1 /* 2 * Apple Onboard Audio driver for tas codec 3 * 4 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * GPL v2, can be found in COPYING. 7 * 8 * Open questions: 9 * - How to distinguish between 3004 and versions? 10 * 11 * FIXMEs: 12 * - This codec driver doesn't honour the 'connected' 13 * property of the aoa_codec struct, hence if 14 * it is used in machines where not everything is 15 * connected it will display wrong mixer elements. 16 * - Driver assumes that the microphone is always 17 * monaureal and connected to the right channel of 18 * the input. This should also be a codec-dependent 19 * flag, maybe the codec should have 3 different 20 * bits for the three different possibilities how 21 * it can be hooked up... 22 * But as long as I don't see any hardware hooked 23 * up that way... 24 * - As Apple notes in their code, the tas3004 seems 25 * to delay the right channel by one sample. You can 26 * see this when for example recording stereo in 27 * audacity, or recording the tas output via cable 28 * on another machine (use a sinus generator or so). 29 * I tried programming the BiQuads but couldn't 30 * make the delay work, maybe someone can read the 31 * datasheet and fix it. The relevant Apple comment 32 * is in AppleTAS3004Audio.cpp lines 1637 ff. Note 33 * that their comment describing how they program 34 * the filters sucks... 35 * 36 * Other things: 37 * - this should actually register *two* aoa_codec 38 * structs since it has two inputs. Then it must 39 * use the prepare callback to forbid running the 40 * secondary output on a different clock. 41 * Also, whatever bus knows how to do this must 42 * provide two soundbus_dev devices and the fabric 43 * must be able to link them correctly. 44 * 45 * I don't even know if Apple ever uses the second 46 * port on the tas3004 though, I don't think their 47 * i2s controllers can even do it. OTOH, they all 48 * derive the clocks from common clocks, so it 49 * might just be possible. The framework allows the 50 * codec to refine the transfer_info items in the 51 * usable callback, so we can simply remove the 52 * rates the second instance is not using when it 53 * actually is in use. 54 * Maybe we'll need to make the sound busses have 55 * a 'clock group id' value so the codec can 56 * determine if the two outputs can be driven at 57 * the same time. But that is likely overkill, up 58 * to the fabric to not link them up incorrectly, 59 * and up to the hardware designer to not wire 60 * them up in some weird unusable way. 61 */ 62 #include <stddef.h> 63 #include <linux/i2c.h> 64 #include <asm/pmac_low_i2c.h> 65 #include <asm/prom.h> 66 #include <linux/delay.h> 67 #include <linux/module.h> 68 #include <linux/mutex.h> 69 70 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 71 MODULE_LICENSE("GPL"); 72 MODULE_DESCRIPTION("tas codec driver for snd-aoa"); 73 74 #include "tas.h" 75 #include "tas-gain-table.h" 76 #include "tas-basstreble.h" 77 #include "../aoa.h" 78 #include "../soundbus/soundbus.h" 79 80 #define PFX "snd-aoa-codec-tas: " 81 82 83 struct tas { 84 struct aoa_codec codec; 85 struct i2c_client *i2c; 86 u32 mute_l:1, mute_r:1 , 87 controls_created:1 , 88 drc_enabled:1, 89 hw_enabled:1; 90 u8 cached_volume_l, cached_volume_r; 91 u8 mixer_l[3], mixer_r[3]; 92 u8 bass, treble; 93 u8 acr; 94 int drc_range; 95 /* protects hardware access against concurrency from 96 * userspace when hitting controls and during 97 * codec init/suspend/resume */ 98 struct mutex mtx; 99 }; 100 101 static int tas_reset_init(struct tas *tas); 102 103 static struct tas *codec_to_tas(struct aoa_codec *codec) 104 { 105 return container_of(codec, struct tas, codec); 106 } 107 108 