xref: /openbmc/linux/sound/core/memalloc.c (revision 58a95dfa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Takashi Iwai <tiwai@suse.de>
5  *
6  *  Generic memory allocators
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/genalloc.h>
13 #include <linux/vmalloc.h>
14 #ifdef CONFIG_X86
15 #include <asm/set_memory.h>
16 #endif
17 #include <sound/memalloc.h>
18 #include "memalloc_local.h"
19 
20 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
21 
22 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */
23 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab,
24 					  gfp_t default_gfp)
25 {
26 	if (!dmab->dev.dev)
27 		return default_gfp;
28 	else
29 		return (__force gfp_t)(unsigned long)dmab->dev.dev;
30 }
31 
32 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
33 {
34 	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
35 
36 	if (WARN_ON_ONCE(!ops || !ops->alloc))
37 		return NULL;
38 	return ops->alloc(dmab, size);
39 }
40 
41 /**
42  * snd_dma_alloc_pages - allocate the buffer area according to the given type
43  * @type: the DMA buffer type
44  * @device: the device pointer
45  * @size: the buffer size to allocate
46  * @dmab: buffer allocation record to store the allocated data
47  *
48  * Calls the memory-allocator function for the corresponding
49  * buffer type.
50  *
51  * Return: Zero if the buffer with the given size is allocated successfully,
52  * otherwise a negative value on error.
53  */
54 int snd_dma_alloc_pages(int type, struct device *device, size_t size,
55 			struct snd_dma_buffer *dmab)
56 {
57 	if (WARN_ON(!size))
58 		return -ENXIO;
59 	if (WARN_ON(!dmab))
60 		return -ENXIO;
61 
62 	size = PAGE_ALIGN(size);
63 	dmab->dev.type = type;
64 	dmab->dev.dev = device;
65 	dmab->bytes = 0;
66 	dmab->addr = 0;
67 	dmab->private_data = NULL;
68 	dmab->area = __snd_dma_alloc_pages(dmab, size);
69 	if (!dmab->area)
70 		return -ENOMEM;
71 	dmab->bytes = size;
72 	return 0;
73 }
74 EXPORT_SYMBOL(snd_dma_alloc_pages);
75 
76 /**
77  * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
78  * @type: the DMA buffer type
79  * @device: the device pointer
80  * @size: the buffer size to allocate
81  * @dmab: buffer allocation record to store the allocated data
82  *
83  * Calls the memory-allocator function for the corresponding
84  * buffer type.  When no space is left, this function reduces the size and
85  * tries to allocate again.  The size actually allocated is stored in
86  * res_size argument.
87  *
88  * Return: Zero if the buffer with the given size is allocated successfully,
89  * otherwise a negative value on error.
90  */
91 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
92 				 struct snd_dma_buffer *dmab)
93 {
94 	int err;
95 
96 	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
97 		if (err != -ENOMEM)
98 			return err;
99 		if (size <= PAGE_SIZE)
100 			return -ENOMEM;
101 		size >>= 1;
102 		size = PAGE_SIZE << get_order(size);
103 	}
104 	if (! dmab->area)
105 		return -ENOMEM;
106 	return 0;
107 }
108 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
109 
110 /**
111  * snd_dma_free_pages - release the allocated buffer
112  * @dmab: the buffer allocation record to release
113  *
114  * Releases the allocated buffer via snd_dma_alloc_pages().
115  */
116 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
117 {
118 	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
119 
120 	if (ops && ops->free)
121 		ops->free(dmab);
122 }
123 EXPORT_SYMBOL(snd_dma_free_pages);
124 
125 /* called by devres */
126 static void __snd_release_pages(struct device *dev, void *res)
127 {
128 	snd_dma_free_pages(res);
129 }
130 
131 /**
132  * snd_devm_alloc_pages - allocate the buffer and manage with devres
133  * @dev: the device pointer
134  * @type: the DMA buffer type
135  * @size: the buffer size to allocate
136  *
137  * Allocate buffer pages depending on the given type and manage using devres.
138  * The pages will be released automatically at the device removal.
139  *
140  * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
141  * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
142  * SNDRV_DMA_TYPE_VMALLOC type.
143  *
144  * The function returns the snd_dma_buffer object at success, or NULL if failed.
