1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/genalloc.h> 13 #include <linux/highmem.h> 14 #include <linux/vmalloc.h> 15 #ifdef CONFIG_X86 16 #include <asm/set_memory.h> 17 #endif 18 #include <sound/memalloc.h> 19 #include "memalloc_local.h" 20 21 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 22 23 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 24 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 25 gfp_t default_gfp) 26 { 27 if (!dmab->dev.dev) 28 return default_gfp; 29 else 30 return (__force gfp_t)(unsigned long)dmab->dev.dev; 31 } 32 33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 34 { 35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 36 37 if (WARN_ON_ONCE(!ops || !ops->alloc)) 38 return NULL; 39 return ops->alloc(dmab, size); 40 } 41 42 /** 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 44 * type and direction 45 * @type: the DMA buffer type 46 * @device: the device pointer 47 * @dir: DMA direction 48 * @size: the buffer size to allocate 49 * @dmab: buffer allocation record to store the allocated data 50 * 51 * Calls the memory-allocator function for the corresponding 52 * buffer type. 53 * 54 * Return: Zero if the buffer with the given size is allocated successfully, 55 * otherwise a negative value on error. 56 */ 57 int snd_dma_alloc_dir_pages(int type, struct device *device, 58 enum dma_data_direction dir, size_t size, 59 struct snd_dma_buffer *dmab) 60 { 61 if (WARN_ON(!size)) 62 return -ENXIO; 63 if (WARN_ON(!dmab)) 64 return -ENXIO; 65 66 size = PAGE_ALIGN(size); 67 dmab->dev.type = type; 68 dmab->dev.dev = device; 69 dmab->dev.dir = dir; 70 dmab->bytes = 0; 71 dmab->addr = 0; 72 dmab->private_data = NULL; 73 dmab->area = __snd_dma_alloc_pages(dmab, size); 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78 } 79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 80 81 /** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98 { 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112 } 113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115 /** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122 { 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127 } 128 EXPORT_SYMBOL(snd_dma_free_pages); 129 130 /* called by devres */ 131 static void __snd_release_pages(struct device *dev, void *res) 132 { 133 snd_dma_free_pages(res); 134 } 135 136 /** 137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 138 * @dev: the device pointer 139 * @type: the DMA buffer type 140 * @dir: DMA direction 141 * @size: the buffer size to allocate 142 * 143 * Allocate buffer pages depending on the given type and manage using devres. 144 * The pages will be released automatically at the device removal. 145 * 146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 148 * SNDRV_DMA_TYPE_VMALLOC type. 149 * 150 * The function returns the snd_dma_buffer object at success, or NULL if failed. 151 */ 152 struct snd_dma_buffer * 153 snd_devm_alloc_dir_pages(struct device *dev, int type, 154 enum dma_data_direction dir, size_t size) 155 { 156 struct snd_dma_buffer *dmab; 157 int err; 158 159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 160 type == SNDRV_DMA_TYPE_VMALLOC)) 161 return NULL; 162 163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 164 if (!dmab) 165 return NULL; 166 167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 168 if (err < 0) { 169 devres_free(dmab); 170 return NULL; 171 } 172 173 devres_add(dev, dmab); 174 return dmab; 175 } 176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 177 178 /** 179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 180 * @dmab: buffer allocation information 181 * @area: VM area information 182 */ 183 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 184 struct vm_area_struct *area) 185 { 186 const struct snd_malloc_ops *ops; 187 188 if (!dmab) 189 return -ENOENT; 190 ops = snd_dma_get_ops(dmab); 191 if (ops && ops->mmap) 192 return ops->mmap(dmab, area); 193 else 194 return -ENOENT; 195 } 196 EXPORT_SYMBOL(snd_dma_buffer_mmap); 197 198 #ifdef CONFIG_HAS_DMA 199 /** 200 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 201 * @dmab: buffer allocation information 202 * @mode: sync mode 203 */ 204 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 205 enum snd_dma_sync_mode mode) 206 { 207 const struct snd_malloc_ops *ops; 208 209 if (!dmab || !dmab->dev.need_sync) 210 return; 211 ops = snd_dma_get_ops(dmab); 212 if (ops && ops->sync) 213 ops->sync(dmab, mode); 214 } 215 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 216 #endif /* CONFIG_HAS_DMA */ 217 218 /** 219 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 