1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/genalloc.h> 13 #include <linux/highmem.h> 14 #include <linux/vmalloc.h> 15 #ifdef CONFIG_X86 16 #include <asm/set_memory.h> 17 #endif 18 #include <sound/memalloc.h> 19 #include "memalloc_local.h" 20 21 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 22 23 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 24 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 25 gfp_t default_gfp) 26 { 27 if (!dmab->dev.dev) 28 return default_gfp; 29 else 30 return (__force gfp_t)(unsigned long)dmab->dev.dev; 31 } 32 33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 34 { 35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 36 37 if (WARN_ON_ONCE(!ops || !ops->alloc)) 38 return NULL; 39 return ops->alloc(dmab, size); 40 } 41 42 /** 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 44 * type and direction 45 * @type: the DMA buffer type 46 * @device: the device pointer 47 * @dir: DMA direction 48 * @size: the buffer size to allocate 49 * @dmab: buffer allocation record to store the allocated data 50 * 51 * Calls the memory-allocator function for the corresponding 52 * buffer type. 53 * 54 * Return: Zero if the buffer with the given size is allocated successfully, 55 * otherwise a negative value on error. 56 */ 57 int snd_dma_alloc_dir_pages(int type, struct device *device, 58 enum dma_data_direction dir, size_t size, 59 struct snd_dma_buffer *dmab) 60 { 61 if (WARN_ON(!size)) 62 return -ENXIO; 63 if (WARN_ON(!dmab)) 64 return -ENXIO; 65 66 size = PAGE_ALIGN(size); 67 dmab->dev.type = type; 68 dmab->dev.dev = device; 69 dmab->dev.dir = dir; 70 dmab->bytes = 0; 71 dmab->addr = 0; 72 dmab->private_data = NULL; 73 dmab->area = __snd_dma_alloc_pages(dmab, size); 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78 } 79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 80 81 /** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98 { 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112 } 113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115 /** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122 { 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127 } 128 EXPORT_SYMBOL(snd_dma_free_pages); 129 130 /* called by devres */ 131 static void __snd_release_pages(struct device *dev, void *res) 132 { 133 snd_dma_free_pages(res); 134 } 135 136 /** 137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 138 * @dev: the device pointer 139 * @type: the DMA buffer type 140 * @dir: DMA direction 141 * @size: the buffer size to allocate 142 * 143 * Allocate buffer pages depending on the given type and manage using devres. 144 * The pages will be released automatically at the device removal. 145 * 146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 148 * SNDRV_DMA_TYPE_VMALLOC type. 149 * 150 * The function returns the snd_dma_buffer object at success, or NULL if failed. 151 */ 152 struct snd_dma_buffer * 153 snd_devm_alloc_dir_pages(struct device *dev, int type, 154 enum dma_data_direction dir, size_t size) 155 { 156 struct snd_dma_buffer *dmab; 157 int err; 158 159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 160 type == SNDRV_DMA_TYPE_VMALLOC)) 161 return NULL; 162 163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 164 if (!dmab) 165 return NULL; 166 167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 168 if (err < 0) { 169 devres_free(dmab); 170 return NULL; 171 } 172 173 devres_add(dev, dmab); 174 return dmab; 175 } 176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 177 178 /** 179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 180 * @dmab: buffer allocation information 181 * @area: VM area information 182 */ 183 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 184 struct vm_area_struct *area) 185 { 186 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 187 188 if (ops && ops->mmap) 189 return ops->mmap(dmab, area); 190 else 191 return -ENOENT; 192 } 193 EXPORT_SYMBOL(snd_dma_buffer_mmap); 194 195 #ifdef CONFIG_HAS_DMA 196 /** 197 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 198 * @dmab: buffer allocation information 199 * @mode: sync mode 200 */ 201 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 202 enum snd_dma_sync_mode mode) 203 { 204 const struct snd_malloc_ops *ops; 205 206 if (!dmab || !dmab->dev.need_sync) 207 return; 208 ops = snd_dma_get_ops(dmab); 209 if (ops && ops->sync) 210 ops->sync(dmab, mode); 211 } 212 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 213 #endif /* CONFIG_HAS_DMA */ 214 215 /** 216 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 217 * @dmab: buffer allocation information 218 * @offset: offset in the ring buffer 219 */ 220 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 221 { 222 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 223 224 if (ops && ops->get_addr) 225 return ops->get_addr(dmab, offset); 226 else 227 return dmab->addr + offset; 228 } 229 EXPORT_SYMBOL(snd_sgbuf_get_addr); 230 231 /** 232 * snd_sgbuf_get_page - return the physical page at the corresponding offset 233 * @dmab: buffer allocation information 234 * @offset: offset in the ring buffer 235 */ 236 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 237 { 238 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 239 240 if (ops && ops->get_page) 241 return ops->get_page(dmab, offset); 242 else 243 return virt_to_page(dmab->area + offset); 244 } 245 EXPORT_SYMBOL(snd_sgbuf_get_page); 246 247 /** 248 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 249 * on sg-buffer 250 * @dmab: buffer allocation information 251 * @ofs: offset in the ring buffer 252 * @size: the requested size 253 */ 254 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 255 unsigned int ofs, unsigned int size) 256 { 257 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 258 259 if (ops && ops->get_chunk_size) 260 return ops->get_chunk_size(dmab, ofs, size); 261 else 262 return size; 263 } 264 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 265 266 /* 267 * Continuous pages allocator 268 */ 269 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 270 { 271 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 272 void *p = alloc_pages_exact(size, gfp); 273 274 if (p) 275 dmab->addr = page_to_phys(virt_to_page(p)); 276 return p; 277 } 278 279 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 280 { 281 free_pages_exact(dmab->area, dmab->bytes); 282 } 283 284 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 285 struct vm_area_struct *area) 286 { 287 return remap_pfn_range(area, area->vm_start, 288 dmab->addr >> PAGE_SHIFT, 289 area->vm_end - area->vm_start, 290 area->vm_page_prot); 291 } 292 293 static const struct snd_malloc_ops snd_dma_continuous_ops = { 294 .alloc = snd_dma_continuous_alloc, 295 .free = snd_dma_continuous_free, 296 .mmap = snd_dma_continuous_mmap, 297 }; 298 299 /* 300 * VMALLOC allocator 301 */ 302 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 303 { 304 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 305 306 return __vmalloc(size, gfp); 307 } 308 309 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 310 { 311 vfree(dmab->area); 312 } 313 314 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 315 struct vm_area_struct *area) 316 { 317 return remap_vmalloc_range(area, dmab->area, 0); 318 } 319 320 #define get_vmalloc_page_addr(dmab, offset) \ 321 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 322 323 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 324 size_t offset) 325 { 326 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 327 } 328 329 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 330 size_t offset) 331 { 332 return vmalloc_to_page(dmab->area + offset); 333 } 334 335 static unsigned int 336 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 337 unsigned int ofs, unsigned int size) 338 { 339 unsigned int start, end; 340 unsigned long addr; 341 342 start = ALIGN_DOWN(ofs, PAGE_SIZE); 343 end = ofs + size - 1; /* the last byte address */ 344 /* check page continuity */ 345 addr = get_vmalloc_page_addr(dmab, start); 346 for (;;) { 347 start += PAGE_SIZE; 348 if (start > end) 349 break; 350 addr += PAGE_SIZE; 351 if (get_vmalloc_page_addr(dmab, start) != addr) 352 return start - ofs; 353 } 354 /* ok, all on continuous pages */ 355 return size; 356 } 357 358 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 359 .alloc = snd_dma_vmalloc_alloc, 360 .free = snd_dma_vmalloc_free, 361 .mmap = snd_dma_vmalloc_mmap, 362 .get_addr = snd_dma_vmalloc_get_addr, 363 .get_page = snd_dma_vmalloc_get_page, 364 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 365 }; 366 367 #ifdef CONFIG_HAS_DMA 368 /* 369 * IRAM allocator 370 */ 371 #ifdef CONFIG_GENERIC_ALLOCATOR 372 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 373 { 374 struct device *dev = dmab->dev.dev; 375 struct gen_pool *pool; 376 void *p; 377 378 if (dev->of_node) { 379 pool = of_gen_pool_get(dev->of_node, "iram", 0); 380 /* Assign the pool into private_data field */ 381 dmab->private_data = pool; 382 383 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 384 if (p) 385 return p; 386 } 387 388 /* Internal memory might have limited size and no enough space, 389 * so if we fail to malloc, try to fetch memory traditionally. 