145  */
146 struct snd_dma_buffer *
147 snd_devm_alloc_pages(struct device *dev, int type, size_t size)
148 {
149 	struct snd_dma_buffer *dmab;
150 	int err;
151 
152 	if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
153 		    type == SNDRV_DMA_TYPE_VMALLOC))
154 		return NULL;
155 
156 	dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
157 	if (!dmab)
158 		return NULL;
159 
160 	err = snd_dma_alloc_pages(type, dev, size, dmab);
161 	if (err < 0) {
162 		devres_free(dmab);
163 		return NULL;
164 	}
165 
166 	devres_add(dev, dmab);
167 	return dmab;
168 }
169 EXPORT_SYMBOL_GPL(snd_devm_alloc_pages);
170 
171 /**
172  * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
173  * @dmab: buffer allocation information
174  * @area: VM area information
175  */
176 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
177 			struct vm_area_struct *area)
178 {
179 	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
180 
181 	if (ops && ops->mmap)
182 		return ops->mmap(dmab, area);
183 	else
184 		return -ENOENT;
185 }
186 EXPORT_SYMBOL(snd_dma_buffer_mmap);
187 
188 /**
189  * snd_sgbuf_get_addr - return the physical address at the corresponding offset
190  * @dmab: buffer allocation information
191  * @offset: offset in the ring buffer
192  */
193 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
194 {
195 	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
196 
197 	if (ops && ops->get_addr)
198 		return ops->get_addr(dmab, offset);
199 	else
200 		return dmab->addr + offset;
201 }
202 EXPORT_SYMBOL(snd_sgbuf_get_addr);
203 
204 /**
205  * snd_sgbuf_get_page - return the physical page at the corresponding offset
206  * @dmab: buffer allocation information
207  * @offset: offset in the ring buffer
208  */
209 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
210 {
211 	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
212 
213 	if (ops && ops->get_page)
214 		return ops->get_page(dmab, offset);
215 	else
216 		return virt_to_page(dmab->area + offset);
217 }
218 EXPORT_SYMBOL(snd_sgbuf_get_page);
219 
220 /**
221  * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
222  *	on sg-buffer
223  * @dmab: buffer allocation information
224  * @ofs: offset in the ring buffer
225  * @size: the requested size
226  */
227 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
228 				      unsigned int ofs, unsigned int size)
229 {
230 	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
231 
232 	if (ops && ops->get_chunk_size)
233 		return ops->get_chunk_size(dmab, ofs, size);
234 	else
235 		return size;
236 }
237 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
238 
239 /*
240  * Continuous pages allocator
241  */
242 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
243 {
244 	gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL);
245 
246 	return alloc_pages_exact(size, gfp);
247 }
248 
249 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
250 {
251 	free_pages_exact(dmab->area, dmab->bytes);
252 }
253 
254 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
255 				   struct vm_area_struct *area)
256 {
257 	return remap_pfn_range(area, area->vm_start,
258 			       page_to_pfn(virt_to_page(dmab->area)),
259 			       area->vm_end - area->vm_start,
260 			       area->vm_page_prot);
261 }
262 
263 static const struct snd_malloc_ops snd_dma_continuous_ops = {
264 	.alloc = snd_dma_continuous_alloc,
265 	.free = snd_dma_continuous_free,
266 	.mmap = snd_dma_continuous_mmap,
267 };
268 
269 /*
270  * VMALLOC allocator
271  */
272 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
273 {
274 	gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM);
275 
276 	return __vmalloc(size, gfp);
277 }
278 
279 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
280 {
281 	vfree(dmab->area);
282 }
283 
284 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
285 				struct vm_area_struct *area)
286 {
287 	return remap_vmalloc_range(area, dmab->area, 0);
288 }
289 
290 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
291 					   size_t offset)
292 {
293 	return page_to_phys(vmalloc_to_page(dmab->area + offset)) +
294 		offset % PAGE_SIZE;
295 }
296 
297 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
298 					     size_t offset)
299 {
300 	return vmalloc_to_page(dmab->area + offset);
301 }
302 
303 static unsigned int
304 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
305 			       unsigned int ofs, unsigned int size)
306 {
307 	ofs %= PAGE_SIZE;
308 	size += ofs;
309 	if (size > PAGE_SIZE)
310 		size = PAGE_SIZE;
311 	return size - ofs;
312 }
313 
314 static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
315 	.alloc = snd_dma_vmalloc_alloc,
316 	.free = snd_dma_vmalloc_free,
317 	.mmap = snd_dma_vmalloc_mmap,
318 	.get_addr = snd_dma_vmalloc_get_addr,
319 	.get_page = snd_dma_vmalloc_get_page,
320 	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
321 };
322 
323 #ifdef CONFIG_HAS_DMA
324 /*
325  * IRAM allocator
326  */
327 #ifdef CONFIG_GENERIC_ALLOCATOR
328 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
329 {
330 	struct device *dev = dmab->dev.dev;
331 	struct gen_pool *pool;
332 	void *p;
333 
334 	if (dev->of_node) {
335 		pool = of_gen_pool_get(dev->of_node, "iram", 0);
336 		/* Assign the pool into private_data field */
337 		dmab->private_data = pool;
338 
339 		p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
340 		if (p)
341 			return p;
342 	}
343 
344 	/* Internal memory might have limited size and no enough space,
345 	 * so if we fail to malloc, try to fetch memory traditionally.
