xref: /openbmc/linux/sound/core/memalloc.c (revision 64c70b1c)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *                   Takashi Iwai <tiwai@suse.de>
4  *
5  *  Generic memory allocators
6  *
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/proc_fs.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <asm/uaccess.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mutex.h>
34 #include <sound/memalloc.h>
35 #ifdef CONFIG_SBUS
36 #include <asm/sbus.h>
37 #endif
38 
39 
40 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
41 MODULE_DESCRIPTION("Memory allocator for ALSA system.");
42 MODULE_LICENSE("GPL");
43 
44 
45 /*
46  */
47 
48 void *snd_malloc_sgbuf_pages(struct device *device,
49                              size_t size, struct snd_dma_buffer *dmab,
50 			     size_t *res_size);
51 int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
52 
53 /*
54  */
55 
56 static DEFINE_MUTEX(list_mutex);
57 static LIST_HEAD(mem_list_head);
58 
59 /* buffer preservation list */
60 struct snd_mem_list {
61 	struct snd_dma_buffer buffer;
62 	unsigned int id;
63 	struct list_head list;
64 };
65 
66 /* id for pre-allocated buffers */
67 #define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
68 
69 #ifdef CONFIG_SND_DEBUG
70 #define __ASTRING__(x) #x
71 #define snd_assert(expr, args...) do {\
72 	if (!(expr)) {\
73 		printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
74 		args;\
75 	}\
76 } while (0)
77 #else
78 #define snd_assert(expr, args...) /**/
79 #endif
80 
81 /*
82  *  Hacks
83  */
84 
85 #if defined(__i386__)
86 /*
87  * A hack to allocate large buffers via dma_alloc_coherent()
88  *
89  * since dma_alloc_coherent always tries GFP_DMA when the requested
90  * pci memory region is below 32bit, it happens quite often that even
91  * 2 order of pages cannot be allocated.
92  *
93  * so in the following, we allocate at first without dma_mask, so that
94  * allocation will be done without GFP_DMA.  if the area doesn't match
95  * with the requested region, then realloate with the original dma_mask
96  * again.
97  *
98  * Really, we want to move this type of thing into dma_alloc_coherent()
99  * so dma_mask doesn't have to be messed with.
100  */
101 
102 static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
103 					 dma_addr_t *dma_handle,
104 					 gfp_t flags)
105 {
106 	void *ret;
107 	u64 dma_mask, coherent_dma_mask;
108 
109 	if (dev == NULL || !dev->dma_mask)
110 		return dma_alloc_coherent(dev, size, dma_handle, flags);
111 	dma_mask = *dev->dma_mask;
112 	coherent_dma_mask = dev->coherent_dma_mask;
113 	*dev->dma_mask = 0xffffffff; 	/* do without masking */
114 	dev->coherent_dma_mask = 0xffffffff; 	/* do without masking */
115 	ret = dma_alloc_coherent(dev, size, dma_handle, flags);
116 	*dev->dma_mask = dma_mask;	/* restore */
117 	dev->coherent_dma_mask = coherent_dma_mask;	/* restore */
118 	if (ret) {
119 		/* obtained address is out of range? */
120 		if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
121 			/* reallocate with the proper mask */
122 			dma_free_coherent(dev, size, ret, *dma_handle);
123 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
124 		}
125 	} else {
126 		/* wish to success now with the proper mask... */
127 		if (dma_mask != 0xffffffffUL) {
128 			/* allocation with GFP_ATOMIC to avoid the long stall */
129 			flags &= ~GFP_KERNEL;
130 			flags |= GFP_ATOMIC;
131 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
132 		}
133 	}
134 	return ret;
135 }
136 
137 /* redefine dma_alloc_coherent for some architectures */
138 #undef dma_alloc_coherent
139 #define dma_alloc_coherent snd_dma_hack_alloc_coherent
140 
141 #endif /* arch */
142 
143 /*
144  *
145  *  Generic memory allocators
146  *
147  */
148 
149 static long snd_allocated_pages; /* holding the number of allocated pages */
150 
151 static inline void inc_snd_pages(int order)
152 {
153 	snd_allocated_pages += 1 << order;
154 }
155 
156 static inline void dec_snd_pages(int order)
157 {
158 	snd_allocated_pages -= 1 << order;
159 }
160 
161 /**
162  * snd_malloc_pages - allocate pages with the given size
163  * @size: the size to allocate in bytes
164  * @gfp_flags: the allocation conditions, GFP_XXX
165  *
166  * Allocates the physically contiguous pages with the given size.
