xref: /openbmc/linux/sound/aoa/codecs/tas.c (revision b6dcefde)
1 /*
2  * Apple Onboard Audio driver for tas codec
3  *
4  * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * GPL v2, can be found in COPYING.
7  *
8  * Open questions:
9  *  - How to distinguish between 3004 and versions?
10  *
11  * FIXMEs:
12  *  - This codec driver doesn't honour the 'connected'
13  *    property of the aoa_codec struct, hence if
14  *    it is used in machines where not everything is
15  *    connected it will display wrong mixer elements.
16  *  - Driver assumes that the microphone is always
17  *    monaureal and connected to the right channel of
18  *    the input. This should also be a codec-dependent
19  *    flag, maybe the codec should have 3 different
20  *    bits for the three different possibilities how
21  *    it can be hooked up...
22  *    But as long as I don't see any hardware hooked
23  *    up that way...
24  *  - As Apple notes in their code, the tas3004 seems
25  *    to delay the right channel by one sample. You can
26  *    see this when for example recording stereo in
27  *    audacity, or recording the tas output via cable
28  *    on another machine (use a sinus generator or so).
29  *    I tried programming the BiQuads but couldn't
30  *    make the delay work, maybe someone can read the
31  *    datasheet and fix it. The relevant Apple comment
32  *    is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33  *    that their comment describing how they program
34  *    the filters sucks...
35  *
36  * Other things:
37  *  - this should actually register *two* aoa_codec
38  *    structs since it has two inputs. Then it must
39  *    use the prepare callback to forbid running the
40  *    secondary output on a different clock.
41  *    Also, whatever bus knows how to do this must
42  *    provide two soundbus_dev devices and the fabric
43  *    must be able to link them correctly.
44  *
45  *    I don't even know if Apple ever uses the second
46  *    port on the tas3004 though, I don't think their
47  *    i2s controllers can even do it. OTOH, they all
48  *    derive the clocks from common clocks, so it
49  *    might just be possible. The framework allows the
50  *    codec to refine the transfer_info items in the
51  *    usable callback, so we can simply remove the
52  *    rates the second instance is not using when it
53  *    actually is in use.
54  *    Maybe we'll need to make the sound busses have
55  *    a 'clock group id' value so the codec can
56  *    determine if the two outputs can be driven at
57  *    the same time. But that is likely overkill, up
58  *    to the fabric to not link them up incorrectly,
59  *    and up to the hardware designer to not wire
60  *    them up in some weird unusable way.
61  */
62 #include <stddef.h>
63 #include <linux/i2c.h>
64 #include <asm/pmac_low_i2c.h>
65 #include <asm/prom.h>
66 #include <linux/delay.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
69 
70 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
73 
74 #include "tas.h"
75 #include "tas-gain-table.h"
76 #include "tas-basstreble.h"
77 #include "../aoa.h"
78 #include "../soundbus/soundbus.h"
79 
80 #define PFX "snd-aoa-codec-tas: "
81 
82 
83 struct tas {
84 	struct aoa_codec	codec;
85 	struct i2c_client	*i2c;
86 	u32			mute_l:1, mute_r:1 ,
87 				controls_created:1 ,
88 				drc_enabled:1,
89 				hw_enabled:1;
90 	u8			cached_volume_l, cached_volume_r;
91 	u8			mixer_l[3], mixer_r[3];
92 	u8			bass, treble;
93 	u8			acr;
94 	int			drc_range;
95 	/* protects hardware access against concurrency from
96 	 * userspace when hitting controls and during
97 	 * codec init/suspend/resume */
98 	struct mutex		mtx;
99 };
100 
101 static int tas_reset_init(struct tas *tas);
102 
103 static struct tas *codec_to_tas(struct aoa_codec *codec)
104 {
105 	return container_of(codec, struct tas, codec);
106 }
107 
