1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dma-map-ops.h> 13 #include <linux/genalloc.h> 14 #include <linux/highmem.h> 15 #include <linux/vmalloc.h> 16 #ifdef CONFIG_X86 17 #include <asm/set_memory.h> 18 #endif 19 #include <sound/memalloc.h> 20 #include "memalloc_local.h" 21 22 #define DEFAULT_GFP \ 23 (GFP_KERNEL | \ 24 __GFP_COMP | /* compound page lets parts be mapped */ \ 25 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \ 26 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 27 28 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 29 30 #ifdef CONFIG_SND_DMA_SGBUF 31 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size); 32 #endif 33 34 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 35 { 36 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 37 38 if (WARN_ON_ONCE(!ops || !ops->alloc)) 39 return NULL; 40 return ops->alloc(dmab, size); 41 } 42 43 /** 44 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 45 * type and direction 46 * @type: the DMA buffer type 47 * @device: the device pointer 48 * @dir: DMA direction 49 * @size: the buffer size to allocate 50 * @dmab: buffer allocation record to store the allocated data 51 * 52 * Calls the memory-allocator function for the corresponding 53 * buffer type. 54 * 55 * Return: Zero if the buffer with the given size is allocated successfully, 56 * otherwise a negative value on error. 57 */ 58 int snd_dma_alloc_dir_pages(int type, struct device *device, 59 enum dma_data_direction dir, size_t size, 60 struct snd_dma_buffer *dmab) 61 { 62 if (WARN_ON(!size)) 63 return -ENXIO; 64 if (WARN_ON(!dmab)) 65 return -ENXIO; 66 67 size = PAGE_ALIGN(size); 68 dmab->dev.type = type; 69 dmab->dev.dev = device; 70 dmab->dev.dir = dir; 71 dmab->bytes = 0; 72 dmab->addr = 0; 73 dmab->private_data = NULL; 74 dmab->area = __snd_dma_alloc_pages(dmab, size); 75 if (!dmab->area) 76 return -ENOMEM; 77 dmab->bytes = size; 78 return 0; 79 } 80 EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 81 82 /** 83 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 84 * @type: the DMA buffer type 85 * @device: the device pointer 86 * @size: the buffer size to allocate 87 * @dmab: buffer allocation record to store the allocated data 88 * 89 * Calls the memory-allocator function for the corresponding 90 * buffer type. When no space is left, this function reduces the size and 91 * tries to allocate again. The size actually allocated is stored in 92 * res_size argument. 93 * 94 * Return: Zero if the buffer with the given size is allocated successfully, 95 * otherwise a negative value on error. 96 */ 97 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 98 struct snd_dma_buffer *dmab) 99 { 100 int err; 101 102 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 103 if (err != -ENOMEM) 104 return err; 105 if (size <= PAGE_SIZE) 106 return -ENOMEM; 107 size >>= 1; 108 size = PAGE_SIZE << get_order(size); 109 } 110 if (! dmab->area) 111 return -ENOMEM; 112 return 0; 113 } 114 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 115 116 /** 117 * snd_dma_free_pages - release the allocated buffer 118 * @dmab: the buffer allocation record to release 119 * 120 * Releases the allocated buffer via snd_dma_alloc_pages(). 121 */ 122 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 123 { 124 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 125 126 if (ops && ops->free) 127 ops->free(dmab); 128 } 129 EXPORT_SYMBOL(snd_dma_free_pages); 130 131 /* called by devres */ 132 static void __snd_release_pages(struct device *dev, void *res) 133 { 134 snd_dma_free_pages(res); 135 } 136 137 /** 138 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 139 * @dev: the device pointer 140 * @type: the DMA buffer type 141 * @dir: DMA direction 142 * @size: the buffer size to allocate 143 * 144 * Allocate buffer pages depending on the given type and manage using devres. 145 * The pages will be released automatically at the device removal. 