xref: /openbmc/linux/sound/core/pcm_lib.c (revision 1ccd4b7b)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32 
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 	struct snd_pcm_runtime *runtime = substream->runtime;
45 	snd_pcm_uframes_t frames, ofs, transfer;
46 
47 	if (runtime->silence_size < runtime->boundary) {
48 		snd_pcm_sframes_t noise_dist, n;
49 		if (runtime->silence_start != runtime->control->appl_ptr) {
50 			n = runtime->control->appl_ptr - runtime->silence_start;
51 			if (n < 0)
52 				n += runtime->boundary;
53 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 				runtime->silence_filled -= n;
55 			else
56 				runtime->silence_filled = 0;
57 			runtime->silence_start = runtime->control->appl_ptr;
58 		}
59 		if (runtime->silence_filled >= runtime->buffer_size)
60 			return;
61 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63 			return;
64 		frames = runtime->silence_threshold - noise_dist;
65 		if (frames > runtime->silence_size)
66 			frames = runtime->silence_size;
67 	} else {
68 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
69 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70 			if (avail > runtime->buffer_size)
71 				avail = runtime->buffer_size;
72 			runtime->silence_filled = avail > 0 ? avail : 0;
73 			runtime->silence_start = (runtime->status->hw_ptr +
74 						  runtime->silence_filled) %
75 						 runtime->boundary;
76 		} else {
77 			ofs = runtime->status->hw_ptr;
78 			frames = new_hw_ptr - ofs;
79 			if ((snd_pcm_sframes_t)frames < 0)
80 				frames += runtime->boundary;
81 			runtime->silence_filled -= frames;
82 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83 				runtime->silence_filled = 0;
84 				runtime->silence_start = new_hw_ptr;
85 			} else {
86 				runtime->silence_start = ofs;
87 			}
88 		}
89 		frames = runtime->buffer_size - runtime->silence_filled;
90 	}
91 	if (snd_BUG_ON(frames > runtime->buffer_size))
92 		return;
93 	if (frames == 0)
94 		return;
95 	ofs = runtime->silence_start % runtime->buffer_size;
96 	while (frames > 0) {
97 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100 			if (substream->ops->silence) {
101 				int err;
102 				err = substream->ops->silence(substream, -1, ofs, transfer);
103 				snd_BUG_ON(err < 0);
104 			} else {
105 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107 			}
108 		} else {
109 			unsigned int c;
110 			unsigned int channels = runtime->channels;
111 			if (substream->ops->silence) {
112 				for (c = 0; c < channels; ++c) {
113 					int err;
114 					err = substream->ops->silence(substream, c, ofs, transfer);
115 					snd_BUG_ON(err < 0);
116 				}
117 			} else {
118 				size_t dma_csize = runtime->dma_bytes / channels;
119 				for (c = 0; c < channels; ++c) {
120 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122 				}
123 			}
124 		}
125 		runtime->silence_filled += transfer;
126 		frames -= transfer;
127 		ofs = 0;
128 	}
129 }
130 
131 #ifdef CONFIG_SND_DEBUG
132 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
133 			   char *name, size_t len)
134 {
135 	snprintf(name, len, "pcmC%dD%d%c:%d",
136 		 substream->pcm->card->number,
137 		 substream->pcm->device,
138 		 substream->stream ? 'c' : 'p',
139 		 substream->number);
140 }
141 EXPORT_SYMBOL(snd_pcm_debug_name);
142 #endif
143 
144 #define XRUN_DEBUG_BASIC	(1<<0)
145 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
146 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
147 #define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
148 #define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
149 #define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
150 #define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
151 
152 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
153 
154 #define xrun_debug(substream, mask) \
155 			((substream)->pstr->xrun_debug & (mask))
156 #else
157 #define xrun_debug(substream, mask)	0
158 #endif
159 
160 #define dump_stack_on_xrun(substream) do {			\
161 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
162 			dump_stack();				\
163 	} while (0)
164 
165 static void xrun(struct snd_pcm_substream *substream)
166 {
167 	struct snd_pcm_runtime *runtime = substream->runtime;
168 
169 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
170 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
171 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
172 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
173 		char name[16];
174 		snd_pcm_debug_name(substream, name, sizeof(name));
175 		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
176 		dump_stack_on_xrun(substream);
177 	}
178 }
179 
180 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
181 #define hw_ptr_error(substream, fmt, args...)				\
182 	do {								\
183 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
184 			xrun_log_show(substream);			\
185 			if (printk_ratelimit()) {			\
186 				snd_printd("PCM: " fmt, ##args);	\
187 			}						\
188 			dump_stack_on_xrun(substream);			\
189 		}							\
190 	} while (0)
191 
192 #define XRUN_LOG_CNT	10
193 
194 struct hwptr_log_entry {
195 	unsigned int in_interrupt;
196 	unsigned long jiffies;
197 	snd_pcm_uframes_t pos;
198 	snd_pcm_uframes_t period_size;
199 	snd_pcm_uframes_t buffer_size;
200 	snd_pcm_uframes_t old_hw_ptr;
201 	snd_pcm_uframes_t hw_ptr_base;
202 };
203 
204 struct snd_pcm_hwptr_log {
205 	unsigned int idx;
206 	unsigned int hit: 1;
207 	struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209 
210 static void xrun_log(struct snd_pcm_substream *substream,
211 		     snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 	struct snd_pcm_runtime *runtime = substream->runtime;
214 	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 	struct hwptr_log_entry *entry;
216 
217 	if (log == NULL) {
218 		log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 		if (log == NULL)
220 			return;
221 		runtime->hwptr_log = log;
222 	} else {
223 		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 			return;
225 	}
226 	entry = &log->entries[log->idx];
227 	entry->in_interrupt = in_interrupt;
228 	entry->jiffies = jiffies;
229 	entry->pos = pos;
230 	entry->period_size = runtime->period_size;
231 	entry->buffer_size = runtime->buffer_size;
232 	entry->old_hw_ptr = runtime->status->hw_ptr;
233 	entry->hw_ptr_base = runtime->hw_ptr_base;
234 	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236 
237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 	struct hwptr_log_entry *entry;
241 	char name[16];
242 	unsigned int idx;
243 	int cnt;
244 
245 	if (log == NULL)
246 		return;
247 	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 		return;
249 	snd_pcm_debug_name(substream, name, sizeof(name));
250 	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 		entry = &log->entries[idx];
252 		if (entry->period_size == 0)
253 			break;
254 		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 			   "hwptr=%ld/%ld\n",
256 			   name, entry->in_interrupt ? "[Q] " : "",
257 			   entry->jiffies,
258 			   (unsigned long)entry->pos,
259 			   (unsigned long)entry->period_size,
260 			   (unsigned long)entry->buffer_size,
261 			   (unsigned long)entry->old_hw_ptr,
262 			   (unsigned long)entry->hw_ptr_base);
263 		idx++;
264 		idx %= XRUN_LOG_CNT;
265 	}
266 	log->hit = 1;
267 }
268 
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270 
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt)	do { } while (0)
273 #define xrun_log_show(substream)	do { } while (0)
274 
275 #endif
276 
277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 			 struct snd_pcm_runtime *runtime)
279 {
280 	snd_pcm_uframes_t avail;
281 
282 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 		avail = snd_pcm_playback_avail(runtime);
284 	else
285 		avail = snd_pcm_capture_avail(runtime);
286 	if (avail > runtime->avail_max)
287 		runtime->avail_max = avail;
288 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 		if (avail >= runtime->buffer_size) {
290 			snd_pcm_drain_done(substream);
291 			return -EPIPE;
292 		}
293 	} else {
294 		if (avail >= runtime->stop_threshold) {
295 			xrun(substream);
296 			return -EPIPE;
297 		}
298 	}
299 	if (runtime->twake) {
300 		if (avail >= runtime->twake)
301 			wake_up(&runtime->tsleep);
302 	} else if (avail >= runtime->control->avail_min)
303 		wake_up(&runtime->sleep);
304 	return 0;
305 }
306 
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 				  unsigned int in_interrupt)
309 {
310 	struct snd_pcm_runtime *runtime = substream->runtime;
311 	snd_pcm_uframes_t pos;
312 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 	snd_pcm_sframes_t hdelta, delta;
314 	unsigned long jdelta;
315 
316 	old_hw_ptr = runtime->status->hw_ptr;
317 	pos = substream->ops->pointer(substream);
318 	if (pos == SNDRV_PCM_POS_XRUN) {
319 		xrun(substream);
320 		return -EPIPE;
321 	}
322 	if (pos >= runtime->buffer_size) {
323 		if (printk_ratelimit()) {
324 			char name[16];
325 			snd_pcm_debug_name(substream, name, sizeof(name));
326 			xrun_log_show(substream);
327 			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
328 				   "buffer size = %ld, period size = %ld\n",
329 				   name, pos, runtime->buffer_size,
330 				   runtime->period_size);
331 		}
332 		pos = 0;
333 	}
334 	pos -= pos % runtime->min_align;
335 	if (xrun_debug(substream, XRUN_DEBUG_LOG))
336 		xrun_log(substream, pos, in_interrupt);
337 	hw_base = runtime->hw_ptr_base;
338 	new_hw_ptr = hw_base + pos;
339 	if (in_interrupt) {
340 		/* we know that one period was processed */
341 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
342 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
343 		if (delta > new_hw_ptr) {
344 			/* check for double acknowledged interrupts */
345 			hdelta = jiffies - runtime->hw_ptr_jiffies;
346 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
347 				hw_base += runtime->buffer_size;
348 				if (hw_base >= runtime->boundary)
349 					hw_base = 0;
350 				new_hw_ptr = hw_base + pos;
351 				goto __delta;
352 			}
353 		}
354 	}
355 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
356 	/* pointer crosses the end of the ring buffer */
357 	if (new_hw_ptr < old_hw_ptr) {
358 		hw_base += runtime->buffer_size;
359 		if (hw_base >= runtime->boundary)
360 			hw_base = 0;
361 		new_hw_ptr = hw_base + pos;
362 	}
363       __delta:
364 	delta = new_hw_ptr - old_hw_ptr;
365 	if (delta < 0)
366 		delta += runtime->boundary;
367 	if (xrun_debug(substream, in_interrupt ?