390 */ 391 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 392 return __snd_dma_alloc_pages(dmab, size); 393 } 394 395 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 396 { 397 struct gen_pool *pool = dmab->private_data; 398 399 if (pool && dmab->area) 400 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 401 } 402 403 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 404 struct vm_area_struct *area) 405 { 406 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 407 return remap_pfn_range(area, area->vm_start, 408 dmab->addr >> PAGE_SHIFT, 409 area->vm_end - area->vm_start, 410 area->vm_page_prot); 411 } 412 413 static const struct snd_malloc_ops snd_dma_iram_ops = { 414 .alloc = snd_dma_iram_alloc, 415 .free = snd_dma_iram_free, 416 .mmap = snd_dma_iram_mmap, 417 }; 418 #endif /* CONFIG_GENERIC_ALLOCATOR */ 419 420 #define DEFAULT_GFP \ 421 (GFP_KERNEL | \ 422 __GFP_COMP | /* compound page lets parts be mapped */ \ 423 __GFP_NORETRY | /* don't trigger OOM-killer */ \ 424 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 425 426 /* 427 * Coherent device pages allocator 428 */ 429 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 430 { 431 void *p; 432 433 p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 434 #ifdef CONFIG_X86 435 if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 436 set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT); 437 #endif 438 return p; 439 } 440 441 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 442 { 443 #ifdef CONFIG_X86 444 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 445 set_memory_wb((unsigned long)dmab->area, 446 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT); 447 #endif 448 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 449 } 450 451 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 452 struct vm_area_struct *area) 453 { 454 #ifdef CONFIG_X86 455 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 456 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 457 #endif 458 return dma_mmap_coherent(dmab->dev.dev, area, 459 dmab->area, dmab->addr, dmab->bytes); 460 } 461 462 static const struct snd_malloc_ops snd_dma_dev_ops = { 463 .alloc = snd_dma_dev_alloc, 464 .free = snd_dma_dev_free, 465 .mmap = snd_dma_dev_mmap, 466 }; 467 468 /* 469 * Write-combined pages 470 */ 471 #ifdef CONFIG_X86 472 /* On x86, share the same ops as the standard dev ops */ 473 #define snd_dma_wc_ops snd_dma_dev_ops 474 #else /* CONFIG_X86 */ 475 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 476 { 477 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 478 } 479 480 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 481 { 482 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 483 } 484 485 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 486 struct vm_area_struct *area) 487 { 488 return dma_mmap_wc(dmab->dev.dev, area, 489 dmab->area, dmab->addr, dmab->bytes); 490 } 491 492 static const struct snd_malloc_ops snd_dma_wc_ops = { 493 .alloc = snd_dma_wc_alloc, 494 .free = snd_dma_wc_free, 495 .mmap = snd_dma_wc_mmap, 496 }; 497 #endif /* CONFIG_X86 */ 498 499 /* 500 * Non-contiguous pages allocator 501 */ 502 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 503 { 504 struct sg_table *sgt; 505 void *p; 506 507 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 508 DEFAULT_GFP, 0); 509 if (!sgt) 510 return NULL; 511 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir); 512 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 513 if (p) 514 dmab->private_data = sgt; 515 else 516 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 517 return p; 518 } 519 520 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 521 { 522 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 523 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 524 dmab->dev.dir); 525 } 526 527 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 528 struct vm_area_struct *area) 529 { 530 return dma_mmap_noncontiguous(dmab->dev.dev, area, 531 dmab->bytes, dmab->private_data); 532 } 533 534 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 535 enum snd_dma_sync_mode mode) 536 { 537 if (mode == SNDRV_DMA_SYNC_CPU) { 538 if (dmab->dev.dir == DMA_TO_DEVICE) 539 return; 540 