1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/time.h> 25 #include <linux/math64.h> 26 #include <linux/export.h> 27 #include <sound/core.h> 28 #include <sound/control.h> 29 #include <sound/info.h> 30 #include <sound/pcm.h> 31 #include <sound/pcm_params.h> 32 #include <sound/timer.h> 33 34 /* 35 * fill ring buffer with silence 36 * runtime->silence_start: starting pointer to silence area 37 * runtime->silence_filled: size filled with silence 38 * runtime->silence_threshold: threshold from application 39 * runtime->silence_size: maximal size from application 40 * 41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 42 */ 43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 44 { 45 struct snd_pcm_runtime *runtime = substream->runtime; 46 snd_pcm_uframes_t frames, ofs, transfer; 47 48 if (runtime->silence_size < runtime->boundary) { 49 snd_pcm_sframes_t noise_dist, n; 50 if (runtime->silence_start != runtime->control->appl_ptr) { 51 n = runtime->control->appl_ptr - runtime->silence_start; 52 if (n < 0) 53 n += runtime->boundary; 54 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 55 runtime->silence_filled -= n; 56 else 57 runtime->silence_filled = 0; 58 runtime->silence_start = runtime->control->appl_ptr; 59 } 60 if (runtime->silence_filled >= runtime->buffer_size) 61 return; 62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 64 return; 65 frames = runtime->silence_threshold - noise_dist; 66 if (frames > runtime->silence_size) 67 frames = runtime->silence_size; 68 } else { 69 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 71 if (avail > runtime->buffer_size) 72 avail = runtime->buffer_size; 73 runtime->silence_filled = avail > 0 ? avail : 0; 74 runtime->silence_start = (runtime->status->hw_ptr + 75 runtime->silence_filled) % 76 runtime->boundary; 77 } else { 78 ofs = runtime->status->hw_ptr; 79 frames = new_hw_ptr - ofs; 80 if ((snd_pcm_sframes_t)frames < 0) 81 frames += runtime->boundary; 82 runtime->silence_filled -= frames; 83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 84 runtime->silence_filled = 0; 85 runtime->silence_start = new_hw_ptr; 86 } else { 87 runtime->silence_start = ofs; 88 } 89 } 90 frames = runtime->buffer_size - runtime->silence_filled; 91 } 92 if (snd_BUG_ON(frames > runtime->buffer_size)) 93 return; 94 if (frames == 0) 95 return; 96 ofs = runtime->silence_start % runtime->buffer_size; 97 while (frames > 0) { 98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 101 if (substream->ops->silence) { 102 int err; 103 err = substream->ops->silence(substream, -1, ofs, transfer); 104 snd_BUG_ON(err < 0); 105 } else { 106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 108 } 109 } else { 110 unsigned int c; 111 unsigned int channels = runtime->channels; 112 if (substream->ops->silence) { 113 for (c = 0; c < channels; ++c) { 114 int err; 115 err = substream->ops->silence(substream, c, ofs, transfer); 116 snd_BUG_ON(err < 0); 117 } 118 } else { 119 size_t dma_csize = runtime->dma_bytes / channels; 120 for (c = 0; c < channels; ++c) { 121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 123 } 124 } 125 } 126 runtime->silence_filled += transfer; 127 frames -= transfer; 128 ofs = 0; 129 } 130 } 131 132 #ifdef CONFIG_SND_DEBUG 133 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 134 char *name, size_t len) 135 { 136 snprintf(name, len, "pcmC%dD%d%c:%d", 137 substream->pcm->card->number, 138 substream->pcm->device, 139 substream->stream ? 'c' : 'p', 140 substream->number); 141 } 142 EXPORT_SYMBOL(snd_pcm_debug_name); 143 #endif 144 145 #define XRUN_DEBUG_BASIC (1<<0) 146 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 148 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */ 149 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */ 150 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */ 151 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */ 152 153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 154 155 #define xrun_debug(substream, mask) \ 156 ((substream)->pstr->xrun_debug & (mask)) 157 #else 158 #define xrun_debug(substream, mask) 0 159 #endif 160 161 #define dump_stack_on_xrun(substream) do { \ 162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 163 dump_stack(); \ 164 } while (0) 165 166 static void xrun(struct snd_pcm_substream *substream) 167 { 168 struct snd_pcm_runtime *runtime = substream->runtime; 169 170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 174 char name[16]; 175 snd_pcm_debug_name(substream, name, sizeof(name)); 176 snd_printd(KERN_DEBUG "XRUN: %s\n", name); 177 dump_stack_on_xrun(substream); 178 } 179 } 180 181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 182 #define hw_ptr_error(substream, fmt, args...) \ 183 do { \ 184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 185 xrun_log_show(substream); \ 186 if (printk_ratelimit()) { \ 187 snd_printd("PCM: " fmt, ##args); \ 188 } \ 189 dump_stack_on_xrun(substream); \ 190 } \ 191 } while (0) 192 193 #define XRUN_LOG_CNT 10 194 195 struct hwptr_log_entry { 196 unsigned int in_interrupt; 197 unsigned long jiffies; 198 snd_pcm_uframes_t pos; 199 snd_pcm_uframes_t period_size; 200 snd_pcm_uframes_t buffer_size; 201 snd_pcm_uframes_t old_hw_ptr; 202 snd_pcm_uframes_t hw_ptr_base; 203 }; 204 205 struct snd_pcm_hwptr_log { 206 unsigned int idx; 207 unsigned int hit: 1; 208 struct hwptr_log_entry entries[XRUN_LOG_CNT]; 209 }; 210 211 static void xrun_log(struct snd_pcm_substream *substream, 212 snd_pcm_uframes_t pos, int in_interrupt) 213 { 214 struct snd_pcm_runtime *runtime = substream->runtime; 215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log; 216 struct hwptr_log_entry *entry; 217 218 if (log == NULL) { 219 log = kzalloc(sizeof(*log), GFP_ATOMIC); 220 if (log == NULL) 221 return; 222 runtime->hwptr_log = log; 223 } else { 224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 225 return; 226 } 227 entry = &log->entries[log->idx]; 228 entry->in_interrupt = in_interrupt; 229 entry->jiffies = jiffies; 230 entry->pos = pos; 231 entry->period_size = runtime->period_size; 232 entry->buffer_size = runtime->buffer_size; 233 entry->old_hw_ptr = runtime->status->hw_ptr; 234 entry->hw_ptr_base = runtime->hw_ptr_base; 235 log->idx = (log->idx + 1) % XRUN_LOG_CNT; 236 } 237 238 static void xrun_log_show(struct snd_pcm_substream *substream) 239 { 240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log; 241 struct hwptr_log_entry *entry; 242 char name[16]; 243 unsigned int idx; 244 int cnt; 245 246 if (log == NULL) 247 return; 248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit) 249 return; 250 snd_pcm_debug_name(substream, name, sizeof(name)); 251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) { 252 entry = &log->entries[idx]; 253 if (entry->period_size == 0) 254 break; 255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, " 256 "hwptr=%ld/%ld\n", 257 name, entry->in_interrupt ? "[Q] " : "", 258 entry->jiffies, 259 (unsigned long)entry->pos, 260 (unsigned long)entry->period_size, 261 (unsigned long)entry->buffer_size, 262 (unsigned long)entry->old_hw_ptr, 263 (unsigned long)entry->hw_ptr_base); 264 idx++; 265 idx %= XRUN_LOG_CNT; 266 } 267 log->hit = 1; 268 } 269 270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 271 272 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 273 #define xrun_log(substream, pos, in_interrupt) do { } while (0) 274 #define xrun_log_show(substream) do { } while (0) 275 276 #endif 277 278 int snd_pcm_update_state(struct snd_pcm_substream *substream, 279 struct snd_pcm_runtime *runtime) 280 { 281 snd_pcm_uframes_t avail; 282 283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 284 avail = snd_pcm_playback_avail(runtime); 285 else 286 avail = snd_pcm_capture_avail(runtime); 287 if (avail > runtime->avail_max) 288 runtime->avail_max = avail; 289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 290 if (avail >= runtime->buffer_size) { 291 snd_pcm_drain_done(substream); 292 return -EPIPE; 293 } 294 } else { 295 if (avail >= runtime->stop_threshold) { 296 xrun(substream); 297 return -EPIPE; 298 } 299 } 300 if (runtime->twake) { 301 if (avail >= runtime->twake) 