1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/genalloc.h> 13 #include <linux/vmalloc.h> 14 #ifdef CONFIG_X86 15 #include <asm/set_memory.h> 16 #endif 17 #include <sound/memalloc.h> 18 #include "memalloc_local.h" 19 20 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 21 22 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 23 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 24 gfp_t default_gfp) 25 { 26 if (!dmab->dev.dev) 27 return default_gfp; 28 else 29 return (__force gfp_t)(unsigned long)dmab->dev.dev; 30 } 31 32 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 33 { 34 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 35 36 if (WARN_ON_ONCE(!ops || !ops->alloc)) 37 return NULL; 38 return ops->alloc(dmab, size); 39 } 40 41 /** 42 * snd_dma_alloc_pages - allocate the buffer area according to the given type 43 * @type: the DMA buffer type 44 * @device: the device pointer 45 * @size: the buffer size to allocate 46 * @dmab: buffer allocation record to store the allocated data 47 * 48 * Calls the memory-allocator function for the corresponding 49 * buffer type. 50 * 51 * Return: Zero if the buffer with the given size is allocated successfully, 52 * otherwise a negative value on error. 53 */ 54 int snd_dma_alloc_pages(int type, struct device *device, size_t size, 55 struct snd_dma_buffer *dmab) 56 { 57 if (WARN_ON(!size)) 58 return -ENXIO; 59 if (WARN_ON(!dmab)) 60 return -ENXIO; 61 62 size = PAGE_ALIGN(size); 63 dmab->dev.type = type; 64 dmab->dev.dev = device; 65 dmab->bytes = 0; 66 dmab->addr = 0; 67 dmab->private_data = NULL; 68 dmab->area = __snd_dma_alloc_pages(dmab, size); 69 if (!dmab->area) 70 return -ENOMEM; 71 dmab->bytes = size; 72 return 0; 73 } 74 EXPORT_SYMBOL(snd_dma_alloc_pages); 75 76 /** 77 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 78 * @type: the DMA buffer type 79 * @device: the device pointer 80 * @size: the buffer size to allocate 81 * @dmab: buffer allocation record to store the allocated data 82 * 83 * Calls the memory-allocator function for the corresponding 84 * buffer type. When no space is left, this function reduces the size and 85 * tries to allocate again. The size actually allocated is stored in 86 * res_size argument. 87 * 88 * Return: Zero if the buffer with the given size is allocated successfully, 89 * otherwise a negative value on error. 90 */ 91 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 92 struct snd_dma_buffer *dmab) 93 { 94 int err; 95 96 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 97 if (err != -ENOMEM) 98 return err; 99 if (size <= PAGE_SIZE) 100 return -ENOMEM; 101 size >>= 1; 102 size = PAGE_SIZE << get_order(size); 103 } 104 if (! dmab->area) 105 return -ENOMEM; 106 return 0; 107 } 108 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 109 110 /** 111 * snd_dma_free_pages - release the allocated buffer 112 * @dmab: the buffer allocation record to release 113 * 114 * Releases the allocated buffer via snd_dma_alloc_pages(). 115 */ 116 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 117 { 118 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 119 120 if (ops && ops->free) 121 ops->free(dmab); 122 } 123 EXPORT_SYMBOL(snd_dma_free_pages); 124 125 /* called by devres */ 126 static void __snd_release_pages(struct device *dev, void *res) 127 { 128 snd_dma_free_pages(res); 129 } 130 131 /** 132 * snd_devm_alloc_pages - allocate the buffer and manage with devres 133 * @dev: the device pointer 134 * @type: the DMA buffer type 135 * @size: the buffer size to allocate 136 * 137 * Allocate buffer pages depending on the given type and manage using devres. 138 * The pages will be released automatically at the device removal. 139 * 140 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 141 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 142 * SNDRV_DMA_TYPE_VMALLOC type. 143 * 144 * The function returns the snd_dma_buffer object at success, or NULL if failed. 