146 * 147 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 148 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 149 * SNDRV_DMA_TYPE_VMALLOC type. 150 * 151 * Return: the snd_dma_buffer object at success, or NULL if failed 152 */ 153 struct snd_dma_buffer * 154 snd_devm_alloc_dir_pages(struct device *dev, int type, 155 enum dma_data_direction dir, size_t size) 156 { 157 struct snd_dma_buffer *dmab; 158 int err; 159 160 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 161 type == SNDRV_DMA_TYPE_VMALLOC)) 162 return NULL; 163 164 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 165 if (!dmab) 166 return NULL; 167 168 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 169 if (err < 0) { 170 devres_free(dmab); 171 return NULL; 172 } 173 174 devres_add(dev, dmab); 175 return dmab; 176 } 177 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 178 179 /** 180 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 181 * @dmab: buffer allocation information 182 * @area: VM area information 183 * 184 * Return: zero if successful, or a negative error code 185 */ 186 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 187 struct vm_area_struct *area) 188 { 189 const struct snd_malloc_ops *ops; 190 191 if (!dmab) 192 return -ENOENT; 193 ops = snd_dma_get_ops(dmab); 194 if (ops && ops->mmap) 195 return ops->mmap(dmab, area); 196 else 197 return -ENOENT; 198 } 199 EXPORT_SYMBOL(snd_dma_buffer_mmap); 200 201 #ifdef CONFIG_HAS_DMA 202 /** 203 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 204 * @dmab: buffer allocation information 205 * @mode: sync mode 206 */ 207 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 208 enum snd_dma_sync_mode mode) 209 { 210 const struct snd_malloc_ops *ops; 211 212 if (!dmab || !dmab->dev.need_sync) 213 return; 214 ops = snd_dma_get_ops(dmab); 215 if (ops && ops->sync) 216 ops->sync(dmab, mode); 217 } 218 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 219 #endif /* CONFIG_HAS_DMA */ 220 221 /** 222 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 223 * @dmab: buffer allocation information 224 * @offset: offset in the ring buffer 225 * 226 * Return: the physical address 227 */ 228 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 229 { 230 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 231 232 if (ops && ops->get_addr) 233 return ops->get_addr(dmab, offset); 234 else 235 return dmab->addr + offset; 236 } 237 EXPORT_SYMBOL(snd_sgbuf_get_addr); 238 239 /** 240 * snd_sgbuf_get_page - return the physical page at the corresponding offset 241 * @dmab: buffer allocation information 242 * @offset: offset in the ring buffer 243 * 244 * Return: the page pointer 245 */ 246 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 247 { 248 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 249 250 if (ops && ops->get_page) 251 return ops->get_page(dmab, offset); 252 else 253 return virt_to_page(dmab->area + offset); 254 } 255 EXPORT_SYMBOL(snd_sgbuf_get_page); 256 257 /** 258 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 259 * on sg-buffer 260 * @dmab: buffer allocation information 261 * @ofs: offset in the ring buffer 262 * @size: the requested size 263 * 264 * Return: the chunk size 265 */ 266 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 267 unsigned int ofs, unsigned int size) 268 { 269 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 270 271 if (ops && ops->get_chunk_size) 272 return ops->get_chunk_size(dmab, ofs, size); 273 else 274 return size; 275 } 276 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 277 278 /* 279 * Continuous pages allocator 280 */ 281 static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr, 282 bool wc) 283 { 284 void *p; 285 gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 286 287 again: 288 p = alloc_pages_exact(size, gfp); 289 if (!p) 290 return NULL; 291 *addr = page_to_phys(virt_to_page(p)); 292 if (!dev) 293 return p; 294 if ((*addr + size - 1) & ~dev->coherent_dma_mask) { 295 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) { 296 gfp |= GFP_DMA32; 297 goto again; 298 } 299 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 300 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 301 goto again; 302 } 303 } 304 #ifdef CONFIG_X86 305 if (wc) 306 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT); 307 #endif 308 return p; 309 } 310 