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data) 109 { 110 if (len == 1) 111 return i2c_smbus_write_byte_data(tas->i2c, reg, *data); 112 else 113 return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data); 114 } 115 116 static void tas3004_set_drc(struct tas *tas) 117 { 118 unsigned char val[6]; 119 120 if (tas->drc_enabled) 121 val[0] = 0x50; /* 3:1 above threshold */ 122 else 123 val[0] = 0x51; /* disabled */ 124 val[1] = 0x02; /* 1:1 below threshold */ 125 if (tas->drc_range > 0xef) 126 val[2] = 0xef; 127 else if (tas->drc_range < 0) 128 val[2] = 0x00; 129 else 130 val[2] = tas->drc_range; 131 val[3] = 0xb0; 132 val[4] = 0x60; 133 val[5] = 0xa0; 134 135 tas_write_reg(tas, TAS_REG_DRC, 6, val); 136 } 137 138 static void tas_set_treble(struct tas *tas) 139 { 140 u8 tmp; 141 142 tmp = tas3004_treble(tas->treble); 143 tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp); 144 } 145 146 static void tas_set_bass(struct tas *tas) 147 { 148 u8 tmp; 149 150 tmp = tas3004_bass(tas->bass); 151 tas_write_reg(tas, TAS_REG_BASS, 1, &tmp); 152 } 153 154 static void tas_set_volume(struct tas *tas) 155 { 156 u8 block[6]; 157 int tmp; 158 u8 left, right; 159 160 left = tas->cached_volume_l; 161 right = tas->cached_volume_r; 162 163 if (left > 177) left = 177; 164 if (right > 177) right = 177; 165 166 if (tas->mute_l) left = 0; 167 if (tas->mute_r) right = 0; 168 169 /* analysing the volume and mixer tables shows 170 * that they are similar enough when we shift 171 * the mixer table down by 4 bits. The error 172 * is miniscule, in just one item the error 173 * is 1, at a value of 0x07f17b (mixer table 174 * value is 0x07f17a) */ 175 tmp = tas_gaintable[left]; 176 block[0] = tmp>>20; 177 block[1] = tmp>>12; 178 block[2] = tmp>>4; 179 tmp = tas_gaintable[right]; 180 block[3] = tmp>>20; 181 block[4] = tmp>>12; 182 block[5] = tmp>>4; 183 tas_write_reg(tas, TAS_REG_VOL, 6, block); 184 } 185 186 static void tas_set_mixer(struct tas *tas) 187 { 188 u8 block[9]; 189 int tmp, i; 190 u8 val; 191 192 for (i=0;i<3;i++) { 193 val = tas->mixer_l[i]; 194 if (val > 177) val = 177; 195 tmp = tas_gaintable[val]; 196 block[3*i+0] = tmp>>16; 197 block[3*i+1] = tmp>>8; 198 block[3*i+2] = tmp; 199 } 200 tas_write_reg(tas, TAS_REG_LMIX, 9, block); 201 202 for (i=0;i<3;i++) { 203 val = tas->mixer_r[i]; 204 if (val > 177) val = 177; 205 tmp = tas_gaintable[val]; 206 block[3*i+0] = tmp>>16; 207 block[3*i+1] = tmp>>8; 208 block[3*i+2] = tmp; 209 } 210 tas_write_reg(tas, TAS_REG_RMIX, 9, block); 211 } 212 213 /* alsa stuff */ 214 215 static int tas_dev_register(struct snd_device *dev) 216 { 217 return 0; 218 } 219 220 static struct snd_device_ops ops = { 221 .dev_register = tas_dev_register, 222 }; 223 224 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol, 225 struct snd_ctl_elem_info *uinfo) 226 { 227 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 228 uinfo->count = 2; 229 uinfo->value.integer.min = 0; 230 uinfo->value.integer.max = 177; 231 return 0; 232 } 233 234 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol, 235 struct snd_ctl_elem_value *ucontrol) 236 { 237 struct tas *tas = snd_kcontrol_chip(kcontrol); 238 239 mutex_lock(&tas->mtx); 240 ucontrol->value.integer.value[0] = tas->cached_volume_l; 241 ucontrol->value.integer.value[1] = tas->cached_volume_r; 242 mutex_unlock(&tas->mtx); 243 return 0; 244 } 245 246 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol, 247 struct snd_ctl_elem_value *ucontrol) 248 { 249 struct tas *tas = snd_kcontrol_chip(kcontrol); 250 251 if (ucontrol->value.integer.value[0] < 0 || 252 ucontrol->value.integer.value[0] > 177) 253 return -EINVAL; 254 if (ucontrol->value.integer.value[1] < 0 || 255 ucontrol->value.integer.value[1] > 177) 