xref: /openbmc/linux/sound/core/memalloc.c (revision f42b3800)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *                   Takashi Iwai <tiwai@suse.de>
4  *
5  *  Generic memory allocators
6  *
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/proc_fs.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/seq_file.h>
31 #include <asm/uaccess.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <sound/memalloc.h>
36 #ifdef CONFIG_SBUS
37 #include <asm/sbus.h>
38 #endif
39 
40 
41 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@perex.cz>");
42 MODULE_DESCRIPTION("Memory allocator for ALSA system.");
43 MODULE_LICENSE("GPL");
44 
45 
46 /*
47  */
48 
49 void *snd_malloc_sgbuf_pages(struct device *device,
50                              size_t size, struct snd_dma_buffer *dmab,
51 			     size_t *res_size);
52 int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
53 
54 /*
55  */
56 
57 static DEFINE_MUTEX(list_mutex);
58 static LIST_HEAD(mem_list_head);
59 
60 /* buffer preservation list */
61 struct snd_mem_list {
62 	struct snd_dma_buffer buffer;
63 	unsigned int id;
64 	struct list_head list;
65 };
66 
67 /* id for pre-allocated buffers */
68 #define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
69 
70 #ifdef CONFIG_SND_DEBUG
71 #define __ASTRING__(x) #x
72 #define snd_assert(expr, args...) do {\
73 	if (!(expr)) {\
74 		printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
75 		args;\
76 	}\
77 } while (0)
78 #else
79 #define snd_assert(expr, args...) /**/
80 #endif
81 
82 /*
83  *  Hacks
84  */
85 
86 #if defined(__i386__)
87 /*
88  * A hack to allocate large buffers via dma_alloc_coherent()
89  *
90  * since dma_alloc_coherent always tries GFP_DMA when the requested
91  * pci memory region is below 32bit, it happens quite often that even
92  * 2 order of pages cannot be allocated.
93  *
94  * so in the following, we allocate at first without dma_mask, so that
95  * allocation will be done without GFP_DMA.  if the area doesn't match
96  * with the requested region, then realloate with the original dma_mask
97  * again.
98  *
99  * Really, we want to move this type of thing into dma_alloc_coherent()
100  * so dma_mask doesn't have to be messed with.
101  */
102 
103 static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
104 					 dma_addr_t *dma_handle,
105 					 gfp_t flags)
106 {
107 	void *ret;
108 	u64 dma_mask, coherent_dma_mask;
109 
110 	if (dev == NULL || !dev->dma_mask)
111 		return dma_alloc_coherent(dev, size, dma_handle, flags);
112 	dma_mask = *dev->dma_mask;
113 	coherent_dma_mask = dev->coherent_dma_mask;
114 	*dev->dma_mask = 0xffffffff; 	/* do without masking */
115 	dev->coherent_dma_mask = 0xffffffff; 	/* do without masking */
116 	ret = dma_alloc_coherent(dev, size, dma_handle, flags);
117 	*dev->dma_mask = dma_mask;	/* restore */
118 	dev->coherent_dma_mask = coherent_dma_mask;	/* restore */
119 	if (ret) {
120 		/* obtained address is out of range? */
121 		if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
122 			/* reallocate with the proper mask */
123 			dma_free_coherent(dev, size, ret, *dma_handle);
124 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
125 		}
126 	} else {
127 		/* wish to success now with the proper mask... */
128 		if (dma_mask != 0xffffffffUL) {
129 			/* allocation with GFP_ATOMIC to avoid the long stall */
130 			flags &= ~GFP_KERNEL;
131 			flags |= GFP_ATOMIC;
132 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
133 		}
134 	}
135 	return ret;
136 }
137 
138 /* redefine dma_alloc_coherent for some architectures */
139 #undef dma_alloc_coherent
140 #define dma_alloc_coherent snd_dma_hack_alloc_coherent
141 
142 #endif /* arch */
143 
144 /*
145  *
146  *  Generic memory allocators
147  *
148  */
149 
150 static long snd_allocated_pages; /* holding the number of allocated pages */
151 
152 static inline void inc_snd_pages(int order)
153 {
154 	snd_allocated_pages += 1 << order;
155 }
156 
157 static inline void dec_snd_pages(int order)
158 {
159 	snd_allocated_pages -= 1 << order;
160 }
161 
162 /**
163  * snd_malloc_pages - allocate pages with the given size
164  * @size: the size to allocate in bytes
165  * @gfp_flags: the allocation conditions, GFP_XXX
166  *
167  * Allocates the physically contiguous pages with the given size.