368 			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
369 		char name[16];
370 		snd_pcm_debug_name(substream, name, sizeof(name));
371 		snd_printd("%s_update: %s: pos=%u/%u/%u, "
372 			   "hwptr=%ld/%ld/%ld/%ld\n",
373 			   in_interrupt ? "period" : "hwptr",
374 			   name,
375 			   (unsigned int)pos,
376 			   (unsigned int)runtime->period_size,
377 			   (unsigned int)runtime->buffer_size,
378 			   (unsigned long)delta,
379 			   (unsigned long)old_hw_ptr,
380 			   (unsigned long)new_hw_ptr,
381 			   (unsigned long)runtime->hw_ptr_base);
382 	}
383 
384 	if (runtime->no_period_wakeup) {
385 		snd_pcm_sframes_t xrun_threshold;
386 		/*
387 		 * Without regular period interrupts, we have to check
388 		 * the elapsed time to detect xruns.
389 		 */
390 		jdelta = jiffies - runtime->hw_ptr_jiffies;
391 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
392 			goto no_delta_check;
393 		hdelta = jdelta - delta * HZ / runtime->rate;
394 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
395 		while (hdelta > xrun_threshold) {
396 			delta += runtime->buffer_size;
397 			hw_base += runtime->buffer_size;
398 			if (hw_base >= runtime->boundary)
399 				hw_base = 0;
400 			new_hw_ptr = hw_base + pos;
401 			hdelta -= runtime->hw_ptr_buffer_jiffies;
402 		}
403 		goto no_delta_check;
404 	}
405 
406 	/* something must be really wrong */
407 	if (delta >= runtime->buffer_size + runtime->period_size) {
408 		hw_ptr_error(substream,
409 			       "Unexpected hw_pointer value %s"
410 			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
411 			       "old_hw_ptr=%ld)\n",
412 				     in_interrupt ? "[Q] " : "[P]",
413 				     substream->stream, (long)pos,
414 				     (long)new_hw_ptr, (long)old_hw_ptr);
415 		return 0;
416 	}
417 
418 	/* Do jiffies check only in xrun_debug mode */
419 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
420 		goto no_jiffies_check;
421 
422 	/* Skip the jiffies check for hardwares with BATCH flag.
423 	 * Such hardware usually just increases the position at each IRQ,
424 	 * thus it can't give any strange position.
425 	 */
426 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
427 		goto no_jiffies_check;
428 	hdelta = delta;
429 	if (hdelta < runtime->delay)
430 		goto no_jiffies_check;
431 	hdelta -= runtime->delay;
432 	jdelta = jiffies - runtime->hw_ptr_jiffies;
433 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
434 		delta = jdelta /
435 			(((runtime->period_size * HZ) / runtime->rate)
436 								+ HZ/100);
437 		/* move new_hw_ptr according jiffies not pos variable */
438 		new_hw_ptr = old_hw_ptr;
439 		hw_base = delta;
440 		/* use loop to avoid checks for delta overflows */
441 		/* the delta value is small or zero in most cases */
442 		while (delta > 0) {
443 			new_hw_ptr += runtime->period_size;
444 			if (new_hw_ptr >= runtime->boundary)
445 				new_hw_ptr -= runtime->boundary;
446 			delta--;
447 		}
448 		/* align hw_base to buffer_size */
449 		hw_ptr_error(substream,
450 			     "hw_ptr skipping! %s"
451 			     "(pos=%ld, delta=%ld, period=%ld, "
452 			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
453 			     in_interrupt ? "[Q] " : "",
454 			     (long)pos, (long)hdelta,
455 			     (long)runtime->period_size, jdelta,
456 			     ((hdelta * HZ) / runtime->rate), hw_base,
457 			     (unsigned long)old_hw_ptr,
458 			     (unsigned long)new_hw_ptr);
459 		/* reset values to proper state */
460 		delta = 0;
461 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
462 	}
463  no_jiffies_check:
464 	if (delta > runtime->period_size + runtime->period_size / 2) {
465 		hw_ptr_error(substream,
466 			     "Lost interrupts? %s"
467 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
468 			     "old_hw_ptr=%ld)\n",
469 			     in_interrupt ? "[Q] " : "",
470 			     substream->stream, (long)delta,
471 			     (long)new_hw_ptr,
472 			     (long)old_hw_ptr);
473 	}
474 
475  no_delta_check:
476 	if (runtime->status->hw_ptr == new_hw_ptr)
477 		return 0;
478 
479 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
480 	    runtime->silence_size > 0)
481 		snd_pcm_playback_silence(substream, new_hw_ptr);
482 
483 	if (in_interrupt) {
484 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
485 		if (delta < 0)
486 			delta += runtime->boundary;
487 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
488 		runtime->hw_ptr_interrupt += delta;
489 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
490 			runtime->hw_ptr_interrupt -= runtime->boundary;
491 	}
492 	runtime->hw_ptr_base = hw_base;
493 	runtime->status->hw_ptr = new_hw_ptr;
494 	runtime->hw_ptr_jiffies = jiffies;
495 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
496 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
497 
498 	return snd_pcm_update_state(substream, runtime);
499 }
500 
501 /* CAUTION: call it with irq disabled */
502 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
503 {
504 	return snd_pcm_update_hw_ptr0(substream, 0);
505 }
506 
507 /**
508  * snd_pcm_set_ops - set the PCM operators
509  * @pcm: the pcm instance
510  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
511  * @ops: the operator table
512  *
513  * Sets the given PCM operators to the pcm instance.
514  */
515 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
516 {
517 	struct snd_pcm_str *stream = &pcm->streams[direction];
518 	struct snd_pcm_substream *substream;
519 
520 	for (substream = stream->substream; substream != NULL; substream = substream->next)
521 		substream->ops = ops;
522 }
523 
524 EXPORT_SYMBOL(snd_pcm_set_ops);
525 
526 /**
527  * snd_pcm_sync - set the PCM sync id
528  * @substream: the pcm substream
529  *
530  * Sets the PCM sync identifier for the card.