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 541 dmab->dev.dir); 542 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 543 } else { 544 if (dmab->dev.dir == DMA_FROM_DEVICE) 545 return; 546 flush_kernel_vmap_range(dmab->area, dmab->bytes); 547 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 548 dmab->dev.dir); 549 } 550 } 551 552 static const struct snd_malloc_ops snd_dma_noncontig_ops = { 553 .alloc = snd_dma_noncontig_alloc, 554 .free = snd_dma_noncontig_free, 555 .mmap = snd_dma_noncontig_mmap, 556 .sync = snd_dma_noncontig_sync, 557 /* re-use vmalloc helpers for get_* ops */ 558 .get_addr = snd_dma_vmalloc_get_addr, 559 .get_page = snd_dma_vmalloc_get_page, 560 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 561 }; 562 563 /* x86-specific SG-buffer with WC pages */ 564 #ifdef CONFIG_SND_DMA_SGBUF 565 #define vmalloc_to_virt(v) (unsigned long)page_to_virt(vmalloc_to_page(v)) 566 567 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 568 { 569 void *p = snd_dma_noncontig_alloc(dmab, size); 570 size_t ofs; 571 572 if (!p) 573 return NULL; 574 for (ofs = 0; ofs < size; ofs += PAGE_SIZE) 575 set_memory_uc(vmalloc_to_virt(p + ofs), 1); 576 return p; 577 } 578 579 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab) 580 { 581 size_t ofs; 582 583 for (ofs = 0; ofs < dmab->bytes; ofs += PAGE_SIZE) 584 set_memory_wb(vmalloc_to_virt(dmab->area + ofs), 1); 585 snd_dma_noncontig_free(dmab); 586 } 587 588 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab, 589 struct vm_area_struct *area) 590 { 591 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 592 /* FIXME: dma_mmap_noncontiguous() works? */ 593 return -ENOENT; /* continue with the default mmap handler */ 594 } 595 596 const struct snd_malloc_ops snd_dma_sg_wc_ops = { 597 .alloc = snd_dma_sg_wc_alloc, 598 .free = snd_dma_sg_wc_free, 599 .mmap = snd_dma_sg_wc_mmap, 600 .sync = snd_dma_noncontig_sync, 601 .get_addr = snd_dma_vmalloc_get_addr, 602 .get_page = snd_dma_vmalloc_get_page, 603 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 604 }; 605 #endif /* CONFIG_SND_DMA_SGBUF */ 606 607 /* 608 * Non-coherent pages allocator 609 */ 610 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 611 { 612 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir); 613 return dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 614 dmab->dev.dir, DEFAULT_GFP); 615 } 616 617 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 618 { 619 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 620 dmab->addr, dmab->dev.dir); 621 } 622 623 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 624 struct vm_area_struct *area) 625 { 626 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 627 return dma_mmap_pages(dmab->dev.dev, area, 628 area->vm_end - area->vm_start, 629 virt_to_page(dmab->area)); 630 } 631 632 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 633 enum snd_dma_sync_mode mode) 634 { 635 if (mode == SNDRV_DMA_SYNC_CPU) { 636 if (dmab->dev.dir != DMA_TO_DEVICE) 637 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 638 dmab->bytes, dmab->dev.dir); 639 } else { 640 if (dmab->dev.dir != DMA_FROM_DEVICE) 641 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 642 dmab->bytes, dmab->dev.dir); 643 } 644 } 645 646 static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 647 .alloc = snd_dma_noncoherent_alloc, 648 .free = snd_dma_noncoherent_free, 649 .mmap = snd_dma_noncoherent_mmap, 650 .sync = snd_dma_noncoherent_sync, 651 }; 652 653 #endif /* CONFIG_HAS_DMA */ 654 655 /* 656 * Entry points 657 */ 658 static const struct snd_malloc_ops *dma_ops[] = { 659 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 660 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 661 #ifdef CONFIG_HAS_DMA 662 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 663 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 664 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 665 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 666 #ifdef CONFIG_SND_DMA_SGBUF 667 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops, 668 #endif 669 #ifdef CONFIG_GENERIC_ALLOCATOR 670 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 671 #endif /* CONFIG_GENERIC_ALLOCATOR */ 672 #endif /* CONFIG_HAS_DMA */ 673 }; 674 675 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 676 { 677 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 678 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 679 return NULL; 680 return dma_ops[dmab->dev.type]; 681 } 682