311 static void do_free_pages(void *p, size_t size, bool wc) 312 { 313 #ifdef CONFIG_X86 314 if (wc) 315 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT); 316 #endif 317 free_pages_exact(p, size); 318 } 319 320 321 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 322 { 323 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false); 324 } 325 326 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 327 { 328 do_free_pages(dmab->area, dmab->bytes, false); 329 } 330 331 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 332 struct vm_area_struct *area) 333 { 334 return remap_pfn_range(area, area->vm_start, 335 dmab->addr >> PAGE_SHIFT, 336 area->vm_end - area->vm_start, 337 area->vm_page_prot); 338 } 339 340 static const struct snd_malloc_ops snd_dma_continuous_ops = { 341 .alloc = snd_dma_continuous_alloc, 342 .free = snd_dma_continuous_free, 343 .mmap = snd_dma_continuous_mmap, 344 }; 345 346 /* 347 * VMALLOC allocator 348 */ 349 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 350 { 351 return vmalloc(size); 352 } 353 354 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 355 { 356 vfree(dmab->area); 357 } 358 359 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 360 struct vm_area_struct *area) 361 { 362 return remap_vmalloc_range(area, dmab->area, 0); 363 } 364 365 #define get_vmalloc_page_addr(dmab, offset) \ 366 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 367 368 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 369 size_t offset) 370 { 371 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 372 } 373 374 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 375 size_t offset) 376 { 377 return vmalloc_to_page(dmab->area + offset); 378 } 379 380 static unsigned int 381 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 382 unsigned int ofs, unsigned int size) 383 { 384 unsigned int start, end; 385 unsigned long addr; 386 387 start = ALIGN_DOWN(ofs, PAGE_SIZE); 388 end = ofs + size - 1; /* the last byte address */ 389 /* check page continuity */ 390 addr = get_vmalloc_page_addr(dmab, start); 391 for (;;) { 392 start += PAGE_SIZE; 393 if (start > end) 394 break; 395 addr += PAGE_SIZE; 396 if (get_vmalloc_page_addr(dmab, start) != addr) 397 return start - ofs; 398 } 399 /* ok, all on continuous pages */ 400 return size; 401 } 402 403 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 404 .alloc = snd_dma_vmalloc_alloc, 405 .free = snd_dma_vmalloc_free, 406 .mmap = snd_dma_vmalloc_mmap, 407 .get_addr = snd_dma_vmalloc_get_addr, 408 .get_page = snd_dma_vmalloc_get_page, 409 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 410 }; 411 412 #ifdef CONFIG_HAS_DMA 413 /* 414 * IRAM allocator 415 */ 416 #ifdef CONFIG_GENERIC_ALLOCATOR 417 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 418 { 419 struct device *dev = dmab->dev.dev; 420 struct gen_pool *pool; 421 void *p; 422 423 if (dev->of_node) { 424 pool = of_gen_pool_get(dev->of_node, "iram", 0); 425 /* Assign the pool into private_data field */ 426 dmab->private_data = pool; 427 428 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 429 if (p) 430 return p; 431 } 432 433 /* Internal memory might have limited size and no enough space, 434 * so if we fail to malloc, try to fetch memory traditionally. 435 */ 436 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 437 return __snd_dma_alloc_pages(dmab, size); 438 } 439 440 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 441 { 442 struct gen_pool *pool = dmab->private_data; 443 444 if (pool && dmab->area) 445 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 446 } 447 448 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 449 struct vm_area_struct *area) 450 { 451 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 452 return remap_pfn_range(area, area->vm_start, 453 dmab->addr >> PAGE_SHIFT, 454 area->vm_end - area->vm_start, 455 area->vm_page_prot); 456 } 457 458 static const struct snd_malloc_ops snd_dma_iram_ops = { 459 .alloc = snd_dma_iram_alloc, 460 .free = snd_dma_iram_free, 461 .mmap = snd_dma_iram_mmap, 462 }; 463 #endif /* CONFIG_GENERIC_ALLOCATOR */ 464 465 /* 466 * Coherent device pages allocator 