220 * @dmab: buffer allocation information 221 * @offset: offset in the ring buffer 222 */ 223 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 224 { 225 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 226 227 if (ops && ops->get_addr) 228 return ops->get_addr(dmab, offset); 229 else 230 return dmab->addr + offset; 231 } 232 EXPORT_SYMBOL(snd_sgbuf_get_addr); 233 234 /** 235 * snd_sgbuf_get_page - return the physical page at the corresponding offset 236 * @dmab: buffer allocation information 237 * @offset: offset in the ring buffer 238 */ 239 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 240 { 241 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 242 243 if (ops && ops->get_page) 244 return ops->get_page(dmab, offset); 245 else 246 return virt_to_page(dmab->area + offset); 247 } 248 EXPORT_SYMBOL(snd_sgbuf_get_page); 249 250 /** 251 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 252 * on sg-buffer 253 * @dmab: buffer allocation information 254 * @ofs: offset in the ring buffer 255 * @size: the requested size 256 */ 257 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 258 unsigned int ofs, unsigned int size) 259 { 260 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 261 262 if (ops && ops->get_chunk_size) 263 return ops->get_chunk_size(dmab, ofs, size); 264 else 265 return size; 266 } 267 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 268 269 /* 270 * Continuous pages allocator 271 */ 272 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 273 { 274 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 275 void *p = alloc_pages_exact(size, gfp); 276 277 if (p) 278 dmab->addr = page_to_phys(virt_to_page(p)); 279 return p; 280 } 281 282 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 283 { 284 free_pages_exact(dmab->area, dmab->bytes); 285 } 286 287 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 288 struct vm_area_struct *area) 289 { 290 return remap_pfn_range(area, area->vm_start, 291 dmab->addr >> PAGE_SHIFT, 292 area->vm_end - area->vm_start, 293 area->vm_page_prot); 294 } 295 296 static const struct snd_malloc_ops snd_dma_continuous_ops = { 297 .alloc = snd_dma_continuous_alloc, 298 .free = snd_dma_continuous_free, 299 .mmap = snd_dma_continuous_mmap, 300 }; 301 302 /* 303 * VMALLOC allocator 304 */ 305 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 306 { 307 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 308 309 return __vmalloc(size, gfp); 310 } 311 312 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 313 { 314 vfree(dmab->area); 315 } 316 317 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 318 struct vm_area_struct *area) 319 { 320 return remap_vmalloc_range(area, dmab->area, 0); 321 } 322 323 #define get_vmalloc_page_addr(dmab, offset) \ 324 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 325 326 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 327 size_t offset) 328 { 329 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 330 } 331 332 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 333 size_t offset) 334 { 335 return vmalloc_to_page(dmab->area + offset); 336 } 337 338 static unsigned int 339 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 340 unsigned int ofs, unsigned int size) 341 { 342 unsigned int start, end; 343 unsigned long addr; 344 345 start = ALIGN_DOWN(ofs, PAGE_SIZE); 346 end = ofs + size - 1; /* the last byte address */ 347 /* check page continuity */ 348 addr = get_vmalloc_page_addr(dmab, start); 349 for (;;) { 350 start += PAGE_SIZE; 351 if (start > end) 352 break; 353 addr += PAGE_SIZE; 354 if (get_vmalloc_page_addr(dmab, start) != addr) 355 return start - ofs; 356 } 357 /* ok, all on continuous pages */ 358 return size; 359 } 360 361 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 362 .alloc = snd_dma_vmalloc_alloc, 363 .free = snd_dma_vmalloc_free, 364 .mmap = snd_dma_vmalloc_mmap, 365 .get_addr = snd_dma_vmalloc_get_addr, 366 .get_page = snd_dma_vmalloc_get_page, 367 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 368 }; 369 370 #ifdef CONFIG_HAS_DMA 371 /* 372 * IRAM allocator 373 */ 374 #ifdef CONFIG_GENERIC_ALLOCATOR 375 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 376 { 377 struct device *dev = dmab->dev.dev; 378 struct gen_pool *pool; 379 void *p; 380 381 if (dev->of_node) { 382 pool = of_gen_pool_get(dev->of_node, "iram", 0); 383 /* Assign the pool into private_data field */ 384 dmab->private_data = pool; 385 386 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 387 if (p) 388 return p; 389 } 390 391 /* Internal memory might have limited size and no enough space, 392 * so if we fail to malloc, try to fetch memory traditionally. 