xref: /openbmc/linux/sound/core/memalloc.c (revision 87c2ce3b)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *                   Takashi Iwai <tiwai@suse.de>
4  *
5  *  Generic memory allocators
6  *
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  *
22  */
23 
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/proc_fs.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <asm/uaccess.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/moduleparam.h>
34 #include <asm/semaphore.h>
35 #include <sound/memalloc.h>
36 #ifdef CONFIG_SBUS
37 #include <asm/sbus.h>
38 #endif
39 
40 
41 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
42 MODULE_DESCRIPTION("Memory allocator for ALSA system.");
43 MODULE_LICENSE("GPL");
44 
45 
46 /*
47  */
48 
49 void *snd_malloc_sgbuf_pages(struct device *device,
50                              size_t size, struct snd_dma_buffer *dmab,
51 			     size_t *res_size);
52 int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
53 
54 /*
55  */
56 
57 static DECLARE_MUTEX(list_mutex);
58 static LIST_HEAD(mem_list_head);
59 
60 /* buffer preservation list */
61 struct snd_mem_list {
62 	struct snd_dma_buffer buffer;
63 	unsigned int id;
64 	struct list_head list;
65 };
66 
67 /* id for pre-allocated buffers */
68 #define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
69 
70 #ifdef CONFIG_SND_DEBUG
71 #define __ASTRING__(x) #x
72 #define snd_assert(expr, args...) do {\
73 	if (!(expr)) {\
74 		printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
75 		args;\
76 	}\
77 } while (0)
78 #else
79 #define snd_assert(expr, args...) /**/
80 #endif
81 
82 /*
83  *  Hacks
84  */
85 
86 #if defined(__i386__) || defined(__ppc__) || defined(__x86_64__)
87 /*
88  * A hack to allocate large buffers via dma_alloc_coherent()
89  *
90  * since dma_alloc_coherent always tries GFP_DMA when the requested
91  * pci memory region is below 32bit, it happens quite often that even
92  * 2 order of pages cannot be allocated.
93  *
94  * so in the following, we allocate at first without dma_mask, so that
95  * allocation will be done without GFP_DMA.  if the area doesn't match
96  * with the requested region, then realloate with the original dma_mask
97  * again.
98  *
99  * Really, we want to move this type of thing into dma_alloc_coherent()
100  * so dma_mask doesn't have to be messed with.
101  */
102 
103 static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
104 					 dma_addr_t *dma_handle,
105 					 gfp_t flags)
106 {
107 	void *ret;
108 	u64 dma_mask, coherent_dma_mask;
109 
110 	if (dev == NULL || !dev->dma_mask)
111 		return dma_alloc_coherent(dev, size, dma_handle, flags);
112 	dma_mask = *dev->dma_mask;
113 	coherent_dma_mask = dev->coherent_dma_mask;
114 	*dev->dma_mask = 0xffffffff; 	/* do without masking */
115 	dev->coherent_dma_mask = 0xffffffff; 	/* do without masking */
116 	ret = dma_alloc_coherent(dev, size, dma_handle, flags);
117 	*dev->dma_mask = dma_mask;	/* restore */
118 	dev->coherent_dma_mask = coherent_dma_mask;	/* restore */
119 	if (ret) {
120 		/* obtained address is out of range? */
121 		if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
122 			/* reallocate with the proper mask */
123 			dma_free_coherent(dev, size, ret, *dma_handle);
124 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
125 		}
126 	} else {
127 		/* wish to success now with the proper mask... */
128 		if (dma_mask != 0xffffffffUL) {
129 			/* allocation with GFP_ATOMIC to avoid the long stall */
130 			flags &= ~GFP_KERNEL;
131 			flags |= GFP_ATOMIC;
132 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
133 		}
134 	}
135 	return ret;
136 }
137 
138 /* redefine dma_alloc_coherent for some architectures */
139 #undef dma_alloc_coherent
140 #define dma_alloc_coherent snd_dma_hack_alloc_coherent
141 
142 #endif /* arch */
143 
144 #if ! defined(__arm__)
145 #define NEED_RESERVE_PAGES
146 #endif
147 
148 /*
149  *
150  *  Generic memory allocators
151  *
152  */
153 
154 static long snd_allocated_pages; /* holding the number of allocated pages */
155 
156 static inline void inc_snd_pages(int order)
157 {
158 	snd_allocated_pages += 1 << order;
159 }
160 
161 static inline void dec_snd_pages(int order)
162 {
163 	snd_allocated_pages -= 1 << order;
164 }
165 
166 static void mark_pages(struct page *page, int order)
167 {
168 	struct page *last_page = page + (1 << order);
169 	while (page < last_page)
170 		SetPageReserved(page++);
171 }
172 
173 static void unmark_pages(struct page *page, int order)
174 {
175 	struct page *last_page = page + (1 << order);
176 	while (page < last_page)
177 		ClearPageReserved(page++);
178 }
179 
180 /**
181  * snd_malloc_pages - allocate pages with the given size
182  * @size: the size to allocate in bytes
183  * @gfp_flags: the allocation conditions, GFP_XXX
184  *
185  * Allocates the physically contiguous pages with the given size.