168  *
169  * Returns the pointer of the buffer, or NULL if no enoguh memory.
170  */
171 void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
172 {
173 	int pg;
174 	void *res;
175 
176 	snd_assert(size > 0, return NULL);
177 	snd_assert(gfp_flags != 0, return NULL);
178 	gfp_flags |= __GFP_COMP;	/* compound page lets parts be mapped */
179 	pg = get_order(size);
180 	if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
181 		inc_snd_pages(pg);
182 	return res;
183 }
184 
185 /**
186  * snd_free_pages - release the pages
187  * @ptr: the buffer pointer to release
188  * @size: the allocated buffer size
189  *
190  * Releases the buffer allocated via snd_malloc_pages().
191  */
192 void snd_free_pages(void *ptr, size_t size)
193 {
194 	int pg;
195 
196 	if (ptr == NULL)
197 		return;
198 	pg = get_order(size);
199 	dec_snd_pages(pg);
200 	free_pages((unsigned long) ptr, pg);
201 }
202 
203 /*
204  *
205  *  Bus-specific memory allocators
206  *
207  */
208 
209 #ifdef CONFIG_HAS_DMA
210 /* allocate the coherent DMA pages */
211 static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
212 {
213 	int pg;
214 	void *res;
215 	gfp_t gfp_flags;
216 
217 	snd_assert(size > 0, return NULL);
218 	snd_assert(dma != NULL, return NULL);
219 	pg = get_order(size);
220 	gfp_flags = GFP_KERNEL
221 		| __GFP_COMP	/* compound page lets parts be mapped */
222 		| __GFP_NORETRY /* don't trigger OOM-killer */
223 		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
224 	res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
225 	if (res != NULL)
226 		inc_snd_pages(pg);
227 
228 	return res;
229 }
230 
231 /* free the coherent DMA pages */
232 static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
233 			       dma_addr_t dma)
234 {
235 	int pg;
236 
237 	if (ptr == NULL)
238 		return;
239 	pg = get_order(size);
240 	dec_snd_pages(pg);
241 	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
242 }
243 #endif /* CONFIG_HAS_DMA */
244 
245 #ifdef CONFIG_SBUS
246 
247 static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
248 				   dma_addr_t *dma_addr)
249 {
250 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
251 	int pg;
252 	void *res;
253 
254 	snd_assert(size > 0, return NULL);
255 	snd_assert(dma_addr != NULL, return NULL);
256 	pg = get_order(size);
257 	res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
258 	if (res != NULL)
259 		inc_snd_pages(pg);
260 	return res;
261 }
262 
263 static void snd_free_sbus_pages(struct device *dev, size_t size,
264 				void *ptr, dma_addr_t dma_addr)
265 {
266 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
267 	int pg;
268 
269 	if (ptr == NULL)
270 		return;
271 	pg = get_order(size);
272 	dec_snd_pages(pg);
273 	sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
274 }
275 
276 #endif /* CONFIG_SBUS */
277 
278 /*
279  *
280  *  ALSA generic memory management
281  *
282  */
283 
284 
285 /**
286  * snd_dma_alloc_pages - allocate the buffer area according to the given type
287  * @type: the DMA buffer type
288  * @device: the device pointer
289  * @size: the buffer size to allocate
290  * @dmab: buffer allocation record to store the allocated data
291  *
292  * Calls the memory-allocator function for the corresponding
293  * buffer type.