302 wake_up(&runtime->tsleep); 303 } else if (avail >= runtime->control->avail_min) 304 wake_up(&runtime->sleep); 305 return 0; 306 } 307 308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 309 unsigned int in_interrupt) 310 { 311 struct snd_pcm_runtime *runtime = substream->runtime; 312 snd_pcm_uframes_t pos; 313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 314 snd_pcm_sframes_t hdelta, delta; 315 unsigned long jdelta; 316 317 old_hw_ptr = runtime->status->hw_ptr; 318 pos = substream->ops->pointer(substream); 319 if (pos == SNDRV_PCM_POS_XRUN) { 320 xrun(substream); 321 return -EPIPE; 322 } 323 if (pos >= runtime->buffer_size) { 324 if (printk_ratelimit()) { 325 char name[16]; 326 snd_pcm_debug_name(substream, name, sizeof(name)); 327 xrun_log_show(substream); 328 snd_printd(KERN_ERR "BUG: %s, pos = %ld, " 329 "buffer size = %ld, period size = %ld\n", 330 name, pos, runtime->buffer_size, 331 runtime->period_size); 332 } 333 pos = 0; 334 } 335 pos -= pos % runtime->min_align; 336 if (xrun_debug(substream, XRUN_DEBUG_LOG)) 337 xrun_log(substream, pos, in_interrupt); 338 hw_base = runtime->hw_ptr_base; 339 new_hw_ptr = hw_base + pos; 340 if (in_interrupt) { 341 /* we know that one period was processed */ 342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 343 delta = runtime->hw_ptr_interrupt + runtime->period_size; 344 if (delta > new_hw_ptr) { 345 /* check for double acknowledged interrupts */ 346 hdelta = jiffies - runtime->hw_ptr_jiffies; 347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { 348 hw_base += runtime->buffer_size; 349 if (hw_base >= runtime->boundary) 350 hw_base = 0; 351 new_hw_ptr = hw_base + pos; 352 goto __delta; 353 } 354 } 355 } 356 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 357 /* pointer crosses the end of the ring buffer */ 358 if (new_hw_ptr < old_hw_ptr) { 359 hw_base += runtime->buffer_size; 360 if (hw_base >= runtime->boundary) 361 hw_base = 0; 362 new_hw_ptr = hw_base + pos; 363 } 364 __delta: 365 delta = new_hw_ptr - old_hw_ptr; 366 if (delta < 0) 367 delta += runtime->boundary; 368 if (xrun_debug(substream, in_interrupt ? 369 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) { 370 char name[16]; 371 snd_pcm_debug_name(substream, name, sizeof(name)); 372 snd_printd("%s_update: %s: pos=%u/%u/%u, " 373 "hwptr=%ld/%ld/%ld/%ld\n", 374 in_interrupt ? "period" : "hwptr", 375 name, 376 (unsigned int)pos, 377 (unsigned int)runtime->period_size, 378 (unsigned int)runtime->buffer_size, 379 (unsigned long)delta, 380 (unsigned long)old_hw_ptr, 381 (unsigned long)new_hw_ptr, 382 (unsigned long)runtime->hw_ptr_base); 383 } 384 385 if (runtime->no_period_wakeup) { 386 snd_pcm_sframes_t xrun_threshold; 387 /* 388 * Without regular period interrupts, we have to check 389 * the elapsed time to detect xruns. 390 */ 391 jdelta = jiffies - runtime->hw_ptr_jiffies; 392 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 393 goto no_delta_check; 394 hdelta = jdelta - delta * HZ / runtime->rate; 395 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 396 while (hdelta > xrun_threshold) { 397 delta += runtime->buffer_size; 398 hw_base += runtime->buffer_size; 399 if (hw_base >= runtime->boundary) 400 hw_base = 0; 401 new_hw_ptr = hw_base + pos; 402 hdelta -= runtime->hw_ptr_buffer_jiffies; 403 } 404 goto no_delta_check; 405 } 406 407 /* something must be really wrong */ 408 if (delta >= runtime->buffer_size + runtime->period_size) { 409 hw_ptr_error(substream, 410 "Unexpected hw_pointer value %s" 411 "(stream=%i, pos=%ld, new_hw_ptr=%ld, " 412 "old_hw_ptr=%ld)\n", 413 in_interrupt ? "[Q] " : "[P]", 414 substream->stream, (long)pos, 415 (long)new_hw_ptr, (long)old_hw_ptr); 416 return 0; 417 } 418 419 /* Do jiffies check only in xrun_debug mode */ 420 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 421 goto no_jiffies_check; 422 423 /* Skip the jiffies check for hardwares with BATCH flag. 424 * Such hardware usually just increases the position at each IRQ, 425 * thus it can't give any strange position. 426 */ 427 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 428 goto no_jiffies_check; 429 hdelta = delta; 430 if (hdelta < runtime->delay) 431 goto no_jiffies_check; 432 hdelta -= runtime->delay; 433 jdelta = jiffies - runtime->hw_ptr_jiffies; 434 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 435 delta = jdelta / 436 (((runtime->period_size * HZ) / runtime->rate) 437 + HZ/100); 438 /* move new_hw_ptr according jiffies not pos variable */ 439 new_hw_ptr = old_hw_ptr; 440 hw_base = delta; 441 /* use loop to avoid checks for delta overflows */ 442 /* the delta value is small or zero in most cases */ 443 while (delta > 0) { 444 new_hw_ptr += runtime->period_size; 445 if (new_hw_ptr >= runtime->boundary) 446 new_hw_ptr -= runtime->boundary; 447 delta--; 448 } 449 /* align hw_base to buffer_size */ 450 hw_ptr_error(substream, 451 "hw_ptr skipping! %s" 452 "(pos=%ld, delta=%ld, period=%ld, " 453 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 454 in_interrupt ? "[Q] " : "", 455 (long)pos, (long)hdelta, 456 (long)runtime->period_size, jdelta, 457 ((hdelta * HZ) / runtime->rate), hw_base, 458 (unsigned long)old_hw_ptr, 459 (unsigned long)new_hw_ptr); 460 /* reset values to proper state */ 461 delta = 0; 462 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 463 } 464 no_jiffies_check: 465 if (delta > runtime->period_size + runtime->period_size / 2) { 466 hw_ptr_error(substream, 467 "Lost interrupts? %s" 468 "(stream=%i, delta=%ld, new_hw_ptr=%ld, " 469 "old_hw_ptr=%ld)\n", 470 in_interrupt ? "[Q] " : "", 471 substream->stream, (long)delta, 472 (long)new_hw_ptr, 473 (long)old_hw_ptr); 474 } 475 476 no_delta_check: 477 if (runtime->status->hw_ptr == new_hw_ptr) 478 return 0; 479 480 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 481 runtime->silence_size > 0) 482 snd_pcm_playback_silence(substream, new_hw_ptr); 483 484 if (in_interrupt) { 485 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 486 if (delta < 0) 487 delta += runtime->boundary; 488 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 489 runtime->hw_ptr_interrupt += delta; 490 if (runtime->hw_ptr_interrupt >= runtime->boundary) 491 runtime->hw_ptr_interrupt -= runtime->boundary; 492 } 493 runtime->hw_ptr_base = hw_base; 494 runtime->status->hw_ptr = new_hw_ptr; 495 runtime->hw_ptr_jiffies = jiffies; 496 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 497 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 498 499 return snd_pcm_update_state(substream, runtime); 500 } 501 502 /* CAUTION: call it with irq disabled */ 503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 504 { 505 return snd_pcm_update_hw_ptr0(substream, 0); 506 } 507 508 /** 509 * snd_pcm_set_ops - set the PCM operators 510 * @pcm: the pcm instance 511 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 512 * @ops: the operator table 513 * 514 * Sets the given PCM operators to the pcm instance. 515 */ 516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 517 { 518 struct snd_pcm_str *stream = &pcm->streams[direction]; 519 struct snd_pcm_substream *substream; 520 521 for (substream = stream->substream; substream != NULL; substream = substream->next) 522 substream->ops = ops; 523 } 524 525 EXPORT_SYMBOL(snd_pcm_set_ops); 526 527 /** 528 * snd_pcm_sync - set the PCM sync id 529 * @substream: the pcm substream 530 * 531 * Sets the PCM sync identifier for the card. 532 */ 533 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 534 { 535 struct snd_pcm_runtime *runtime = substream->runtime; 536 537 runtime->sync.id32[0] = substream->pcm->card->number; 538 runtime->sync.id32[1] = -1; 539 runtime->sync.id32[2] = -1; 540 runtime->sync.id32[3] = -1; 541 } 542 543 EXPORT_SYMBOL(snd_pcm_set_sync); 544 545 /* 546 * Standard ioctl routine 547 */ 548 549 static inline unsigned int div32(unsigned int a, unsigned int b, 550 unsigned int *r) 551 { 552 if (b == 0) { 553 *r = 0; 554 return UINT_MAX; 555 } 556 *r = a % b; 557 return a / b; 558 } 559 560 static inline unsigned int div_down(unsigned int a, unsigned int b) 561 { 562 if (b == 0) 563 return UINT_MAX; 564 return a / b; 565 } 566 567 static inline unsigned int div_up(unsigned int a, unsigned int b) 568 { 569 unsigned int r; 570 unsigned int q; 571 if (b == 0) 572 return UINT_MAX; 573 q = div32(a, b, &r); 574 if (r) 575 ++q; 576 return q; 577 } 578 579 static inline unsigned int mul(unsigned int a, unsigned int b) 580 { 581 if (a == 0) 582 return 0; 583 if (div_down(UINT_MAX, a) < b) 584 return UINT_MAX; 585 return a * b; 586 } 587 588 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 589 unsigned int c, unsigned int *r) 590 { 591 u_int64_t n = (u_int64_t) a * b; 592 if (c == 0) { 593 snd_BUG_ON(!n); 594 *r = 0; 595 return UINT_MAX; 596 } 597 n = div_u64_rem(n, c, r); 598 if (n >= UINT_MAX) { 599 *r = 0; 600 return UINT_MAX; 601 } 602 return n; 603 } 604 605 /** 606 * snd_interval_refine - refine the interval value of configurator 607 * @i: the interval value to refine 608 * @v: the interval value to refer to 609 * 610 * Refines the interval value with the reference value. 