393 */ 394 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 395 return __snd_dma_alloc_pages(dmab, size); 396 } 397 398 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 399 { 400 struct gen_pool *pool = dmab->private_data; 401 402 if (pool && dmab->area) 403 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 404 } 405 406 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 407 struct vm_area_struct *area) 408 { 409 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 410 return remap_pfn_range(area, area->vm_start, 411 dmab->addr >> PAGE_SHIFT, 412 area->vm_end - area->vm_start, 413 area->vm_page_prot); 414 } 415 416 static const struct snd_malloc_ops snd_dma_iram_ops = { 417 .alloc = snd_dma_iram_alloc, 418 .free = snd_dma_iram_free, 419 .mmap = snd_dma_iram_mmap, 420 }; 421 #endif /* CONFIG_GENERIC_ALLOCATOR */ 422 423 #define DEFAULT_GFP \ 424 (GFP_KERNEL | \ 425 __GFP_COMP | /* compound page lets parts be mapped */ \ 426 __GFP_NORETRY | /* don't trigger OOM-killer */ \ 427 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 428 429 /* 430 * Coherent device pages allocator 431 */ 432 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 433 { 434 void *p; 435 436 p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 437 #ifdef CONFIG_X86 438 if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 439 set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT); 440 #endif 441 return p; 442 } 443 444 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 445 { 446 #ifdef CONFIG_X86 447 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 448 set_memory_wb((unsigned long)dmab->area, 449 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT); 450 #endif 451 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 452 } 453 454 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 455 struct vm_area_struct *area) 456 { 457 #ifdef CONFIG_X86 458 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 459 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 460 #endif 461 return dma_mmap_coherent(dmab->dev.dev, area, 462 dmab->area, dmab->addr, dmab->bytes); 463 } 464 465 static const struct snd_malloc_ops snd_dma_dev_ops = { 466 .alloc = snd_dma_dev_alloc, 467 .free = snd_dma_dev_free, 468 .mmap = snd_dma_dev_mmap, 469 }; 470 471 /* 472 * Write-combined pages 473 */ 474 #ifdef CONFIG_X86 475 /* On x86, share the same ops as the standard dev ops */ 476 #define snd_dma_wc_ops snd_dma_dev_ops 477 #else /* CONFIG_X86 */ 478 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 479 { 480 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 481 } 482 483 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 484 { 485 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 486 } 487 488 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 489 struct vm_area_struct *area) 490 { 491 return dma_mmap_wc(dmab->dev.dev, area, 492 dmab->area, dmab->addr, dmab->bytes); 493 } 494 495 static const struct snd_malloc_ops snd_dma_wc_ops = { 496 .alloc = snd_dma_wc_alloc, 497 .free = snd_dma_wc_free, 498 .mmap = snd_dma_wc_mmap, 499 }; 500 #endif /* CONFIG_X86 */ 501 502 #ifdef CONFIG_SND_DMA_SGBUF 503 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size); 504 #endif 505 506 /* 507 * Non-contiguous pages allocator 508 */ 509 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 510 { 511 struct sg_table *sgt; 512 void *p; 513 514 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 515 DEFAULT_GFP, 0); 516 if (!sgt) { 517 #ifdef CONFIG_SND_DMA_SGBUF 518 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG) 519 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 520 else 521 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK; 522 return snd_dma_sg_fallback_alloc(dmab, size); 523 #else 524 return NULL; 525 #endif 526 } 527 528 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, 529 sg_dma_address(sgt->sgl)); 530 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 531 if (p) 532 dmab->private_data = sgt; 533 else 534 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 535 return p; 536 } 537 538 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 539 { 540 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 541 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 542 dmab->dev.dir); 543 } 544 545 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 546 struct vm_area_struct *area) 547 { 548 return dma_mmap_noncontiguous(dmab->dev.dev, area, 549 dmab->bytes, dmab->private_data); 550 } 551 552 