145 */ 146 struct snd_dma_buffer * 147 snd_devm_alloc_pages(struct device *dev, int type, size_t size) 148 { 149 struct snd_dma_buffer *dmab; 150 int err; 151 152 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 153 type == SNDRV_DMA_TYPE_VMALLOC)) 154 return NULL; 155 156 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 157 if (!dmab) 158 return NULL; 159 160 err = snd_dma_alloc_pages(type, dev, size, dmab); 161 if (err < 0) { 162 devres_free(dmab); 163 return NULL; 164 } 165 166 devres_add(dev, dmab); 167 return dmab; 168 } 169 EXPORT_SYMBOL_GPL(snd_devm_alloc_pages); 170 171 /** 172 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 173 * @dmab: buffer allocation information 174 * @area: VM area information 175 */ 176 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 177 struct vm_area_struct *area) 178 { 179 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 180 181 if (ops && ops->mmap) 182 return ops->mmap(dmab, area); 183 else 184 return -ENOENT; 185 } 186 EXPORT_SYMBOL(snd_dma_buffer_mmap); 187 188 /** 189 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 190 * @dmab: buffer allocation information 191 * @offset: offset in the ring buffer 192 */ 193 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 194 { 195 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 196 197 if (ops && ops->get_addr) 198 return ops->get_addr(dmab, offset); 199 else 200 return dmab->addr + offset; 201 } 202 EXPORT_SYMBOL(snd_sgbuf_get_addr); 203 204 /** 205 * snd_sgbuf_get_page - return the physical page at the corresponding offset 206 * @dmab: buffer allocation information 207 * @offset: offset in the ring buffer 208 */ 209 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 210 { 211 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 212 213 if (ops && ops->get_page) 214 return ops->get_page(dmab, offset); 215 else 216 return virt_to_page(dmab->area + offset); 217 } 218 EXPORT_SYMBOL(snd_sgbuf_get_page); 219 220 /** 221 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 222 * on sg-buffer 223 * @dmab: buffer allocation information 224 * @ofs: offset in the ring buffer 225 * @size: the requested size 226 */ 227 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 228 unsigned int ofs, unsigned int size) 229 { 230 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 231 232 if (ops && ops->get_chunk_size) 233 return ops->get_chunk_size(dmab, ofs, size); 234 else 235 return size; 236 } 237 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 238 239 /* 240 * Continuous pages allocator 241 */ 242 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 243 { 244 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 245 246 return alloc_pages_exact(size, gfp); 247 } 248 249 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 250 { 251 free_pages_exact(dmab->area, dmab->bytes); 252 } 253 254 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 255 struct vm_area_struct *area) 256 { 257 return remap_pfn_range(area, area->vm_start, 258 page_to_pfn(virt_to_page(dmab->area)), 259 area->vm_end - area->vm_start, 260 area->vm_page_prot); 261 } 262 263 static const struct snd_malloc_ops snd_dma_continuous_ops = { 264 .alloc = snd_dma_continuous_alloc, 265 .free = snd_dma_continuous_free, 266 .mmap = snd_dma_continuous_mmap, 267 }; 268 269 /* 270 * VMALLOC allocator 271 */ 272 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 273 { 274 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 275 276 return __vmalloc(size, gfp); 277 } 278 279 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 280 { 281 vfree(dmab->area); 282 } 283 284 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 285 struct vm_area_struct *area) 286 { 287 return remap_vmalloc_range(area, dmab->area, 0); 288 } 289 290 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 291 size_t offset) 292 { 293 return page_to_phys(vmalloc_to_page(dmab->area + offset)) + 294 offset % PAGE_SIZE; 295 } 296 297 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 298 size_t offset) 299 { 300 return vmalloc_to_page(dmab->area + offset); 301 } 302 303 static unsigned int 304 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 305 unsigned int ofs, unsigned int size) 306 { 307 ofs %= PAGE_SIZE; 308 size += ofs; 309 if (size > PAGE_SIZE) 310 