531  */
532 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
533 {
534 	struct snd_pcm_runtime *runtime = substream->runtime;
535 
536 	runtime->sync.id32[0] = substream->pcm->card->number;
537 	runtime->sync.id32[1] = -1;
538 	runtime->sync.id32[2] = -1;
539 	runtime->sync.id32[3] = -1;
540 }
541 
542 EXPORT_SYMBOL(snd_pcm_set_sync);
543 
544 /*
545  *  Standard ioctl routine
546  */
547 
548 static inline unsigned int div32(unsigned int a, unsigned int b,
549 				 unsigned int *r)
550 {
551 	if (b == 0) {
552 		*r = 0;
553 		return UINT_MAX;
554 	}
555 	*r = a % b;
556 	return a / b;
557 }
558 
559 static inline unsigned int div_down(unsigned int a, unsigned int b)
560 {
561 	if (b == 0)
562 		return UINT_MAX;
563 	return a / b;
564 }
565 
566 static inline unsigned int div_up(unsigned int a, unsigned int b)
567 {
568 	unsigned int r;
569 	unsigned int q;
570 	if (b == 0)
571 		return UINT_MAX;
572 	q = div32(a, b, &r);
573 	if (r)
574 		++q;
575 	return q;
576 }
577 
578 static inline unsigned int mul(unsigned int a, unsigned int b)
579 {
580 	if (a == 0)
581 		return 0;
582 	if (div_down(UINT_MAX, a) < b)
583 		return UINT_MAX;
584 	return a * b;
585 }
586 
587 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
588 				    unsigned int c, unsigned int *r)
589 {
590 	u_int64_t n = (u_int64_t) a * b;
591 	if (c == 0) {
592 		snd_BUG_ON(!n);
593 		*r = 0;
594 		return UINT_MAX;
595 	}
596 	n = div_u64_rem(n, c, r);
597 	if (n >= UINT_MAX) {
598 		*r = 0;
599 		return UINT_MAX;
600 	}
601 	return n;
602 }
603 
604 /**
605  * snd_interval_refine - refine the interval value of configurator
606  * @i: the interval value to refine
607  * @v: the interval value to refer to
608  *
609  * Refines the interval value with the reference value.
610  * The interval is changed to the range satisfying both intervals.
611  * The interval status (min, max, integer, etc.) are evaluated.
612  *
613  * Returns non-zero if the value is changed, zero if not changed.
614  */
615 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
616 {
617 	int changed = 0;
618 	if (snd_BUG_ON(snd_interval_empty(i)))
619 		return -EINVAL;
620 	if (i->min < v->min) {
621 		i->min = v->min;
622 		i->openmin = v->openmin;
623 		changed = 1;
624 	} else if (i->min == v->min && !i->openmin && v->openmin) {
625 		i->openmin = 1;
626 		changed = 1;
627 	}
628 	if (i->max > v->max) {
629 		i->max = v->max;
630 		i->openmax = v->openmax;
631 		changed = 1;
632 	} else if (i->max == v->max && !i->openmax && v->openmax) {
633 		i->openmax = 1;
634 		changed = 1;
635 	}
636 	if (!i->integer && v->integer) {
637 		i->integer = 1;
638 		changed = 1;
639 	}
640 	if (i->integer) {
641 		if (i->openmin) {
642 			i->min++;
643 			i->openmin = 0;
644 		}
645 		if (i->openmax) {
646 			i->max--;
647 			i->openmax = 0;
648 		}
649 	} else if (!i->openmin && !i->openmax && i->min == i->max)
650 		i->integer = 1;
651 	if (snd_interval_checkempty(i)) {
652 		snd_interval_none(i);
653 		return -EINVAL;
654 	}
655 	return changed;
656 }
657 
658 EXPORT_SYMBOL(snd_interval_refine);
659 
660 static int snd_interval_refine_first(struct snd_interval *i)
661 {
662 	if (snd_BUG_ON(snd_interval_empty(i)))
663 		return -EINVAL;
664 	if (snd_interval_single(i))
665 		return 0;
666 	i->max = i->min;
667 	i->openmax = i->openmin;
668 	if (i->openmax)
669 		i->max++;
670 	return 1;
671 }
672 
673 static int snd_interval_refine_last(struct snd_interval *i)
674 {
675 	if (snd_BUG_ON(snd_interval_empty(i)))
676 		return -EINVAL;
677 	if (snd_interval_single(i))
678 		return 0;
679 	i->min = i->max;
680 	i->openmin = i->openmax;
681 	if (i->openmin)
682 		i->min--;
683 	return 1;
684 }
685 
686 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
687 {
688 	if (a->empty || b->empty) {
689 		snd_interval_none(c);
690 		return;
691 	}
692 	c->empty = 0;
693 	c->min = mul(a->min, b->min);
694 	c->openmin = (a->openmin || b->openmin);
695 	c->max = mul(a->max,  b->max);
696 	c->openmax = (a->openmax || b->openmax);
697 	c->integer = (a->integer && b->integer);
698 }
699 
700 /**
701  * snd_interval_div - refine the interval value with division
702  * @a: dividend
703  * @b: divisor
704  * @c: quotient
705  *
706  * c = a / b
707  *
708  * Returns non-zero if the value is changed, zero if not changed.
709  */
710 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
711 {
712 	unsigned int r;
713 	if (a->empty || b->empty) {
714 		snd_interval_none(c);
715 		return;
716 	}
717 	c->empty = 0;
718 	c->min = div32(a->min, b->max, &r);
719 	c->openmin = (r || a->openmin || b->openmax);
720 	if (b->min > 0) {
721 		c->max = div32(a->max, b->min, &r);
722 		if (r) {
723 			c->max++;
724 			c->openmax = 1;
725 		} else
726 			c->openmax = (a->openmax || b->openmin);
727 	} else {
728 		c->max = UINT_MAX;
729 		c->openmax = 0;
730 	}
731 	c->integer = 0;
732 }
733 
734 /**
735  * snd_interval_muldivk - refine the interval value
736  * @a: dividend 1
737  * @b: dividend 2
738  * @k: divisor (as integer)
739  * @c: result
740   *
741  * c = a * b / k
742  *
743  * Returns non-zero if the value is changed, zero if not changed.
744  */
745 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
746 		      unsigned int k, struct snd_interval *c)
747 {
748 	unsigned int r;
749 	if (a->empty || b->empty) {
750 		snd_interval_none(c);
751 		return;
752 	}
753 	c->empty = 0;
754 	c->min = muldiv32(a->min, b->min, k, &r);
755 	c->openmin = (r || a->openmin || b->openmin);
756 	c->max = muldiv32(a->max, b->max, k, &r);
757 	if (r) {
758 		c->max++;
759 		c->openmax = 1;
760 	} else
761 		c->openmax = (a->openmax || b->openmax);
762 	c->integer = 0;
763 }
764 
765 /**
766  * snd_interval_mulkdiv - refine the interval value
767  * @a: dividend 1
768  * @k: dividend 2 (as integer)
769  * @b: divisor
770  * @c: result
771  *
772  * c = a * k / b
773  *
774  * Returns non-zero if the value is changed, zero if not changed.
775  */
776 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
777 		      const struct snd_interval *b, struct snd_interval *c)
778 {
779 	unsigned int r;
780 	if (a->empty || b->empty) {
781 		snd_interval_none(c);
782 		return;
783 	}
784 	c->empty = 0;
785 	c->min = muldiv32(a->min, k, b->max, &r);
786 	c->openmin = (r || a->openmin || b->openmax);
787 	if (b->min > 0) {
788 		c->max = muldiv32(a->max, k, b->min, &r);
789 		if (r) {
790 			c->max++;
791 			c->openmax = 1;
792 		} else
793 			c->openmax = (a->openmax || b->openmin);
794 	} else {
795 		c->max = UINT_MAX;
796 		c->openmax = 0;
797 	}
798 	c->integer = 0;
799 }
800 
801 /* ---- */
802 
803 
804 /**
805  * snd_interval_ratnum - refine the interval value
806  * @i: interval to refine
807  * @rats_count: number of ratnum_t
808  * @rats: ratnum_t array
809  * @nump: pointer to store the resultant numerator
810  * @denp: pointer to store the resultant denominator
811  *
812  * Returns non-zero if the value is changed, zero if not changed.