186  *
187  * Returns the pointer of the buffer, or NULL if no enoguh memory.
188  */
189 void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
190 {
191 	int pg;
192 	void *res;
193 
194 	snd_assert(size > 0, return NULL);
195 	snd_assert(gfp_flags != 0, return NULL);
196 	gfp_flags |= __GFP_COMP;	/* compound page lets parts be mapped */
197 	pg = get_order(size);
198 	if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL) {
199 		mark_pages(virt_to_page(res), pg);
200 		inc_snd_pages(pg);
201 	}
202 	return res;
203 }
204 
205 /**
206  * snd_free_pages - release the pages
207  * @ptr: the buffer pointer to release
208  * @size: the allocated buffer size
209  *
210  * Releases the buffer allocated via snd_malloc_pages().
211  */
212 void snd_free_pages(void *ptr, size_t size)
213 {
214 	int pg;
215 
216 	if (ptr == NULL)
217 		return;
218 	pg = get_order(size);
219 	dec_snd_pages(pg);
220 	unmark_pages(virt_to_page(ptr), pg);
221 	free_pages((unsigned long) ptr, pg);
222 }
223 
224 /*
225  *
226  *  Bus-specific memory allocators
227  *
228  */
229 
230 /* allocate the coherent DMA pages */
231 static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
232 {
233 	int pg;
234 	void *res;
235 	gfp_t gfp_flags;
236 
237 	snd_assert(size > 0, return NULL);
238 	snd_assert(dma != NULL, return NULL);
239 	pg = get_order(size);
240 	gfp_flags = GFP_KERNEL
241 		| __GFP_COMP	/* compound page lets parts be mapped */
242 		| __GFP_NORETRY /* don't trigger OOM-killer */
243 		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
244 	res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
245 	if (res != NULL) {
246 #ifdef NEED_RESERVE_PAGES
247 		mark_pages(virt_to_page(res), pg); /* should be dma_to_page() */
248 #endif
249 		inc_snd_pages(pg);
250 	}
251 
252 	return res;
253 }
254 
255 /* free the coherent DMA pages */
256 static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
257 			       dma_addr_t dma)
258 {
259 	int pg;
260 
261 	if (ptr == NULL)
262 		return;
263 	pg = get_order(size);
264 	dec_snd_pages(pg);
265 #ifdef NEED_RESERVE_PAGES
266 	unmark_pages(virt_to_page(ptr), pg); /* should be dma_to_page() */
267 #endif
268 	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
269 }
270 
271 #ifdef CONFIG_SBUS
272 
273 static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
274 				   dma_addr_t *dma_addr)
275 {
276 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
277 	int pg;
278 	void *res;
279 
280 	snd_assert(size > 0, return NULL);
281 	snd_assert(dma_addr != NULL, return NULL);
282 	pg = get_order(size);
283 	res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
284 	if (res != NULL)
285 		inc_snd_pages(pg);
286 	return res;
287 }
288 
289 static void snd_free_sbus_pages(struct device *dev, size_t size,
290 				void *ptr, dma_addr_t dma_addr)
291 {
292 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
293 	int pg;
294 
295 	if (ptr == NULL)
296 		return;
297 	pg = get_order(size);
298 	dec_snd_pages(pg);
299 	sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
300 }
301 
302 #endif /* CONFIG_SBUS */
303 
304 /*
305  *
306  *  ALSA generic memory management
307  *
308  */
309 
310 
311 /**
312  * snd_dma_alloc_pages - allocate the buffer area according to the given type
313  * @type: the DMA buffer type
314  * @device: the device pointer
315  * @size: the buffer size to allocate
316  * @dmab: buffer allocation record to store the allocated data
317  *
318  * Calls the memory-allocator function for the corresponding
319  * buffer type.