346 	 */
347 	dmab->dev.type = SNDRV_DMA_TYPE_DEV;
348 	return __snd_dma_alloc_pages(dmab, size);
349 }
350 
351 static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
352 {
353 	struct gen_pool *pool = dmab->private_data;
354 
355 	if (pool && dmab->area)
356 		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
357 }
358 
359 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
360 			     struct vm_area_struct *area)
361 {
362 	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
363 	return remap_pfn_range(area, area->vm_start,
364 			       dmab->addr >> PAGE_SHIFT,
365 			       area->vm_end - area->vm_start,
366 			       area->vm_page_prot);
367 }
368 
369 static const struct snd_malloc_ops snd_dma_iram_ops = {
370 	.alloc = snd_dma_iram_alloc,
371 	.free = snd_dma_iram_free,
372 	.mmap = snd_dma_iram_mmap,
373 };
374 #endif /* CONFIG_GENERIC_ALLOCATOR */
375 
376 /*
377  * Coherent device pages allocator
378  */
379 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
380 {
381 	gfp_t gfp_flags;
382 	void *p;
383 
384 	gfp_flags = GFP_KERNEL
385 		| __GFP_COMP	/* compound page lets parts be mapped */
386 		| __GFP_NORETRY /* don't trigger OOM-killer */
387 		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
388 	p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, gfp_flags);
389 #ifdef CONFIG_X86
390 	if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
391 		set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT);
392 #endif
393 	return p;
394 }
395 
396 static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
397 {
398 #ifdef CONFIG_X86
399 	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
400 		set_memory_wb((unsigned long)dmab->area,
401 			      PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT);
402 #endif
403 	dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
404 }
405 
406 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
407 			    struct vm_area_struct *area)
408 {
409 	return dma_mmap_coherent(dmab->dev.dev, area,
410 				 dmab->area, dmab->addr, dmab->bytes);
411 }
412 
413 static const struct snd_malloc_ops snd_dma_dev_ops = {
414 	.alloc = snd_dma_dev_alloc,
415 	.free = snd_dma_dev_free,
416 	.mmap = snd_dma_dev_mmap,
417 };
418 #endif /* CONFIG_HAS_DMA */
419 
420 /*
421  * Entry points
422  */
423 static const struct snd_malloc_ops *dma_ops[] = {
424 	[SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
425 	[SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
426 #ifdef CONFIG_HAS_DMA
427 	[SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
428 	[SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_dev_ops,
429 #ifdef CONFIG_GENERIC_ALLOCATOR
430 	[SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
431 #endif /* CONFIG_GENERIC_ALLOCATOR */
432 #endif /* CONFIG_HAS_DMA */
433 #ifdef CONFIG_SND_DMA_SGBUF
434 	[SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
435 	[SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops,
436 #endif
437 };
438 
439 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
440 {
441 	if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
442 			 dmab->dev.type >= ARRAY_SIZE(dma_ops)))
443 		return NULL;
444 	return dma_ops[dmab->dev.type];
445 }
446