xref: /openbmc/linux/sound/aoa/codecs/tas.c (revision b34e08d5)
1 /*
2  * Apple Onboard Audio driver for tas codec
3  *
4  * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * GPL v2, can be found in COPYING.
7  *
8  * Open questions:
9  *  - How to distinguish between 3004 and versions?
10  *
11  * FIXMEs:
12  *  - This codec driver doesn't honour the 'connected'
13  *    property of the aoa_codec struct, hence if
14  *    it is used in machines where not everything is
15  *    connected it will display wrong mixer elements.
16  *  - Driver assumes that the microphone is always
17  *    monaureal and connected to the right channel of
18  *    the input. This should also be a codec-dependent
19  *    flag, maybe the codec should have 3 different
20  *    bits for the three different possibilities how
21  *    it can be hooked up...
22  *    But as long as I don't see any hardware hooked
23  *    up that way...
24  *  - As Apple notes in their code, the tas3004 seems
25  *    to delay the right channel by one sample. You can
26  *    see this when for example recording stereo in
27  *    audacity, or recording the tas output via cable
28  *    on another machine (use a sinus generator or so).
29  *    I tried programming the BiQuads but couldn't
30  *    make the delay work, maybe someone can read the
31  *    datasheet and fix it. The relevant Apple comment
32  *    is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33  *    that their comment describing how they program
34  *    the filters sucks...
35  *
36  * Other things:
37  *  - this should actually register *two* aoa_codec
38  *    structs since it has two inputs. Then it must
39  *    use the prepare callback to forbid running the
40  *    secondary output on a different clock.
41  *    Also, whatever bus knows how to do this must
42  *    provide two soundbus_dev devices and the fabric
43  *    must be able to link them correctly.
44  *
45  *    I don't even know if Apple ever uses the second
46  *    port on the tas3004 though, I don't think their
47  *    i2s controllers can even do it. OTOH, they all
48  *    derive the clocks from common clocks, so it
49  *    might just be possible. The framework allows the
50  *    codec to refine the transfer_info items in the
51  *    usable callback, so we can simply remove the
52  *    rates the second instance is not using when it
53  *    actually is in use.
54  *    Maybe we'll need to make the sound busses have
55  *    a 'clock group id' value so the codec can
56  *    determine if the two outputs can be driven at
57  *    the same time. But that is likely overkill, up
58  *    to the fabric to not link them up incorrectly,
59  *    and up to the hardware designer to not wire
60  *    them up in some weird unusable way.
61  */
62 #include <stddef.h>
63 #include <linux/i2c.h>
64 #include <asm/pmac_low_i2c.h>
65 #include <asm/prom.h>
66 #include <linux/delay.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
69 #include <linux/slab.h>
70 
71 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
74 
75 #include "tas.h"
76 #include "tas-gain-table.h"
77 #include "tas-basstreble.h"
78 #include "../aoa.h"
79 #include "../soundbus/soundbus.h"
80 
81 #define PFX "snd-aoa-codec-tas: "
82 
83 
84 struct tas {
85 	struct aoa_codec	codec;
86 	struct i2c_client	*i2c;
87 	u32			mute_l:1, mute_r:1 ,
88 				controls_created:1 ,
89 				drc_enabled:1,
90 				hw_enabled:1;
91 	u8			cached_volume_l, cached_volume_r;
92 	u8			mixer_l[3], mixer_r[3];
93 	u8			bass, treble;
94 	u8			acr;
95 	int			drc_range;
96 	/* protects hardware access against concurrency from
97 	 * userspace when hitting controls and during
98 	 * codec init/suspend/resume */
99 	struct mutex		mtx;
100 };
101 