611 * The interval is changed to the range satisfying both intervals. 612 * The interval status (min, max, integer, etc.) are evaluated. 613 * 614 * Returns non-zero if the value is changed, zero if not changed. 615 */ 616 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 617 { 618 int changed = 0; 619 if (snd_BUG_ON(snd_interval_empty(i))) 620 return -EINVAL; 621 if (i->min < v->min) { 622 i->min = v->min; 623 i->openmin = v->openmin; 624 changed = 1; 625 } else if (i->min == v->min && !i->openmin && v->openmin) { 626 i->openmin = 1; 627 changed = 1; 628 } 629 if (i->max > v->max) { 630 i->max = v->max; 631 i->openmax = v->openmax; 632 changed = 1; 633 } else if (i->max == v->max && !i->openmax && v->openmax) { 634 i->openmax = 1; 635 changed = 1; 636 } 637 if (!i->integer && v->integer) { 638 i->integer = 1; 639 changed = 1; 640 } 641 if (i->integer) { 642 if (i->openmin) { 643 i->min++; 644 i->openmin = 0; 645 } 646 if (i->openmax) { 647 i->max--; 648 i->openmax = 0; 649 } 650 } else if (!i->openmin && !i->openmax && i->min == i->max) 651 i->integer = 1; 652 if (snd_interval_checkempty(i)) { 653 snd_interval_none(i); 654 return -EINVAL; 655 } 656 return changed; 657 } 658 659 EXPORT_SYMBOL(snd_interval_refine); 660 661 static int snd_interval_refine_first(struct snd_interval *i) 662 { 663 if (snd_BUG_ON(snd_interval_empty(i))) 664 return -EINVAL; 665 if (snd_interval_single(i)) 666 return 0; 667 i->max = i->min; 668 i->openmax = i->openmin; 669 if (i->openmax) 670 i->max++; 671 return 1; 672 } 673 674 static int snd_interval_refine_last(struct snd_interval *i) 675 { 676 if (snd_BUG_ON(snd_interval_empty(i))) 677 return -EINVAL; 678 if (snd_interval_single(i)) 679 return 0; 680 i->min = i->max; 681 i->openmin = i->openmax; 682 if (i->openmin) 683 i->min--; 684 return 1; 685 } 686 687 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 688 { 689 if (a->empty || b->empty) { 690 snd_interval_none(c); 691 return; 692 } 693 c->empty = 0; 694 c->min = mul(a->min, b->min); 695 c->openmin = (a->openmin || b->openmin); 696 c->max = mul(a->max, b->max); 697 c->openmax = (a->openmax || b->openmax); 698 c->integer = (a->integer && b->integer); 699 } 700 701 /** 702 * snd_interval_div - refine the interval value with division 703 * @a: dividend 704 * @b: divisor 705 * @c: quotient 706 * 707 * c = a / b 708 * 709 * Returns non-zero if the value is changed, zero if not changed. 710 */ 711 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 712 { 713 unsigned int r; 714 if (a->empty || b->empty) { 715 snd_interval_none(c); 716 return; 717 } 718 c->empty = 0; 719 c->min = div32(a->min, b->max, &r); 720 c->openmin = (r || a->openmin || b->openmax); 721 if (b->min > 0) { 722 c->max = div32(a->max, b->min, &r); 723 if (r) { 724 c->max++; 725 c->openmax = 1; 726 } else 727 c->openmax = (a->openmax || b->openmin); 728 } else { 729 c->max = UINT_MAX; 730 c->openmax = 0; 731 } 732 c->integer = 0; 733 } 734 735 /** 736 * snd_interval_muldivk - refine the interval value 737 * @a: dividend 1 738 * @b: dividend 2 739 * @k: divisor (as integer) 740 * @c: result 741 * 742 * c = a * b / k 743 * 744 * Returns non-zero if the value is changed, zero if not changed. 745 */ 746 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 747 unsigned int k, struct snd_interval *c) 748 { 749 unsigned int r; 750 if (a->empty || b->empty) { 751 snd_interval_none(c); 752 return; 753 } 754 c->empty = 0; 755 c->min = muldiv32(a->min, b->min, k, &r); 756 c->openmin = (r || a->openmin || b->openmin); 757 c->max = muldiv32(a->max, b->max, k, &r); 758 if (r) { 759 c->max++; 760 c->openmax = 1; 761 } else 762 c->openmax = (a->openmax || b->openmax); 763 c->integer = 0; 764 } 765 766 /** 767 * snd_interval_mulkdiv - refine the interval value 768 * @a: dividend 1 769 * @k: dividend 2 (as integer) 770 * @b: divisor 771 * @c: result 772 * 773 * c = a * k / b 774 * 775 * Returns non-zero if the value is changed, zero if not changed. 776 */ 777 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 778 const struct snd_interval *b, struct snd_interval *c) 779 { 780 unsigned int r; 781 if (a->empty || b->empty) { 782 snd_interval_none(c); 783 return; 784 } 785 c->empty = 0; 786 c->min = muldiv32(a->min, k, b->max, &r); 787 c->openmin = (r || a->openmin || b->openmax); 788 if (b->min > 0) { 789 c->max = muldiv32(a->max, k, b->min, &r); 790 if (r) { 791 c->max++; 792 c->openmax = 1; 793 } else 794 c->openmax = (a->openmax || b->openmin); 795 } else { 796 c->max = UINT_MAX; 797 c->openmax = 0; 798 } 799 c->integer = 0; 800 } 801 802 /* ---- */ 803 804 805 /** 806 * snd_interval_ratnum - refine the interval value 807 * @i: interval to refine 808 * @rats_count: number of ratnum_t 809 * @rats: ratnum_t array 810 * @nump: pointer to store the resultant numerator 811 * @denp: pointer to store the resultant denominator 812 * 813 * Returns non-zero if the value is changed, zero if not changed. 814 */ 815 int snd_interval_ratnum(struct snd_interval *i, 816 unsigned int rats_count, struct snd_ratnum *rats, 817 unsigned int *nump, unsigned int *denp) 818 { 819 unsigned int best_num, best_den; 820 int best_diff; 821 unsigned int k; 822 struct snd_interval t; 823 int err; 824 unsigned int result_num, result_den; 825 int result_diff; 826 827 best_num = best_den = best_diff = 0; 828 for (k = 0; k < rats_count; ++k) { 829 unsigned int num = rats[k].num; 830 unsigned int den; 831 unsigned int q = i->min; 832 int diff; 833 if (q == 0) 834 q = 1; 835 den = div_up(num, q); 836 if (den < rats[k].den_min) 837 continue; 838 if (den > rats[k].den_max) 839 den = rats[k].den_max; 840 else { 841 unsigned int r; 842 r = (den - rats[k].den_min) % rats[k].den_step; 843 if (r != 0) 844 den -= r; 845 } 846 diff = num - q * den; 847 if (diff < 0) 848 diff = -diff; 849 if (best_num == 0 || 850 diff * best_den < best_diff * den) { 851 best_diff = diff; 852 best_den = den; 853 best_num = num; 854 } 855 } 856 if (best_den == 0) { 857 i->empty = 1; 858 return -EINVAL; 859 } 860 t.min = div_down(best_num, best_den); 861 t.openmin = !!(best_num % best_den); 862 863 result_num = best_num; 864 result_diff = best_diff; 865 result_den = best_den; 866 best_num = best_den = best_diff = 0; 867 for (k = 0; k < rats_count; ++k) { 868 unsigned int num = rats[k].num; 869 unsigned int den; 870 unsigned int q = i->max; 871 int diff; 872 if (q == 0) { 873 i->empty = 1; 874 return -EINVAL; 875 } 876 den = div_down(num, q); 877 if (den > rats[k].den_max) 878 continue; 879 if (den < rats[k].den_min) 880 den = rats[k].den_min; 881 else { 882 unsigned int r; 883 r = (den - rats[k].den_min) % rats[k].den_step; 884 if (r != 0) 885 den += rats[k].den_step - r; 886 } 887 diff = q * den - num; 888 if (diff < 0) 889 diff = -diff; 890 if (best_num == 0 || 891 diff * best_den < best_diff * den) { 892 best_diff = diff; 893 best_den = den; 894 best_num = num; 895 } 896 } 897 if (best_den == 0) { 898 i->empty = 1; 899 return -EINVAL; 900 } 901 t.max = div_up(best_num, best_den); 902 t.openmax = !!