320  *
321  * Returns zero if the buffer with the given size is allocated successfuly,
322  * other a negative value at error.
323  */
324 int snd_dma_alloc_pages(int type, struct device *device, size_t size,
325 			struct snd_dma_buffer *dmab)
326 {
327 	snd_assert(size > 0, return -ENXIO);
328 	snd_assert(dmab != NULL, return -ENXIO);
329 
330 	dmab->dev.type = type;
331 	dmab->dev.dev = device;
332 	dmab->bytes = 0;
333 	switch (type) {
334 	case SNDRV_DMA_TYPE_CONTINUOUS:
335 		dmab->area = snd_malloc_pages(size, (unsigned long)device);
336 		dmab->addr = 0;
337 		break;
338 #ifdef CONFIG_SBUS
339 	case SNDRV_DMA_TYPE_SBUS:
340 		dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
341 		break;
342 #endif
343 	case SNDRV_DMA_TYPE_DEV:
344 		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
345 		break;
346 	case SNDRV_DMA_TYPE_DEV_SG:
347 		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
348 		break;
349 	default:
350 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
351 		dmab->area = NULL;
352 		dmab->addr = 0;
353 		return -ENXIO;
354 	}
355 	if (! dmab->area)
356 		return -ENOMEM;
357 	dmab->bytes = size;
358 	return 0;
359 }
360 
361 /**
362  * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
363  * @type: the DMA buffer type
364  * @device: the device pointer
365  * @size: the buffer size to allocate
366  * @dmab: buffer allocation record to store the allocated data
367  *
368  * Calls the memory-allocator function for the corresponding
369  * buffer type.  When no space is left, this function reduces the size and
370  * tries to allocate again.  The size actually allocated is stored in
371  * res_size argument.
372  *
373  * Returns zero if the buffer with the given size is allocated successfuly,
374  * other a negative value at error.
375  */
376 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
377 				 struct snd_dma_buffer *dmab)
378 {
379 	int err;
380 
381 	snd_assert(size > 0, return -ENXIO);
382 	snd_assert(dmab != NULL, return -ENXIO);
383 
384 	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
385 		if (err != -ENOMEM)
386 			return err;
387 		size >>= 1;
388 		if (size <= PAGE_SIZE)
389 			return -ENOMEM;
390 	}
391 	if (! dmab->area)
392 		return -ENOMEM;
393 	return 0;
394 }
395 
396 
397 /**
398  * snd_dma_free_pages - release the allocated buffer
399  * @dmab: the buffer allocation record to release
400  *
401  * Releases the allocated buffer via snd_dma_alloc_pages().
402  */
403 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
404 {
405 	switch (dmab->dev.type) {
406 	case SNDRV_DMA_TYPE_CONTINUOUS:
407 		snd_free_pages(dmab->area, dmab->bytes);
408 		break;
409 #ifdef CONFIG_SBUS
410 	case SNDRV_DMA_TYPE_SBUS:
411 		snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
412 		break;
413 #endif
414 	case SNDRV_DMA_TYPE_DEV:
415 		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
416 		break;
417 	case SNDRV_DMA_TYPE_DEV_SG:
418 		snd_free_sgbuf_pages(dmab);
419 		break;
420 	default:
421 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
422 	}
423 }
424 
425 
426 /**
427  * snd_dma_get_reserved - get the reserved buffer for the given device
428  * @dmab: the buffer allocation record to store
429  * @id: the buffer id
430  *
431  * Looks for the reserved-buffer list and re-uses if the same buffer
432  * is found in the list.  When the buffer is found, it's removed from the free list.