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 553 enum snd_dma_sync_mode mode) 554 { 555 if (mode == SNDRV_DMA_SYNC_CPU) { 556 if (dmab->dev.dir == DMA_TO_DEVICE) 557 return; 558 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 559 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 560 dmab->dev.dir); 561 } else { 562 if (dmab->dev.dir == DMA_FROM_DEVICE) 563 return; 564 flush_kernel_vmap_range(dmab->area, dmab->bytes); 565 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 566 dmab->dev.dir); 567 } 568 } 569 570 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab, 571 struct sg_page_iter *piter, 572 size_t offset) 573 { 574 struct sg_table *sgt = dmab->private_data; 575 576 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents, 577 offset >> PAGE_SHIFT); 578 } 579 580 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab, 581 size_t offset) 582 { 583 struct sg_dma_page_iter iter; 584 585 snd_dma_noncontig_iter_set(dmab, &iter.base, offset); 586 __sg_page_iter_dma_next(&iter); 587 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE; 588 } 589 590 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab, 591 size_t offset) 592 { 593 struct sg_page_iter iter; 594 595 snd_dma_noncontig_iter_set(dmab, &iter, offset); 596 __sg_page_iter_next(&iter); 597 return sg_page_iter_page(&iter); 598 } 599 600 static unsigned int 601 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab, 602 unsigned int ofs, unsigned int size) 603 { 604 struct sg_dma_page_iter iter; 605 unsigned int start, end; 606 unsigned long addr; 607 608 start = ALIGN_DOWN(ofs, PAGE_SIZE); 609 end = ofs + size - 1; /* the last byte address */ 610 snd_dma_noncontig_iter_set(dmab, &iter.base, start); 611 if (!__sg_page_iter_dma_next(&iter)) 612 return 0; 613 /* check page continuity */ 614 addr = sg_page_iter_dma_address(&iter); 615 for (;;) { 616 start += PAGE_SIZE; 617 if (start > end) 618 break; 619 addr += PAGE_SIZE; 620 if (!__sg_page_iter_dma_next(&iter) || 621 sg_page_iter_dma_address(&iter) != addr) 622 return start - ofs; 623 } 624 /* ok, all on continuous pages */ 625 return size; 626 } 627 628 static const struct snd_malloc_ops snd_dma_noncontig_ops = { 629 .alloc = snd_dma_noncontig_alloc, 630 .free = snd_dma_noncontig_free, 631 .mmap = snd_dma_noncontig_mmap, 632 .sync = snd_dma_noncontig_sync, 633 .get_addr = snd_dma_noncontig_get_addr, 634 .get_page = snd_dma_noncontig_get_page, 635 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 636 }; 637 638 /* x86-specific SG-buffer with WC pages */ 639 #ifdef CONFIG_SND_DMA_SGBUF 640 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it))) 641 642 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 643 { 644 void *p = snd_dma_noncontig_alloc(dmab, size); 645 struct sg_table *sgt = dmab->private_data; 646 struct sg_page_iter iter; 647 648 if (!p) 649 return NULL; 650 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG) 651 return p; 652 for_each_sgtable_page(sgt, &iter, 0) 653 set_memory_wc(sg_wc_address(&iter), 1); 654 return p; 655 } 656 657 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab) 658 { 659 struct sg_table *sgt = dmab->private_data; 660 struct sg_page_iter iter; 661 662 for_each_sgtable_page(sgt, &iter, 0) 663 set_memory_wb(sg_wc_address(&iter), 1); 664 snd_dma_noncontig_free(dmab); 665 } 666 667 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab, 668 struct vm_area_struct *area) 669 { 670 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 671 return dma_mmap_noncontiguous(dmab->dev.dev, area, 672 dmab->bytes, dmab->private_data); 673 } 674 675 static const struct snd_malloc_ops snd_dma_sg_wc_ops = { 676 .alloc = snd_dma_sg_wc_alloc, 677 .free = snd_dma_sg_wc_free, 678 .mmap = snd_dma_sg_wc_mmap, 679 .sync = snd_dma_noncontig_sync, 680 .get_addr = snd_dma_noncontig_get_addr, 681 .get_page = snd_dma_noncontig_get_page, 682 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 683 }; 684 685 /* Fallback SG-buffer allocations for x86 */ 686 struct snd_dma_sg_fallback { 687 size_t count; 688 struct page **pages; 689 dma_addr_t *addrs; 690 }; 691 692 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab, 693 struct snd_dma_sg_fallback *sgbuf) 694 { 695 size_t i; 696 697 if (sgbuf->count && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 698 set_pages_array_wb(sgbuf->pages, sgbuf->count); 699 for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++) 700 dma_free_coherent(dmab->dev.dev, PAGE_SIZE, 701 page_address(sgbuf->pages[i]), 702 sgbuf->addrs[i]); 703 kvfree(sgbuf->pages); 704 kvfree(sgbuf->addrs); 705 kfree(sgbuf); 706 } 707 708 