(best_num % best_den); 903 t.integer = 0; 904 err = snd_interval_refine(i, &t); 905 if (err < 0) 906 return err; 907 908 if (snd_interval_single(i)) { 909 if (best_diff * result_den < result_diff * best_den) { 910 result_num = best_num; 911 result_den = best_den; 912 } 913 if (nump) 914 *nump = result_num; 915 if (denp) 916 *denp = result_den; 917 } 918 return err; 919 } 920 921 EXPORT_SYMBOL(snd_interval_ratnum); 922 923 /** 924 * snd_interval_ratden - refine the interval value 925 * @i: interval to refine 926 * @rats_count: number of struct ratden 927 * @rats: struct ratden array 928 * @nump: pointer to store the resultant numerator 929 * @denp: pointer to store the resultant denominator 930 * 931 * Returns non-zero if the value is changed, zero if not changed. 932 */ 933 static int snd_interval_ratden(struct snd_interval *i, 934 unsigned int rats_count, struct snd_ratden *rats, 935 unsigned int *nump, unsigned int *denp) 936 { 937 unsigned int best_num, best_diff, best_den; 938 unsigned int k; 939 struct snd_interval t; 940 int err; 941 942 best_num = best_den = best_diff = 0; 943 for (k = 0; k < rats_count; ++k) { 944 unsigned int num; 945 unsigned int den = rats[k].den; 946 unsigned int q = i->min; 947 int diff; 948 num = mul(q, den); 949 if (num > rats[k].num_max) 950 continue; 951 if (num < rats[k].num_min) 952 num = rats[k].num_max; 953 else { 954 unsigned int r; 955 r = (num - rats[k].num_min) % rats[k].num_step; 956 if (r != 0) 957 num += rats[k].num_step - r; 958 } 959 diff = num - q * den; 960 if (best_num == 0 || 961 diff * best_den < best_diff * den) { 962 best_diff = diff; 963 best_den = den; 964 best_num = num; 965 } 966 } 967 if (best_den == 0) { 968 i->empty = 1; 969 return -EINVAL; 970 } 971 t.min = div_down(best_num, best_den); 972 t.openmin = !!(best_num % best_den); 973 974 best_num = best_den = best_diff = 0; 975 for (k = 0; k < rats_count; ++k) { 976 unsigned int num; 977 unsigned int den = rats[k].den; 978 unsigned int q = i->max; 979 int diff; 980 num = mul(q, den); 981 if (num < rats[k].num_min) 982 continue; 983 if (num > rats[k].num_max) 984 num = rats[k].num_max; 985 else { 986 unsigned int r; 987 r = (num - rats[k].num_min) % rats[k].num_step; 988 if (r != 0) 989 num -= r; 990 } 991 diff = q * den - num; 992 if (best_num == 0 || 993 diff * best_den < best_diff * den) { 994 best_diff = diff; 995 best_den = den; 996 best_num = num; 997 } 998 } 999 if (best_den == 0) { 1000 i->empty = 1; 1001 return -EINVAL; 1002 } 1003 t.max = div_up(best_num, best_den); 1004 t.openmax = !!(best_num % best_den); 1005 t.integer = 0; 1006 err = snd_interval_refine(i, &t); 1007 if (err < 0) 1008 return err; 1009 1010 if (snd_interval_single(i)) { 1011 if (nump) 1012 *nump = best_num; 1013 if (denp) 1014 *denp = best_den; 1015 } 1016 return err; 1017 } 1018 1019 /** 1020 * snd_interval_list - refine the interval value from the list 1021 * @i: the interval value to refine 1022 * @count: the number of elements in the list 1023 * @list: the value list 1024 * @mask: the bit-mask to evaluate 1025 * 1026 * Refines the interval value from the list. 1027 * When mask is non-zero, only the elements corresponding to bit 1 are 1028 * evaluated. 1029 * 1030 * Returns non-zero if the value is changed, zero if not changed. 1031 */ 1032 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 1033 { 1034 unsigned int k; 1035 struct snd_interval list_range; 1036 1037 if (!count) { 1038 i->empty = 1; 1039 return -EINVAL; 1040 } 1041 snd_interval_any(&list_range); 1042 list_range.min = UINT_MAX; 1043 list_range.max = 0; 1044 for (k = 0; k < count; k++) { 1045 if (mask && !(mask & (1 << k))) 1046 continue; 1047 if (!snd_interval_test(i, list[k])) 1048 continue; 1049 list_range.min = min(list_range.min, list[k]); 1050 list_range.max = max(list_range.max, list[k]); 1051 } 1052 return snd_interval_refine(i, &list_range); 1053 } 1054 1055 EXPORT_SYMBOL(snd_interval_list); 1056 1057 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 1058 { 1059 unsigned int n; 1060 int changed = 0; 1061 n = (i->min - min) % step; 1062 if (n != 0 || i->openmin) { 1063 i->min += step - n; 1064 changed = 1; 1065 } 1066 n = (i->max - min) % step; 1067 if (n != 0 || i->openmax) { 1068 i->max -= n; 1069 changed = 1; 1070 } 1071 if (snd_interval_checkempty(i)) { 1072 i->empty = 1; 1073 return -EINVAL; 1074 } 1075 return changed; 1076 } 1077 1078 /* Info constraints helpers */ 1079 1080 /** 1081 * snd_pcm_hw_rule_add - add the hw-constraint rule 1082 * @runtime: the pcm runtime instance 1083 * @cond: condition bits 1084 * @var: the variable to evaluate 1085 * @func: the evaluation function 1086 * @private: the private data pointer passed to function 1087 * @dep: the dependent variables 1088 * 1089 * Returns zero if successful, or a negative error code on failure. 1090 */ 1091 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1092 int var, 1093 snd_pcm_hw_rule_func_t func, void *private, 1094 int dep, ...) 1095 { 1096 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1097 struct snd_pcm_hw_rule *c; 1098 unsigned int k; 1099 va_list args; 1100 va_start(args, dep); 1101 if (constrs->rules_num >= constrs->rules_all) { 1102 struct snd_pcm_hw_rule *new; 1103 unsigned int new_rules = constrs->rules_all + 16; 1104 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1105 if (!new) { 1106 va_end(args); 1107 return -ENOMEM; 1108 } 1109 if (constrs->rules) { 1110 memcpy(new, constrs->rules, 1111 constrs->rules_num * sizeof(*c)); 1112 kfree(constrs->rules); 1113 } 1114 constrs->rules = new; 1115 constrs->rules_all = new_rules; 1116 } 1117 c = &constrs->rules[constrs->rules_num]; 1118 c->cond = cond; 1119 c->func = func; 1120 c->var = var; 1121 c->private = private; 1122 k = 0; 1123 while (1) { 1124 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1125 va_end(args); 1126 return -EINVAL; 1127 } 1128 c->deps[k++] = dep; 1129 if (dep < 0) 1130 break; 1131 dep = va_arg(args, int); 1132 } 1133 constrs->rules_num++; 1134 va_end(args); 1135 return 0; 1136 } 1137 1138 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1139 1140 /** 1141 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1142 * @runtime: PCM runtime instance 1143 * @var: hw_params variable to apply the mask 1144 * @mask: the bitmap mask 1145 * 1146 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1147 */ 1148 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1149 u_int32_t mask) 1150 { 1151 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1152 struct snd_mask *maskp = constrs_mask(constrs, var); 1153 *maskp->bits &= mask; 1154 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1155 if (*maskp->bits == 0) 1156 return -EINVAL; 1157 return 0; 1158 } 1159 1160 /** 1161 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1162 * @runtime: PCM runtime instance 1163 * @var: hw_params variable to apply the mask 1164 * @mask: the 64bit bitmap mask 1165 * 1166 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1167 */ 1168 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1169 u_int64_t mask) 1170 { 1171 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1172 struct snd_mask *maskp = constrs_mask(constrs, var); 1173 maskp->bits[0] &= (u_int32_t)mask; 1174 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1175 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1176 if (! maskp->bits[0] && ! maskp->bits[1]) 1177 return -EINVAL; 1178 return 0; 1179 } 1180 1181 /** 1182 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1183 * @runtime: PCM runtime instance 1184 * @var: hw_params variable to apply the integer constraint 1185 * 1186 * Apply the constraint of integer to an interval parameter. 1187 */ 1188 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1189 { 1190 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1191 return snd_interval_setinteger(constrs_interval(constrs, var)); 1192 } 1193 1194 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1195 1196 /** 1197 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1198 * @runtime: PCM runtime instance 1199 * @var: hw_params variable to apply the range 1200 * @min: the minimal value 1201 * @max: the maximal value 1202 * 1203 * Apply the min/max range constraint to an interval parameter. 