433  *
434  * Returns the size of buffer if the buffer is found, or zero if not found.
435  */
436 size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
437 {
438 	struct list_head *p;
439 	struct snd_mem_list *mem;
440 
441 	snd_assert(dmab, return 0);
442 
443 	down(&list_mutex);
444 	list_for_each(p, &mem_list_head) {
445 		mem = list_entry(p, struct snd_mem_list, list);
446 		if (mem->id == id &&
447 		    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
448 		     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
449 			struct device *dev = dmab->dev.dev;
450 			list_del(p);
451 			*dmab = mem->buffer;
452 			if (dmab->dev.dev == NULL)
453 				dmab->dev.dev = dev;
454 			kfree(mem);
455 			up(&list_mutex);
456 			return dmab->bytes;
457 		}
458 	}
459 	up(&list_mutex);
460 	return 0;
461 }
462 
463 /**
464  * snd_dma_reserve_buf - reserve the buffer
465  * @dmab: the buffer to reserve
466  * @id: the buffer id
467  *
468  * Reserves the given buffer as a reserved buffer.
469  *
470  * Returns zero if successful, or a negative code at error.
471  */
472 int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
473 {
474 	struct snd_mem_list *mem;
475 
476 	snd_assert(dmab, return -EINVAL);
477 	mem = kmalloc(sizeof(*mem), GFP_KERNEL);
478 	if (! mem)
479 		return -ENOMEM;
480 	down(&list_mutex);
481 	mem->buffer = *dmab;
482 	mem->id = id;
483 	list_add_tail(&mem->list, &mem_list_head);
484 	up(&list_mutex);
485 	return 0;
486 }
487 
488 /*
489  * purge all reserved buffers
490  */
491 static void free_all_reserved_pages(void)
492 {
493 	struct list_head *p;
494 	struct snd_mem_list *mem;
495 
496 	down(&list_mutex);
497 	while (! list_empty(&mem_list_head)) {
498 		p = mem_list_head.next;
499 		mem = list_entry(p, struct snd_mem_list, list);
500 		list_del(p);
501 		snd_dma_free_pages(&mem->buffer);
502 		kfree(mem);
503 	}
504 	up(&list_mutex);
505 }
506 
507 
508 #ifdef CONFIG_PROC_FS
509 /*
510  * proc file interface
511  */
512 #define SND_MEM_PROC_FILE	"driver/snd-page-alloc"
513 static struct proc_dir_entry *snd_mem_proc;
514 
515 static int snd_mem_proc_read(char *page, char **start, off_t off,
516 			     int count, int *eof, void *data)
517 {
518 	int len = 0;
519 	long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
520 	struct list_head *p;
521 	struct snd_mem_list *mem;
522 	int devno;
523 	static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
524 
525 	down(&list_mutex);
526 	len += snprintf(page + len, count - len,
527 			"pages  : %li bytes (%li pages per %likB)\n",
528 			pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
529 	devno = 0;
530 	list_for_each(p, &mem_list_head) {
531 		mem = list_entry(p, struct snd_mem_list, list);
532 		devno++;
533 		len += snprintf(page + len, count - len,
534 				"buffer %d : ID %08x : type %s\n",
535 				devno, mem->id, types[mem->buffer.dev.type]);
536 		len += snprintf(page + len, count - len,
537 				"  addr = 0x%lx, size = %d bytes\n",
538 				(unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
539 	}
540 	up(&list_mutex);
541 	return len;
542 }
543 
544 /* FIXME: for pci only - other bus? */
545 #ifdef CONFIG_PCI
546 #define gettoken(bufp) strsep(bufp, " \t\n")
547 
548 static int snd_mem_proc_write(struct file *file, const char __user *buffer,
549 			      unsigned long count, void *data)
550 {
551 	char buf[128];
552 	char *token, *p;
553 
554 	if (count > ARRAY_SIZE(buf) - 1)
555 		count = ARRAY_SIZE(buf) - 1;
556 	if (copy_from_user(buf, buffer, count))
557 		return -EFAULT;
558 	buf[ARRAY_SIZE(buf) - 1] = '\0';
559 
560 	p = buf;
