1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/genalloc.h> 13 #include <linux/highmem.h> 14 #include <linux/vmalloc.h> 15 #ifdef CONFIG_X86 16 #include <asm/set_memory.h> 17 #endif 18 #include <sound/memalloc.h> 19 #include "memalloc_local.h" 20 21 #define DEFAULT_GFP \ 22 (GFP_KERNEL | \ 23 __GFP_COMP | /* compound page lets parts be mapped */ \ 24 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \ 25 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 26 27 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 28 29 #ifdef CONFIG_SND_DMA_SGBUF 30 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size); 31 #endif 32 33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 34 { 35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 36 37 if (WARN_ON_ONCE(!ops || !ops->alloc)) 38 return NULL; 39 return ops->alloc(dmab, size); 40 } 41 42 /** 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 44 * type and direction 45 * @type: the DMA buffer type 46 * @device: the device pointer 47 * @dir: DMA direction 48 * @size: the buffer size to allocate 49 * @dmab: buffer allocation record to store the allocated data 50 * 51 * Calls the memory-allocator function for the corresponding 52 * buffer type. 53 * 54 * Return: Zero if the buffer with the given size is allocated successfully, 55 * otherwise a negative value on error. 56 */ 57 int snd_dma_alloc_dir_pages(int type, struct device *device, 58 enum dma_data_direction dir, size_t size, 59 struct snd_dma_buffer *dmab) 60 { 61 if (WARN_ON(!size)) 62 return -ENXIO; 63 if (WARN_ON(!dmab)) 64 return -ENXIO; 65 66 size = PAGE_ALIGN(size); 67 dmab->dev.type = type; 68 dmab->dev.dev = device; 69 dmab->dev.dir = dir; 70 dmab->bytes = 0; 71 dmab->addr = 0; 72 dmab->private_data = NULL; 73 dmab->area = __snd_dma_alloc_pages(dmab, size); 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78 } 79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 80 81 /** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98 { 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112 } 113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115 /** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122 { 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127 } 128 EXPORT_SYMBOL(snd_dma_free_pages); 129 130 /* called by devres */ 131 static void __snd_release_pages(struct device *dev, void *res) 132 { 133 snd_dma_free_pages(res); 134 } 135 136 /** 137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 138 * @dev: the device pointer 139 * @type: the DMA buffer type 140 * @dir: DMA direction 141 * @size: the buffer size to allocate 142 * 143 * Allocate buffer pages depending on the given type and manage using devres. 144 * The pages will be released automatically at the device removal. 145 * 146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 148 * SNDRV_DMA_TYPE_VMALLOC type. 149 * 150 * Return: the snd_dma_buffer object at success, or NULL if failed 151 */ 152 struct snd_dma_buffer * 153 snd_devm_alloc_dir_pages(struct device *dev, int type, 154 enum dma_data_direction dir, size_t size) 155 { 156 struct snd_dma_buffer *dmab; 157 int err; 158 159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 160 type == SNDRV_DMA_TYPE_VMALLOC)) 161 return NULL; 162 163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 164 if (!dmab) 165 return NULL; 166 167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 168 if (err < 0) { 169 devres_free(dmab); 170 return NULL; 171 } 172 173 devres_add(dev, dmab); 174 return dmab; 175 } 176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 177 178 /** 179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 180 * @dmab: buffer allocation information 181 * @area: VM area information 182 * 183 * Return: zero if successful, or a negative error code 184 */ 185 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 186 struct vm_area_struct *area) 187 { 188 const struct snd_malloc_ops *ops; 189 190 if (!dmab) 191 return -ENOENT; 192 ops = snd_dma_get_ops(dmab); 193 if (ops && ops->mmap) 194 return ops->mmap(dmab, area); 195 else 196 return -ENOENT; 197 } 198 EXPORT_SYMBOL(snd_dma_buffer_mmap); 199 200 #ifdef CONFIG_HAS_DMA 201 /** 202 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 203 * @dmab: buffer allocation information 204 * @mode: sync mode 205 */ 206 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 207 enum snd_dma_sync_mode mode) 208 { 209 const struct snd_malloc_ops *ops; 210 211 if (!dmab || !dmab->dev.need_sync) 212 return; 213 ops = snd_dma_get_ops(dmab); 214 if (ops && ops->sync) 215 ops->sync(dmab, mode); 216 } 217 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 218 #endif /* CONFIG_HAS_DMA */ 219 220 /** 221 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 