256 return -EINVAL; 257 258 mutex_lock(&tas->mtx); 259 if (tas->cached_volume_l == ucontrol->value.integer.value[0] 260 && tas->cached_volume_r == ucontrol->value.integer.value[1]) { 261 mutex_unlock(&tas->mtx); 262 return 0; 263 } 264 265 tas->cached_volume_l = ucontrol->value.integer.value[0]; 266 tas->cached_volume_r = ucontrol->value.integer.value[1]; 267 if (tas->hw_enabled) 268 tas_set_volume(tas); 269 mutex_unlock(&tas->mtx); 270 return 1; 271 } 272 273 static struct snd_kcontrol_new volume_control = { 274 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 275 .name = "Master Playback Volume", 276 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 277 .info = tas_snd_vol_info, 278 .get = tas_snd_vol_get, 279 .put = tas_snd_vol_put, 280 }; 281 282 #define tas_snd_mute_info snd_ctl_boolean_stereo_info 283 284 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol, 285 struct snd_ctl_elem_value *ucontrol) 286 { 287 struct tas *tas = snd_kcontrol_chip(kcontrol); 288 289 mutex_lock(&tas->mtx); 290 ucontrol->value.integer.value[0] = !tas->mute_l; 291 ucontrol->value.integer.value[1] = !tas->mute_r; 292 mutex_unlock(&tas->mtx); 293 return 0; 294 } 295 296 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol, 297 struct snd_ctl_elem_value *ucontrol) 298 { 299 struct tas *tas = snd_kcontrol_chip(kcontrol); 300 301 mutex_lock(&tas->mtx); 302 if (tas->mute_l == !ucontrol->value.integer.value[0] 303 && tas->mute_r == !ucontrol->value.integer.value[1]) { 304 mutex_unlock(&tas->mtx); 305 return 0; 306 } 307 308 tas->mute_l = !ucontrol->value.integer.value[0]; 309 tas->mute_r = !ucontrol->value.integer.value[1]; 310 if (tas->hw_enabled) 311 tas_set_volume(tas); 312 mutex_unlock(&tas->mtx); 313 return 1; 314 } 315 316 static struct snd_kcontrol_new mute_control = { 317 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 318 .name = "Master Playback Switch", 319 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 320 .info = tas_snd_mute_info, 321 .get = tas_snd_mute_get, 322 .put = tas_snd_mute_put, 323 }; 324 325 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol, 326 struct snd_ctl_elem_info *uinfo) 327 { 328 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 329 uinfo->count = 2; 330 uinfo->value.integer.min = 0; 331 uinfo->value.integer.max = 177; 332 return 0; 333 } 334 335 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol, 336 struct snd_ctl_elem_value *ucontrol) 337 { 338 struct tas *tas = snd_kcontrol_chip(kcontrol); 339 int idx = kcontrol->private_value; 340 341 mutex_lock(&tas->mtx); 342 ucontrol->value.integer.value[0] = tas->mixer_l[idx]; 343 ucontrol->value.integer.value[1] = tas->mixer_r[idx]; 344 mutex_unlock(&tas->mtx); 345 346 return 0; 347 } 348 349 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol, 350 struct snd_ctl_elem_value *ucontrol) 351 { 352 struct tas *tas = snd_kcontrol_chip(kcontrol); 353 int idx = kcontrol->private_value; 354 355 mutex_lock(&tas->mtx); 356 if (tas->mixer_l[idx] == ucontrol->value.integer.value[0] 357 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) { 358 mutex_unlock(&tas->mtx); 359 return 0; 360 } 361 362 tas->mixer_l[idx] = ucontrol->value.integer.value[0]; 363 tas->mixer_r[idx] = ucontrol->value.integer.value[1]; 364 365 if (tas->hw_enabled) 366 tas_set_mixer(tas); 367 mutex_unlock(&tas->mtx); 368 return 1; 369 } 370 371 #define MIXER_CONTROL(n,descr,idx) \ 372 static struct snd_kcontrol_new n##_control = { \ 373 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 374 .name = descr " Playback Volume", \ 375 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 376 .info = tas_snd_mixer_info, \ 377 .get = tas_snd_mixer_get, \ 378 .put = tas_snd_mixer_put, \ 379 .private_value = idx, \ 380 } 381 382 MIXER_CONTROL(pcm1, "PCM", 0); 383 MIXER_CONTROL(monitor, "Monitor", 2); 384 385 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol, 386 struct snd_ctl_elem_info *uinfo) 387 { 388 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 389 uinfo->count = 1; 390 uinfo->value.integer.min = 0; 391 uinfo->value.integer.max = TAS3004_DRC_MAX; 392 return 0; 393 } 394 395 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol, 396 struct snd_ctl_elem_value *ucontrol) 397 { 398 struct tas *tas = snd_kcontrol_chip(kcontrol); 399 400 mutex_lock(&tas->mtx); 401 ucontrol->value.integer.value[0] = tas->drc_range; 402 mutex_unlock(&tas->mtx); 403 return 0; 404 } 405 406 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol, 407 struct snd_ctl_elem_value *ucontrol) 408 { 409 struct tas *tas = snd_kcontrol_chip(kcontrol); 410 411 if (ucontrol->value.integer.value[0] < 0 || 412 ucontrol->value.integer.value[0] > TAS3004_DRC_MAX) 413 return -EINVAL; 414 415 mutex_lock(&tas->mtx); 416 if (tas->drc_range == ucontrol->value.integer.value[0]) { 417 mutex_unlock(&tas->mtx); 418 return 0; 419 } 420 421 tas->drc_range = ucontrol->value.integer.value[0]; 422 if (tas->hw_enabled) 423 tas3004_set_drc(tas); 424 mutex_unlock(&tas->mtx); 425 return 1; 426 } 427 428 static struct snd_kcontrol_new drc_range_control = { 429 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 430 .name = "DRC Range", 431 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 432 .info = tas_snd_drc_range_info, 433 .get = tas_snd_drc_range_get, 434 .put = tas_snd_drc_range_put, 435 }; 436 437 #define tas_snd_drc_switch_info snd_ctl_boolean_mono_info 438 439 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol, 440 struct snd_ctl_elem_value *ucontrol) 441 { 442 struct tas *tas = snd_kcontrol_chip(kcontrol); 443 444 mutex_lock(&tas->mtx); 445 ucontrol->value.integer.value[0] = tas->drc_enabled; 446 mutex_unlock(&tas->mtx); 447 return 0; 448 } 449 450 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol, 451 struct snd_ctl_elem_value *ucontrol) 452 { 453 struct tas *tas = snd_kcontrol_chip(kcontrol); 454 455 mutex_lock(&tas->mtx); 456 if (tas->drc_enabled == ucontrol->value.integer.value[0]) { 457 mutex_unlock(&tas->mtx); 458 return 0; 459 } 460 461 tas->drc_enabled = !!ucontrol->value.integer.value[0]; 462 if (tas->hw_enabled) 463 tas3004_set_drc(tas); 464 mutex_unlock(&tas->mtx); 465 return 1; 466 } 467 468 static struct snd_kcontrol_new drc_switch_control = { 469 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 470 .name = "DRC Range Switch", 471 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 472 .info = tas_snd_drc_switch_info, 473 .get = tas_snd_drc_switch_get, 474 .put = tas_snd_drc_switch_put, 475 }; 476 477 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol, 478 struct snd_ctl_elem_info *uinfo) 479 { 480 static char *texts[] = { "Line-In", "Microphone" }; 481 482 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 483 uinfo->count = 1; 484 uinfo->value.enumerated.items = 2; 485 if (uinfo->value.enumerated.item > 1) 486 uinfo->value.enumerated.item = 1; 487 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 488 return 0; 489 } 490 491 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol, 492 struct snd_ctl_elem_value *ucontrol) 493 { 494 struct tas *tas = snd_kcontrol_chip(kcontrol); 495 496 mutex_lock(&tas->mtx); 497 ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B); 498 mutex_unlock(&tas->mtx); 499 return 0; 500 } 501 502 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol, 503 struct snd_ctl_elem_value *ucontrol) 504 { 505 struct tas *tas = snd_kcontrol_chip(kcontrol); 506 int oldacr; 507 508 if (ucontrol->value.enumerated.item[0] > 1) 509 return -EINVAL; 510 mutex_lock(&tas->mtx); 511 oldacr = tas->acr; 512 513 /* 514 * Despite what the data sheet says in one place, the 515 * TAS_ACR_B_MONAUREAL bit forces mono output even when 516 * input A (line in) is selected. 