size = PAGE_SIZE; 311 return size - ofs; 312 } 313 314 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 315 .alloc = snd_dma_vmalloc_alloc, 316 .free = snd_dma_vmalloc_free, 317 .mmap = snd_dma_vmalloc_mmap, 318 .get_addr = snd_dma_vmalloc_get_addr, 319 .get_page = snd_dma_vmalloc_get_page, 320 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 321 }; 322 323 #ifdef CONFIG_HAS_DMA 324 /* 325 * IRAM allocator 326 */ 327 #ifdef CONFIG_GENERIC_ALLOCATOR 328 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 329 { 330 struct device *dev = dmab->dev.dev; 331 struct gen_pool *pool; 332 void *p; 333 334 if (dev->of_node) { 335 pool = of_gen_pool_get(dev->of_node, "iram", 0); 336 /* Assign the pool into private_data field */ 337 dmab->private_data = pool; 338 339 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 340 if (p) 341 return p; 342 } 343 344 /* Internal memory might have limited size and no enough space, 345 * so if we fail to malloc, try to fetch memory traditionally. 346 */ 347 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 348 return __snd_dma_alloc_pages(dmab, size); 349 } 350 351 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 352 { 353 struct gen_pool *pool = dmab->private_data; 354 355 if (pool && dmab->area) 356 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 357 } 358 359 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 360 struct vm_area_struct *area) 361 { 362 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 363 return remap_pfn_range(area, area->vm_start, 364 dmab->addr >> PAGE_SHIFT, 365 area->vm_end - area->vm_start, 366 area->vm_page_prot); 367 } 368 369 static const struct snd_malloc_ops snd_dma_iram_ops = { 370 .alloc = snd_dma_iram_alloc, 371 .free = snd_dma_iram_free, 372 .mmap = snd_dma_iram_mmap, 373 }; 374 #endif /* CONFIG_GENERIC_ALLOCATOR */ 375 376 /* 377 * Coherent device pages allocator 378 */ 379 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 380 { 381 gfp_t gfp_flags; 382 void *p; 383 384 gfp_flags = GFP_KERNEL 385 | __GFP_COMP /* compound page lets parts be mapped */ 386 | __GFP_NORETRY /* don't trigger OOM-killer */ 387 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */ 388 p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, gfp_flags); 389 #ifdef CONFIG_X86 390 if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 391 set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT); 392 #endif 393 return p; 394 } 395 396 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 397 { 398 #ifdef CONFIG_X86 399 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 400 set_memory_wb((unsigned long)dmab->area, 401 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT); 402 #endif 403 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 404 } 405 406 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 407 struct vm_area_struct *area) 408 { 409 return dma_mmap_coherent(dmab->dev.dev, area, 410 dmab->area, dmab->addr, dmab->bytes); 411 } 412 413 static const struct snd_malloc_ops snd_dma_dev_ops = { 414 .alloc = snd_dma_dev_alloc, 415 .free = snd_dma_dev_free, 416 .mmap = snd_dma_dev_mmap, 417 }; 418 #endif /* CONFIG_HAS_DMA */ 419 420 /* 421 * Entry points 422 */ 423 static const struct snd_malloc_ops *dma_ops[] = { 424 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 425 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 426 #ifdef CONFIG_HAS_DMA 427 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 428 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_dev_ops, 429 #ifdef CONFIG_GENERIC_ALLOCATOR 430 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 431 #endif /* CONFIG_GENERIC_ALLOCATOR */ 432 #endif /* CONFIG_HAS_DMA */ 433 #ifdef CONFIG_SND_DMA_SGBUF 434 [SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops, 435 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops, 436 #endif 437 }; 438 439 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 440 { 441 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 442 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 443 return NULL; 444 return dma_ops[dmab->dev.type]; 445 } 446