167  *
168  * Returns the pointer of the buffer, or NULL if no enoguh memory.
169  */
170 void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
171 {
172 	int pg;
173 	void *res;
174 
175 	snd_assert(size > 0, return NULL);
176 	snd_assert(gfp_flags != 0, return NULL);
177 	gfp_flags |= __GFP_COMP;	/* compound page lets parts be mapped */
178 	pg = get_order(size);
179 	if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
180 		inc_snd_pages(pg);
181 	return res;
182 }
183 
184 /**
185  * snd_free_pages - release the pages
186  * @ptr: the buffer pointer to release
187  * @size: the allocated buffer size
188  *
189  * Releases the buffer allocated via snd_malloc_pages().
190  */
191 void snd_free_pages(void *ptr, size_t size)
192 {
193 	int pg;
194 
195 	if (ptr == NULL)
196 		return;
197 	pg = get_order(size);
198 	dec_snd_pages(pg);
199 	free_pages((unsigned long) ptr, pg);
200 }
201 
202 /*
203  *
204  *  Bus-specific memory allocators
205  *
206  */
207 
208 /* allocate the coherent DMA pages */
209 static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
210 {
211 	int pg;
212 	void *res;
213 	gfp_t gfp_flags;
214 
215 	snd_assert(size > 0, return NULL);
216 	snd_assert(dma != NULL, return NULL);
217 	pg = get_order(size);
218 	gfp_flags = GFP_KERNEL
219 		| __GFP_COMP	/* compound page lets parts be mapped */
220 		| __GFP_NORETRY /* don't trigger OOM-killer */
221 		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
222 	res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
223 	if (res != NULL)
224 		inc_snd_pages(pg);
225 
226 	return res;
227 }
228 
229 /* free the coherent DMA pages */
230 static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
231 			       dma_addr_t dma)
232 {
233 	int pg;
234 
235 	if (ptr == NULL)
236 		return;
237 	pg = get_order(size);
238 	dec_snd_pages(pg);
239 	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
240 }
241 
242 #ifdef CONFIG_SBUS
243 
244 static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
245 				   dma_addr_t *dma_addr)
246 {
247 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
248 	int pg;
249 	void *res;
250 
251 	snd_assert(size > 0, return NULL);
252 	snd_assert(dma_addr != NULL, return NULL);
253 	pg = get_order(size);
254 	res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
255 	if (res != NULL)
256 		inc_snd_pages(pg);
257 	return res;
258 }
259 
260 static void snd_free_sbus_pages(struct device *dev, size_t size,
261 				void *ptr, dma_addr_t dma_addr)
262 {
263 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
264 	int pg;
265 
266 	if (ptr == NULL)
267 		return;
268 	pg = get_order(size);
269 	dec_snd_pages(pg);
270 	sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
271 }
272 
273 #endif /* CONFIG_SBUS */
274 
275 /*
276  *
277  *  ALSA generic memory management
278  *
279  */
280 
281 
282 /**
283  * snd_dma_alloc_pages - allocate the buffer area according to the given type
284  * @type: the DMA buffer type
285  * @device: the device pointer
286  * @size: the buffer size to allocate
287  * @dmab: buffer allocation record to store the allocated data
288  *
289  * Calls the memory-allocator function for the corresponding
290  * buffer type.