517 */ 518 tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL); 519 if (ucontrol->value.enumerated.item[0]) 520 tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL | 521 TAS_ACR_B_MON_SEL_RIGHT; 522 if (oldacr == tas->acr) { 523 mutex_unlock(&tas->mtx); 524 return 0; 525 } 526 if (tas->hw_enabled) 527 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); 528 mutex_unlock(&tas->mtx); 529 return 1; 530 } 531 532 static struct snd_kcontrol_new capture_source_control = { 533 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 534 /* If we name this 'Input Source', it properly shows up in 535 * alsamixer as a selection, * but it's shown under the 536 * 'Playback' category. 537 * If I name it 'Capture Source', it shows up in strange 538 * ways (two bools of which one can be selected at a 539 * time) but at least it's shown in the 'Capture' 540 * category. 541 * I was told that this was due to backward compatibility, 542 * but I don't understand then why the mangling is *not* 543 * done when I name it "Input Source"..... 544 */ 545 .name = "Capture Source", 546 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 547 .info = tas_snd_capture_source_info, 548 .get = tas_snd_capture_source_get, 549 .put = tas_snd_capture_source_put, 550 }; 551 552 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol, 553 struct snd_ctl_elem_info *uinfo) 554 { 555 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 556 uinfo->count = 1; 557 uinfo->value.integer.min = TAS3004_TREBLE_MIN; 558 uinfo->value.integer.max = TAS3004_TREBLE_MAX; 559 return 0; 560 } 561 562 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol, 563 struct snd_ctl_elem_value *ucontrol) 564 { 565 struct tas *tas = snd_kcontrol_chip(kcontrol); 566 567 mutex_lock(&tas->mtx); 568 ucontrol->value.integer.value[0] = tas->treble; 569 mutex_unlock(&tas->mtx); 570 return 0; 571 } 572 573 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol, 574 struct snd_ctl_elem_value *ucontrol) 575 { 576 struct tas *tas = snd_kcontrol_chip(kcontrol); 577 578 if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN || 579 ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX) 580 return -EINVAL; 581 mutex_lock(&tas->mtx); 582 if (tas->treble == ucontrol->value.integer.value[0]) { 583 mutex_unlock(&tas->mtx); 584 return 0; 585 } 586 587 tas->treble = ucontrol->value.integer.value[0]; 588 if (tas->hw_enabled) 589 tas_set_treble(tas); 590 mutex_unlock(&tas->mtx); 591 return 1; 592 } 593 594 static struct snd_kcontrol_new treble_control = { 595 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 596 .name = "Treble", 597 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 598 .info = tas_snd_treble_info, 599 .get = tas_snd_treble_get, 600 .put = tas_snd_treble_put, 601 }; 602 603 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol, 604 struct snd_ctl_elem_info *uinfo) 605 { 606 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 607 uinfo->count = 1; 608 uinfo->value.integer.min = TAS3004_BASS_MIN; 609 uinfo->value.integer.max = TAS3004_BASS_MAX; 610 return 0; 611 } 612 613 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol, 614 struct snd_ctl_elem_value *ucontrol) 615 { 616 struct tas *tas = snd_kcontrol_chip(kcontrol); 617 618 mutex_lock(&tas->mtx); 619 ucontrol->value.integer.value[0] = tas->bass; 620 mutex_unlock(&tas->mtx); 621 return 0; 622 } 623 624 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol, 625 struct