813  */
814 int snd_interval_ratnum(struct snd_interval *i,
815 			unsigned int rats_count, struct snd_ratnum *rats,
816 			unsigned int *nump, unsigned int *denp)
817 {
818 	unsigned int best_num, best_den;
819 	int best_diff;
820 	unsigned int k;
821 	struct snd_interval t;
822 	int err;
823 	unsigned int result_num, result_den;
824 	int result_diff;
825 
826 	best_num = best_den = best_diff = 0;
827 	for (k = 0; k < rats_count; ++k) {
828 		unsigned int num = rats[k].num;
829 		unsigned int den;
830 		unsigned int q = i->min;
831 		int diff;
832 		if (q == 0)
833 			q = 1;
834 		den = div_up(num, q);
835 		if (den < rats[k].den_min)
836 			continue;
837 		if (den > rats[k].den_max)
838 			den = rats[k].den_max;
839 		else {
840 			unsigned int r;
841 			r = (den - rats[k].den_min) % rats[k].den_step;
842 			if (r != 0)
843 				den -= r;
844 		}
845 		diff = num - q * den;
846 		if (diff < 0)
847 			diff = -diff;
848 		if (best_num == 0 ||
849 		    diff * best_den < best_diff * den) {
850 			best_diff = diff;
851 			best_den = den;
852 			best_num = num;
853 		}
854 	}
855 	if (best_den == 0) {
856 		i->empty = 1;
857 		return -EINVAL;
858 	}
859 	t.min = div_down(best_num, best_den);
860 	t.openmin = !!(best_num % best_den);
861 
862 	result_num = best_num;
863 	result_diff = best_diff;
864 	result_den = best_den;
865 	best_num = best_den = best_diff = 0;
866 	for (k = 0; k < rats_count; ++k) {
867 		unsigned int num = rats[k].num;
868 		unsigned int den;
869 		unsigned int q = i->max;
870 		int diff;
871 		if (q == 0) {
872 			i->empty = 1;
873 			return -EINVAL;
874 		}
875 		den = div_down(num, q);
876 		if (den > rats[k].den_max)
877 			continue;
878 		if (den < rats[k].den_min)
879 			den = rats[k].den_min;
880 		else {
881 			unsigned int r;
882 			r = (den - rats[k].den_min) % rats[k].den_step;
883 			if (r != 0)
884 				den += rats[k].den_step - r;
885 		}
886 		diff = q * den - num;
887 		if (diff < 0)
888 			diff = -diff;
889 		if (best_num == 0 ||
890 		    diff * best_den < best_diff * den) {
891 			best_diff = diff;
892 			best_den = den;
893 			best_num = num;
894 		}
895 	}
896 	if (best_den == 0) {
897 		i->empty = 1;
898 		return -EINVAL;
899 	}
900 	t.max = div_up(best_num, best_den);
901 	t.openmax = !!(best_num % best_den);
902 	t.integer = 0;
903 	err = snd_interval_refine(i, &t);
904 	if (err < 0)
905 		return err;
906 
907 	if (snd_interval_single(i)) {
908 		if (best_diff * result_den < result_diff * best_den) {
909 			result_num = best_num;
910 			result_den = best_den;
911 		}
912 		if (nump)
913 			*nump = result_num;
914 		if (denp)
915 			*denp = result_den;
916 	}
917 	return err;
918 }
919 
920 EXPORT_SYMBOL(snd_interval_ratnum);
921 
922 /**
923  * snd_interval_ratden - refine the interval value
924  * @i: interval to refine
925  * @rats_count: number of struct ratden
926  * @rats: struct ratden array
927  * @nump: pointer to store the resultant numerator
928  * @denp: pointer to store the resultant denominator
929  *
930  * Returns non-zero if the value is changed, zero if not changed.
931  */
932 static int snd_interval_ratden(struct snd_interval *i,
933 			       unsigned int rats_count, struct snd_ratden *rats,
934 			       unsigned int *nump, unsigned int *denp)
935 {
936 	unsigned int best_num, best_diff, best_den;
937 	unsigned int k;
938 	struct snd_interval t;
939 	int err;
940 
941 	best_num = best_den = best_diff = 0;
942 	for (k = 0; k < rats_count; ++k) {
943 		unsigned int num;
944 		unsigned int den = rats[k].den;
945 		unsigned int q = i->min;
946 		int diff;
947 		num = mul(q, den);
948 		if (num > rats[k].num_max)
949 			continue;
950 		if (num < rats[k].num_min)
951 			num = rats[k].num_max;
952 		else {
953 			unsigned int r;
954 			r = (num - rats[k].num_min) % rats[k].num_step;
955 			if (r != 0)
956 				num += rats[k].num_step - r;
957 		}
958 		diff = num - q * den;
959 		if (best_num == 0 ||
960 		    diff * best_den < best_diff * den) {
961 			best_diff = diff;
962 			best_den = den;
963 			best_num = num;
964 		}
965 	}
966 	if (best_den == 0) {
967 		i->empty = 1;
968 		return -EINVAL;
969 	}
970 	t.min = div_down(best_num, best_den);
971 	t.openmin = !!(best_num % best_den);
972 
973 	best_num = best_den = best_diff = 0;
974 	for (k = 0; k < rats_count; ++k) {
975 		unsigned int num;
976 		unsigned int den = rats[k].den;
977 		unsigned int q = i->max;
978 		int diff;
979 		num = mul(q, den);
980 		if (num < rats[k].num_min)
981 			continue;
982 		if (num > rats[k].num_max)
983 			num = rats[k].num_max;
984 		else {
985 			unsigned int r;
986 			r = (num - rats[k].num_min) % rats[k].num_step;
987 			if (r != 0)
988 				num -= r;
989 		}
990 		diff = q * den - num;
991 		if (best_num == 0 ||
992 		    diff * best_den < best_diff * den) {
993 			best_diff = diff;
994 			best_den = den;
995 			best_num = num;
996 		}
997 	}
998 	if (best_den == 0) {
999 		i->empty = 1;
1000 		return -EINVAL;
1001 	}
1002 	t.max = div_up(best_num, best_den);
1003 	t.openmax = !!(best_num % best_den);
1004 	t.integer = 0;
1005 	err = snd_interval_refine(i, &t);
1006 	if (err < 0)
1007 		return err;
1008 
1009 	if (snd_interval_single(i)) {
1010 		if (nump)
1011 			*nump = best_num;
1012 		if (denp)
1013 			*denp = best_den;
1014 	}
1015 	return err;
1016 }
1017 
1018 /**
1019  * snd_interval_list - refine the interval value from the list
1020  * @i: the interval value to refine
1021  * @count: the number of elements in the list
1022  * @list: the value list
1023  * @mask: the bit-mask to evaluate
1024  *
1025  * Refines the interval value from the list.
1026  * When mask is non-zero, only the elements corresponding to bit 1 are
1027  * evaluated.
1028  *
1029  * Returns non-zero if the value is changed, zero if not changed.
1030  */
1031 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1032 {
1033         unsigned int k;
1034 	struct snd_interval list_range;
1035 
1036 	if (!count) {
1037 		i->empty = 1;
1038 		return -EINVAL;
1039 	}
1040 	snd_interval_any(&list_range);
1041 	list_range.min = UINT_MAX;
1042 	list_range.max = 0;
1043         for (k = 0; k < count; k++) {
1044 		if (mask && !(mask & (1 << k)))
1045 			continue;
1046 		if (!snd_interval_test(i, list[k]))
1047 			continue;
1048 		list_range.min = min(list_range.min, list[k]);
1049 		list_range.max = max(list_range.max, list[k]);
1050         }
1051 	return snd_interval_refine(i, &list_range);
1052 }
1053 
1054 EXPORT_SYMBOL(snd_interval_list);
1055 
1056 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1057 {
1058 	unsigned int n;
1059 	int changed = 0;
1060 	n = (i->min - min) % step;
1061 	if (n != 0 || i->openmin) {
1062 		i->min += step - n;
1063 		changed = 1;
1064 	}
1065 	n = (i->max - min) % step;
1066 	if (n != 0 || i->openmax) {
1067 		i->max -= n;
1068 		changed = 1;
1069 	}
1070 	if (snd_interval_checkempty(i)) {
1071 		i->empty = 1;
1072 		return -EINVAL;
1073 	}
1074 	return changed;
1075 }
1076 
1077 /* Info constraints helpers */
1078 
1079 /**
1080  * snd_pcm_hw_rule_add - add the hw-constraint rule
1081  * @runtime: the pcm runtime instance
1082  * @cond: condition bits
1083  * @var: the variable to evaluate
1084  * @func: the evaluation function
1085  * @private: the private data pointer passed to function
1086  * @dep: the dependent variables
1087  *
1088  * Returns zero if successful, or a negative error code on failure.
1089  */
1090 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1091 			int var,
1092 			snd_pcm_hw_rule_func_t func, void *private,
1093 			int dep, ...)