1204 */ 1205 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1206 unsigned int min, unsigned int max) 1207 { 1208 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1209 struct snd_interval t; 1210 t.min = min; 1211 t.max = max; 1212 t.openmin = t.openmax = 0; 1213 t.integer = 0; 1214 return snd_interval_refine(constrs_interval(constrs, var), &t); 1215 } 1216 1217 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1218 1219 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1220 struct snd_pcm_hw_rule *rule) 1221 { 1222 struct snd_pcm_hw_constraint_list *list = rule->private; 1223 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1224 } 1225 1226 1227 /** 1228 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1229 * @runtime: PCM runtime instance 1230 * @cond: condition bits 1231 * @var: hw_params variable to apply the list constraint 1232 * @l: list 1233 * 1234 * Apply the list of constraints to an interval parameter. 1235 */ 1236 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1237 unsigned int cond, 1238 snd_pcm_hw_param_t var, 1239 struct snd_pcm_hw_constraint_list *l) 1240 { 1241 return snd_pcm_hw_rule_add(runtime, cond, var, 1242 snd_pcm_hw_rule_list, l, 1243 var, -1); 1244 } 1245 1246 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1247 1248 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1249 struct snd_pcm_hw_rule *rule) 1250 { 1251 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1252 unsigned int num = 0, den = 0; 1253 int err; 1254 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1255 r->nrats, r->rats, &num, &den); 1256 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1257 params->rate_num = num; 1258 params->rate_den = den; 1259 } 1260 return err; 1261 } 1262 1263 /** 1264 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1265 * @runtime: PCM runtime instance 1266 * @cond: condition bits 1267 * @var: hw_params variable to apply the ratnums constraint 1268 * @r: struct snd_ratnums constriants 1269 */ 1270 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1271 unsigned int cond, 1272 snd_pcm_hw_param_t var, 1273 struct snd_pcm_hw_constraint_ratnums *r) 1274 { 1275 return snd_pcm_hw_rule_add(runtime, cond, var, 1276 snd_pcm_hw_rule_ratnums, r, 1277 var, -1); 1278 } 1279 1280 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1281 1282 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1283 struct snd_pcm_hw_rule *rule) 1284 { 1285 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1286 unsigned int num = 0, den = 0; 1287 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1288 r->nrats, r->rats, &num, &den); 1289 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1290 params->rate_num = num; 1291 params->rate_den = den; 1292 } 1293 return err; 1294 } 1295 1296 /** 1297 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1298 * @runtime: PCM runtime instance 1299 * @cond: condition bits 1300 * @var: hw_params variable to apply the ratdens constraint 1301 * @r: struct snd_ratdens constriants 1302 */ 1303 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1304 unsigned int cond, 1305 snd_pcm_hw_param_t var, 1306 struct snd_pcm_hw_constraint_ratdens *r) 1307 { 1308 return snd_pcm_hw_rule_add(runtime, cond, var, 1309 snd_pcm_hw_rule_ratdens, r, 1310 var, -1); 1311 } 1312 1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1314 1315 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1316 struct snd_pcm_hw_rule *rule) 1317 { 1318 unsigned int l = (unsigned long) rule->private; 1319 int width = l & 0xffff; 1320 unsigned int msbits = l >> 16; 1321 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1322 if (snd_interval_single(i) && snd_interval_value(i) == width) 1323 params->msbits = msbits; 1324 return 0; 1325 } 1326 1327 /** 1328 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1329 * @runtime: PCM runtime instance 1330 * @cond: condition bits 1331 * @width: sample bits width 1332 * @msbits: msbits width 1333 */ 1334 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1335 unsigned int cond, 1336 unsigned int width, 1337 unsigned int msbits) 1338 { 1339 unsigned long l = (msbits << 16) | width; 1340 return snd_pcm_hw_rule_add(runtime, cond, -1, 1341 snd_pcm_hw_rule_msbits, 1342 (void*) l, 1343 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1344 } 1345 1346 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1347 1348 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1349 struct snd_pcm_hw_rule *rule) 1350 { 1351 unsigned long step = (unsigned long) rule->private; 1352 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1353 } 1354 1355 /** 1356 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1357 * @runtime: PCM runtime instance 1358 * @cond: condition bits 1359 * @var: hw_params variable to apply the step constraint 1360 * @step: step size 1361 */ 1362 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1363 unsigned int cond, 1364 snd_pcm_hw_param_t var, 1365 unsigned long step) 1366 { 1367 return snd_pcm_hw_rule_add(runtime, cond, var, 1368 snd_pcm_hw_rule_step, (void *) step, 1369 var, -1); 1370 } 1371 1372 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1373 1374 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1375 { 1376 static unsigned int pow2_sizes[] = { 1377 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1378 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1379 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1380 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1381 }; 1382 return snd_interval_list(hw_param_interval(params, rule->var), 1383 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1384 } 1385 1386 /** 1387 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1388 * @runtime: PCM runtime instance 1389 * @cond: condition bits 1390 * @var: hw_params variable to apply the power-of-2 constraint 1391 */ 1392 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1393 unsigned int cond, 1394 snd_pcm_hw_param_t var) 1395 { 1396 return snd_pcm_hw_rule_add(runtime, cond, var, 1397 snd_pcm_hw_rule_pow2, NULL, 1398 var, -1); 1399 } 1400 1401 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1402 1403 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1404 struct snd_pcm_hw_rule *rule) 1405 { 1406 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1407 struct snd_interval *rate; 1408 1409 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1410 return snd_interval_list(rate, 1, &base_rate, 0); 1411 } 1412 1413 /** 1414 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1415 * @runtime: PCM runtime instance 1416 * @base_rate: the rate at which the hardware does not resample 1417 */ 1418 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1419 unsigned int base_rate) 1420 { 1421 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1422 SNDRV_PCM_HW_PARAM_RATE, 1423 snd_pcm_hw_rule_noresample_func, 1424 (void *)(uintptr_t)base_rate, 1425 SNDRV_PCM_HW_PARAM_RATE, -1); 1426 } 1427 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1428 1429 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1430 snd_pcm_hw_param_t var) 1431 { 1432 if (hw_is_mask(var)) { 1433 snd_mask_any(hw_param_mask(params, var)); 1434 params->cmask |= 1 << var; 1435 params->rmask |= 1 << var; 1436 return; 1437 } 1438 if (hw_is_interval(var)) { 1439 snd_interval_any(hw_param_interval(params, var)); 1440 params->cmask |= 1 << var; 1441 params->rmask |= 1 << var; 1442 return; 1443 } 1444 snd_BUG(); 1445 } 1446 1447 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1448 { 1449 unsigned int k; 1450 memset(params, 0, sizeof(*params)); 1451 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1452 _snd_pcm_hw_param_any(params, k); 1453 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1454 _snd_pcm_hw_param_any(params, k); 1455 params->info = ~0U; 1456 } 1457 1458 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1459 1460 /** 1461 * snd_pcm_hw_param_value - return @params field @var value 1462 * @params: the hw_params instance 1463 * @var: parameter to retrieve 1464 * @dir: pointer to the direction (-1,0,1) or %NULL 1465 * 1466 * Return the value for field @var if it's fixed in configuration space 1467 * defined by @params. Return -%EINVAL otherwise. 