294  *
295  * Returns zero if the buffer with the given size is allocated successfuly,
296  * other a negative value at error.
297  */
298 int snd_dma_alloc_pages(int type, struct device *device, size_t size,
299 			struct snd_dma_buffer *dmab)
300 {
301 	snd_assert(size > 0, return -ENXIO);
302 	snd_assert(dmab != NULL, return -ENXIO);
303 
304 	dmab->dev.type = type;
305 	dmab->dev.dev = device;
306 	dmab->bytes = 0;
307 	switch (type) {
308 	case SNDRV_DMA_TYPE_CONTINUOUS:
309 		dmab->area = snd_malloc_pages(size, (unsigned long)device);
310 		dmab->addr = 0;
311 		break;
312 #ifdef CONFIG_SBUS
313 	case SNDRV_DMA_TYPE_SBUS:
314 		dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
315 		break;
316 #endif
317 #ifdef CONFIG_HAS_DMA
318 	case SNDRV_DMA_TYPE_DEV:
319 		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
320 		break;
321 	case SNDRV_DMA_TYPE_DEV_SG:
322 		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
323 		break;
324 #endif
325 	default:
326 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
327 		dmab->area = NULL;
328 		dmab->addr = 0;
329 		return -ENXIO;
330 	}
331 	if (! dmab->area)
332 		return -ENOMEM;
333 	dmab->bytes = size;
334 	return 0;
335 }
336 
337 /**
338  * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
339  * @type: the DMA buffer type
340  * @device: the device pointer
341  * @size: the buffer size to allocate
342  * @dmab: buffer allocation record to store the allocated data
343  *
344  * Calls the memory-allocator function for the corresponding
345  * buffer type.  When no space is left, this function reduces the size and
346  * tries to allocate again.  The size actually allocated is stored in
347  * res_size argument.
348  *
349  * Returns zero if the buffer with the given size is allocated successfuly,
350  * other a negative value at error.
351  */
352 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
353 				 struct snd_dma_buffer *dmab)
354 {
355 	int err;
356 
357 	snd_assert(size > 0, return -ENXIO);
358 	snd_assert(dmab != NULL, return -ENXIO);
359 
360 	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
361 		if (err != -ENOMEM)
362 			return err;
363 		size >>= 1;
364 		if (size <= PAGE_SIZE)
365 			return -ENOMEM;
366 	}
367 	if (! dmab->area)
368 		return -ENOMEM;
369 	return 0;
370 }
371 
372 
373 /**
374  * snd_dma_free_pages - release the allocated buffer
375  * @dmab: the buffer allocation record to release
376  *
377  * Releases the allocated buffer via snd_dma_alloc_pages().
378  */
379 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
380 {
381 	switch (dmab->dev.type) {
382 	case SNDRV_DMA_TYPE_CONTINUOUS:
383 		snd_free_pages(dmab->area, dmab->bytes);
384 		break;
385 #ifdef CONFIG_SBUS
386 	case SNDRV_DMA_TYPE_SBUS:
387 		snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
388 		break;
389 #endif
390 #ifdef CONFIG_HAS_DMA
391 	case SNDRV_DMA_TYPE_DEV:
392 		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
393 		break;
394 	case SNDRV_DMA_TYPE_DEV_SG:
395 		snd_free_sgbuf_pages(dmab);
396 		break;
397 #endif
398 	default:
399 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
400 	}
401 }
402 
403 
404 /**
405  * snd_dma_get_reserved - get the reserved buffer for the given device
406  * @dmab: the buffer allocation record to store
407  * @id: the buffer id
408  *
409  * Looks for the reserved-buffer list and re-uses if the same buffer
410  * is found in the list.  When the buffer is found, it's removed from the free list.
411  *
412  * Returns the size of buffer if the buffer is found, or zero if not found.