108 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
109 {
110 	if (len == 1)
111 		return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
112 	else
113 		return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
114 }
115 
116 static void tas3004_set_drc(struct tas *tas)
117 {
118 	unsigned char val[6];
119 
120 	if (tas->drc_enabled)
121 		val[0] = 0x50; /* 3:1 above threshold */
122 	else
123 		val[0] = 0x51; /* disabled */
124 	val[1] = 0x02; /* 1:1 below threshold */
125 	if (tas->drc_range > 0xef)
126 		val[2] = 0xef;
127 	else if (tas->drc_range < 0)
128 		val[2] = 0x00;
129 	else
130 		val[2] = tas->drc_range;
131 	val[3] = 0xb0;
132 	val[4] = 0x60;
133 	val[5] = 0xa0;
134 
135 	tas_write_reg(tas, TAS_REG_DRC, 6, val);
136 }
137 
138 static void tas_set_treble(struct tas *tas)
139 {
140 	u8 tmp;
141 
142 	tmp = tas3004_treble(tas->treble);
143 	tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
144 }
145 
146 static void tas_set_bass(struct tas *tas)
147 {
148 	u8 tmp;
149 
150 	tmp = tas3004_bass(tas->bass);
151 	tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
152 }
153 
154 static void tas_set_volume(struct tas *tas)
155 {
156 	u8 block[6];
157 	int tmp;
158 	u8 left, right;
159 
160 	left = tas->cached_volume_l;
161 	right = tas->cached_volume_r;
162 
163 	if (left > 177) left = 177;
164 	if (right > 177) right = 177;
165 
166 	if (tas->mute_l) left = 0;
167 	if (tas->mute_r) right = 0;
168 
169 	/* analysing the volume and mixer tables shows
170 	 * that they are similar enough when we shift
171 	 * the mixer table down by 4 bits. The error
172 	 * is miniscule, in just one item the error
173 	 * is 1, at a value of 0x07f17b (mixer table
174 	 * value is 0x07f17a) */
175 	tmp = tas_gaintable[left];
176 	block[0] = tmp>>20;
177 	block[1] = tmp>>12;
178 	block[2] = tmp>>4;
179 	tmp = tas_gaintable[right];
180 	block[3] = tmp>>20;
181 	block[4] = tmp>>12;
182 	block[5] = tmp>>4;
183 	tas_write_reg(tas, TAS_REG_VOL, 6, block);
184 }
185 
186 static void tas_set_mixer(struct tas *tas)
187 {
188 	u8 block[9];
189 	int tmp, i;
190 	u8 val;
191 
192 	for (i=0;i<3;i++) {
193 		val = tas->mixer_l[i];
194 		if (val > 177) val = 177;
195 		tmp = tas_gaintable[val];
196 		block[3*i+0] = tmp>>16;
197 		block[3*i+1] = tmp>>8;
198 		block[3*i+2] = tmp;
199 	}
200 	tas_write_reg(tas, TAS_REG_LMIX, 9, block);
201 
202 	for (i=0;i<3;i++) {
203 		val = tas->mixer_r[i];
204 		if (val > 177) val = 177;
205 		tmp = tas_gaintable[val];
206 		block[3*i+0] = tmp>>16;
207 		block[3*i+1] = tmp>>8;
208 		block[3*i+2] = tmp;
209 	}
210 	tas_write_reg(tas, TAS_REG_RMIX, 9, block);
211 }
212 
213 /* alsa stuff */
214 
215 static int tas_dev_register(struct snd_device *dev)
216 {
217 	return 0;
218 }
219 
220 static struct snd_device_ops ops = {
221 	.dev_register = tas_dev_register,
222 };
223 
224 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
225 	struct snd_ctl_elem_info *uinfo)
226 {
227 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
228 	uinfo->count = 2;
229 	uinfo->value.integer.min = 0;
230 	uinfo->value.integer.max = 177;
231 	return 0;
232 }
233 
234 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
235 	struct snd_ctl_elem_value *ucontrol)
236 {
237 	struct tas *tas = snd_kcontrol_chip(kcontrol);
238 
239 	mutex_lock(&tas->mtx);
240 	ucontrol->value.integer.value[0] = tas->cached_volume_l;
241 	ucontrol->value.integer.value[1] = tas->cached_volume_r;
242 	mutex_unlock(&tas->mtx);
243 	return 0;
244 }
245 
246 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
247 	struct snd_ctl_elem_value *ucontrol)
248 {
249 	struct tas *tas = snd_kcontrol_chip(kcontrol);
250 
251 	if (ucontrol->value.integer.value[0] < 0 ||
252 	    ucontrol->value.integer.value[0] > 177)
253 		return -EINVAL;
254 	if (ucontrol->value.integer.value[1] < 0 ||
255 	    ucontrol->value.integer.value[1] > 177)
256 		return -EINVAL;