291  *
292  * Returns zero if the buffer with the given size is allocated successfuly,
293  * other a negative value at error.
294  */
295 int snd_dma_alloc_pages(int type, struct device *device, size_t size,
296 			struct snd_dma_buffer *dmab)
297 {
298 	snd_assert(size > 0, return -ENXIO);
299 	snd_assert(dmab != NULL, return -ENXIO);
300 
301 	dmab->dev.type = type;
302 	dmab->dev.dev = device;
303 	dmab->bytes = 0;
304 	switch (type) {
305 	case SNDRV_DMA_TYPE_CONTINUOUS:
306 		dmab->area = snd_malloc_pages(size, (unsigned long)device);
307 		dmab->addr = 0;
308 		break;
309 #ifdef CONFIG_SBUS
310 	case SNDRV_DMA_TYPE_SBUS:
311 		dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
312 		break;
313 #endif
314 	case SNDRV_DMA_TYPE_DEV:
315 		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
316 		break;
317 	case SNDRV_DMA_TYPE_DEV_SG:
318 		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
319 		break;
320 	default:
321 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
322 		dmab->area = NULL;
323 		dmab->addr = 0;
324 		return -ENXIO;
325 	}
326 	if (! dmab->area)
327 		return -ENOMEM;
328 	dmab->bytes = size;
329 	return 0;
330 }
331 
332 /**
333  * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
334  * @type: the DMA buffer type
335  * @device: the device pointer
336  * @size: the buffer size to allocate
337  * @dmab: buffer allocation record to store the allocated data
338  *
339  * Calls the memory-allocator function for the corresponding
340  * buffer type.  When no space is left, this function reduces the size and
341  * tries to allocate again.  The size actually allocated is stored in
342  * res_size argument.
343  *
344  * Returns zero if the buffer with the given size is allocated successfuly,
345  * other a negative value at error.
346  */
347 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
348 				 struct snd_dma_buffer *dmab)
349 {
350 	int err;
351 
352 	snd_assert(size > 0, return -ENXIO);
353 	snd_assert(dmab != NULL, return -ENXIO);
354 
355 	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
356 		if (err != -ENOMEM)
357 			return err;
358 		size >>= 1;
359 		if (size <= PAGE_SIZE)
360 			return -ENOMEM;
361 	}
362 	if (! dmab->area)
363 		return -ENOMEM;
364 	return 0;
365 }
366 
367 
368 /**
369  * snd_dma_free_pages - release the allocated buffer
370  * @dmab: the buffer allocation record to release
371  *
372  * Releases the allocated buffer via snd_dma_alloc_pages().
373  */
374 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
375 {
376 	switch (dmab->dev.type) {
377 	case SNDRV_DMA_TYPE_CONTINUOUS:
378 		snd_free_pages(dmab->area, dmab->bytes);
379 		break;
380 #ifdef CONFIG_SBUS
381 	case SNDRV_DMA_TYPE_SBUS:
382 		snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
383 		break;
384 #endif
385 	case SNDRV_DMA_TYPE_DEV:
386 		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
387 		break;
388 	case SNDRV_DMA_TYPE_DEV_SG:
389 		snd_free_sgbuf_pages(dmab);
390 		break;
391 	default:
392 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
393 	}
394 }
395 
396 
397 /**
398  * snd_dma_get_reserved - get the reserved buffer for the given device
399  * @dmab: the buffer allocation record to store
400  * @id: the buffer id
401  *
402  * Looks for the reserved-buffer list and re-uses if the same buffer
403  * is found in the list.  When the buffer is found, it's removed from the free list.
404  *
405  * Returns the size of buffer if the buffer is found, or zero if not found.