467 */ 468 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 469 { 470 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 471 } 472 473 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 474 { 475 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 476 } 477 478 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 479 struct vm_area_struct *area) 480 { 481 return dma_mmap_coherent(dmab->dev.dev, area, 482 dmab->area, dmab->addr, dmab->bytes); 483 } 484 485 static const struct snd_malloc_ops snd_dma_dev_ops = { 486 .alloc = snd_dma_dev_alloc, 487 .free = snd_dma_dev_free, 488 .mmap = snd_dma_dev_mmap, 489 }; 490 491 /* 492 * Write-combined pages 493 */ 494 /* x86-specific allocations */ 495 #ifdef CONFIG_SND_DMA_SGBUF 496 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 497 { 498 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true); 499 } 500 501 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 502 { 503 do_free_pages(dmab->area, dmab->bytes, true); 504 } 505 506 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 507 struct vm_area_struct *area) 508 { 509 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 510 return snd_dma_continuous_mmap(dmab, area); 511 } 512 #else 513 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 514 { 515 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 516 } 517 518 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 519 { 520 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 521 } 522 523 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 524 struct vm_area_struct *area) 525 { 526 return dma_mmap_wc(dmab->dev.dev, area, 527 dmab->area, dmab->addr, dmab->bytes); 528 } 529 #endif /* CONFIG_SND_DMA_SGBUF */ 530 531 static const struct snd_malloc_ops snd_dma_wc_ops = { 532 .alloc = snd_dma_wc_alloc, 533 .free = snd_dma_wc_free, 534 .mmap = snd_dma_wc_mmap, 535 }; 536 537 /* 538 * Non-contiguous pages allocator 539 */ 540 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 541 { 542 struct sg_table *sgt; 543 void *p; 544 545 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 546 DEFAULT_GFP, 0); 547 #ifdef CONFIG_SND_DMA_SGBUF 548 if (!sgt && !get_dma_ops(dmab->dev.dev)) { 549 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG) 550 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 551 else 552 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK; 553 return snd_dma_sg_fallback_alloc(dmab, size); 554 } 555 #endif 556 if (!sgt) 557 return NULL; 558 559 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, 560 sg_dma_address(sgt->sgl)); 561 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 562 if (p) { 563 dmab->private_data = sgt; 564 /* store the first page address for convenience */ 565 dmab->addr = snd_sgbuf_get_addr(dmab, 0); 566 } else { 567 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 568 } 569 return p; 570 } 571 572 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 573 { 574 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 575 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 576 dmab->dev.dir); 577 } 578 579 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 580 struct vm_area_struct *area) 581 { 582 return dma_mmap_noncontiguous(dmab->dev.dev, area, 583 dmab->bytes, dmab->private_data); 584 } 585 586 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 587 enum snd_dma_sync_mode mode) 588 { 589 if (mode == SNDRV_DMA_SYNC_CPU) { 590 if (dmab->dev.dir == DMA_TO_DEVICE) 591 return; 592 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 593 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 594 dmab->dev.dir); 595 } else { 596 if (dmab->dev.dir == DMA_FROM_DEVICE) 597 return; 598 flush_kernel_vmap_range(dmab->area, dmab->bytes); 599 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 600 dmab->dev.dir); 601 } 602 } 603 604 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab, 605 struct sg_page_iter *piter, 606 size_t offset) 607 { 608 struct sg_table *sgt = dmab->private_data; 609 610 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents, 611 offset >> PAGE_SHIFT); 612 } 613 614 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab, 