1094 {
1095 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1096 	struct snd_pcm_hw_rule *c;
1097 	unsigned int k;
1098 	va_list args;
1099 	va_start(args, dep);
1100 	if (constrs->rules_num >= constrs->rules_all) {
1101 		struct snd_pcm_hw_rule *new;
1102 		unsigned int new_rules = constrs->rules_all + 16;
1103 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1104 		if (!new) {
1105 			va_end(args);
1106 			return -ENOMEM;
1107 		}
1108 		if (constrs->rules) {
1109 			memcpy(new, constrs->rules,
1110 			       constrs->rules_num * sizeof(*c));
1111 			kfree(constrs->rules);
1112 		}
1113 		constrs->rules = new;
1114 		constrs->rules_all = new_rules;
1115 	}
1116 	c = &constrs->rules[constrs->rules_num];
1117 	c->cond = cond;
1118 	c->func = func;
1119 	c->var = var;
1120 	c->private = private;
1121 	k = 0;
1122 	while (1) {
1123 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1124 			va_end(args);
1125 			return -EINVAL;
1126 		}
1127 		c->deps[k++] = dep;
1128 		if (dep < 0)
1129 			break;
1130 		dep = va_arg(args, int);
1131 	}
1132 	constrs->rules_num++;
1133 	va_end(args);
1134 	return 0;
1135 }
1136 
1137 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1138 
1139 /**
1140  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1141  * @runtime: PCM runtime instance
1142  * @var: hw_params variable to apply the mask
1143  * @mask: the bitmap mask
1144  *
1145  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1146  */
1147 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1148 			       u_int32_t mask)
1149 {
1150 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151 	struct snd_mask *maskp = constrs_mask(constrs, var);
1152 	*maskp->bits &= mask;
1153 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1154 	if (*maskp->bits == 0)
1155 		return -EINVAL;
1156 	return 0;
1157 }
1158 
1159 /**
1160  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1161  * @runtime: PCM runtime instance
1162  * @var: hw_params variable to apply the mask
1163  * @mask: the 64bit bitmap mask
1164  *
1165  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1166  */
1167 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168 				 u_int64_t mask)
1169 {
1170 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171 	struct snd_mask *maskp = constrs_mask(constrs, var);
1172 	maskp->bits[0] &= (u_int32_t)mask;
1173 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1174 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1175 	if (! maskp->bits[0] && ! maskp->bits[1])
1176 		return -EINVAL;
1177 	return 0;
1178 }
1179 
1180 /**
1181  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1182  * @runtime: PCM runtime instance
1183  * @var: hw_params variable to apply the integer constraint
1184  *
1185  * Apply the constraint of integer to an interval parameter.
1186  */
1187 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1188 {
1189 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1190 	return snd_interval_setinteger(constrs_interval(constrs, var));
1191 }
1192 
1193 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1194 
1195 /**
1196  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1197  * @runtime: PCM runtime instance
1198  * @var: hw_params variable to apply the range
1199  * @min: the minimal value
1200  * @max: the maximal value
1201  *
1202  * Apply the min/max range constraint to an interval parameter.
1203  */
1204 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1205 				 unsigned int min, unsigned int max)
1206 {
1207 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1208 	struct snd_interval t;
1209 	t.min = min;
1210 	t.max = max;
1211 	t.openmin = t.openmax = 0;
1212 	t.integer = 0;
1213 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1214 }
1215 
1216 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1217 
1218 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1219 				struct snd_pcm_hw_rule *rule)
1220 {
1221 	struct snd_pcm_hw_constraint_list *list = rule->private;
1222 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1223 }
1224 
1225 
1226 /**
1227  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1228  * @runtime: PCM runtime instance
1229  * @cond: condition bits
1230  * @var: hw_params variable to apply the list constraint
1231  * @l: list
1232  *
1233  * Apply the list of constraints to an interval parameter.
1234  */
1235 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1236 			       unsigned int cond,
1237 			       snd_pcm_hw_param_t var,
1238 			       struct snd_pcm_hw_constraint_list *l)
1239 {
1240 	return snd_pcm_hw_rule_add(runtime, cond, var,
1241 				   snd_pcm_hw_rule_list, l,
1242 				   var, -1);
1243 }
1244 
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1246 
1247 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1248 				   struct snd_pcm_hw_rule *rule)
1249 {
1250 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1251 	unsigned int num = 0, den = 0;
1252 	int err;
1253 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1254 				  r->nrats, r->rats, &num, &den);
1255 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1256 		params->rate_num = num;
1257 		params->rate_den = den;
1258 	}
1259 	return err;
1260 }
1261 
1262 /**
1263  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1264  * @runtime: PCM runtime instance
1265  * @cond: condition bits
1266  * @var: hw_params variable to apply the ratnums constraint
1267  * @r: struct snd_ratnums constriants
1268  */
1269 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1270 				  unsigned int cond,
1271 				  snd_pcm_hw_param_t var,
1272 				  struct snd_pcm_hw_constraint_ratnums *r)
1273 {
1274 	return snd_pcm_hw_rule_add(runtime, cond, var,
1275 				   snd_pcm_hw_rule_ratnums, r,
1276 				   var, -1);
1277 }
1278 
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1280 
1281 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1282 				   struct snd_pcm_hw_rule *rule)
1283 {
1284 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1285 	unsigned int num = 0, den = 0;
1286 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1287 				  r->nrats, r->rats, &num, &den);
1288 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1289 		params->rate_num = num;
1290 		params->rate_den = den;
1291 	}
1292 	return err;
1293 }
1294 
1295 /**
1296  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1297  * @runtime: PCM runtime instance
1298  * @cond: condition bits
1299  * @var: hw_params variable to apply the ratdens constraint
1300  * @r: struct snd_ratdens constriants
1301  */
1302 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1303 				  unsigned int cond,
1304 				  snd_pcm_hw_param_t var,
1305 				  struct snd_pcm_hw_constraint_ratdens *r)
1306 {
1307 	return snd_pcm_hw_rule_add(runtime, cond, var,
1308 				   snd_pcm_hw_rule_ratdens, r,
1309 				   var, -1);
1310 }
1311 
1312 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1313 
1314 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1315 				  struct snd_pcm_hw_rule *rule)
1316 {
1317 	unsigned int l = (unsigned long) rule->private;
1318 	int width = l & 0xffff;
1319 	unsigned int msbits = l >> 16;
1320 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1321 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1322 		params->msbits = msbits;
1323 	return 0;
1324 }
1325 
1326 /**
1327  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1328  * @runtime: PCM runtime instance
1329  * @cond: condition bits
1330  * @width: sample bits width
1331  * @msbits: msbits width
1332  */
1333 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1334 				 unsigned int cond,
1335 				 unsigned int width,
1336 				 unsigned int msbits)
1337 {
1338 	unsigned long l = (msbits << 16) | width;
1339 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1340 				    snd_pcm_hw_rule_msbits,
1341 				    (void*) l,
1342 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1343 }
1344 
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1346 
1347 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1348 				struct snd_pcm_hw_rule *rule)
1349 {
1350 	unsigned long step = (unsigned long) rule->private;
1351 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1352 }
1353 
1354 /**
1355  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1356  * @runtime: PCM runtime instance
1357  * @cond: condition bits
1358  * @var: hw_params variable to apply the step constraint
1359  * @step: step size
1360  */
1361 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1362 			       unsigned int cond,
1363 			       snd_pcm_hw_param_t var,
1364 			       unsigned long step)
1365 {
1366 	return snd_pcm_hw_rule_add(runtime, cond, var,
1367 				   snd_pcm_hw_rule_step, (void *) step,
1368 				   var, -1);
1369 }
1370 
1371 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1372 
1373 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1374 {
1375 	static unsigned int pow2_sizes[] = {
1376 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1377 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1378 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1379 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1380 	};
1381 	return snd_interval_list(hw_param_interval(params, rule->var),
1382 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1383 }
1384 
1385 /**
1386  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1387  * @runtime: PCM runtime instance
1388  * @cond: condition bits
1389  * @var: hw_params variable to apply the power-of-2 constraint
1390  */
1391 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1392 			       unsigned int cond,
1393 			       snd_pcm_hw_param_t var)
1394 {
1395 	return snd_pcm_hw_rule_add(runtime, cond, var,
1396 				   snd_pcm_hw_rule_pow2, NULL,
1397 				   var, -1);
1398 }
1399 
1400 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1401 
1402 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1403 				  snd_pcm_hw_param_t var)
1404 {
1405 	if (hw_is_mask(var)) {
1406 		snd_mask_any(hw_param_mask(params, var));
1407 		params->cmask |= 1 << var;
1408 		params->rmask |= 1 << var;
1409 		return;
1410 	}
1411 	if (hw_is_interval(var)) {
1412 		snd_interval_any(hw_param_interval(params, var));
1413 		params->cmask |= 1 << var;
1414 		params->rmask |= 1 << var;
1415 		return;
1416 	}
1417 	snd_BUG();
1418 }
1419 
1420 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1421 {
1422 	unsigned int k;
1423 	memset(params, 0, sizeof(*params));
1424 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1425 		_snd_pcm_hw_param_any(params, k);
1426 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1427 		_snd_pcm_hw_param_any(params, k);
1428 	params->info = ~0U;
1429 }
1430 
1431 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1432 
1433 /**
1434  * snd_pcm_hw_param_value - return @params field @var value
1435  * @params: the hw_params instance
1436  * @var: parameter to retrieve
1437  * @dir: pointer to the direction (-1,0,1) or %NULL
1438  *
1439  * Return the value for field @var if it's fixed in configuration space
1440  * defined by @params. Return -%EINVAL otherwise.