snd_ctl_elem_value *ucontrol) 626 { 627 struct tas *tas = snd_kcontrol_chip(kcontrol); 628 629 if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN || 630 ucontrol->value.integer.value[0] > TAS3004_BASS_MAX) 631 return -EINVAL; 632 mutex_lock(&tas->mtx); 633 if (tas->bass == ucontrol->value.integer.value[0]) { 634 mutex_unlock(&tas->mtx); 635 return 0; 636 } 637 638 tas->bass = ucontrol->value.integer.value[0]; 639 if (tas->hw_enabled) 640 tas_set_bass(tas); 641 mutex_unlock(&tas->mtx); 642 return 1; 643 } 644 645 static struct snd_kcontrol_new bass_control = { 646 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 647 .name = "Bass", 648 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 649 .info = tas_snd_bass_info, 650 .get = tas_snd_bass_get, 651 .put = tas_snd_bass_put, 652 }; 653 654 static struct transfer_info tas_transfers[] = { 655 { 656 /* input */ 657 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE, 658 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 659 .transfer_in = 1, 660 }, 661 { 662 /* output */ 663 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE, 664 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 665 .transfer_in = 0, 666 }, 667 {} 668 }; 669 670 static int tas_usable(struct codec_info_item *cii, 671 struct transfer_info *ti, 672 struct transfer_info *out) 673 { 674 return 1; 675 } 676 677 static int tas_reset_init(struct tas *tas) 678 { 679 u8 tmp; 680 681 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); 682 msleep(5); 683 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); 684 msleep(5); 685 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1); 686 msleep(20); 687 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); 688 msleep(10); 689 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); 690 691 tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT; 692 if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp)) 693 goto outerr; 694 695 tas->acr |= TAS_ACR_ANALOG_PDOWN; 696 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) 697 goto outerr; 698 699 tmp = 0; 700 if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp)) 701 goto outerr; 702 703 tas3004_set_drc(tas); 704 705 /* Set treble & bass to 0dB */ 706 tas->treble = TAS3004_TREBLE_ZERO; 707 tas->bass = TAS3004_BASS_ZERO; 708 tas_set_treble(tas); 709 tas_set_bass(tas); 710 711 tas->acr &= ~TAS_ACR_ANALOG_PDOWN; 712 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) 713 goto outerr; 714 715 return 0; 716 outerr: 717 return -ENODEV; 718 } 719 720 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock) 721 { 722 struct tas *tas = cii->codec_data; 723 724 switch(clock) { 725 case CLOCK_SWITCH_PREPARE_SLAVE: 726 /* Clocks are going away, mute mute mute */ 727 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); 728 tas->hw_enabled = 0; 729 break; 730 case CLOCK_SWITCH_SLAVE: 731 /* Clocks are back, re-init the codec */ 732 mutex_lock(&tas->mtx); 733 tas_reset_init(tas); 734 tas_set_volume(tas); 735 tas_set_mixer(tas); 736 tas->hw_enabled = 1; 737 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); 738 mutex_unlock(&tas->mtx); 739 break; 740 default: 741 /* doesn't happen as of now */ 742 return -EINVAL; 743 } 744 return 0; 745 } 746 747 #ifdef CONFIG_PM 748 /* we are controlled via i2c and assume that is always up 749 * If that wasn't the case, we'd have to suspend once 750 * our i2c device is suspended, and then take note of that! */ 751 static int tas_suspend(struct tas *tas) 752 { 753 mutex_lock(&tas->mtx); 754 tas->hw_enabled = 0; 755 tas->acr |= TAS_ACR_ANALOG_PDOWN; 756 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); 757 mutex_unlock(&tas->mtx); 758 return 0; 759 } 760 761 static int