222 * @dmab: buffer allocation information 223 * @offset: offset in the ring buffer 224 * 225 * Return: the physical address 226 */ 227 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 228 { 229 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 230 231 if (ops && ops->get_addr) 232 return ops->get_addr(dmab, offset); 233 else 234 return dmab->addr + offset; 235 } 236 EXPORT_SYMBOL(snd_sgbuf_get_addr); 237 238 /** 239 * snd_sgbuf_get_page - return the physical page at the corresponding offset 240 * @dmab: buffer allocation information 241 * @offset: offset in the ring buffer 242 * 243 * Return: the page pointer 244 */ 245 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 246 { 247 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 248 249 if (ops && ops->get_page) 250 return ops->get_page(dmab, offset); 251 else 252 return virt_to_page(dmab->area + offset); 253 } 254 EXPORT_SYMBOL(snd_sgbuf_get_page); 255 256 /** 257 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 258 * on sg-buffer 259 * @dmab: buffer allocation information 260 * @ofs: offset in the ring buffer 261 * @size: the requested size 262 * 263 * Return: the chunk size 264 */ 265 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 266 unsigned int ofs, unsigned int size) 267 { 268 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 269 270 if (ops && ops->get_chunk_size) 271 return ops->get_chunk_size(dmab, ofs, size); 272 else 273 return size; 274 } 275 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 276 277 /* 278 * Continuous pages allocator 279 */ 280 static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr, 281 bool wc) 282 { 283 void *p; 284 gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 285 286 again: 287 p = alloc_pages_exact(size, gfp); 288 if (!p) 289 return NULL; 290 *addr = page_to_phys(virt_to_page(p)); 291 if (!dev) 292 return p; 293 if ((*addr + size - 1) & ~dev->coherent_dma_mask) { 294 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) { 295 gfp |= GFP_DMA32; 296 goto again; 297 } 298 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 299 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 300 goto again; 301 } 302 } 303 #ifdef CONFIG_X86 304 if (wc) 305 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT); 306 #endif 307 return p; 308 } 309 310 static void do_free_pages(void *p, size_t size, bool wc) 311 { 312 #ifdef CONFIG_X86 313 if (wc) 314 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT); 315 #endif 316 free_pages_exact(p, size); 317 } 318 319 320 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 321 { 322 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false); 323 } 324 325 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 326 { 327 do_free_pages(dmab->area, dmab->bytes, false); 328 } 329 330 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 331 struct vm_area_struct *area) 332 { 333 return remap_pfn_range(area, area->vm_start, 334 dmab->addr >> PAGE_SHIFT, 335 area->vm_end - area->vm_start, 336 area->vm_page_prot); 337 } 338 339 static const struct snd_malloc_ops snd_dma_continuous_ops = { 340 .alloc = snd_dma_continuous_alloc, 341 .free = snd_dma_continuous_free, 342 .mmap = snd_dma_continuous_mmap, 343 }; 344 345 /* 346 * VMALLOC allocator 347 */ 348 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 349 { 350 return vmalloc(size); 351 } 352 353 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 354 { 355 vfree(dmab->area); 356 } 357 358 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 359 struct vm_area_struct *area) 360 { 361 return remap_vmalloc_range(area, dmab->area, 0); 362 } 363 364 #define get_vmalloc_page_addr(dmab, offset) \ 365 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 366 367 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 368 size_t offset) 369 { 370 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 371 } 372 373 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 374 size_t offset) 375 { 376 return vmalloc_to_page(dmab->area + offset); 377 } 378 379 static unsigned int 380 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 381 unsigned int ofs, unsigned int size) 382 { 383 unsigned int start, end; 384 unsigned long addr; 385 386 start = ALIGN_DOWN(ofs, PAGE_SIZE); 387 end = ofs + size - 1; /* the last byte address */ 388 /* check page continuity */ 389 addr = get_vmalloc_page_addr(dmab, start); 390 for (;;) { 391 start += PAGE_SIZE; 392 if (start > end) 393 break; 394 addr += PAGE_SIZE; 395 if (get_vmalloc_page_addr(dmab, start) != addr) 396 return start - ofs; 397 } 398 /* ok, all on continuous pages */ 399 return size; 400 } 401 402 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 403 .alloc = snd_dma_vmalloc_alloc, 404 .free = snd_dma_vmalloc_free, 405 .mmap = snd_dma_vmalloc_mmap, 406 .get_addr = snd_dma_vmalloc_get_addr, 407 .get_page = snd_dma_vmalloc_get_page, 408 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 409 }; 410 411 #ifdef CONFIG_HAS_DMA 412 /* 413 * IRAM allocator 414 */ 415 #ifdef CONFIG_GENERIC_ALLOCATOR 416 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 417 { 418 struct device *dev = dmab->dev.dev; 419 struct gen_pool *pool; 420 void *p; 421 422 if (dev->of_node) { 423 pool = of_gen_pool_get(dev->of_node, "iram", 0); 424 /* Assign the pool into private_data field */ 425 dmab->private_data = pool; 426 427 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 428 if (p) 429 return p; 430 } 431 432 /* Internal memory might have limited size and no enough space, 433 * so if we fail to malloc, try to fetch memory traditionally. 434 */ 435 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 436 return __snd_dma_alloc_pages(dmab, size); 437 } 438 439 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 440 { 441 struct gen_pool *pool = dmab->private_data; 442 443 if (pool && dmab->area) 444 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 445 } 446 447 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 448 struct vm_area_struct *area) 449 { 450 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 451 return remap_pfn_range(area, area->vm_start, 452 dmab->addr >> PAGE_SHIFT, 453 area->vm_end - area->vm_start, 454 area->vm_page_prot); 455 } 456 457 static const struct snd_malloc_ops snd_dma_iram_ops = { 458 .alloc = snd_dma_iram_alloc, 459 .free = snd_dma_iram_free, 460 .mmap = snd_dma_iram_mmap, 461 }; 462 #endif /* CONFIG_GENERIC_ALLOCATOR */ 463 464 /* 465 * Coherent device pages allocator 466 */ 467 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 468 { 469 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 470 } 471 472 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 473 { 474 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 475 } 476 477 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 478 struct vm_area_struct *area) 479 { 480 return dma_mmap_coherent(dmab->dev.dev, area, 481 dmab->area, dmab->addr, dmab->bytes); 482 } 483 484 static const struct snd_malloc_ops snd_dma_dev_ops = { 485 .alloc = snd_dma_dev_alloc, 486 .free = snd_dma_dev_free, 487 .mmap = snd_dma_dev_mmap, 488 }; 489 490 /* 491 * Write-combined pages 492 */ 493 /* x86-specific allocations */ 494 #ifdef CONFIG_SND_DMA_SGBUF 495 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 496 { 497 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true); 498 } 499 500 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 501 { 502 do_free_pages(dmab->area, dmab->bytes, true); 503 } 504 505 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 506 struct vm_area_struct *area) 507 { 508 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 509 return snd_dma_continuous_mmap(dmab, area); 510 } 511 #else 512 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 513 { 514 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 515 } 516 517 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 518 { 519 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 520 } 521 522 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 523 struct vm_area_struct *area) 524 { 525 return dma_mmap_wc(dmab->dev.dev, area, 526 dmab->area, dmab->addr, dmab->bytes); 527 } 528 #endif /* CONFIG_SND_DMA_SGBUF */ 529 530 static const struct snd_malloc_ops snd_dma_wc_ops = { 531 .alloc = snd_dma_wc_alloc, 532 .free = snd_dma_wc_free, 533 .mmap = snd_dma_wc_mmap, 534 }; 535 536 /* 537 * Non-contiguous pages allocator 538 */ 539 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 540 { 541 struct sg_table *sgt; 542 void *p; 543 544 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 545 DEFAULT_GFP, 0); 546 if (!sgt) { 547 #ifdef CONFIG_SND_DMA_SGBUF 548 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG) 549 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 550 else 551 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK; 552 return snd_dma_sg_fallback_alloc(dmab, size); 553 #else 554 return NULL; 555 #endif 556 } 557 558 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, 559 sg_dma_address(sgt->sgl)); 560 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 561 if (p) { 562 dmab->private_data = sgt; 563 /* store the first page address for convenience */ 564 dmab->addr = snd_sgbuf_get_addr(dmab, 0); 565 } else { 566 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 567 } 568 return p; 569 } 570 571 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 572 { 573 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 