1441  */
1442 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1443 			   snd_pcm_hw_param_t var, int *dir)
1444 {
1445 	if (hw_is_mask(var)) {
1446 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1447 		if (!snd_mask_single(mask))
1448 			return -EINVAL;
1449 		if (dir)
1450 			*dir = 0;
1451 		return snd_mask_value(mask);
1452 	}
1453 	if (hw_is_interval(var)) {
1454 		const struct snd_interval *i = hw_param_interval_c(params, var);
1455 		if (!snd_interval_single(i))
1456 			return -EINVAL;
1457 		if (dir)
1458 			*dir = i->openmin;
1459 		return snd_interval_value(i);
1460 	}
1461 	return -EINVAL;
1462 }
1463 
1464 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1465 
1466 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1467 				snd_pcm_hw_param_t var)
1468 {
1469 	if (hw_is_mask(var)) {
1470 		snd_mask_none(hw_param_mask(params, var));
1471 		params->cmask |= 1 << var;
1472 		params->rmask |= 1 << var;
1473 	} else if (hw_is_interval(var)) {
1474 		snd_interval_none(hw_param_interval(params, var));
1475 		params->cmask |= 1 << var;
1476 		params->rmask |= 1 << var;
1477 	} else {
1478 		snd_BUG();
1479 	}
1480 }
1481 
1482 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1483 
1484 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1485 				   snd_pcm_hw_param_t var)
1486 {
1487 	int changed;
1488 	if (hw_is_mask(var))
1489 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1490 	else if (hw_is_interval(var))
1491 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1492 	else
1493 		return -EINVAL;
1494 	if (changed) {
1495 		params->cmask |= 1 << var;
1496 		params->rmask |= 1 << var;
1497 	}
1498 	return changed;
1499 }
1500 
1501 
1502 /**
1503  * snd_pcm_hw_param_first - refine config space and return minimum value
1504  * @pcm: PCM instance
1505  * @params: the hw_params instance
1506  * @var: parameter to retrieve
1507  * @dir: pointer to the direction (-1,0,1) or %NULL
1508  *
1509  * Inside configuration space defined by @params remove from @var all
1510  * values > minimum. Reduce configuration space accordingly.
1511  * Return the minimum.
1512  */
1513 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1514 			   struct snd_pcm_hw_params *params,
1515 			   snd_pcm_hw_param_t var, int *dir)
1516 {
1517 	int changed = _snd_pcm_hw_param_first(params, var);
1518 	if (changed < 0)
1519 		return changed;
1520 	if (params->rmask) {
1521 		int err = snd_pcm_hw_refine(pcm, params);
1522 		if (snd_BUG_ON(err < 0))
1523 			return err;
1524 	}
1525 	return snd_pcm_hw_param_value(params, var, dir);
1526 }
1527 
1528 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1529 
1530 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1531 				  snd_pcm_hw_param_t var)
1532 {
1533 	int changed;
1534 	if (hw_is_mask(var))
1535 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1536 	else if (hw_is_interval(var))
1537 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1538 	else
1539 		return -EINVAL;
1540 	if (changed) {
1541 		params->cmask |= 1 << var;
1542 		params->rmask |= 1 << var;
1543 	}
1544 	return changed;
1545 }
1546 
1547 
1548 /**
1549  * snd_pcm_hw_param_last - refine config space and return maximum value
1550  * @pcm: PCM instance
1551  * @params: the hw_params instance
1552  * @var: parameter to retrieve
1553  * @dir: pointer to the direction (-1,0,1) or %NULL
1554  *
1555  * Inside configuration space defined by @params remove from @var all
1556  * values < maximum. Reduce configuration space accordingly.
1557  * Return the maximum.
1558  */
1559 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1560 			  struct snd_pcm_hw_params *params,
1561 			  snd_pcm_hw_param_t var, int *dir)
1562 {
1563 	int changed = _snd_pcm_hw_param_last(params, var);
1564 	if (changed < 0)
1565 		return changed;
1566 	if (params->rmask) {
1567 		int err = snd_pcm_hw_refine(pcm, params);
1568 		if (snd_BUG_ON(err < 0))
1569 			return err;
1570 	}
1571 	return snd_pcm_hw_param_value(params, var, dir);
1572 }
1573 
1574 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1575 
1576 /**
1577  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1578  * @pcm: PCM instance
1579  * @params: the hw_params instance
1580  *
1581  * Choose one configuration from configuration space defined by @params.
1582  * The configuration chosen is that obtained fixing in this order:
1583  * first access, first format, first subformat, min channels,
1584  * min rate, min period time, max buffer size, min tick time
1585  */
1586 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1587 			     struct snd_pcm_hw_params *params)
1588 {
1589 	static int vars[] = {
1590 		SNDRV_PCM_HW_PARAM_ACCESS,
1591 		SNDRV_PCM_HW_PARAM_FORMAT,
1592 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1593 		SNDRV_PCM_HW_PARAM_CHANNELS,
1594 		SNDRV_PCM_HW_PARAM_RATE,
1595 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1596 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1597 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1598 		-1
1599 	};
1600 	int err, *v;
1601 
1602 	for (v = vars; *v != -1; v++) {
1603 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1604 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1605 		else
1606 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1607 		if (snd_BUG_ON(err < 0))
1608 			return err;
1609 	}
1610 	return 0;
1611 }
1612 
1613 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1614 				   void *arg)
1615 {
1616 	struct snd_pcm_runtime *runtime = substream->runtime;
1617 	unsigned long flags;
1618 	snd_pcm_stream_lock_irqsave(substream, flags);
1619 	if (snd_pcm_running(substream) &&
1620 	    snd_pcm_update_hw_ptr(substream) >= 0)
1621 		runtime->status->hw_ptr %= runtime->buffer_size;
1622 	else
1623 		runtime->status->hw_ptr = 0;
1624 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1625 	return 0;
1626 }
1627 
1628 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1629 					  void *arg)
1630 {
1631 	struct snd_pcm_channel_info *info = arg;
1632 	struct snd_pcm_runtime *runtime = substream->runtime;
1633 	int width;
1634 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1635 		info->offset = -1;
1636 		return 0;
1637 	}
1638 	width = snd_pcm_format_physical_width(runtime->format);
1639 	if (width < 0)
1640 		return width;
1641 	info->offset = 0;
1642 	switch (runtime->access) {
1643 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1644 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1645 		info->first = info->channel * width;
1646 		info->step = runtime->channels * width;
1647 		break;
1648 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1649 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1650 	{
1651 		size_t size = runtime->dma_bytes / runtime->channels;
1652 		info->first = info->channel * size * 8;
1653 		info->step = width;
1654 		break;
1655 	}
1656 	default:
1657 		snd_BUG();
1658 		break;
1659 	}
1660 	return 0;
1661 }
1662 
1663 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1664 				       void *arg)
1665 {
1666 	struct snd_pcm_hw_params *params = arg;
1667 	snd_pcm_format_t format;
1668 	int channels, width;
1669 
1670 	params->fifo_size = substream->runtime->hw.fifo_size;
1671 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1672 		format = params_format(params);
1673 		channels = params_channels(params);
1674 		width = snd_pcm_format_physical_width(format);
1675 		params->fifo_size /= width * channels;
1676 	}
1677 	return 0;
1678 }
1679 
1680 /**
1681  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1682  * @substream: the pcm substream instance
1683  * @cmd: ioctl command
1684  * @arg: ioctl argument
1685  *
1686  * Processes the generic ioctl commands for PCM.
1687  * Can be passed as the ioctl callback for PCM ops.
1688  *
1689  * Returns zero if successful, or a negative error code on failure.
1690  */
1691 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1692 		      unsigned int cmd, void *arg)
1693 {
1694 	switch (cmd) {
1695 	case SNDRV_PCM_IOCTL1_INFO:
1696 		return 0;
1697 	case SNDRV_PCM_IOCTL1_RESET:
1698 		return snd_pcm_lib_ioctl_reset(substream, arg);
1699 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1700 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1701 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1702 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1703 	}
1704 	return -ENXIO;
1705 }
1706 
1707 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1708 
1709 /**
1710  * snd_pcm_period_elapsed - update the pcm status for the next period
1711  * @substream: the pcm substream instance
1712  *
1713  * This function is called from the interrupt handler when the
1714  * PCM has processed the period size.  It will update the current
1715  * pointer, wake up sleepers, etc.
1716  *
1717  * Even if more than one periods have elapsed since the last call, you
1718  * have to call this only once.
