1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/genalloc.h> 13 #include <linux/vmalloc.h> 14 #ifdef CONFIG_X86 15 #include <asm/set_memory.h> 16 #endif 17 #include <sound/memalloc.h> 18 #include "memalloc_local.h" 19 20 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 21 22 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 23 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 24 gfp_t default_gfp) 25 { 26 if (!dmab->dev.dev) 27 return default_gfp; 28 else 29 return (__force gfp_t)(unsigned long)dmab->dev.dev; 30 } 31 32 static int __snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 33 { 34 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 35 36 if (WARN_ON_ONCE(!ops || !ops->alloc)) 37 return -EINVAL; 38 return ops->alloc(dmab, size); 39 } 40 41 /** 42 * snd_dma_alloc_pages - allocate the buffer area according to the given type 43 * @type: the DMA buffer type 44 * @device: the device pointer 45 * @size: the buffer size to allocate 46 * @dmab: buffer allocation record to store the allocated data 47 * 48 * Calls the memory-allocator function for the corresponding 49 * buffer type. 50 * 51 * Return: Zero if the buffer with the given size is allocated successfully, 52 * otherwise a negative value on error. 53 */ 54 int snd_dma_alloc_pages(int type, struct device *device, size_t size, 55 struct snd_dma_buffer *dmab) 56 { 57 int err; 58 59 if (WARN_ON(!size)) 60 return -ENXIO; 61 if (WARN_ON(!dmab)) 62 return -ENXIO; 63 64 size = PAGE_ALIGN(size); 65 dmab->dev.type = type; 66 dmab->dev.dev = device; 67 dmab->bytes = 0; 68 dmab->area = NULL; 69 dmab->addr = 0; 70 dmab->private_data = NULL; 71 err = __snd_dma_alloc_pages(dmab, size); 72 if (err < 0) 73 return err; 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78 } 79 EXPORT_SYMBOL(snd_dma_alloc_pages); 80 81 /** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98 { 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112 } 113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115 /** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122 { 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127 } 128 EXPORT_SYMBOL(snd_dma_free_pages); 129 130 /** 131 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 132 * @dmab: buffer allocation information 133 * @area: VM area information 134 */ 135 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 136 struct vm_area_struct *area) 137 { 138 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 139 140 if (ops && ops->mmap) 141 return ops->mmap(dmab, area); 142 else 143 return -ENOENT; 144 } 145 EXPORT_SYMBOL(snd_dma_buffer_mmap); 146 147 /** 148 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 149 * @dmab: buffer allocation information 150 * @offset: offset in the ring buffer 151 */ 152 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 153 { 154 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 155 156 if (ops && ops->get_addr) 157 return ops->get_addr(dmab, offset); 158 else 159 return dmab->addr + offset; 160 } 161 EXPORT_SYMBOL(snd_sgbuf_get_addr); 162 163 /** 164 * snd_sgbuf_get_page - return the physical page at the corresponding offset 165 * @dmab: buffer allocation information 166 * @offset: offset in the ring buffer 167 */ 168 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 169 { 170 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 171 172 if (ops && ops->get_page) 173 return ops->get_page(dmab, offset); 174 else 175 return virt_to_page(dmab->area + offset); 176 } 177 EXPORT_SYMBOL(snd_sgbuf_get_page); 178 179 /** 180 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 181 * on sg-buffer 182 * @dmab: buffer allocation information 183 * @ofs: offset in the ring buffer 184 * @size: the requested size 185 */ 186 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 187 unsigned int ofs, unsigned int size) 188 { 189 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 190 191 if (ops && ops->get_chunk_size) 192 return ops->get_chunk_size(dmab, ofs, size); 193 else 194 return size; 195 } 196 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 197 198 /* 199 * Continuous pages allocator 200 */ 201 static int snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 202 { 203 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 204 205 dmab->area = alloc_pages_exact(size, gfp); 206 return 0; 207 } 208 209 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 210 { 211 free_pages_exact(dmab->area, dmab->bytes); 212 } 213 214 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 215 struct vm_area_struct *area) 216 { 217 return remap_pfn_range(area, area->vm_start, 218 page_to_pfn(virt_to_page(dmab->area)), 219 area->vm_end - area->vm_start, 220 area->vm_page_prot); 221 } 222 223 static const struct snd_malloc_ops snd_dma_continuous_ops = { 224 .alloc = snd_dma_continuous_alloc, 225 .free = snd_dma_continuous_free, 226 .mmap = snd_dma_continuous_mmap, 227 }; 228 229 /* 230 * VMALLOC allocator 231 */ 232 static int snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 233 { 234 