574 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 575 dmab->dev.dir); 576 } 577 578 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 579 struct vm_area_struct *area) 580 { 581 return dma_mmap_noncontiguous(dmab->dev.dev, area, 582 dmab->bytes, dmab->private_data); 583 } 584 585 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 586 enum snd_dma_sync_mode mode) 587 { 588 if (mode == SNDRV_DMA_SYNC_CPU) { 589 if (dmab->dev.dir == DMA_TO_DEVICE) 590 return; 591 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 592 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 593 dmab->dev.dir); 594 } else { 595 if (dmab->dev.dir == DMA_FROM_DEVICE) 596 return; 597 flush_kernel_vmap_range(dmab->area, dmab->bytes); 598 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 599 dmab->dev.dir); 600 } 601 } 602 603 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab, 604 struct sg_page_iter *piter, 605 size_t offset) 606 { 607 struct sg_table *sgt = dmab->private_data; 608 609 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents, 610 offset >> PAGE_SHIFT); 611 } 612 613 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab, 614 size_t offset) 615 { 616 struct sg_dma_page_iter iter; 617 618 snd_dma_noncontig_iter_set(dmab, &iter.base, offset); 619 __sg_page_iter_dma_next(&iter); 620 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE; 621 } 622 623 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab, 624 size_t offset) 625 { 626 struct sg_page_iter iter; 627 628 snd_dma_noncontig_iter_set(dmab, &iter, offset); 629 __sg_page_iter_next(&iter); 630 return sg_page_iter_page(&iter); 631 } 632 633 static unsigned int 634 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab, 635 unsigned int ofs, unsigned int size) 636 { 637 struct sg_dma_page_iter iter; 638 unsigned int start, end; 639 unsigned long addr; 640 641 start = ALIGN_DOWN(ofs, PAGE_SIZE); 642 end = ofs + size - 1; /* the last byte address */ 643 snd_dma_noncontig_iter_set(dmab, &iter.base, start); 644 if (!__sg_page_iter_dma_next(&iter)) 645 return 0; 646 /* check page continuity */ 647 addr = sg_page_iter_dma_address(&iter); 648 for (;;) { 649 start += PAGE_SIZE; 650 if (start > end) 651 break; 652 addr += PAGE_SIZE; 653 if (!__sg_page_iter_dma_next(&iter) || 654 sg_page_iter_dma_address(&iter) != addr) 655 return start - ofs; 656 } 657 /* ok, all on continuous pages */ 658 return size; 659 } 660 661 static const struct snd_malloc_ops snd_dma_noncontig_ops = { 662 .alloc = snd_dma_noncontig_alloc, 663 .free = snd_dma_noncontig_free, 664 .mmap = snd_dma_noncontig_mmap, 665 .sync = snd_dma_noncontig_sync, 666 .get_addr = snd_dma_noncontig_get_addr, 667 .get_page = snd_dma_noncontig_get_page, 668 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 669 }; 670 671 /* x86-specific SG-buffer with WC pages */ 672 #ifdef CONFIG_SND_DMA_SGBUF 673 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it))) 674 675 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 676 { 677 void *p = snd_dma_noncontig_alloc(dmab, size); 678 struct sg_table *sgt = dmab->private_data; 679 struct sg_page_iter iter; 680 681 if (!p) 682 return NULL; 683 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG) 684 return p; 685 for_each_sgtable_page(sgt, &iter, 0) 686 set_memory_wc(sg_wc_address(&iter), 1); 687 return p; 688 } 689 690 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab) 691 { 692 struct sg_table *sgt = dmab->private_data; 693 struct sg_page_iter iter; 694 695 for_each_sgtable_page(sgt, &iter, 0) 696 set_memory_wb(sg_wc_address(&iter), 1); 697 snd_dma_noncontig_free(dmab); 698 } 699 700 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab, 701 struct vm_area_struct *area) 702 { 703 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 704 return dma_mmap_noncontiguous(dmab->dev.dev, area, 705 dmab->bytes, dmab->private_data); 706 } 707 708 static const struct snd_malloc_ops snd_dma_sg_wc_ops = { 709 .alloc = snd_dma_sg_wc_alloc, 710 .free = snd_dma_sg_wc_free, 711 .mmap = snd_dma_sg_wc_mmap, 712 .sync = snd_dma_noncontig_sync, 713 .get_addr = snd_dma_noncontig_get_addr, 714 .get_page = snd_dma_noncontig_get_page, 715 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 716 }; 717 718 /* Fallback SG-buffer allocations for x86 */ 719 struct snd_dma_sg_fallback { 720 size_t count; 721 struct page **pages; 722 dma_addr_t *addrs; 723 }; 724 725 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab, 726 struct snd_dma_sg_fallback *sgbuf) 727 { 728 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 729 size_t i; 730 731 for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++) 732 do_free_pages(page_address(sgbuf->pages[i]), PAGE_SIZE, wc); 733 kvfree(sgbuf->pages); 