413  */
414 size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
415 {
416 	struct snd_mem_list *mem;
417 
418 	snd_assert(dmab, return 0);
419 
420 	mutex_lock(&list_mutex);
421 	list_for_each_entry(mem, &mem_list_head, list) {
422 		if (mem->id == id &&
423 		    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
424 		     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
425 			struct device *dev = dmab->dev.dev;
426 			list_del(&mem->list);
427 			*dmab = mem->buffer;
428 			if (dmab->dev.dev == NULL)
429 				dmab->dev.dev = dev;
430 			kfree(mem);
431 			mutex_unlock(&list_mutex);
432 			return dmab->bytes;
433 		}
434 	}
435 	mutex_unlock(&list_mutex);
436 	return 0;
437 }
438 
439 /**
440  * snd_dma_reserve_buf - reserve the buffer
441  * @dmab: the buffer to reserve
442  * @id: the buffer id
443  *
444  * Reserves the given buffer as a reserved buffer.
445  *
446  * Returns zero if successful, or a negative code at error.
447  */
448 int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
449 {
450 	struct snd_mem_list *mem;
451 
452 	snd_assert(dmab, return -EINVAL);
453 	mem = kmalloc(sizeof(*mem), GFP_KERNEL);
454 	if (! mem)
455 		return -ENOMEM;
456 	mutex_lock(&list_mutex);
457 	mem->buffer = *dmab;
458 	mem->id = id;
459 	list_add_tail(&mem->list, &mem_list_head);
460 	mutex_unlock(&list_mutex);
461 	return 0;
462 }
463 
464 /*
465  * purge all reserved buffers
466  */
467 static void free_all_reserved_pages(void)
468 {
469 	struct list_head *p;
470 	struct snd_mem_list *mem;
471 
472 	mutex_lock(&list_mutex);
473 	while (! list_empty(&mem_list_head)) {
474 		p = mem_list_head.next;
475 		mem = list_entry(p, struct snd_mem_list, list);
476 		list_del(p);
477 		snd_dma_free_pages(&mem->buffer);
478 		kfree(mem);
479 	}
480 	mutex_unlock(&list_mutex);
481 }
482 
483 
484 #ifdef CONFIG_PROC_FS
485 /*
486  * proc file interface
487  */
488 #define SND_MEM_PROC_FILE	"driver/snd-page-alloc"
489 static struct proc_dir_entry *snd_mem_proc;
490 
491 static int snd_mem_proc_read(struct seq_file *seq, void *offset)
492 {
493 	long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
494 	struct snd_mem_list *mem;
495 	int devno;
496 	static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
497 
498 	mutex_lock(&list_mutex);
499 	seq_printf(seq, "pages  : %li bytes (%li pages per %likB)\n",
500 		   pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
501 	devno = 0;
502 	list_for_each_entry(mem, &mem_list_head, list) {
503 		devno++;
504 		seq_printf(seq, "buffer %d : ID %08x : type %s\n",
505 			   devno, mem->id, types[mem->buffer.dev.type]);
506 		seq_printf(seq, "  addr = 0x%lx, size = %d bytes\n",
507 			   (unsigned long)mem->buffer.addr,
508 			   (int)mem->buffer.bytes);
509 	}
510 	mutex_unlock(&list_mutex);
511 	return 0;
512 }
513 
514 static int snd_mem_proc_open(struct inode *inode, struct file *file)
515 {
516 	return single_open(file, snd_mem_proc_read, NULL);
517 }
518 
519 /* FIXME: for pci only - other bus? */
520 #ifdef CONFIG_PCI
521 #define gettoken(bufp) strsep(bufp, " \t\n")
522 
523 static ssize_t snd_mem_proc_write(struct file *file, const char __user * buffer,
524 				  size_t count, loff_t * ppos)
525 {
526 	char buf[128];
527 	char *token, *p;
528 
529 	if (count > sizeof(buf) - 1)
530 		return -EINVAL;
531 	if (copy_from_user(buf, buffer, count))
532 		return -EFAULT;
533 	buf[count] = '\0';
534 
535 	p = buf;
536 	token = gettoken(&p);
537 	if (! token || *token == '#')
538 		return count;
539 	if (strcmp(token, "add") == 0) {
540 		char *endp;
541 		int vendor, device, size, buffers;
542 		long mask;