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 235 236 dmab->area = __vmalloc(size, gfp); 237 return 0; 238 } 239 240 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 241 { 242 vfree(dmab->area); 243 } 244 245 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 246 struct vm_area_struct *area) 247 { 248 return remap_vmalloc_range(area, dmab->area, 0); 249 } 250 251 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 252 size_t offset) 253 { 254 return page_to_phys(vmalloc_to_page(dmab->area + offset)) + 255 offset % PAGE_SIZE; 256 } 257 258 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 259 size_t offset) 260 { 261 return vmalloc_to_page(dmab->area + offset); 262 } 263 264 static unsigned int 265 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 266 unsigned int ofs, unsigned int size) 267 { 268 ofs %= PAGE_SIZE; 269 size += ofs; 270 if (size > PAGE_SIZE) 271 size = PAGE_SIZE; 272 return size - ofs; 273 } 274 275 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 276 .alloc = snd_dma_vmalloc_alloc, 277 .free = snd_dma_vmalloc_free, 278 .mmap = snd_dma_vmalloc_mmap, 279 .get_addr = snd_dma_vmalloc_get_addr, 280 .get_page = snd_dma_vmalloc_get_page, 281 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 282 }; 283 284 #ifdef CONFIG_HAS_DMA 285 /* 286 * IRAM allocator 287 */ 288 #ifdef CONFIG_GENERIC_ALLOCATOR 289 static int snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 290 { 291 struct device *dev = dmab->dev.dev; 292 struct gen_pool *pool; 293 294 if (dev->of_node) { 295 pool = of_gen_pool_get(dev->of_node, "iram", 0); 296 /* Assign the pool into private_data field */ 297 dmab->private_data = pool; 298 299 dmab->area = gen_pool_dma_alloc_align(pool, size, &dmab->addr, 300 PAGE_SIZE); 301 if (dmab->area) 302 return 0; 303 } 304 305 /* Internal memory might have limited size and no enough space, 306 * so if we fail to malloc, try to fetch memory traditionally. 307 */ 308 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 309 return __snd_dma_alloc_pages(dmab, size); 310 } 311 312 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 313 { 314 struct gen_pool *pool = dmab->private_data; 315 316 if (pool && dmab->area) 317 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 318 } 319 320 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 321 struct vm_area_struct *area) 322 { 323 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 324 return remap_pfn_range(area, area->vm_start, 325 dmab->addr >> PAGE_SHIFT, 326 area->vm_end - area->vm_start, 327 area->vm_page_prot); 328 } 329 330 static const struct snd_malloc_ops snd_dma_iram_ops = { 331 .alloc = snd_dma_iram_alloc, 332 .free = snd_dma_iram_free, 333 .mmap = snd_dma_iram_mmap, 334 }; 335 #endif /* CONFIG_GENERIC_ALLOCATOR */ 336 337 /* 338 * Coherent device pages allocator 339 */ 340 static int snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 341 { 342 gfp_t gfp_flags; 343 344 gfp_flags = GFP_KERNEL 345 | __GFP_COMP /* compound page lets parts be mapped */ 346 | __GFP_NORETRY /* don't trigger OOM-killer */ 347 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */ 348 dmab->area = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, 349 gfp_flags); 350 #ifdef CONFIG_X86 351 if (dmab->area && dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC) 352 set_memory_wc((unsigned long)dmab->area, 353 PAGE_ALIGN(size) >> PAGE_SHIFT); 354 #endif 355 return 0; 356 } 357 358 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 359 { 360 #ifdef CONFIG_X86 361 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC) 362 set_memory_wb((unsigned long)dmab->area, 363 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT); 364 #endif 365 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 366 } 367 368 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 369 struct vm_area_struct *area) 370 { 371 return dma_mmap_coherent(dmab->dev.dev, area, 372 dmab->area, dmab->addr, dmab->bytes); 373 } 374 375 static const struct snd_malloc_ops snd_dma_dev_ops = { 376 .alloc = snd_dma_dev_alloc, 377 .free = snd_dma_dev_free, 378 .mmap = snd_dma_dev_mmap, 379 }; 380 #endif /* CONFIG_HAS_DMA */ 381 382 /* 383 * Entry points 384 */ 385 static const struct snd_malloc_ops *dma_ops[] = { 386 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 387 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 388 #ifdef CONFIG_HAS_DMA 389 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 390 [SNDRV_DMA_TYPE_DEV_UC] = &snd_dma_dev_ops, 391 #ifdef CONFIG_GENERIC_ALLOCATOR 392 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 393 #endif /* CONFIG_GENERIC_ALLOCATOR */ 394 #endif /* CONFIG_HAS_DMA */ 395 #ifdef CONFIG_SND_DMA_SGBUF 396 [SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops, 397 [SNDRV_DMA_TYPE_DEV_UC_SG] = &snd_dma_sg_ops, 398 #endif 399 }; 400 401 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 402 { 403 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 404 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 405 return NULL; 406 return dma_ops[dmab->dev.type]; 407 } 408