734 kvfree(sgbuf->addrs); 735 kfree(sgbuf); 736 } 737 738 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size) 739 { 740 struct snd_dma_sg_fallback *sgbuf; 741 struct page **pages; 742 size_t i, count; 743 void *p; 744 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 745 746 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL); 747 if (!sgbuf) 748 return NULL; 749 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 750 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 751 if (!pages) 752 goto error; 753 sgbuf->pages = pages; 754 sgbuf->addrs = kvcalloc(count, sizeof(*sgbuf->addrs), GFP_KERNEL); 755 if (!sgbuf->addrs) 756 goto error; 757 758 for (i = 0; i < count; sgbuf->count++, i++) { 759 p = do_alloc_pages(dmab->dev.dev, PAGE_SIZE, &sgbuf->addrs[i], wc); 760 if (!p) 761 goto error; 762 sgbuf->pages[i] = virt_to_page(p); 763 } 764 765 p = vmap(pages, count, VM_MAP, PAGE_KERNEL); 766 if (!p) 767 goto error; 768 dmab->private_data = sgbuf; 769 /* store the first page address for convenience */ 770 dmab->addr = snd_sgbuf_get_addr(dmab, 0); 771 return p; 772 773 error: 774 __snd_dma_sg_fallback_free(dmab, sgbuf); 775 return NULL; 776 } 777 778 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab) 779 { 780 vunmap(dmab->area); 781 __snd_dma_sg_fallback_free(dmab, dmab->private_data); 782 } 783 784 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab, 785 struct vm_area_struct *area) 786 { 787 struct snd_dma_sg_fallback *sgbuf = dmab->private_data; 788 789 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 790 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 791 return vm_map_pages(area, sgbuf->pages, sgbuf->count); 792 } 793 794 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = { 795 .alloc = snd_dma_sg_fallback_alloc, 796 .free = snd_dma_sg_fallback_free, 797 .mmap = snd_dma_sg_fallback_mmap, 798 /* reuse vmalloc helpers */ 799 .get_addr = snd_dma_vmalloc_get_addr, 800 .get_page = snd_dma_vmalloc_get_page, 801 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 802 }; 803 #endif /* CONFIG_SND_DMA_SGBUF */ 804 805 /* 806 * Non-coherent pages allocator 807 */ 808 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 809 { 810 void *p; 811 812 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 813 dmab->dev.dir, DEFAULT_GFP); 814 if (p) 815 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr); 816 return p; 817 } 818 819 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 820 { 821 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 822 dmab->addr, dmab->dev.dir); 823 } 824 825 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 826 struct vm_area_struct *area) 827 { 828 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 829 return dma_mmap_pages(dmab->dev.dev, area, 830 area->vm_end - area->vm_start, 831 virt_to_page(dmab->area)); 832 } 833 834 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 835 enum snd_dma_sync_mode mode) 836 { 837 if (mode == SNDRV_DMA_SYNC_CPU) { 838 if (dmab->dev.dir != DMA_TO_DEVICE) 839 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 840 dmab->bytes, dmab->dev.dir); 841 } else { 842 if (dmab->dev.dir != DMA_FROM_DEVICE) 843 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 844 dmab->bytes, dmab->dev.dir); 845 } 846 } 847 848 static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 849 .alloc = snd_dma_noncoherent_alloc, 850 .free = snd_dma_noncoherent_free, 851 .mmap = snd_dma_noncoherent_mmap, 852 .sync = snd_dma_noncoherent_sync, 853 }; 854 855 #endif /* CONFIG_HAS_DMA */ 856 857 /* 858 * Entry points 859 */ 860 static const struct snd_malloc_ops *dma_ops[] = { 861 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 862 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 863 #ifdef CONFIG_HAS_DMA 864 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 865 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 866 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 867 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 868 #ifdef CONFIG_SND_DMA_SGBUF 869 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops, 870 #endif 871 #ifdef CONFIG_GENERIC_ALLOCATOR 872 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 873 #endif /* CONFIG_GENERIC_ALLOCATOR */ 874 #ifdef CONFIG_SND_DMA_SGBUF 875 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 876 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 877 #endif 878 #endif /* CONFIG_HAS_DMA */ 879 }; 880 881 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 882 { 883 if (WARN_ON_ONCE(!dmab)) 884 return NULL; 885 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 886 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 887 return NULL; 888 return dma_ops[dmab->dev.type]; 889 } 890