tas_resume(struct tas *tas) 762 { 763 /* reset codec */ 764 mutex_lock(&tas->mtx); 765 tas_reset_init(tas); 766 tas_set_volume(tas); 767 tas_set_mixer(tas); 768 tas->hw_enabled = 1; 769 mutex_unlock(&tas->mtx); 770 return 0; 771 } 772 773 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state) 774 { 775 return tas_suspend(cii->codec_data); 776 } 777 778 static int _tas_resume(struct codec_info_item *cii) 779 { 780 return tas_resume(cii->codec_data); 781 } 782 #else /* CONFIG_PM */ 783 #define _tas_suspend NULL 784 #define _tas_resume NULL 785 #endif /* CONFIG_PM */ 786 787 static struct codec_info tas_codec_info = { 788 .transfers = tas_transfers, 789 /* in theory, we can drive it at 512 too... 790 * but so far the framework doesn't allow 791 * for that and I don't see much point in it. */ 792 .sysclock_factor = 256, 793 /* same here, could be 32 for just one 16 bit format */ 794 .bus_factor = 64, 795 .owner = THIS_MODULE, 796 .usable = tas_usable, 797 .switch_clock = tas_switch_clock, 798 .suspend = _tas_suspend, 799 .resume = _tas_resume, 800 }; 801 802 static int tas_init_codec(struct aoa_codec *codec) 803 { 804 struct tas *tas = codec_to_tas(codec); 805 int err; 806 807 if (!tas->codec.gpio || !tas->codec.gpio->methods) { 808 printk(KERN_ERR PFX "gpios not assigned!!\n"); 809 return -EINVAL; 810 } 811 812 mutex_lock(&tas->mtx); 813 if (tas_reset_init(tas)) { 814 printk(KERN_ERR PFX "tas failed to initialise\n"); 815 mutex_unlock(&tas->mtx); 816 return -ENXIO; 817 } 818 tas->hw_enabled = 1; 819 mutex_unlock(&tas->mtx); 820 821 if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev, 822 aoa_get_card(), 823 &tas_codec_info, tas)) { 824 printk(KERN_ERR PFX "error attaching tas to soundbus\n"); 825 return -ENODEV; 826 } 827 828 if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) { 829 printk(KERN_ERR PFX "failed to create tas snd device!\n"); 830 return -ENODEV; 831 } 832 err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas)); 833 if (err) 834 goto error; 835 836 err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas)); 837 if (err) 838 goto error; 839 840 err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas)); 841 if (err) 842 goto error; 843 844 err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas)); 845 if (err) 846 goto error; 847 848 err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas)); 849 if (err) 850 goto error; 851 852 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas)); 853 if (err) 854 goto error; 855 856 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas)); 857 if (err) 858 goto error; 859 860 err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas)); 861 if (err) 862 goto error; 863 864 err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas)); 865 if (err) 866 goto error; 867 868 return 0; 869 error: 870 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); 871 snd_device_free(aoa_get_card(), tas); 872 return err; 873 } 874 875 static void tas_exit_codec(struct aoa_codec *codec) 876 { 877 struct tas *tas = codec_to_tas(codec); 878 879 if (!tas->codec.soundbus_dev) 880 return; 881 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); 882 } 883 884 885 static int tas_create(struct i2c_adapter *adapter, 886 struct device_node *node, 887 int addr) 888 { 889 struct i2c_board_info info; 890 struct i2c_client *client; 891 892 memset(&info, 0, sizeof(struct i2c_board_info)); 893 strlcpy(info.type, "aoa_codec_tas", I2C_NAME_SIZE); 894 info.addr = addr; 895 info.platform_data = node; 896 897 client = i2c_new_device(adapter, &info); 898 if (!client) 899 return -ENODEV; 900 /* 901 * We know the driver is already loaded, so the device should be 902 * already bound. If not it means binding failed, and then there 903 * is no point in keeping the device instantiated. 