615 size_t offset) 616 { 617 struct sg_dma_page_iter iter; 618 619 snd_dma_noncontig_iter_set(dmab, &iter.base, offset); 620 __sg_page_iter_dma_next(&iter); 621 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE; 622 } 623 624 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab, 625 size_t offset) 626 { 627 struct sg_page_iter iter; 628 629 snd_dma_noncontig_iter_set(dmab, &iter, offset); 630 __sg_page_iter_next(&iter); 631 return sg_page_iter_page(&iter); 632 } 633 634 static unsigned int 635 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab, 636 unsigned int ofs, unsigned int size) 637 { 638 struct sg_dma_page_iter iter; 639 unsigned int start, end; 640 unsigned long addr; 641 642 start = ALIGN_DOWN(ofs, PAGE_SIZE); 643 end = ofs + size - 1; /* the last byte address */ 644 snd_dma_noncontig_iter_set(dmab, &iter.base, start); 645 if (!__sg_page_iter_dma_next(&iter)) 646 return 0; 647 /* check page continuity */ 648 addr = sg_page_iter_dma_address(&iter); 649 for (;;) { 650 start += PAGE_SIZE; 651 if (start > end) 652 break; 653 addr += PAGE_SIZE; 654 if (!__sg_page_iter_dma_next(&iter) || 655 sg_page_iter_dma_address(&iter) != addr) 656 return start - ofs; 657 } 658 /* ok, all on continuous pages */ 659 return size; 660 } 661 662 static const struct snd_malloc_ops snd_dma_noncontig_ops = { 663 .alloc = snd_dma_noncontig_alloc, 664 .free = snd_dma_noncontig_free, 665 .mmap = snd_dma_noncontig_mmap, 666 .sync = snd_dma_noncontig_sync, 667 .get_addr = snd_dma_noncontig_get_addr, 668 .get_page = snd_dma_noncontig_get_page, 669 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 670 }; 671 672 /* x86-specific SG-buffer with WC pages */ 673 #ifdef CONFIG_SND_DMA_SGBUF 674 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it))) 675 676 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 677 { 678 void *p = snd_dma_noncontig_alloc(dmab, size); 679 struct sg_table *sgt = dmab->private_data; 680 struct sg_page_iter iter; 681 682 if (!p) 683 return NULL; 684 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG) 685 return p; 686 for_each_sgtable_page(sgt, &iter, 0) 687 set_memory_wc(sg_wc_address(&iter), 1); 688 return p; 689 } 690 691 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab) 692 { 693 struct sg_table *sgt = dmab->private_data; 694 struct sg_page_iter iter; 695 696 for_each_sgtable_page(sgt, &iter, 0) 697 set_memory_wb(sg_wc_address(&iter), 1); 698 snd_dma_noncontig_free(dmab); 699 } 700 701 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab, 702 struct vm_area_struct *area) 703 { 704 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 705 return dma_mmap_noncontiguous(dmab->dev.dev, area, 706 dmab->bytes, dmab->private_data); 707 } 708 709 static const struct snd_malloc_ops snd_dma_sg_wc_ops = { 710 .alloc = snd_dma_sg_wc_alloc, 711 .free = snd_dma_sg_wc_free, 712 .mmap = snd_dma_sg_wc_mmap, 713 .sync = snd_dma_noncontig_sync, 714 .get_addr = snd_dma_noncontig_get_addr, 715 .get_page = snd_dma_noncontig_get_page, 716 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 717 }; 718 719 /* Fallback SG-buffer allocations for x86 */ 720 struct snd_dma_sg_fallback { 721 size_t count; 722 struct page **pages; 723 dma_addr_t *addrs; 724 }; 725 726 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab, 727 struct snd_dma_sg_fallback *sgbuf) 728 { 729 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 730 size_t i; 731 732 for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++) 733 do_free_pages(page_address(sgbuf->pages[i]), PAGE_SIZE, wc); 734 kvfree(sgbuf->pages); 735 kvfree(sgbuf->addrs); 736 kfree(sgbuf); 737 } 738 739 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size) 740 { 741 struct snd_dma_sg_fallback *sgbuf; 742 struct page **pages; 743 size_t i, count; 744 void *p; 745 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 746 747 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL); 748 if (!sgbuf) 749 return NULL; 750 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 751 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 752 if (!pages) 753 goto error; 754 sgbuf->pages = pages; 755 sgbuf->addrs = kvcalloc(count, sizeof(*sgbuf->addrs), GFP_KERNEL); 756 if (!sgbuf->addrs) 757 goto error; 758 759 for (i = 0; i < count; sgbuf->count++, i++) { 760 p = do_alloc_pages(dmab->dev.dev, PAGE_SIZE, &sgbuf->addrs[i], wc); 761 if (!p) 762 goto error; 763 sgbuf->pages[i] = virt_to_page(p); 764 } 765 766 p = vmap(pages, count, VM_MAP, PAGE_KERNEL); 767 if (!p) 768 goto error; 769 dmab->private_data = sgbuf; 770 /* store the first page address for convenience */ 771 dmab->addr = snd_sgbuf_get_addr(dmab, 0); 772 return p; 773 774 error: 775 __snd_dma_sg_fallback_free(dmab, sgbuf); 776 return NULL; 777 } 778 779 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab) 780 { 781 vunmap(dmab->area); 782 __snd_dma_sg_fallback_free(dmab, dmab->private_data); 783 } 784 785 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab, 786 struct vm_area_struct *area) 787 { 788 struct snd_dma_sg_fallback *sgbuf = dmab->private_data; 789 790 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 791 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 792 return vm_map_pages(area, sgbuf->pages, sgbuf->count); 793 } 794 795 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = { 796 .alloc = snd_dma_sg_fallback_alloc, 797 .free = snd_dma_sg_fallback_free, 798 .mmap = snd_dma_sg_fallback_mmap, 799 /* reuse vmalloc helpers */ 800 .get_addr = snd_dma_vmalloc_get_addr, 801 .get_page = snd_dma_vmalloc_get_page, 802 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 803 }; 804 #endif /* CONFIG_SND_DMA_SGBUF */ 805 806 /* 807 * Non-coherent pages allocator 808 */ 809 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 810 { 811 void *p; 812 813 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 814 dmab->dev.dir, DEFAULT_GFP); 815 if (p) 816 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr); 817 return p; 818 } 819 820 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 821 { 822 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 823 dmab->addr, dmab->dev.dir); 824 } 825 826 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 827 struct vm_area_struct *area) 828 { 829 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 830 return dma_mmap_pages(dmab->dev.dev, area, 831 area->vm_end - area->vm_start, 832 virt_to_page(dmab->area)); 833 } 834 835 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 836 enum snd_dma_sync_mode mode) 837 { 838 if (mode == SNDRV_DMA_SYNC_CPU) { 839 if (dmab->dev.dir != DMA_TO_DEVICE) 840 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 841 dmab->bytes, dmab->dev.dir); 842 } else { 843 if (dmab->dev.dir != DMA_FROM_DEVICE) 844 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 845 dmab->bytes, dmab->dev.dir); 846 } 847 } 848 849 static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 850 .alloc = snd_dma_noncoherent_alloc, 851 .free = snd_dma_noncoherent_free, 852 .mmap = snd_dma_noncoherent_mmap, 853 .sync = snd_dma_noncoherent_sync, 854 }; 855 856 #endif /* CONFIG_HAS_DMA */ 857 858 /* 859 * Entry points 860 */ 861 static const struct snd_malloc_ops *snd_dma_ops[] = { 862 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 863 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 864 #ifdef CONFIG_HAS_DMA 865 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 866 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 867 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 868 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 869 #ifdef CONFIG_SND_DMA_SGBUF 870 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops, 871 #endif 872 #ifdef CONFIG_GENERIC_ALLOCATOR 873 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 874 #endif /* CONFIG_GENERIC_ALLOCATOR */ 875 #ifdef CONFIG_SND_DMA_SGBUF 876 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 877 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 878 #endif 879 #endif /* CONFIG_HAS_DMA */ 880 }; 881 882 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 883 { 884 if (WARN_ON_ONCE(!dmab)) 885 return NULL; 886 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 887 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops))) 888 return NULL; 889 return snd_dma_ops[dmab->dev.type]; 890 } 891