257 
258 	mutex_lock(&tas->mtx);
259 	if (tas->cached_volume_l == ucontrol->value.integer.value[0]
260 	 && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
261 		mutex_unlock(&tas->mtx);
262 		return 0;
263 	}
264 
265 	tas->cached_volume_l = ucontrol->value.integer.value[0];
266 	tas->cached_volume_r = ucontrol->value.integer.value[1];
267 	if (tas->hw_enabled)
268 		tas_set_volume(tas);
269 	mutex_unlock(&tas->mtx);
270 	return 1;
271 }
272 
273 static struct snd_kcontrol_new volume_control = {
274 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
275 	.name = "Master Playback Volume",
276 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
277 	.info = tas_snd_vol_info,
278 	.get = tas_snd_vol_get,
279 	.put = tas_snd_vol_put,
280 };
281 
282 #define tas_snd_mute_info	snd_ctl_boolean_stereo_info
283 
284 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
285 	struct snd_ctl_elem_value *ucontrol)
286 {
287 	struct tas *tas = snd_kcontrol_chip(kcontrol);
288 
289 	mutex_lock(&tas->mtx);
290 	ucontrol->value.integer.value[0] = !tas->mute_l;
291 	ucontrol->value.integer.value[1] = !tas->mute_r;
292 	mutex_unlock(&tas->mtx);
293 	return 0;
294 }
295 
296 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct tas *tas = snd_kcontrol_chip(kcontrol);
300 
301 	mutex_lock(&tas->mtx);
302 	if (tas->mute_l == !ucontrol->value.integer.value[0]
303 	 && tas->mute_r == !ucontrol->value.integer.value[1]) {
304 		mutex_unlock(&tas->mtx);
305 		return 0;
306 	}
307 
308 	tas->mute_l = !ucontrol->value.integer.value[0];
309 	tas->mute_r = !ucontrol->value.integer.value[1];
310 	if (tas->hw_enabled)
311 		tas_set_volume(tas);
312 	mutex_unlock(&tas->mtx);
313 	return 1;
314 }
315 
316 static struct snd_kcontrol_new mute_control = {
317 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
318 	.name = "Master Playback Switch",
319 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
320 	.info = tas_snd_mute_info,
321 	.get = tas_snd_mute_get,
322 	.put = tas_snd_mute_put,
323 };
324 
325 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
326 	struct snd_ctl_elem_info *uinfo)
327 {
328 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
329 	uinfo->count = 2;
330 	uinfo->value.integer.min = 0;
331 	uinfo->value.integer.max = 177;
332 	return 0;
333 }
334 
335 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
336 	struct snd_ctl_elem_value *ucontrol)
337 {
338 	struct tas *tas = snd_kcontrol_chip(kcontrol);
339 	int idx = kcontrol->private_value;
340 
341 	mutex_lock(&tas->mtx);
342 	ucontrol->value.integer.value[0] = tas->mixer_l[idx];
343 	ucontrol->value.integer.value[1] = tas->mixer_r[idx];
344 	mutex_unlock(&tas->mtx);
345 
346 	return 0;
347 }
348 
349 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
350 	struct snd_ctl_elem_value *ucontrol)
351 {
352 	struct tas *tas = snd_kcontrol_chip(kcontrol);
353 	int idx = kcontrol->private_value;
354 
355 	mutex_lock(&tas->mtx);
356 	if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
357 	 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
358 		mutex_unlock(&tas->mtx);
359 		return 0;
360 	}
361 
362 	tas->mixer_l[idx] = ucontrol->value.integer.value[0];
363 	tas->mixer_r[idx] = ucontrol->value.integer.value[1];
364 
365 	if (tas->hw_enabled)
366 		tas_set_mixer(tas);
367 	mutex_unlock(&tas->mtx);
368 	return 1;
369 }
370 
371 #define MIXER_CONTROL(n,descr,idx)			\
372 static struct snd_kcontrol_new n##_control = {		\
373 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,		\
374 	.name = descr " Playback Volume",		\
375 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,	\
376 	.info = tas_snd_mixer_info,			\
377 	.get = tas_snd_mixer_get,			\
378 	.put = tas_snd_mixer_put,			\
379 	.private_value = idx,				\
380 }
381 
382 MIXER_CONTROL(pcm1, "PCM", 0);
383 MIXER_CONTROL(monitor, "Monitor", 2);
384 
385 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