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size) 709 { 710 struct snd_dma_sg_fallback *sgbuf; 711 struct page **pages; 712 size_t i, count; 713 void *p; 714 715 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL); 716 if (!sgbuf) 717 return NULL; 718 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 719 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 720 if (!pages) 721 goto error; 722 sgbuf->pages = pages; 723 sgbuf->addrs = kvcalloc(count, sizeof(*sgbuf->addrs), GFP_KERNEL); 724 if (!sgbuf->addrs) 725 goto error; 726 727 for (i = 0; i < count; sgbuf->count++, i++) { 728 p = dma_alloc_coherent(dmab->dev.dev, PAGE_SIZE, 729 &sgbuf->addrs[i], DEFAULT_GFP); 730 if (!p) 731 goto error; 732 sgbuf->pages[i] = virt_to_page(p); 733 } 734 735 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 736 set_pages_array_wc(pages, count); 737 p = vmap(pages, count, VM_MAP, PAGE_KERNEL); 738 if (!p) 739 goto error; 740 dmab->private_data = sgbuf; 741 return p; 742 743 error: 744 __snd_dma_sg_fallback_free(dmab, sgbuf); 745 return NULL; 746 } 747 748 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab) 749 { 750 vunmap(dmab->area); 751 __snd_dma_sg_fallback_free(dmab, dmab->private_data); 752 } 753 754 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab, 755 struct vm_area_struct *area) 756 { 757 struct snd_dma_sg_fallback *sgbuf = dmab->private_data; 758 759 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 760 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 761 return vm_map_pages(area, sgbuf->pages, sgbuf->count); 762 } 763 764 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = { 765 .alloc = snd_dma_sg_fallback_alloc, 766 .free = snd_dma_sg_fallback_free, 767 .mmap = snd_dma_sg_fallback_mmap, 768 /* reuse vmalloc helpers */ 769 .get_addr = snd_dma_vmalloc_get_addr, 770 .get_page = snd_dma_vmalloc_get_page, 771 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 772 }; 773 #endif /* CONFIG_SND_DMA_SGBUF */ 774 775 /* 776 * Non-coherent pages allocator 777 */ 778 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 779 { 780 void *p; 781 782 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 783 dmab->dev.dir, DEFAULT_GFP); 784 if (p) 785 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr); 786 return p; 787 } 788 789 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 790 { 791 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 792 dmab->addr, dmab->dev.dir); 793 } 794 795 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 796 struct vm_area_struct *area) 797 { 798 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 799 return dma_mmap_pages(dmab->dev.dev, area, 800 area->vm_end - area->vm_start, 801 virt_to_page(dmab->area)); 802 } 803 804 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 805 enum snd_dma_sync_mode mode) 806 { 807 if (mode == SNDRV_DMA_SYNC_CPU) { 808 if (dmab->dev.dir != DMA_TO_DEVICE) 809 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 810 dmab->bytes, dmab->dev.dir); 811 } else { 812 if (dmab->dev.dir != DMA_FROM_DEVICE) 813 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 814 dmab->bytes, dmab->dev.dir); 815 } 816 } 817 818 static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 819 .alloc = snd_dma_noncoherent_alloc, 820 .free = snd_dma_noncoherent_free, 821 .mmap = snd_dma_noncoherent_mmap, 822 .sync = snd_dma_noncoherent_sync, 823 }; 824 825 #endif /* CONFIG_HAS_DMA */ 826 827 /* 828 * Entry points 829 */ 830 static const struct snd_malloc_ops *dma_ops[] = { 831 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 832 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 833 #ifdef CONFIG_HAS_DMA 834 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 835 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 836 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 837 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 838 #ifdef CONFIG_SND_DMA_SGBUF 839 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops, 840 #endif 841 #ifdef CONFIG_GENERIC_ALLOCATOR 842 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 843 #endif /* CONFIG_GENERIC_ALLOCATOR */ 844 #ifdef CONFIG_SND_DMA_SGBUF 845 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 846 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 847 #endif 848 #endif /* CONFIG_HAS_DMA */ 849 }; 850 851 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 852 { 853 if (WARN_ON_ONCE(!dmab)) 854 return NULL; 855 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 856 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 857 return NULL; 858 return dma_ops[dmab->dev.type]; 859 } 860