1468 */ 1469 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1470 snd_pcm_hw_param_t var, int *dir) 1471 { 1472 if (hw_is_mask(var)) { 1473 const struct snd_mask *mask = hw_param_mask_c(params, var); 1474 if (!snd_mask_single(mask)) 1475 return -EINVAL; 1476 if (dir) 1477 *dir = 0; 1478 return snd_mask_value(mask); 1479 } 1480 if (hw_is_interval(var)) { 1481 const struct snd_interval *i = hw_param_interval_c(params, var); 1482 if (!snd_interval_single(i)) 1483 return -EINVAL; 1484 if (dir) 1485 *dir = i->openmin; 1486 return snd_interval_value(i); 1487 } 1488 return -EINVAL; 1489 } 1490 1491 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1492 1493 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1494 snd_pcm_hw_param_t var) 1495 { 1496 if (hw_is_mask(var)) { 1497 snd_mask_none(hw_param_mask(params, var)); 1498 params->cmask |= 1 << var; 1499 params->rmask |= 1 << var; 1500 } else if (hw_is_interval(var)) { 1501 snd_interval_none(hw_param_interval(params, var)); 1502 params->cmask |= 1 << var; 1503 params->rmask |= 1 << var; 1504 } else { 1505 snd_BUG(); 1506 } 1507 } 1508 1509 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1510 1511 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1512 snd_pcm_hw_param_t var) 1513 { 1514 int changed; 1515 if (hw_is_mask(var)) 1516 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1517 else if (hw_is_interval(var)) 1518 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1519 else 1520 return -EINVAL; 1521 if (changed) { 1522 params->cmask |= 1 << var; 1523 params->rmask |= 1 << var; 1524 } 1525 return changed; 1526 } 1527 1528 1529 /** 1530 * snd_pcm_hw_param_first - refine config space and return minimum value 1531 * @pcm: PCM instance 1532 * @params: the hw_params instance 1533 * @var: parameter to retrieve 1534 * @dir: pointer to the direction (-1,0,1) or %NULL 1535 * 1536 * Inside configuration space defined by @params remove from @var all 1537 * values > minimum. Reduce configuration space accordingly. 1538 * Return the minimum. 1539 */ 1540 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1541 struct snd_pcm_hw_params *params, 1542 snd_pcm_hw_param_t var, int *dir) 1543 { 1544 int changed = _snd_pcm_hw_param_first(params, var); 1545 if (changed < 0) 1546 return changed; 1547 if (params->rmask) { 1548 int err = snd_pcm_hw_refine(pcm, params); 1549 if (snd_BUG_ON(err < 0)) 1550 return err; 1551 } 1552 return snd_pcm_hw_param_value(params, var, dir); 1553 } 1554 1555 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1556 1557 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1558 snd_pcm_hw_param_t var) 1559 { 1560 int changed; 1561 if (hw_is_mask(var)) 1562 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1563 else if (hw_is_interval(var)) 1564 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1565 else 1566 return -EINVAL; 1567 if (changed) { 1568 params->cmask |= 1 << var; 1569 params->rmask |= 1 << var; 1570 } 1571 return changed; 1572 } 1573 1574 1575 /** 1576 * snd_pcm_hw_param_last - refine config space and return maximum value 1577 * @pcm: PCM instance 1578 * @params: the hw_params instance 1579 * @var: parameter to retrieve 1580 * @dir: pointer to the direction (-1,0,1) or %NULL 1581 * 1582 * Inside configuration space defined by @params remove from @var all 1583 * values < maximum. Reduce configuration space accordingly. 1584 * Return the maximum. 1585 */ 1586 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1587 struct snd_pcm_hw_params *params, 1588 snd_pcm_hw_param_t var, int *dir) 1589 { 1590 int changed = _snd_pcm_hw_param_last(params, var); 1591 if (changed < 0) 1592 return changed; 1593 if (params->rmask) { 1594 int err = snd_pcm_hw_refine(pcm, params); 1595 if (snd_BUG_ON(err < 0)) 1596 return err; 1597 } 1598 return snd_pcm_hw_param_value(params, var, dir); 1599 } 1600 1601 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1602 1603 /** 1604 * snd_pcm_hw_param_choose - choose a configuration defined by @params 1605 * @pcm: PCM instance 1606 * @params: the hw_params instance 1607 * 1608 * Choose one configuration from configuration space defined by @params. 1609 * The configuration chosen is that obtained fixing in this order: 1610 * first access, first format, first subformat, min channels, 1611 * min rate, min period time, max buffer size, min tick time 1612 */ 1613 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1614 struct snd_pcm_hw_params *params) 1615 { 1616 static int vars[] = { 1617 SNDRV_PCM_HW_PARAM_ACCESS, 1618 SNDRV_PCM_HW_PARAM_FORMAT, 1619 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1620 SNDRV_PCM_HW_PARAM_CHANNELS, 1621 SNDRV_PCM_HW_PARAM_RATE, 1622 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1623 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1624 SNDRV_PCM_HW_PARAM_TICK_TIME, 1625 -1 1626 }; 1627 int err, *v; 1628 1629 for (v = vars; *v != -1; v++) { 1630 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1631 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1632 else 1633 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1634 if (snd_BUG_ON(err < 0)) 1635 return err; 1636 } 1637 return 0; 1638 } 1639 1640 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1641 void *arg) 1642 { 1643 struct snd_pcm_runtime *runtime = substream->runtime; 1644 unsigned long flags; 1645 snd_pcm_stream_lock_irqsave(substream, flags); 1646 if (snd_pcm_running(substream) && 1647 snd_pcm_update_hw_ptr(substream) >= 0) 1648 runtime->status->hw_ptr %= runtime->buffer_size; 1649 else 1650 runtime->status->hw_ptr = 0; 1651 snd_pcm_stream_unlock_irqrestore(substream, flags); 1652 return 0; 1653 } 1654 1655 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1656 void *arg) 1657 { 1658 struct snd_pcm_channel_info *info = arg; 1659 struct snd_pcm_runtime *runtime = substream->runtime; 1660 int width; 1661 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1662 info->offset = -1; 1663 return 0; 1664 } 1665 width = snd_pcm_format_physical_width(runtime->format); 1666 if (width < 0) 1667 return width; 1668 info->offset = 0; 1669 switch (runtime->access) { 1670 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1671 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1672 info->first = info->channel * width; 1673 info->step = runtime->channels * width; 1674 break; 1675 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1676 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1677 { 1678 size_t size = runtime->dma_bytes / runtime->channels; 1679 info->first = info->channel * size * 8; 1680 info->step = width; 1681 break; 1682 } 1683 default: 1684 snd_BUG(); 1685 break; 1686 } 1687 return 0; 1688 } 1689 1690 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1691 void *arg) 1692 { 1693 struct snd_pcm_hw_params *params = arg; 1694 snd_pcm_format_t format; 1695 int channels, width; 1696 1697 params->fifo_size = substream->runtime->hw.fifo_size; 1698 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1699 format = params_format(params); 1700 channels = params_channels(params); 1701 width = snd_pcm_format_physical_width(format); 1702 params->fifo_size /= width * channels; 1703 } 1704 return 0; 1705 } 1706 1707 /** 1708 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1709 * @substream: the pcm substream instance 1710 * @cmd: ioctl command 1711 * @arg: ioctl argument 1712 * 1713 * Processes the generic ioctl commands for PCM. 1714 * Can be passed as the ioctl callback for PCM ops. 1715 * 1716 * Returns zero if successful, or a negative error code on failure. 