pcm_runtime *runtime; 2099 if (PCM_RUNTIME_CHECK(substream)) 2100 return -ENXIO; 2101 runtime = substream->runtime; 2102 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area)) 2103 return -EINVAL; 2104 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2105 return -EBADFD; 2106 return 0; 2107 } 2108 2109 static int pcm_accessible_state(struct snd_pcm_runtime *runtime) 2110 { 2111 switch (runtime->status->state) { 2112 case SNDRV_PCM_STATE_PREPARED: 2113 case SNDRV_PCM_STATE_RUNNING: 2114 case SNDRV_PCM_STATE_PAUSED: 2115 return 0; 2116 case SNDRV_PCM_STATE_XRUN: 2117 return -EPIPE; 2118 case SNDRV_PCM_STATE_SUSPENDED: 2119 return -ESTRPIPE; 2120 default: 2121 return -EBADFD; 2122 } 2123 } 2124 2125 /* update to the given appl_ptr and call ack callback if needed; 2126 * when an error is returned, take back to the original value 2127 */ 2128 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream, 2129 snd_pcm_uframes_t appl_ptr) 2130 { 2131 struct snd_pcm_runtime *runtime = substream->runtime; 2132 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr; 2133 snd_pcm_sframes_t diff; 2134 int ret; 2135 2136 if (old_appl_ptr == appl_ptr) 2137 return 0; 2138 2139 if (appl_ptr >= runtime->boundary) 2140 return -EINVAL; 2141 /* 2142 * check if a rewind is requested by the application 2143 */ 2144 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) { 2145 diff = appl_ptr - old_appl_ptr; 2146 if (diff >= 0) { 2147 if (diff > runtime->buffer_size) 2148 return -EINVAL; 2149 } else { 2150 if (runtime->boundary + diff > runtime->buffer_size) 2151 return -EINVAL; 2152 } 2153 } 2154 2155 runtime->control->appl_ptr = appl_ptr; 2156 if (substream->ops->ack) { 2157 ret = substream->ops->ack(substream); 2158 if (ret < 0) { 2159 runtime->control->appl_ptr = old_appl_ptr; 2160 return ret; 2161 } 2162 } 2163 2164 trace_applptr(substream, old_appl_ptr, appl_ptr); 2165 2166 return 0; 2167 } 2168 2169 /* the common loop for read/write data */ 2170 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, 2171 void *data, bool interleaved, 2172 snd_pcm_uframes_t size, bool in_kernel) 2173 { 2174 struct snd_pcm_runtime *runtime = substream->runtime; 2175 snd_pcm_uframes_t xfer = 0; 2176 snd_pcm_uframes_t offset = 0; 2177 snd_pcm_uframes_t avail; 2178 pcm_copy_f writer; 2179 pcm_transfer_f transfer; 2180 bool nonblock; 2181 bool is_playback; 2182 int err; 2183 2184 err = pcm_sanity_check(substream); 2185 if (err < 0) 2186 return err; 2187 2188 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 2189 if (interleaved) { 2190 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2191 runtime->channels > 1) 2192 return -EINVAL; 2193 writer = interleaved_copy; 2194 } else { 2195 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2196 return -EINVAL; 2197 writer = noninterleaved_copy; 2198 } 2199 2200 if (!data) { 2201 if (is_playback) 2202 transfer = fill_silence; 2203 else 2204 return -EINVAL; 2205 } else if (in_kernel) { 2206 if (substream->ops->copy_kernel) 2207 transfer = substream->ops->copy_kernel; 2208 else 2209 transfer = is_playback ? 2210 default_write_copy_kernel : default_read_copy_kernel; 2211 } else { 2212 if (substream->ops->copy_user) 2213 transfer = (pcm_transfer_f)substream->ops->copy_user; 2214 else 2215 transfer = is_playback ? 2216 default_write_copy : default_read_copy; 2217 } 2218 2219 if (size == 0) 2220 return 0; 2221 2222 nonblock = !!(substream->f_flags & O_NONBLOCK); 2223 2224 mutex_lock(&runtime->buffer_mutex); 2225 snd_pcm_stream_lock_irq(substream); 2226 err = pcm_accessible_state(runtime); 2227 if (err < 0) 2228 goto _end_unlock; 2229 2230 runtime->twake = runtime->control->avail_min ? : 1; 2231 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2232 snd_pcm_update_hw_ptr(substream); 2233 2234 /* 2235 * If size < start_threshold, wait indefinitely. Another 2236 * thread may start capture 2237 */ 2238 if (!is_playback && 2239 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2240 size >= runtime->start_threshold) { 2241 err = snd_pcm_start(substream); 2242 if (err < 0) 2243 goto _end_unlock; 2244 } 2245 2246 avail = snd_pcm_avail(substream); 2247 2248 while (size > 0) { 2249 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2250 snd_pcm_uframes_t cont; 2251 if (!avail) { 2252 if (!is_playback && 2253 runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 2254 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2255 goto _end_unlock; 2256 } 2257 if (nonblock) { 2258 err = -EAGAIN; 2259 goto _end_unlock; 2260 } 