406  */
407 size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
408 {
409 	struct snd_mem_list *mem;
410 
411 	snd_assert(dmab, return 0);
412 
413 	mutex_lock(&list_mutex);
414 	list_for_each_entry(mem, &mem_list_head, list) {
415 		if (mem->id == id &&
416 		    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
417 		     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
418 			struct device *dev = dmab->dev.dev;
419 			list_del(&mem->list);
420 			*dmab = mem->buffer;
421 			if (dmab->dev.dev == NULL)
422 				dmab->dev.dev = dev;
423 			kfree(mem);
424 			mutex_unlock(&list_mutex);
425 			return dmab->bytes;
426 		}
427 	}
428 	mutex_unlock(&list_mutex);
429 	return 0;
430 }
431 
432 /**
433  * snd_dma_reserve_buf - reserve the buffer
434  * @dmab: the buffer to reserve
435  * @id: the buffer id
436  *
437  * Reserves the given buffer as a reserved buffer.
438  *
439  * Returns zero if successful, or a negative code at error.
440  */
441 int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
442 {
443 	struct snd_mem_list *mem;
444 
445 	snd_assert(dmab, return -EINVAL);
446 	mem = kmalloc(sizeof(*mem), GFP_KERNEL);
447 	if (! mem)
448 		return -ENOMEM;
449 	mutex_lock(&list_mutex);
450 	mem->buffer = *dmab;
451 	mem->id = id;
452 	list_add_tail(&mem->list, &mem_list_head);
453 	mutex_unlock(&list_mutex);
454 	return 0;
455 }
456 
457 /*
458  * purge all reserved buffers
459  */
460 static void free_all_reserved_pages(void)
461 {
462 	struct list_head *p;
463 	struct snd_mem_list *mem;
464 
465 	mutex_lock(&list_mutex);
466 	while (! list_empty(&mem_list_head)) {
467 		p = mem_list_head.next;
468 		mem = list_entry(p, struct snd_mem_list, list);
469 		list_del(p);
470 		snd_dma_free_pages(&mem->buffer);
471 		kfree(mem);
472 	}
473 	mutex_unlock(&list_mutex);
474 }
475 
476 
477 #ifdef CONFIG_PROC_FS
478 /*
479  * proc file interface
480  */
481 #define SND_MEM_PROC_FILE	"driver/snd-page-alloc"
482 static struct proc_dir_entry *snd_mem_proc;
483 
484 static int snd_mem_proc_read(char *page, char **start, off_t off,
485 			     int count, int *eof, void *data)
486 {
487 	int len = 0;
488 	long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
489 	struct snd_mem_list *mem;
490 	int devno;
491 	static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
492 
493 	mutex_lock(&list_mutex);
494 	len += snprintf(page + len, count - len,
495 			"pages  : %li bytes (%li pages per %likB)\n",
496 			pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
497 	devno = 0;
498 	list_for_each_entry(mem, &mem_list_head, list) {
499 		devno++;
500 		len += snprintf(page + len, count - len,
501 				"buffer %d : ID %08x : type %s\n",
502 				devno, mem->id, types[mem->buffer.dev.type]);
503 		len += snprintf(page + len, count - len,
504 				"  addr = 0x%lx, size = %d bytes\n",
505 				(unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
506 	}
507 	mutex_unlock(&list_mutex);
508 	return len;
509 }
510 
511 /* FIXME: for pci only - other bus? */
512 #ifdef CONFIG_PCI
513 #define gettoken(bufp) strsep(bufp, " \t\n")
514 
515 static int snd_mem_proc_write(struct file *file, const char __user *buffer,
516 			      unsigned long count, void *data)
517 {
518 	char buf[128];
519 	char *token, *p;
520 
521 	if (count > ARRAY_SIZE(buf) - 1)
522 		count = ARRAY_SIZE(buf) - 1;
523 	if (copy_from_user(buf, buffer, count))
524 		return -EFAULT;
525 	buf[ARRAY_SIZE(buf) - 1] = '\0';
526 
527 	p = buf;
528 	token = gettoken(&p);
529 	if (! token || *token == '#')
530 		return (int)count;