1717 */ 1718 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1719 unsigned int cmd, void *arg) 1720 { 1721 switch (cmd) { 1722 case SNDRV_PCM_IOCTL1_INFO: 1723 return 0; 1724 case SNDRV_PCM_IOCTL1_RESET: 1725 return snd_pcm_lib_ioctl_reset(substream, arg); 1726 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1727 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1728 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1729 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1730 } 1731 return -ENXIO; 1732 } 1733 1734 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1735 1736 /** 1737 * snd_pcm_period_elapsed - update the pcm status for the next period 1738 * @substream: the pcm substream instance 1739 * 1740 * This function is called from the interrupt handler when the 1741 * PCM has processed the period size. It will update the current 1742 * pointer, wake up sleepers, etc. 1743 * 1744 * Even if more than one periods have elapsed since the last call, you 1745 * have to call this only once. 1746 */ 1747 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1748 { 1749 struct snd_pcm_runtime *runtime; 1750 unsigned long flags; 1751 1752 if (PCM_RUNTIME_CHECK(substream)) 1753 return; 1754 runtime = substream->runtime; 1755 1756 if (runtime->transfer_ack_begin) 1757 runtime->transfer_ack_begin(substream); 1758 1759 snd_pcm_stream_lock_irqsave(substream, flags); 1760 if (!snd_pcm_running(substream) || 1761 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1762 goto _end; 1763 1764 if (substream->timer_running) 1765 snd_timer_interrupt(substream->timer, 1); 1766 _end: 1767 snd_pcm_stream_unlock_irqrestore(substream, flags); 1768 if (runtime->transfer_ack_end) 1769 runtime->transfer_ack_end(substream); 1770 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1771 } 1772 1773 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1774 1775 /* 1776 * Wait until avail_min data becomes available 1777 * Returns a negative error code if any error occurs during operation. 1778 * The available space is stored on availp. When err = 0 and avail = 0 1779 * on the capture stream, it indicates the stream is in DRAINING state. 1780 */ 1781 static int wait_for_avail(struct snd_pcm_substream *substream, 1782 snd_pcm_uframes_t *availp) 1783 { 1784 struct snd_pcm_runtime *runtime = substream->runtime; 1785 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1786 wait_queue_t wait; 1787 int err = 0; 1788 snd_pcm_uframes_t avail = 0; 1789 long wait_time, tout; 1790 1791 init_waitqueue_entry(&wait, current); 1792 set_current_state(TASK_INTERRUPTIBLE); 1793 add_wait_queue(&runtime->tsleep, &wait); 1794 1795 if (runtime->no_period_wakeup) 1796 wait_time = MAX_SCHEDULE_TIMEOUT; 1797 else { 1798 wait_time = 10; 1799 if (runtime->rate) { 1800 long t = runtime->period_size * 2 / runtime->rate; 1801 wait_time = max(t, wait_time); 1802 } 1803 wait_time = msecs_to_jiffies(wait_time * 1000); 1804 } 1805 1806 for (;;) { 1807 if (signal_pending(current)) { 1808 err = -ERESTARTSYS; 1809 break; 1810 } 1811 1812 /* 1813 * We need to check if space became available already 1814 * (and thus the wakeup happened already) first to close 1815 * the race of space already having become available. 1816 * This check must happen after been added to the waitqueue 1817 * and having current state be INTERRUPTIBLE. 1818 */ 1819 if (is_playback) 1820 avail = snd_pcm_playback_avail(runtime); 1821 else 1822 avail = snd_pcm_capture_avail(runtime); 1823 if (avail >= runtime->twake) 1824 break; 1825 snd_pcm_stream_unlock_irq(substream); 1826 1827 tout = schedule_timeout(wait_time); 1828 1829 snd_pcm_stream_lock_irq(substream); 1830 set_current_state(TASK_INTERRUPTIBLE); 1831 switch (runtime->status->state) { 1832 case SNDRV_PCM_STATE_SUSPENDED: 1833 err = -ESTRPIPE; 1834 goto _endloop; 1835 case SNDRV_PCM_STATE_XRUN: 1836 err = -EPIPE; 1837 goto _endloop; 1838 case SNDRV_PCM_STATE_DRAINING: 1839 if (is_playback) 1840 err = -EPIPE; 1841 else 1842 avail = 0; /* indicate draining */ 1843 goto _endloop; 1844 case SNDRV_PCM_STATE_OPEN: 1845 case SNDRV_PCM_STATE_SETUP: 1846 case SNDRV_PCM_STATE_DISCONNECTED: 1847 err = -EBADFD; 1848 goto _endloop; 1849 } 1850 if (!tout) { 1851 snd_printd("%s write error (DMA or IRQ trouble?)\n", 1852 is_playback ? "playback" : "capture"); 1853 err = -EIO; 1854 break; 1855 } 1856 } 1857 _endloop: 1858 set_current_state(TASK_RUNNING); 1859 remove_wait_queue(&runtime->tsleep, &wait); 1860 *availp = avail; 1861 return err; 1862 } 1863 1864 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1865 unsigned int hwoff, 1866 unsigned long data, unsigned int off, 1867 snd_pcm_uframes_t frames) 1868 { 1869 struct snd_pcm_runtime *runtime = substream->runtime; 1870 int err; 1871 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1872 if (substream->ops->copy) { 1873 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1874 return err; 1875 } else { 1876 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1877 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1878 return -EFAULT; 1879 } 1880 return 0; 1881 } 1882 1883 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1884 unsigned long data, unsigned int off, 1885 snd_pcm_uframes_t size); 1886 1887 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1888 unsigned long data, 1889 snd_pcm_uframes_t size, 1890 int nonblock, 1891 transfer_f transfer) 1892 { 1893 struct snd_pcm_runtime *runtime = substream->runtime; 1894 snd_pcm_uframes_t xfer = 0; 1895 snd_pcm_uframes_t offset = 0; 1896 int err = 0; 1897 1898 if (size == 0) 1899 return 0; 1900 1901 snd_pcm_stream_lock_irq(substream); 1902 switch (runtime->status->state) { 1903 case SNDRV_PCM_STATE_PREPARED: 1904 case SNDRV_PCM_STATE_RUNNING: 1905 case SNDRV_PCM_STATE_PAUSED: 1906 break; 1907 case SNDRV_PCM_STATE_XRUN: 1908 err = -EPIPE; 1909 goto _end_unlock; 1910 case SNDRV_PCM_STATE_SUSPENDED: 1911 err = -ESTRPIPE; 1912 goto _end_unlock; 1913 default: 1914 err = -EBADFD; 1915 goto _end_unlock; 1916 } 1917 1918 runtime->twake = runtime->control->avail_min ? : 1; 1919 while (size > 0) { 1920 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1921 snd_pcm_uframes_t avail; 1922 snd_pcm_uframes_t cont; 1923 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1924 snd_pcm_update_hw_ptr(substream); 1925 avail = snd_pcm_playback_avail(runtime); 1926 if (!avail) { 1927 if (nonblock) { 1928 err = -EAGAIN; 1929 goto _end_unlock; 1930 } 1931 runtime->twake = min_t(snd_pcm_uframes_t, size, 1932 runtime->control->avail_min ? : 1); 1933 err = wait_for_avail(substream, &avail); 1934 if (err < 0) 1935 goto _end_unlock; 1936 } 1937 frames = size > avail ? avail : size; 1938 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1939 if (frames > cont) 1940 frames = cont; 1941 if (snd_BUG_ON(!frames)) { 1942 runtime->twake = 0; 1943 snd_pcm_stream_unlock_irq(substream); 1944 return -EINVAL; 1945 } 1946 appl_ptr = runtime->control->appl_ptr; 1947 appl_ofs = appl_ptr % runtime->buffer_size; 1948 snd_pcm_stream_unlock_irq(substream); 1949 err = transfer(substream, appl_ofs, data, offset, frames); 1950 snd_pcm_stream_lock_irq(substream); 1951 if (err < 0) 1952 goto _end_unlock; 1953 switch (runtime->status->state) { 1954 case SNDRV_PCM_STATE_XRUN: 1955 err = -EPIPE; 1956 goto _end_unlock; 1957 case SNDRV_PCM_STATE_SUSPENDED: 1958 err = -ESTRPIPE; 1959 goto _end_unlock; 1960 default: 1961 break; 1962 } 1963 appl_ptr += frames; 1964 if (appl_ptr >= runtime->boundary) 1965 appl_ptr -= runtime->boundary; 1966 runtime->control->appl_ptr = appl_ptr; 1967 if (substream->ops->ack) 1968 substream->ops->ack(substream); 1969 1970 offset += frames; 1971 size -= frames; 1972 xfer += frames; 1973 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1974 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1975 err = snd_pcm_start(substream); 1976 if (err < 0) 1977 goto _end_unlock; 1978 } 1979 } 1980 _end_unlock: 1981 runtime->twake = 0; 1982 if (xfer > 0 && err >= 0) 1983 snd_pcm_update_state(substream, runtime); 1984 snd_pcm_stream_unlock_irq(substream); 1985 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1986 } 1987 1988 /* sanity-check for read/write methods */ 1989 static int pcm_sanity_check(struct snd_pcm_substream *substream) 1990 { 1991 struct snd_pcm_runtime *runtime; 1992 if (PCM_RUNTIME_CHECK(substream)) 1993 return -ENXIO; 1994 runtime = substream->runtime; 1995 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area)) 1996 return -EINVAL; 1997 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1998 return -EBADFD; 1999 return 0; 2000 } 2001 2002 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 2003 { 2004 struct snd_pcm_runtime *runtime; 2005 int nonblock; 2006 int err; 2007 2008 err = pcm_sanity_check(substream); 2009 if (err < 0) 2010 return err; 2011 runtime = substream->runtime; 2012 nonblock = !!