2261 runtime->twake = min_t(snd_pcm_uframes_t, size, 2262 runtime->control->avail_min ? : 1); 2263 err = wait_for_avail(substream, &avail); 2264 if (err < 0) 2265 goto _end_unlock; 2266 if (!avail) 2267 continue; /* draining */ 2268 } 2269 frames = size > avail ? avail : size; 2270 appl_ptr = READ_ONCE(runtime->control->appl_ptr); 2271 appl_ofs = appl_ptr % runtime->buffer_size; 2272 cont = runtime->buffer_size - appl_ofs; 2273 if (frames > cont) 2274 frames = cont; 2275 if (snd_BUG_ON(!frames)) { 2276 err = -EINVAL; 2277 goto _end_unlock; 2278 } 2279 snd_pcm_stream_unlock_irq(substream); 2280 if (!is_playback) 2281 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU); 2282 err = writer(substream, appl_ofs, data, offset, frames, 2283 transfer); 2284 if (is_playback) 2285 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE); 2286 snd_pcm_stream_lock_irq(substream); 2287 if (err < 0) 2288 goto _end_unlock; 2289 err = pcm_accessible_state(runtime); 2290 if (err < 0) 2291 goto _end_unlock; 2292 appl_ptr += frames; 2293 if (appl_ptr >= runtime->boundary) 2294 appl_ptr -= runtime->boundary; 2295 err = pcm_lib_apply_appl_ptr(substream, appl_ptr); 2296 if (err < 0) 2297 goto _end_unlock; 2298 2299 offset += frames; 2300 size -= frames; 2301 xfer += frames; 2302 avail -= frames; 2303 if (is_playback && 2304 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2305 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2306 err = snd_pcm_start(substream); 2307 if (err < 0) 2308 goto _end_unlock; 2309 } 2310 } 2311 _end_unlock: 2312 runtime->twake = 0; 2313 if (xfer > 0 && err >= 0) 2314 snd_pcm_update_state(substream, runtime); 2315 snd_pcm_stream_unlock_irq(substream); 2316 mutex_unlock(&runtime->buffer_mutex); 2317 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2318 } 2319 EXPORT_SYMBOL(__snd_pcm_lib_xfer); 2320 2321 /* 2322 * standard channel mapping helpers 2323 */ 2324 2325 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2326 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2327 { .channels = 1, 2328 .map = { SNDRV_CHMAP_MONO } }, 2329 { .channels = 2, 2330 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2331 { .channels = 4, 2332 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2333 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2334 { .channels = 6, 2335 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2336 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2337 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2338 { .channels = 8, 2339 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2340 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2341 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2342 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2343 { } 2344 }; 2345 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2346 2347 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2348 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2349 { .channels = 1, 2350 .map = { SNDRV_CHMAP_MONO } }, 2351 { .channels = 2, 2352 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2353 { .channels = 4, 2354 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2355 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2356 { .channels = 6, 2357 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2358 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2359 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2360 { .channels = 8, 2361 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2362 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2363 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2364 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2365 { } 2366 }; 2367 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2368 2369 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2370 { 2371 if (ch > info->max_channels) 2372 return false; 2373 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2374 } 2375 2376 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2377 struct snd_ctl_elem_info *uinfo) 2378 { 2379 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2380 2381 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2382 uinfo->count = info->max_channels; 2383 uinfo->value.integer.min = 0; 2384 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2385 return 0; 2386 } 2387 2388 /* get callback for channel map ctl element 2389 * stores the channel position firstly matching with the current channels 2390 */ 2391 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2392 