1719  */
1720 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1721 {
1722 	struct snd_pcm_runtime *runtime;
1723 	unsigned long flags;
1724 
1725 	if (PCM_RUNTIME_CHECK(substream))
1726 		return;
1727 	runtime = substream->runtime;
1728 
1729 	if (runtime->transfer_ack_begin)
1730 		runtime->transfer_ack_begin(substream);
1731 
1732 	snd_pcm_stream_lock_irqsave(substream, flags);
1733 	if (!snd_pcm_running(substream) ||
1734 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1735 		goto _end;
1736 
1737 	if (substream->timer_running)
1738 		snd_timer_interrupt(substream->timer, 1);
1739  _end:
1740 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1741 	if (runtime->transfer_ack_end)
1742 		runtime->transfer_ack_end(substream);
1743 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1744 }
1745 
1746 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1747 
1748 /*
1749  * Wait until avail_min data becomes available
1750  * Returns a negative error code if any error occurs during operation.
1751  * The available space is stored on availp.  When err = 0 and avail = 0
1752  * on the capture stream, it indicates the stream is in DRAINING state.
1753  */
1754 static int wait_for_avail(struct snd_pcm_substream *substream,
1755 			      snd_pcm_uframes_t *availp)
1756 {
1757 	struct snd_pcm_runtime *runtime = substream->runtime;
1758 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1759 	wait_queue_t wait;
1760 	int err = 0;
1761 	snd_pcm_uframes_t avail = 0;
1762 	long wait_time, tout;
1763 
1764 	if (runtime->no_period_wakeup)
1765 		wait_time = MAX_SCHEDULE_TIMEOUT;
1766 	else {
1767 		wait_time = 10;
1768 		if (runtime->rate) {
1769 			long t = runtime->period_size * 2 / runtime->rate;
1770 			wait_time = max(t, wait_time);
1771 		}
1772 		wait_time = msecs_to_jiffies(wait_time * 1000);
1773 	}
1774 	init_waitqueue_entry(&wait, current);
1775 	add_wait_queue(&runtime->tsleep, &wait);
1776 	for (;;) {
1777 		if (signal_pending(current)) {
1778 			err = -ERESTARTSYS;
1779 			break;
1780 		}
1781 		snd_pcm_stream_unlock_irq(substream);
1782 		tout = schedule_timeout_interruptible(wait_time);
1783 		snd_pcm_stream_lock_irq(substream);
1784 		switch (runtime->status->state) {
1785 		case SNDRV_PCM_STATE_SUSPENDED:
1786 			err = -ESTRPIPE;
1787 			goto _endloop;
1788 		case SNDRV_PCM_STATE_XRUN:
1789 			err = -EPIPE;
1790 			goto _endloop;
1791 		case SNDRV_PCM_STATE_DRAINING:
1792 			if (is_playback)
1793 				err = -EPIPE;
1794 			else
1795 				avail = 0; /* indicate draining */
1796 			goto _endloop;
1797 		case SNDRV_PCM_STATE_OPEN:
1798 		case SNDRV_PCM_STATE_SETUP:
1799 		case SNDRV_PCM_STATE_DISCONNECTED:
1800 			err = -EBADFD;
1801 			goto _endloop;
1802 		}
1803 		if (!tout) {
1804 			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1805 				   is_playback ? "playback" : "capture");
1806 			err = -EIO;
1807 			break;
1808 		}
1809 		if (is_playback)
1810 			avail = snd_pcm_playback_avail(runtime);
1811 		else
1812 			avail = snd_pcm_capture_avail(runtime);
1813 		if (avail >= runtime->twake)
1814 			break;
1815 	}
1816  _endloop:
1817 	remove_wait_queue(&runtime->tsleep, &wait);
1818 	*availp = avail;
1819 	return err;
1820 }
1821 
1822 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1823 				      unsigned int hwoff,
1824 				      unsigned long data, unsigned int off,
1825 				      snd_pcm_uframes_t frames)
1826 {
1827 	struct snd_pcm_runtime *runtime = substream->runtime;
1828 	int err;
1829 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1830 	if (substream->ops->copy) {
1831 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1832 			return err;
1833 	} else {
1834 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1835 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1836 			return -EFAULT;
1837 	}
1838 	return 0;
1839 }
1840 
1841 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1842 			  unsigned long data, unsigned int off,
1843 			  snd_pcm_uframes_t size);
1844 
1845 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1846 					    unsigned long data,
1847 					    snd_pcm_uframes_t size,
1848 					    int nonblock,
1849 					    transfer_f transfer)
1850 {
1851 	struct snd_pcm_runtime *runtime = substream->runtime;
1852 	snd_pcm_uframes_t xfer = 0;
1853 	snd_pcm_uframes_t offset = 0;
1854 	int err = 0;
1855 
1856 	if (size == 0)
1857 		return 0;
1858 
1859 	snd_pcm_stream_lock_irq(substream);
1860 	switch (runtime->status->state) {
1861 	case SNDRV_PCM_STATE_PREPARED:
1862 	case SNDRV_PCM_STATE_RUNNING:
1863 	case SNDRV_PCM_STATE_PAUSED:
1864 		break;
1865 	case SNDRV_PCM_STATE_XRUN:
1866 		err = -EPIPE;
1867 		goto _end_unlock;
1868 	case SNDRV_PCM_STATE_SUSPENDED:
1869 		err = -ESTRPIPE;
1870 		goto _end_unlock;
1871 	default:
1872 		err = -EBADFD;
1873 		goto _end_unlock;
1874 	}
1875 
1876 	runtime->twake = runtime->control->avail_min ? : 1;
1877 	while (size > 0) {
1878 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1879 		snd_pcm_uframes_t avail;
1880 		snd_pcm_uframes_t cont;
1881 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1882 			snd_pcm_update_hw_ptr(substream);
1883 		avail = snd_pcm_playback_avail(runtime);
1884 		if (!avail) {
1885 			if (nonblock) {
1886 				err = -EAGAIN;
1887 				goto _end_unlock;
1888 			}
1889 			runtime->twake = min_t(snd_pcm_uframes_t, size,
1890 					runtime->control->avail_min ? : 1);
1891 			err = wait_for_avail(substream, &avail);
1892 			if (err < 0)
1893 				goto _end_unlock;
1894 		}
1895 		frames = size > avail ? avail : size;
1896 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1897 		if (frames > cont)
1898 			frames = cont;
1899 		if (snd_BUG_ON(!frames)) {
1900 			runtime->twake = 0;
1901 			snd_pcm_stream_unlock_irq(substream);
1902 			return -EINVAL;
1903 		}
1904 		appl_ptr = runtime->control->appl_ptr;
1905 		appl_ofs = appl_ptr % runtime->buffer_size;
1906 		snd_pcm_stream_unlock_irq(substream);
1907 		err = transfer(substream, appl_ofs, data, offset, frames);
1908 		snd_pcm_stream_lock_irq(substream);
1909 		if (err < 0)
1910 			goto _end_unlock;
1911 		switch (runtime->status->state) {
1912 		case SNDRV_PCM_STATE_XRUN:
1913 			err = -EPIPE;
1914 			goto _end_unlock;
1915 		case SNDRV_PCM_STATE_SUSPENDED:
1916 			err = -ESTRPIPE;
1917 			goto _end_unlock;
1918 		default:
1919 			break;
1920 		}
1921 		appl_ptr += frames;
1922 		if (appl_ptr >= runtime->boundary)
1923 			appl_ptr -= runtime->boundary;
1924 		runtime->control->appl_ptr = appl_ptr;
1925 		if (substream->ops->ack)
1926 			substream->ops->ack(substream);
1927 
1928 		offset += frames;
1929 		size -= frames;
1930 		xfer += frames;
1931 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1932 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1933 			err = snd_pcm_start(substream);
1934 			if (err < 0)
1935 				goto _end_unlock;
1936 		}
1937 	}
1938  _end_unlock:
1939 	runtime->twake = 0;
1940 	if (xfer > 0 && err >= 0)
1941 		snd_pcm_update_state(substream, runtime);
1942 	snd_pcm_stream_unlock_irq(substream);
1943 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1944 }
1945 
1946 /* sanity-check for read/write methods */
1947 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1948 {
1949 	struct snd_pcm_runtime *runtime;
1950 	if (PCM_RUNTIME_CHECK(substream))
1951 		return -ENXIO;
1952 	runtime = substream->runtime;
1953 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1954 		return -EINVAL;
1955 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1956 		return -EBADFD;
1957 	return 0;
1958 }
1959 
1960 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1961 {
1962 	struct snd_pcm_runtime *runtime;
1963 	int nonblock;
1964 	int err;
1965 
1966 	err = pcm_sanity_check(substream);
1967 	if (err < 0)
1968 		return err;
1969 	runtime = substream->runtime;
1970 	nonblock = !!(substream->f_flags & O_NONBLOCK);
1971 
1972 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1973 	    runtime->channels > 1)
1974 		return -EINVAL;
1975 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1976 				  snd_pcm_lib_write_transfer);
1977 }
1978 
1979 EXPORT_SYMBOL(snd_pcm_lib_write);
1980 
1981 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1982 				       unsigned int hwoff,