561 	token = gettoken(&p);
562 	if (! token || *token == '#')
563 		return (int)count;
564 	if (strcmp(token, "add") == 0) {
565 		char *endp;
566 		int vendor, device, size, buffers;
567 		long mask;
568 		int i, alloced;
569 		struct pci_dev *pci;
570 
571 		if ((token = gettoken(&p)) == NULL ||
572 		    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
573 		    (token = gettoken(&p)) == NULL ||
574 		    (device = simple_strtol(token, NULL, 0)) <= 0 ||
575 		    (token = gettoken(&p)) == NULL ||
576 		    (mask = simple_strtol(token, NULL, 0)) < 0 ||
577 		    (token = gettoken(&p)) == NULL ||
578 		    (size = memparse(token, &endp)) < 64*1024 ||
579 		    size > 16*1024*1024 /* too big */ ||
580 		    (token = gettoken(&p)) == NULL ||
581 		    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
582 		    buffers > 4) {
583 			printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
584 			return (int)count;
585 		}
586 		vendor &= 0xffff;
587 		device &= 0xffff;
588 
589 		alloced = 0;
590 		pci = NULL;
591 		while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
592 			if (mask > 0 && mask < 0xffffffff) {
593 				if (pci_set_dma_mask(pci, mask) < 0 ||
594 				    pci_set_consistent_dma_mask(pci, mask) < 0) {
595 					printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
596 					return (int)count;
597 				}
598 			}
599 			for (i = 0; i < buffers; i++) {
600 				struct snd_dma_buffer dmab;
601 				memset(&dmab, 0, sizeof(dmab));
602 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
603 							size, &dmab) < 0) {
604 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
605 					pci_dev_put(pci);
606 					return (int)count;
607 				}
608 				snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
609 			}
610 			alloced++;
611 		}
612 		if (! alloced) {
613 			for (i = 0; i < buffers; i++) {
614 				struct snd_dma_buffer dmab;
615 				memset(&dmab, 0, sizeof(dmab));
616 				/* FIXME: We can allocate only in ZONE_DMA
617 				 * without a device pointer!
618 				 */
619 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
620 							size, &dmab) < 0) {
621 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
622 					break;
623 				}
624 				snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
625 			}
626 		}
627 	} else if (strcmp(token, "erase") == 0)
628 		/* FIXME: need for releasing each buffer chunk? */
629 		free_all_reserved_pages();
630 	else
631 		printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
632 	return (int)count;
633 }
634 #endif /* CONFIG_PCI */
635 #endif /* CONFIG_PROC_FS */
636 
637 /*
638  * module entry
639  */
640 
641 static int __init snd_mem_init(void)
642 {
643 #ifdef CONFIG_PROC_FS
644 	snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
645 	if (snd_mem_proc) {
646 		snd_mem_proc->read_proc = snd_mem_proc_read;
647 #ifdef CONFIG_PCI
648 		snd_mem_proc->write_proc = snd_mem_proc_write;
649 #endif
650 	}
651 #endif
652 	return 0;
653 }
654 
655 static void __exit snd_mem_exit(void)
656 {
657 	remove_proc_entry(SND_MEM_PROC_FILE, NULL);
658 	free_all_reserved_pages();
659 	if (snd_allocated_pages > 0)
660 		printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
661 }
662 
663 
664 module_init(snd_mem_init)
665 module_exit(snd_mem_exit)
666 
667 
668 /*
669  * exports
670  */
671 EXPORT_SYMBOL(snd_dma_alloc_pages);
672 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
673 EXPORT_SYMBOL(snd_dma_free_pages);
674 
675 EXPORT_SYMBOL(snd_dma_get_reserved_buf);
676 EXPORT_SYMBOL(snd_dma_reserve_buf);
677 
678 EXPORT_SYMBOL(snd_malloc_pages);
679 EXPORT_SYMBOL(snd_free_pages);
680