386 	struct snd_ctl_elem_info *uinfo)
387 {
388 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
389 	uinfo->count = 1;
390 	uinfo->value.integer.min = 0;
391 	uinfo->value.integer.max = TAS3004_DRC_MAX;
392 	return 0;
393 }
394 
395 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
396 	struct snd_ctl_elem_value *ucontrol)
397 {
398 	struct tas *tas = snd_kcontrol_chip(kcontrol);
399 
400 	mutex_lock(&tas->mtx);
401 	ucontrol->value.integer.value[0] = tas->drc_range;
402 	mutex_unlock(&tas->mtx);
403 	return 0;
404 }
405 
406 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
407 	struct snd_ctl_elem_value *ucontrol)
408 {
409 	struct tas *tas = snd_kcontrol_chip(kcontrol);
410 
411 	if (ucontrol->value.integer.value[0] < 0 ||
412 	    ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
413 		return -EINVAL;
414 
415 	mutex_lock(&tas->mtx);
416 	if (tas->drc_range == ucontrol->value.integer.value[0]) {
417 		mutex_unlock(&tas->mtx);
418 		return 0;
419 	}
420 
421 	tas->drc_range = ucontrol->value.integer.value[0];
422 	if (tas->hw_enabled)
423 		tas3004_set_drc(tas);
424 	mutex_unlock(&tas->mtx);
425 	return 1;
426 }
427 
428 static struct snd_kcontrol_new drc_range_control = {
429 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
430 	.name = "DRC Range",
431 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
432 	.info = tas_snd_drc_range_info,
433 	.get = tas_snd_drc_range_get,
434 	.put = tas_snd_drc_range_put,
435 };
436 
437 #define tas_snd_drc_switch_info		snd_ctl_boolean_mono_info
438 
439 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
440 	struct snd_ctl_elem_value *ucontrol)
441 {
442 	struct tas *tas = snd_kcontrol_chip(kcontrol);
443 
444 	mutex_lock(&tas->mtx);
445 	ucontrol->value.integer.value[0] = tas->drc_enabled;
446 	mutex_unlock(&tas->mtx);
447 	return 0;
448 }
449 
450 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
451 	struct snd_ctl_elem_value *ucontrol)
452 {
453 	struct tas *tas = snd_kcontrol_chip(kcontrol);
454 
455 	mutex_lock(&tas->mtx);
456 	if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
457 		mutex_unlock(&tas->mtx);
458 		return 0;
459 	}
460 
461 	tas->drc_enabled = !!ucontrol->value.integer.value[0];
462 	if (tas->hw_enabled)
463 		tas3004_set_drc(tas);
464 	mutex_unlock(&tas->mtx);
465 	return 1;
466 }
467 
468 static struct snd_kcontrol_new drc_switch_control = {
469 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
470 	.name = "DRC Range Switch",
471 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
472 	.info = tas_snd_drc_switch_info,
473 	.get = tas_snd_drc_switch_get,
474 	.put = tas_snd_drc_switch_put,
475 };
476 
477 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
478 	struct snd_ctl_elem_info *uinfo)
479 {
480 	static char *texts[] = { "Line-In", "Microphone" };
481 
482 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
483 	uinfo->count = 1;
484 	uinfo->value.enumerated.items = 2;
485 	if (uinfo->value.enumerated.item > 1)
486 		uinfo->value.enumerated.item = 1;
487 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
488 	return 0;
489 }
490 
491 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
492 	struct snd_ctl_elem_value *ucontrol)
493 {
494 	struct tas *tas = snd_kcontrol_chip(kcontrol);
495 
496 	mutex_lock(&tas->mtx);
497 	ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
498 	mutex_unlock(&tas->mtx);
499 	return 0;
500 }
501 
502 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
503 	struct snd_ctl_elem_value *ucontrol)
504 {
505 	struct tas *tas = snd_kcontrol_chip(kcontrol);
506 	int oldacr;
507 
508 	if (ucontrol->value.enumerated.item[0] > 1)
509 		return -EINVAL;
510 	mutex_lock(&tas->mtx);
511 	oldacr = tas->acr;
512 
513 	/*
514 	 * Despite what the data sheet says in one place, the
515 	 * TAS_ACR_B_MONAUREAL bit forces mono output even when
516 	 * input A (line in) is selected.