1983 				       unsigned long data, unsigned int off,
1984 				       snd_pcm_uframes_t frames)
1985 {
1986 	struct snd_pcm_runtime *runtime = substream->runtime;
1987 	int err;
1988 	void __user **bufs = (void __user **)data;
1989 	int channels = runtime->channels;
1990 	int c;
1991 	if (substream->ops->copy) {
1992 		if (snd_BUG_ON(!substream->ops->silence))
1993 			return -EINVAL;
1994 		for (c = 0; c < channels; ++c, ++bufs) {
1995 			if (*bufs == NULL) {
1996 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1997 					return err;
1998 			} else {
1999 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2000 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2001 					return err;
2002 			}
2003 		}
2004 	} else {
2005 		/* default transfer behaviour */
2006 		size_t dma_csize = runtime->dma_bytes / channels;
2007 		for (c = 0; c < channels; ++c, ++bufs) {
2008 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2009 			if (*bufs == NULL) {
2010 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2011 			} else {
2012 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2013 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2014 					return -EFAULT;
2015 			}
2016 		}
2017 	}
2018 	return 0;
2019 }
2020 
2021 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2022 				     void __user **bufs,
2023 				     snd_pcm_uframes_t frames)
2024 {
2025 	struct snd_pcm_runtime *runtime;
2026 	int nonblock;
2027 	int err;
2028 
2029 	err = pcm_sanity_check(substream);
2030 	if (err < 0)
2031 		return err;
2032 	runtime = substream->runtime;
2033 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2034 
2035 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2036 		return -EINVAL;
2037 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2038 				  nonblock, snd_pcm_lib_writev_transfer);
2039 }
2040 
2041 EXPORT_SYMBOL(snd_pcm_lib_writev);
2042 
2043 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2044 				     unsigned int hwoff,
2045 				     unsigned long data, unsigned int off,
2046 				     snd_pcm_uframes_t frames)
2047 {
2048 	struct snd_pcm_runtime *runtime = substream->runtime;
2049 	int err;
2050 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2051 	if (substream->ops->copy) {
2052 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2053 			return err;
2054 	} else {
2055 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2056 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2057 			return -EFAULT;
2058 	}
2059 	return 0;
2060 }
2061 
2062 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2063 					   unsigned long data,
2064 					   snd_pcm_uframes_t size,
2065 					   int nonblock,
2066 					   transfer_f transfer)
2067 {
2068 	struct snd_pcm_runtime *runtime = substream->runtime;
2069 	snd_pcm_uframes_t xfer = 0;
2070 	snd_pcm_uframes_t offset = 0;
2071 	int err = 0;
2072 
2073 	if (size == 0)
2074 		return 0;
2075 
2076 	snd_pcm_stream_lock_irq(substream);
2077 	switch (runtime->status->state) {
2078 	case SNDRV_PCM_STATE_PREPARED:
2079 		if (size >= runtime->start_threshold) {
2080 			err = snd_pcm_start(substream);
2081 			if (err < 0)
2082 				goto _end_unlock;
2083 		}
2084 		break;
2085 	case SNDRV_PCM_STATE_DRAINING:
2086 	case SNDRV_PCM_STATE_RUNNING:
2087 	case SNDRV_PCM_STATE_PAUSED:
2088 		break;
2089 	case SNDRV_PCM_STATE_XRUN:
2090 		err = -EPIPE;
2091 		goto _end_unlock;
2092 	case SNDRV_PCM_STATE_SUSPENDED:
2093 		err = -ESTRPIPE;
2094 		goto _end_unlock;
2095 	default:
2096 		err = -EBADFD;
2097 		goto _end_unlock;
2098 	}
2099 
2100 	runtime->twake = runtime->control->avail_min ? : 1;
2101 	while (size > 0) {
2102 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2103 		snd_pcm_uframes_t avail;
2104 		snd_pcm_uframes_t cont;
2105 		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2106 			snd_pcm_update_hw_ptr(substream);
2107 		avail = snd_pcm_capture_avail(runtime);
2108 		if (!avail) {
2109 			if (runtime->status->state ==
2110 			    SNDRV_PCM_STATE_DRAINING) {
2111 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2112 				goto _end_unlock;
2113 			}
2114 			if (nonblock) {
2115 				err = -EAGAIN;
2116 				goto _end_unlock;
2117 			}
2118 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2119 					runtime->control->avail_min ? : 1);
2120 			err = wait_for_avail(substream, &avail);
2121 			if (err < 0)
2122 				goto _end_unlock;
2123 			if (!avail)
2124 				continue; /* draining */
2125 		}
2126 		frames = size > avail ? avail : size;
2127 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2128 		if (frames > cont)
2129 			frames = cont;
2130 		if (snd_BUG_ON(!frames)) {
2131 			runtime->twake = 0;
2132 			snd_pcm_stream_unlock_irq(substream);
2133 			return -EINVAL;
2134 		}
2135 		appl_ptr = runtime->control->appl_ptr;
2136 		appl_ofs = appl_ptr % runtime->buffer_size;
2137 		snd_pcm_stream_unlock_irq(substream);
2138 		err = transfer(substream, appl_ofs, data, offset, frames);
2139 		snd_pcm_stream_lock_irq(substream);
2140 		if (err < 0)
2141 			goto _end_unlock;
2142 		switch (runtime->status->state) {
2143 		case SNDRV_PCM_STATE_XRUN:
2144 			err = -EPIPE;
2145 			goto _end_unlock;
2146 		case SNDRV_PCM_STATE_SUSPENDED:
2147 			err = -ESTRPIPE;
2148 			goto _end_unlock;
2149 		default:
2150 			break;
2151 		}
2152 		appl_ptr += frames;
2153 		if (appl_ptr >= runtime->boundary)
2154 			appl_ptr -= runtime->boundary;
2155 		runtime->control->appl_ptr = appl_ptr;
2156 		if (substream->ops->ack)
2157 			substream->ops->ack(substream);
2158 
2159 		offset += frames;
2160 		size -= frames;
2161 		xfer += frames;
2162 	}
2163  _end_unlock:
2164 	runtime->twake = 0;
2165 	if (xfer > 0 && err >= 0)
2166 		snd_pcm_update_state(substream, runtime);
2167 	snd_pcm_stream_unlock_irq(substream);
2168 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2169 }
2170 
2171 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2172 {
2173 	struct snd_pcm_runtime *runtime;
2174 	int nonblock;
2175 	int err;
2176 
2177 	err = pcm_sanity_check(substream);
2178 	if (err < 0)
2179 		return err;
2180 	runtime = substream->runtime;
2181 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2182 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2183 		return -EINVAL;
2184 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2185 }
2186 
2187 EXPORT_SYMBOL(snd_pcm_lib_read);
2188 
2189 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2190 				      unsigned int hwoff,
2191 				      unsigned long data, unsigned int off,
2192 				      snd_pcm_uframes_t frames)
2193 {
2194 	struct snd_pcm_runtime *runtime = substream->runtime;
2195 	int err;
2196 	void __user **bufs = (void __user **)data;
2197 	int channels = runtime->channels;
2198 	int c;
2199 	if (substream->ops->copy) {
2200 		for (c = 0; c < channels; ++c, ++bufs) {
2201 			char __user *buf;
2202 			if (*bufs == NULL)
2203 				continue;
2204 			buf = *bufs + samples_to_bytes(runtime, off);
2205 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2206 				return err;
2207 		}
2208 	} else {
2209 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2210 		for (c = 0; c < channels; ++c, ++bufs) {
2211 			char *hwbuf;
2212 			char __user *buf;
2213 			if (*bufs == NULL)
2214 				continue;
2215 
2216 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2217 			buf = *bufs + samples_to_bytes(runtime, off);
2218 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2219 				return -EFAULT;
2220 		}
2221 	}
2222 	return 0;
2223 }
2224 
2225 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2226 				    void __user **bufs,
2227 				    snd_pcm_uframes_t frames)
2228 {
2229 	struct snd_pcm_runtime *runtime;
2230 	int nonblock;
2231 	int err;
2232 
2233 	err = pcm_sanity_check(substream);
2234 	if (err < 0)
2235 		return err;
2236 	runtime = substream->runtime;
2237 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2238 		return -EBADFD;
2239 
2240 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2241 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2242 		return -EINVAL;
2243 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2244 }
2245 
2246 EXPORT_SYMBOL(snd_pcm_lib_readv);
2247