904 */ 905 if (!client->driver) { 906 i2c_unregister_device(client); 907 return -ENODEV; 908 } 909 910 /* 911 * Let i2c-core delete that device on driver removal. 912 * This is safe because i2c-core holds the core_lock mutex for us. 913 */ 914 list_add_tail(&client->detected, &client->driver->clients); 915 return 0; 916 } 917 918 static int tas_i2c_probe(struct i2c_client *client, 919 const struct i2c_device_id *id) 920 { 921 struct device_node *node = client->dev.platform_data; 922 struct tas *tas; 923 924 tas = kzalloc(sizeof(struct tas), GFP_KERNEL); 925 926 if (!tas) 927 return -ENOMEM; 928 929 mutex_init(&tas->mtx); 930 tas->i2c = client; 931 i2c_set_clientdata(client, tas); 932 933 /* seems that half is a saner default */ 934 tas->drc_range = TAS3004_DRC_MAX / 2; 935 936 strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN); 937 tas->codec.owner = THIS_MODULE; 938 tas->codec.init = tas_init_codec; 939 tas->codec.exit = tas_exit_codec; 940 tas->codec.node = of_node_get(node); 941 942 if (aoa_codec_register(&tas->codec)) { 943 goto fail; 944 } 945 printk(KERN_DEBUG 946 "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n", 947 (unsigned int)client->addr, node->full_name); 948 return 0; 949 fail: 950 mutex_destroy(&tas->mtx); 951 kfree(tas); 952 return -EINVAL; 953 } 954 955 static int tas_i2c_attach(struct i2c_adapter *adapter) 956 { 957 struct device_node *busnode, *dev = NULL; 958 struct pmac_i2c_bus *bus; 959 960 bus = pmac_i2c_adapter_to_bus(adapter); 961 if (bus == NULL) 962 return -ENODEV; 963 busnode = pmac_i2c_get_bus_node(bus); 964 965 while ((dev = of_get_next_child(busnode, dev)) != NULL) { 966 if (of_device_is_compatible(dev, "tas3004")) { 967 const u32 *addr; 968 printk(KERN_DEBUG PFX "found tas3004\n"); 969 addr = of_get_property(dev, "reg", NULL); 970 if (!addr) 971 continue; 972 return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f); 973 } 974 /* older machines have no 'codec' node with a 'compatible' 975 * property that says 'tas3004', they just have a 'deq' 976 * node without any such property... */ 977 if (strcmp(dev->name, "deq") == 0) { 978 const u32 *_addr; 979 u32 addr; 980 printk(KERN_DEBUG PFX "found 'deq' node\n"); 981 _addr = of_get_property(dev, "i2c-address", NULL); 982 if (!_addr) 983 continue; 984 addr = ((*_addr) >> 1) & 0x7f; 985 /* now, if the address doesn't match any of the two 986 * that a tas3004 can have, we cannot handle this. 987 * I doubt it ever happens but hey. */ 988 if (addr != 0x34 && addr != 0x35) 989 continue; 990 return tas_create(adapter, dev, addr); 991 } 992 } 993 return -ENODEV; 994 } 995 996 static int tas_i2c_remove(struct i2c_client *client) 997 { 998 struct tas *tas = i2c_get_clientdata(client); 999 u8 tmp = TAS_ACR_ANALOG_PDOWN; 1000 1001 aoa_codec_unregister(&tas->codec); 1002 of_node_put(tas->codec.node); 1003 1004 /* power down codec chip */ 1005 tas_write_reg(tas, TAS_REG_ACR, 1, &tmp); 1006 1007 mutex_destroy(&tas->mtx); 1008 kfree(tas); 1009 return 0; 1010 } 1011 1012 static const struct i2c_device_id tas_i2c_id[] = { 1013 { "aoa_codec_tas", 0 }, 1014 { } 1015 }; 1016 1017 static struct i2c_driver tas_driver = { 1018 .driver = { 1019 .name = "aoa_codec_tas", 1020 .owner = THIS_MODULE, 1021 }, 1022 .attach_adapter = tas_i2c_attach, 1023 .probe = tas_i2c_probe, 1024 .remove = tas_i2c_remove, 1025 .id_table = tas_i2c_id, 1026 }; 1027 1028 static int __init tas_init(void) 1029 { 1030 return i2c_add_driver(&tas_driver); 1031 } 1032 1033 static void __exit tas_exit(void) 1034 { 1035 i2c_del_driver(&tas_driver); 1036 } 1037 1038 module_init(tas_init); 1039 module_exit(tas_exit); 1040