531 	if (strcmp(token, "add") == 0) {
532 		char *endp;
533 		int vendor, device, size, buffers;
534 		long mask;
535 		int i, alloced;
536 		struct pci_dev *pci;
537 
538 		if ((token = gettoken(&p)) == NULL ||
539 		    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
540 		    (token = gettoken(&p)) == NULL ||
541 		    (device = simple_strtol(token, NULL, 0)) <= 0 ||
542 		    (token = gettoken(&p)) == NULL ||
543 		    (mask = simple_strtol(token, NULL, 0)) < 0 ||
544 		    (token = gettoken(&p)) == NULL ||
545 		    (size = memparse(token, &endp)) < 64*1024 ||
546 		    size > 16*1024*1024 /* too big */ ||
547 		    (token = gettoken(&p)) == NULL ||
548 		    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
549 		    buffers > 4) {
550 			printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
551 			return (int)count;
552 		}
553 		vendor &= 0xffff;
554 		device &= 0xffff;
555 
556 		alloced = 0;
557 		pci = NULL;
558 		while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
559 			if (mask > 0 && mask < 0xffffffff) {
560 				if (pci_set_dma_mask(pci, mask) < 0 ||
561 				    pci_set_consistent_dma_mask(pci, mask) < 0) {
562 					printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
563 					return (int)count;
564 				}
565 			}
566 			for (i = 0; i < buffers; i++) {
567 				struct snd_dma_buffer dmab;
568 				memset(&dmab, 0, sizeof(dmab));
569 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
570 							size, &dmab) < 0) {
571 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
572 					pci_dev_put(pci);
573 					return (int)count;
574 				}
575 				snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
576 			}
577 			alloced++;
578 		}
579 		if (! alloced) {
580 			for (i = 0; i < buffers; i++) {
581 				struct snd_dma_buffer dmab;
582 				memset(&dmab, 0, sizeof(dmab));
583 				/* FIXME: We can allocate only in ZONE_DMA
584 				 * without a device pointer!
585 				 */
586 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
587 							size, &dmab) < 0) {
588 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
589 					break;
590 				}
591 				snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
592 			}
593 		}
594 	} else if (strcmp(token, "erase") == 0)
595 		/* FIXME: need for releasing each buffer chunk? */
596 		free_all_reserved_pages();
597 	else
598 		printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
599 	return (int)count;
600 }
601 #endif /* CONFIG_PCI */
602 #endif /* CONFIG_PROC_FS */
603 
604 /*
605  * module entry
606  */
607 
608 static int __init snd_mem_init(void)
609 {
610 #ifdef CONFIG_PROC_FS
611 	snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
612 	if (snd_mem_proc) {
613 		snd_mem_proc->read_proc = snd_mem_proc_read;
614 #ifdef CONFIG_PCI
615 		snd_mem_proc->write_proc = snd_mem_proc_write;
616 #endif
617 	}
618 #endif
619 	return 0;
620 }
621 
622 static void __exit snd_mem_exit(void)
623 {
624 	remove_proc_entry(SND_MEM_PROC_FILE, NULL);
625 	free_all_reserved_pages();
626 	if (snd_allocated_pages > 0)
627 		printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
628 }
629 
630 
631 module_init(snd_mem_init)
632 module_exit(snd_mem_exit)
633 
634 
635 /*
636  * exports
637  */
638 EXPORT_SYMBOL(snd_dma_alloc_pages);
639 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
640 EXPORT_SYMBOL(snd_dma_free_pages);
641 
642 EXPORT_SYMBOL(snd_dma_get_reserved_buf);
643 EXPORT_SYMBOL(snd_dma_reserve_buf);
644 
645 EXPORT_SYMBOL(snd_malloc_pages);
646 EXPORT_SYMBOL(snd_free_pages);
647