struct snd_ctl_elem_value *ucontrol) 2393 { 2394 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2395 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2396 struct snd_pcm_substream *substream; 2397 const struct snd_pcm_chmap_elem *map; 2398 2399 if (!info->chmap) 2400 return -EINVAL; 2401 substream = snd_pcm_chmap_substream(info, idx); 2402 if (!substream) 2403 return -ENODEV; 2404 memset(ucontrol->value.integer.value, 0, 2405 sizeof(long) * info->max_channels); 2406 if (!substream->runtime) 2407 return 0; /* no channels set */ 2408 for (map = info->chmap; map->channels; map++) { 2409 int i; 2410 if (map->channels == substream->runtime->channels && 2411 valid_chmap_channels(info, map->channels)) { 2412 for (i = 0; i < map->channels; i++) 2413 ucontrol->value.integer.value[i] = map->map[i]; 2414 return 0; 2415 } 2416 } 2417 return -EINVAL; 2418 } 2419 2420 /* tlv callback for channel map ctl element 2421 * expands the pre-defined channel maps in a form of TLV 2422 */ 2423 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2424 unsigned int size, unsigned int __user *tlv) 2425 { 2426 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2427 const struct snd_pcm_chmap_elem *map; 2428 unsigned int __user *dst; 2429 int c, count = 0; 2430 2431 if (!info->chmap) 2432 return -EINVAL; 2433 if (size < 8) 2434 return -ENOMEM; 2435 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2436 return -EFAULT; 2437 size -= 8; 2438 dst = tlv + 2; 2439 for (map = info->chmap; map->channels; map++) { 2440 int chs_bytes = map->channels * 4; 2441 if (!valid_chmap_channels(info, map->channels)) 2442 continue; 2443 if (size < 8) 2444 return -ENOMEM; 2445 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2446 put_user(chs_bytes, dst + 1)) 2447 return -EFAULT; 2448 dst += 2; 2449 size -= 8; 2450 count += 8; 2451 if (size < chs_bytes) 2452 return -ENOMEM; 2453 size -= chs_bytes; 2454 count += chs_bytes; 2455 for (c = 0; c < map->channels; c++) { 2456 if (put_user(map->map[c], dst)) 2457 return -EFAULT; 2458 dst++; 2459 } 2460 } 2461 if (put_user(count, tlv + 1)) 2462 return -EFAULT; 2463 return 0; 2464 } 2465 2466 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2467 { 2468 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2469 info->pcm->streams[info->stream].chmap_kctl = NULL; 2470 kfree(info); 2471 } 2472 2473 /** 2474 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2475 * @pcm: the assigned PCM instance 2476 * @stream: stream direction 2477 * @chmap: channel map elements (for query) 2478 * @max_channels: the max number of channels for the stream 2479 * @private_value: the value passed to each kcontrol's private_value field 2480 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2481 * 2482 * Create channel-mapping control elements assigned to the given PCM stream(s). 2483 * Return: Zero if successful, or a negative error value. 2484 */ 2485 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2486 const struct snd_pcm_chmap_elem *chmap, 2487 int max_channels, 2488 unsigned long private_value, 2489 struct snd_pcm_chmap **info_ret) 2490 { 2491 struct snd_pcm_chmap *info; 2492 struct snd_kcontrol_new knew = { 2493 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2494 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2495 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2496 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2497 .info = pcm_chmap_ctl_info, 2498 .get = pcm_chmap_ctl_get, 2499 .tlv.c = pcm_chmap_ctl_tlv, 2500 }; 2501 int err; 2502 2503 if (WARN_ON(pcm->streams[stream].chmap_kctl)) 2504 return -EBUSY; 2505 info = kzalloc(sizeof(*info), GFP_KERNEL); 2506 if (!info) 2507 return -ENOMEM; 2508 info->pcm = pcm; 2509 info->stream = stream; 2510 info->chmap = chmap; 2511 info->max_channels = max_channels; 2512 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2513 knew.name = "Playback Channel Map"; 2514 else 2515 knew.name = "Capture Channel Map"; 2516 knew.device = pcm->device; 2517 knew.count = pcm->streams[stream].substream_count; 2518 knew.private_value = private_value; 2519 info->kctl = snd_ctl_new1(&knew, info); 2520 if (!info->kctl) { 2521 kfree(info); 2522 return -ENOMEM; 2523 } 2524 info->kctl->private_free = pcm_chmap_ctl_private_free; 2525 err = snd_ctl_add(pcm->card, info->kctl); 2526 if (err < 0) 2527 return err; 2528 pcm->streams[stream].chmap_kctl = info->kctl; 2529 if (info_ret) 2530 *info_ret = info; 2531 return 0; 2532 } 2533 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2534