517 	 */
518 	tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
519 	if (ucontrol->value.enumerated.item[0])
520 		tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
521 		      TAS_ACR_B_MON_SEL_RIGHT;
522 	if (oldacr == tas->acr) {
523 		mutex_unlock(&tas->mtx);
524 		return 0;
525 	}
526 	if (tas->hw_enabled)
527 		tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
528 	mutex_unlock(&tas->mtx);
529 	return 1;
530 }
531 
532 static struct snd_kcontrol_new capture_source_control = {
533 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
534 	/* If we name this 'Input Source', it properly shows up in
535 	 * alsamixer as a selection, * but it's shown under the
536 	 * 'Playback' category.
537 	 * If I name it 'Capture Source', it shows up in strange
538 	 * ways (two bools of which one can be selected at a
539 	 * time) but at least it's shown in the 'Capture'
540 	 * category.
541 	 * I was told that this was due to backward compatibility,
542 	 * but I don't understand then why the mangling is *not*
543 	 * done when I name it "Input Source".....
544 	 */
545 	.name = "Capture Source",
546 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
547 	.info = tas_snd_capture_source_info,
548 	.get = tas_snd_capture_source_get,
549 	.put = tas_snd_capture_source_put,
550 };
551 
552 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
553 	struct snd_ctl_elem_info *uinfo)
554 {
555 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
556 	uinfo->count = 1;
557 	uinfo->value.integer.min = TAS3004_TREBLE_MIN;
558 	uinfo->value.integer.max = TAS3004_TREBLE_MAX;
559 	return 0;
560 }
561 
562 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
563 	struct snd_ctl_elem_value *ucontrol)
564 {
565 	struct tas *tas = snd_kcontrol_chip(kcontrol);
566 
567 	mutex_lock(&tas->mtx);
568 	ucontrol->value.integer.value[0] = tas->treble;
569 	mutex_unlock(&tas->mtx);
570 	return 0;
571 }
572 
573 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
574 	struct snd_ctl_elem_value *ucontrol)
575 {
576 	struct tas *tas = snd_kcontrol_chip(kcontrol);
577 
578 	if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
579 	    ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
580 		return -EINVAL;
581 	mutex_lock(&tas->mtx);
582 	if (tas->treble == ucontrol->value.integer.value[0]) {
583 		mutex_unlock(&tas->mtx);
584 		return 0;
585 	}
586 
587 	tas->treble = ucontrol->value.integer.value[0];
588 	if (tas->hw_enabled)
589 		tas_set_treble(tas);
590 	mutex_unlock(&tas->mtx);
591 	return 1;
592 }
593 
594 static struct snd_kcontrol_new treble_control = {
595 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
596 	.name = "Treble",
597 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
598 	.info = tas_snd_treble_info,
599 	.get = tas_snd_treble_get,
600 	.put = tas_snd_treble_put,
601 };
602 
603 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
604 	struct snd_ctl_elem_info *uinfo)
605 {
606 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
607 	uinfo->count = 1;
608 	uinfo->value.integer.min = TAS3004_BASS_MIN;
609 	uinfo->value.integer.max = TAS3004_BASS_MAX;
610 	return 0;
611 }
612 
613 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
614 	struct snd_ctl_elem_value *ucontrol)
615 {
616 	struct tas *tas = snd_kcontrol_chip(kcontrol);
617 
618 	mutex_lock(&tas->mtx);
619 	ucontrol->value.integer.value[0] = tas->bass;
620 	mutex_unlock(&tas->mtx);
621 	return 0;
622 }
623 
624 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
625 	struct snd_ctl_elem_value *ucontrol)
626 {
627 	struct tas *tas = snd_kcontrol_chip(kcontrol);
628 
629 	if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
630 	    ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
631 		return -EINVAL;
632 	mutex_lock(&tas->mtx);
633 	if (tas->bass == ucontrol->value.integer.value[0]) {
634 		mutex_unlock(&tas->mtx);
635 		return 0;
636 	}
637 
638 	tas->bass = ucontrol->value.integer.value[0];
639 	if (tas->hw_enabled)
640 		tas_set_bass(tas);
641 	mutex_unlock(&tas->mtx);
642 	return 1;
643 }