543 		int i, alloced;
544 		struct pci_dev *pci;
545 
546 		if ((token = gettoken(&p)) == NULL ||
547 		    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
548 		    (token = gettoken(&p)) == NULL ||
549 		    (device = simple_strtol(token, NULL, 0)) <= 0 ||
550 		    (token = gettoken(&p)) == NULL ||
551 		    (mask = simple_strtol(token, NULL, 0)) < 0 ||
552 		    (token = gettoken(&p)) == NULL ||
553 		    (size = memparse(token, &endp)) < 64*1024 ||
554 		    size > 16*1024*1024 /* too big */ ||
555 		    (token = gettoken(&p)) == NULL ||
556 		    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
557 		    buffers > 4) {
558 			printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
559 			return count;
560 		}
561 		vendor &= 0xffff;
562 		device &= 0xffff;
563 
564 		alloced = 0;
565 		pci = NULL;
566 		while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
567 			if (mask > 0 && mask < 0xffffffff) {
568 				if (pci_set_dma_mask(pci, mask) < 0 ||
569 				    pci_set_consistent_dma_mask(pci, mask) < 0) {
570 					printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
571 					pci_dev_put(pci);
572 					return count;
573 				}
574 			}
575 			for (i = 0; i < buffers; i++) {
576 				struct snd_dma_buffer dmab;
577 				memset(&dmab, 0, sizeof(dmab));
578 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
579 							size, &dmab) < 0) {
580 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
581 					pci_dev_put(pci);
582 					return count;
583 				}
584 				snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
585 			}
586 			alloced++;
587 		}
588 		if (! alloced) {
589 			for (i = 0; i < buffers; i++) {
590 				struct snd_dma_buffer dmab;
591 				memset(&dmab, 0, sizeof(dmab));
592 				/* FIXME: We can allocate only in ZONE_DMA
593 				 * without a device pointer!
594 				 */
595 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
596 							size, &dmab) < 0) {
597 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
598 					break;
599 				}
600 				snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
601 			}
602 		}
603 	} else if (strcmp(token, "erase") == 0)
604 		/* FIXME: need for releasing each buffer chunk? */
605 		free_all_reserved_pages();
606 	else
607 		printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
608 	return count;
609 }
610 #endif /* CONFIG_PCI */
611 
612 static const struct file_operations snd_mem_proc_fops = {
613 	.owner		= THIS_MODULE,
614 	.open		= snd_mem_proc_open,
615 	.read		= seq_read,
616 #ifdef CONFIG_PCI
617 	.write		= snd_mem_proc_write,
618 #endif
619 	.llseek		= seq_lseek,
620 	.release	= single_release,
621 };
622 
623 #endif /* CONFIG_PROC_FS */
624 
625 /*
626  * module entry
627  */
628 
629 static int __init snd_mem_init(void)
630 {
631 #ifdef CONFIG_PROC_FS
632 	snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
633 	if (snd_mem_proc)
634 		snd_mem_proc->proc_fops = &snd_mem_proc_fops;
635 #endif
636 	return 0;
637 }
638 
639 static void __exit snd_mem_exit(void)
640 {
641 	remove_proc_entry(SND_MEM_PROC_FILE, NULL);
642 	free_all_reserved_pages();
643 	if (snd_allocated_pages > 0)
644 		printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
645 }
646 
647 
648 module_init(snd_mem_init)
649 module_exit(snd_mem_exit)
650 
651 
652 /*
653  * exports
654  */
655 EXPORT_SYMBOL(snd_dma_alloc_pages);
656 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
657 EXPORT_SYMBOL(snd_dma_free_pages);
658 
659 EXPORT_SYMBOL(snd_dma_get_reserved_buf);
660 EXPORT_SYMBOL(snd_dma_reserve_buf);
661 
662 EXPORT_SYMBOL(snd_malloc_pages);
663 EXPORT_SYMBOL(snd_free_pages);
664