(substream->f_flags & O_NONBLOCK); 2013 2014 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2015 runtime->channels > 1) 2016 return -EINVAL; 2017 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 2018 snd_pcm_lib_write_transfer); 2019 } 2020 2021 EXPORT_SYMBOL(snd_pcm_lib_write); 2022 2023 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 2024 unsigned int hwoff, 2025 unsigned long data, unsigned int off, 2026 snd_pcm_uframes_t frames) 2027 { 2028 struct snd_pcm_runtime *runtime = substream->runtime; 2029 int err; 2030 void __user **bufs = (void __user **)data; 2031 int channels = runtime->channels; 2032 int c; 2033 if (substream->ops->copy) { 2034 if (snd_BUG_ON(!substream->ops->silence)) 2035 return -EINVAL; 2036 for (c = 0; c < channels; ++c, ++bufs) { 2037 if (*bufs == NULL) { 2038 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 2039 return err; 2040 } else { 2041 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2042 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2043 return err; 2044 } 2045 } 2046 } else { 2047 /* default transfer behaviour */ 2048 size_t dma_csize = runtime->dma_bytes / channels; 2049 for (c = 0; c < channels; ++c, ++bufs) { 2050 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2051 if (*bufs == NULL) { 2052 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 2053 } else { 2054 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2055 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2056 return -EFAULT; 2057 } 2058 } 2059 } 2060 return 0; 2061 } 2062 2063 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2064 void __user **bufs, 2065 snd_pcm_uframes_t frames) 2066 { 2067 struct snd_pcm_runtime *runtime; 2068 int nonblock; 2069 int err; 2070 2071 err = pcm_sanity_check(substream); 2072 if (err < 0) 2073 return err; 2074 runtime = substream->runtime; 2075 nonblock = !!(substream->f_flags & O_NONBLOCK); 2076 2077 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2078 return -EINVAL; 2079 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2080 nonblock, snd_pcm_lib_writev_transfer); 2081 } 2082 2083 EXPORT_SYMBOL(snd_pcm_lib_writev); 2084 2085 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2086 unsigned int hwoff, 2087 unsigned long data, unsigned int off, 2088 snd_pcm_uframes_t frames) 2089 { 2090 struct snd_pcm_runtime *runtime = substream->runtime; 2091 int err; 2092 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2093 if (substream->ops->copy) { 2094 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2095 return err; 2096 } else { 2097 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2098 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2099 return -EFAULT; 2100 } 2101 return 0; 2102 } 2103 2104 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2105 unsigned long data, 2106 snd_pcm_uframes_t size, 2107 int nonblock, 2108 transfer_f transfer) 2109 { 2110 struct snd_pcm_runtime *runtime = substream->runtime; 2111 snd_pcm_uframes_t xfer = 0; 2112 snd_pcm_uframes_t offset = 0; 2113 int err = 0; 2114 2115 if (size == 0) 2116 return 0; 2117 2118 snd_pcm_stream_lock_irq(substream); 2119 switch (runtime->status->state) { 2120 case SNDRV_PCM_STATE_PREPARED: 2121 if (size >= runtime->start_threshold) { 2122 err = snd_pcm_start(substream); 2123 if (err < 0) 2124 goto _end_unlock; 2125 } 2126 break; 2127 case SNDRV_PCM_STATE_DRAINING: 2128 case SNDRV_PCM_STATE_RUNNING: 2129 case SNDRV_PCM_STATE_PAUSED: 2130 break; 2131 case SNDRV_PCM_STATE_XRUN: 2132 err = -EPIPE; 2133 goto _end_unlock; 2134 case SNDRV_PCM_STATE_SUSPENDED: 2135 err = -ESTRPIPE; 2136 goto _end_unlock; 2137 default: 2138 err = -EBADFD; 2139 goto _end_unlock; 2140 } 2141 2142 runtime->twake = runtime->control->avail_min ? : 1; 2143 while (size > 0) { 2144 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2145 snd_pcm_uframes_t avail; 2146 snd_pcm_uframes_t cont; 2147 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2148 snd_pcm_update_hw_ptr(substream); 2149 avail = snd_pcm_capture_avail(runtime); 2150 if (!avail) { 2151 if (runtime->status->state == 2152 SNDRV_PCM_STATE_DRAINING) { 2153 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2154 goto _end_unlock; 2155 } 2156 if (nonblock) { 2157 err = -EAGAIN; 2158 goto _end_unlock; 2159 } 2160 runtime->twake = min_t(snd_pcm_uframes_t, size, 2161 runtime->control->avail_min ? : 1); 2162 err = wait_for_avail(substream, &avail); 2163 if (err < 0) 2164 goto _end_unlock; 2165 if (!avail) 2166 continue; /* draining */ 2167 } 2168 frames = size > avail ? avail : size; 2169 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2170 if (frames > cont) 2171 frames = cont; 2172 if (snd_BUG_ON(!frames)) { 2173 runtime->twake = 0; 2174 snd_pcm_stream_unlock_irq(substream); 2175 return -EINVAL; 2176 } 2177 appl_ptr = runtime->control->appl_ptr; 2178 appl_ofs = appl_ptr % runtime->buffer_size; 2179 snd_pcm_stream_unlock_irq(substream); 2180 err = transfer(substream, appl_ofs, data, offset, frames); 2181 snd_pcm_stream_lock_irq(substream); 2182 if (err < 0) 2183 goto _end_unlock; 2184 switch (runtime->status->state) { 2185 case SNDRV_PCM_STATE_XRUN: 2186 err = -EPIPE; 2187 goto _end_unlock; 2188 case SNDRV_PCM_STATE_SUSPENDED: 2189 err = -ESTRPIPE; 2190 goto _end_unlock; 2191 default: 2192 break; 2193 } 2194 appl_ptr += frames; 2195 if (appl_ptr >= runtime->boundary) 2196 appl_ptr -= runtime->boundary; 2197 runtime->control->appl_ptr = appl_ptr; 2198 if (substream->ops->ack) 2199 substream->ops->ack(substream); 2200 2201 offset += frames; 2202 size -= frames; 2203 xfer += frames; 2204 } 2205 _end_unlock: 2206 runtime->twake = 0; 2207 if (xfer > 0 && err >= 0) 2208 snd_pcm_update_state(substream, runtime); 2209 snd_pcm_stream_unlock_irq(substream); 2210 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2211 } 2212 2213 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2214 { 2215 struct snd_pcm_runtime *runtime; 2216 int nonblock; 2217 int err; 2218 2219 err = pcm_sanity_check(substream); 2220 if (err < 0) 2221 return err; 2222 runtime = substream->runtime; 2223 nonblock = !!(substream->f_flags & O_NONBLOCK); 2224 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2225 return -EINVAL; 2226 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2227 } 2228 2229 EXPORT_SYMBOL(snd_pcm_lib_read); 2230 2231 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2232 unsigned int hwoff, 2233 unsigned long data, unsigned int off, 2234 snd_pcm_uframes_t frames) 2235 { 2236 struct snd_pcm_runtime *runtime = substream->runtime; 2237 int err; 2238 void __user **bufs = (void __user **)data; 2239 int channels = runtime->channels; 2240 int c; 2241 if (substream->ops->copy) { 2242 for (c = 0; c < channels; ++c, ++bufs) { 2243 char __user *buf; 2244 if (*bufs == NULL) 2245 continue; 2246 buf = *bufs + samples_to_bytes(runtime, off); 2247 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2248 return err; 2249 } 2250 } else { 2251 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2252 for (c = 0; c < channels; ++c, ++bufs) { 2253 char *hwbuf; 2254 char __user *buf; 2255 if (*bufs == NULL) 2256 continue; 2257 2258 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2259 buf = *bufs + samples_to_bytes(runtime, off); 2260 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2261 return -EFAULT; 2262 } 2263 } 2264 return 0; 2265 } 2266 2267 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2268 void __user **bufs, 2269 snd_pcm_uframes_t frames) 2270 { 2271 struct snd_pcm_runtime *runtime; 2272 int nonblock; 2273 int err; 2274 2275 err = pcm_sanity_check(substream); 2276 if (err < 0) 2277 return err; 2278 runtime = substream->runtime; 2279 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2280 return -EBADFD; 2281 2282 nonblock = !!(substream->f_flags & O_NONBLOCK); 2283 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2284 return -EINVAL; 2285 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2286 } 2287 2288 EXPORT_SYMBOL(snd_pcm_lib_readv); 2289