644 
645 static struct snd_kcontrol_new bass_control = {
646 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
647 	.name = "Bass",
648 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
649 	.info = tas_snd_bass_info,
650 	.get = tas_snd_bass_get,
651 	.put = tas_snd_bass_put,
652 };
653 
654 static struct transfer_info tas_transfers[] = {
655 	{
656 		/* input */
657 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
658 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
659 		.transfer_in = 1,
660 	},
661 	{
662 		/* output */
663 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
664 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
665 		.transfer_in = 0,
666 	},
667 	{}
668 };
669 
670 static int tas_usable(struct codec_info_item *cii,
671 		      struct transfer_info *ti,
672 		      struct transfer_info *out)
673 {
674 	return 1;
675 }
676 
677 static int tas_reset_init(struct tas *tas)
678 {
679 	u8 tmp;
680 
681 	tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
682 	msleep(5);
683 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
684 	msleep(5);
685 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
686 	msleep(20);
687 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
688 	msleep(10);
689 	tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
690 
691 	tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
692 	if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
693 		goto outerr;
694 
695 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
696 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
697 		goto outerr;
698 
699 	tmp = 0;
700 	if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
701 		goto outerr;
702 
703 	tas3004_set_drc(tas);
704 
705 	/* Set treble & bass to 0dB */
706 	tas->treble = TAS3004_TREBLE_ZERO;
707 	tas->bass = TAS3004_BASS_ZERO;
708 	tas_set_treble(tas);
709 	tas_set_bass(tas);
710 
711 	tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
712 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
713 		goto outerr;
714 
715 	return 0;
716  outerr:
717 	return -ENODEV;
718 }
719 
720 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
721 {
722 	struct tas *tas = cii->codec_data;
723 
724 	switch(clock) {
725 	case CLOCK_SWITCH_PREPARE_SLAVE:
726 		/* Clocks are going away, mute mute mute */
727 		tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
728 		tas->hw_enabled = 0;
729 		break;
730 	case CLOCK_SWITCH_SLAVE:
731 		/* Clocks are back, re-init the codec */
732 		mutex_lock(&tas->mtx);
733 		tas_reset_init(tas);
734 		tas_set_volume(tas);
735 		tas_set_mixer(tas);
736 		tas->hw_enabled = 1;
737 		tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
738 		mutex_unlock(&tas->mtx);
739 		break;
740 	default:
741 		/* doesn't happen as of now */
742 		return -EINVAL;
743 	}
744 	return 0;
745 }
746 
747 #ifdef CONFIG_PM
748 /* we are controlled via i2c and assume that is always up
749  * If that wasn't the case, we'd have to suspend once
750  * our i2c device is suspended, and then take note of that! */
751 static int tas_suspend(struct tas *tas)
752 {
753 	mutex_lock(&tas->mtx);
754 	tas->hw_enabled = 0;
755 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
756 	tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
757 	mutex_unlock(&tas->mtx);
758 	return 0;
759 }
760 
761 static int tas_resume(struct tas *tas)
762 {
763 	/* reset codec */
764 	mutex_lock(&tas->mtx);
765 	tas_reset_init(tas);
766 	tas_set_volume(tas);
767 	tas_set_mixer(tas);
768 	tas->hw_enabled = 1;
769 	mutex_unlock(&tas->mtx);
770 	return 0;
771 }
772 
773 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
774 {
775 	return tas_suspend(cii->codec_data);
776 }
777 
778 static int _tas_resume(struct codec_info_item *cii)
779 {
780 	return tas_resume(cii->codec_data);
781 }
782 #else /* CONFIG_PM */
783 #define _tas_suspend	NULL
784 #define _tas_resume	NULL
785 #endif /* CONFIG_PM */
786 
787 static struct codec_info tas_codec_info = {
788 	.transfers = tas_transfers,
789 	/* in theory, we can drive it at 512 too...
790 	 * but so far the framework doesn't allow
791 	 * for that and I don't see much point in it. */
792 	.sysclock_factor = 256,
793 	/* same here, could be 32 for just one 16 bit format */
794 	.bus_factor = 64,
795 	.owner = THIS_MODULE,
796 	.usable = tas_usable,
797 	.switch_clock = tas_switch_clock,
798 	.suspend = _tas_suspend,
799 	.resume = _tas_resume,
800 };
801 
802 static int tas_init_codec(struct aoa_codec *codec)
803 {
804 	struct tas *tas = codec_to_tas(codec);
805 	int err;
806 
807 	if (!tas->codec.gpio || !tas->codec.gpio->methods) {
808 		printk(KERN_ERR PFX "gpios not assigned!!\n");
809 		return -EINVAL;
810 	}
811 
812 	mutex_lock(&tas->mtx);
813 	if (tas_reset_init(tas)) {
814 		printk(KERN_ERR PFX "tas failed to initialise\n");
815 		mutex_unlock(&tas->mtx);
816 		return -ENXIO;
817 	}
818 	tas->hw_enabled = 1;
819 	mutex_unlock(&tas->mtx);
820 
821 	if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
822 						   aoa_get_card(),
823 						   &tas_codec_info, tas)) {
824 		printk(KERN_ERR PFX "error attaching tas to soundbus\n");
825 		return -ENODEV;
826 	}
827 
828 	if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) {
829 		printk(KERN_ERR PFX "failed to create tas snd device!\n");
830 		return -ENODEV;
831 	}
832 	err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
833 	if (err)
834 		goto error;
835 
836 	err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
837 	if (err)
838 		goto error;
839 
840 	err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
841 	if (err)
842 		goto error;
843 
844 	err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
845 	if (err)
846 		goto error;
847 
848 	err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
849 	if (err)
850 		goto error;
851 
852 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
853 	if (err)
854 		goto error;
855 
856 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
857 	if (err)
858 		goto error;
859 
860 	err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
861 	if (err)
862 		goto error;
863 
864 	err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
865 	if (err)
866 		goto error;
867 
868 	return 0;
869  error:
870 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
871 	snd_device_free(aoa_get_card(), tas);
872 	return err;
873 }
874 
875 static void tas_exit_codec(struct aoa_codec *codec)
876 {
877 	struct tas *tas = codec_to_tas(codec);
878 
879 	if (!tas->codec.soundbus_dev)
880 		return;
881 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
882 }
883 
884 
885 static int tas_create(struct i2c_adapter *adapter,
886 		       struct device_node *node,
887 		       int addr)
888 {
889 	struct i2c_board_info info;
890 	struct i2c_client *client;
891 
892 	memset(&info, 0, sizeof(struct i2c_board_info));
893 	strlcpy(info.type, "aoa_codec_tas", I2C_NAME_SIZE);
894 	info.addr = addr;
895 	info.platform_data = node;
896 
897 	client = i2c_new_device(adapter, &info);
898 	if (!client)
899 		return -ENODEV;
900 	/*
901 	 * We know the driver is already loaded, so the device should be
902 	 * already bound. If not it means binding failed, and then there
903 	 * is no point in keeping the device instantiated.
904 	 */
905 	if (!client->driver) {
906 		i2c_unregister_device(client);
907 		return -ENODEV;
908 	}
909 
910 	/*
911 	 * Let i2c-core delete that device on driver removal.
912 	 * This is safe because i2c-core holds the core_lock mutex for us.
913 	 */
914 	list_add_tail(&client->detected, &client->driver->clients);
915 	return 0;
916 }
917 
918 static int tas_i2c_probe(struct i2c_client *client,
919 			 const struct i2c_device_id *id)
920 {
921 	struct device_node *node = client->dev.platform_data;
922 	struct tas *tas;
923 
924 	tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
925 
926 	if (!tas)
927 		return -ENOMEM;
928 
929 	mutex_init(&tas->mtx);
930 	tas->i2c = client;
931 	i2c_set_clientdata(client, tas);
932 
933 	/* seems that half is a saner default */
934 	tas->drc_range = TAS3004_DRC_MAX / 2;
935 
936 	strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
937 	tas->codec.owner = THIS_MODULE;
938 	tas->codec.init = tas_init_codec;
939 	tas->codec.exit = tas_exit_codec;
940 	tas->codec.node = of_node_get(node);
941 
942 	if (aoa_codec_register(&tas->codec)) {
943 		goto fail;
944 	}
945 	printk(KERN_DEBUG
946 	       "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
947 	       (unsigned int)client->addr, node->full_name);
948 	return 0;
949  fail:
950 	mutex_destroy(&tas->mtx);
951 	kfree(tas);
952 	return -EINVAL;
953 }
954 
955 static int tas_i2c_attach(struct i2c_adapter *adapter)
956 {
957 	struct device_node *busnode, *dev = NULL;
958 	struct pmac_i2c_bus *bus;
959 
960 	bus = pmac_i2c_adapter_to_bus(adapter);
961 	if (bus == NULL)
962 		return -ENODEV;
963 	busnode = pmac_i2c_get_bus_node(bus);
964 
965 	while ((dev = of_get_next_child(busnode, dev)) != NULL) {
966 		if (of_device_is_compatible(dev, "tas3004")) {
967 			const u32 *addr;
968 			printk(KERN_DEBUG PFX "found tas3004\n");
969 			addr = of_get_property(dev, "reg", NULL);
970 			if (!addr)
971 				continue;
972 			return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f);
973 		}
974 		/* older machines have no 'codec' node with a 'compatible'
975 		 * property that says 'tas3004', they just have a 'deq'
976 		 * node without any such property... */
977 		if (strcmp(dev->name, "deq") == 0) {
978 			const u32 *_addr;
979 			u32 addr;
980 			printk(KERN_DEBUG PFX "found 'deq' node\n");
981 			_addr = of_get_property(dev, "i2c-address", NULL);
982 			if (!_addr)
983 				continue;
984 			addr = ((*_addr) >> 1) & 0x7f;
985 			/* now, if the address doesn't match any of the two
986 			 * that a tas3004 can have, we cannot handle this.
987 			 * I doubt it ever happens but hey. */
988 			if (addr != 0x34 && addr != 0x35)
989 				continue;
990 			return tas_create(adapter, dev, addr);
991 		}
992 	}
993 	return -ENODEV;
994 }
995 
996 static int tas_i2c_remove(struct i2c_client *client)
997 {
998 	struct tas *tas = i2c_get_clientdata(client);
999 	u8 tmp = TAS_ACR_ANALOG_PDOWN;
1000 
1001 	aoa_codec_unregister(&tas->codec);
1002 	of_node_put(tas->codec.node);
1003 
1004 	/* power down codec chip */
1005 	tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
1006 
1007 	mutex_destroy(&tas->mtx);
1008 	kfree(tas);
1009 	return 0;
1010 }
1011 
1012 static const struct i2c_device_id tas_i2c_id[] = {
1013 	{ "aoa_codec_tas", 0 },
1014 	{ }
1015 };
1016 
1017 static struct i2c_driver tas_driver = {
1018 	.driver = {
1019 		.name = "aoa_codec_tas",
1020 		.owner = THIS_MODULE,
1021 	},
1022 	.attach_adapter = tas_i2c_attach,
1023 	.probe = tas_i2c_probe,
1024 	.remove = tas_i2c_remove,
1025 	.id_table = tas_i2c_id,
1026 };
1027 
1028 static int __init tas_init(void)
1029 {
1030 	return i2c_add_driver(&tas_driver);
1031 }
1032 
1033 static void __exit tas_exit(void)
1034 {
1035 	i2c_del_driver(&tas_driver);
1036 }
1037 
1038 module_init(tas_init);
1039 module_exit(tas_exit);
1040