102 static int tas_reset_init(struct tas *tas);
103 
104 static struct tas *codec_to_tas(struct aoa_codec *codec)
105 {
106 	return container_of(codec, struct tas, codec);
107 }
108 
109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
110 {
111 	if (len == 1)
112 		return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
113 	else
114 		return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
115 }
116 
117 static void tas3004_set_drc(struct tas *tas)
118 {
119 	unsigned char val[6];
120 
121 	if (tas->drc_enabled)
122 		val[0] = 0x50; /* 3:1 above threshold */
123 	else
124 		val[0] = 0x51; /* disabled */
125 	val[1] = 0x02; /* 1:1 below threshold */
126 	if (tas->drc_range > 0xef)
127 		val[2] = 0xef;
128 	else if (tas->drc_range < 0)
129 		val[2] = 0x00;
130 	else
131 		val[2] = tas->drc_range;
132 	val[3] = 0xb0;
133 	val[4] = 0x60;
134 	val[5] = 0xa0;
135 
136 	tas_write_reg(tas, TAS_REG_DRC, 6, val);
137 }
138 
139 static void tas_set_treble(struct tas *tas)
140 {
141 	u8 tmp;
142 
143 	tmp = tas3004_treble(tas->treble);
144 	tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
145 }
146 
147 static void tas_set_bass(struct tas *tas)
148 {
149 	u8 tmp;
150 
151 	tmp = tas3004_bass(tas->bass);
152 	tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
153 }
154 
155 static void tas_set_volume(struct tas *tas)
156 {
157 	u8 block[6];
158 	int tmp;
159 	u8 left, right;
160 
161 	left = tas->cached_volume_l;
162 	right = tas->cached_volume_r;
163 
164 	if (left > 177) left = 177;
165 	if (right > 177) right = 177;
166 
167 	if (tas->mute_l) left = 0;
168 	if (tas->mute_r) right = 0;
169 
170 	/* analysing the volume and mixer tables shows
171 	 * that they are similar enough when we shift
172 	 * the mixer table down by 4 bits. The error
173 	 * is miniscule, in just one item the error
174 	 * is 1, at a value of 0x07f17b (mixer table
175 	 * value is 0x07f17a) */
176 	tmp = tas_gaintable[left];
177 	block[0] = tmp>>20;
178 	block[1] = tmp>>12;
179 	block[2] = tmp>>4;
180 	tmp = tas_gaintable[right];
181 	block[3] = tmp>>20;
182 	block[4] = tmp>>12;
183 	block[5] = tmp>>4;
184 	tas_write_reg(tas, TAS_REG_VOL, 6, block);
185 }
186 
187 static void tas_set_mixer(struct tas *tas)
188 {
189 	u8 block[9];
190 	int tmp, i;
191 	u8 val;
192 
193 	for (i=0;i<3;i++) {
194 		val = tas->mixer_l[i];
195 		if (val > 177) val = 177;
196 		tmp = tas_gaintable[val];
197 		block[3*i+0] = tmp>>16;
198 		block[3*i+1] = tmp>>8;
199 		block[3*i+2] = tmp;
200 	}
201 	tas_write_reg(tas, TAS_REG_LMIX, 9, block);
202 
203 	for (i=0;i<3;i++) {
204 		val = tas->mixer_r[i];
205 		if (val > 177) val = 177;
206 		tmp = tas_gaintable[val];
207 		block[3*i+0] = tmp>>16;
208 		block[3*i+1] = tmp>>8;
209 		block[3*i+2] = tmp;
210 	}
211 	tas_write_reg(tas, TAS_REG_RMIX, 9, block);
212 }
213 
214 /* alsa stuff */
215 
216 static int tas_dev_register(struct snd_device *dev)
217 {
218 	return 0;
219 }
220 
221 static struct snd_device_ops ops = {
222 	.dev_register = tas_dev_register,
223 };
224 
225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
226 	struct snd_ctl_elem_info *uinfo)
227 {
228 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
229 	uinfo->count = 2;
230 	uinfo->value.integer.min = 0;
231 	uinfo->value.integer.max = 177;
232 	return 0;
233 }
234 
235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
236 	struct snd_ctl_elem_value *ucontrol)
237 {
238 	struct tas *tas = snd_kcontrol_chip(kcontrol);
239 
240 	mutex_lock(&tas->mtx);
241 	ucontrol->value.integer.value[0] = tas->cached_volume_l;
242 	ucontrol->value.integer.value[1] = tas->cached_volume_r;
243 	mutex_unlock(&tas->mtx);
244 	return 0;
245 }
246 
247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
248 	struct snd_ctl_elem_value *ucontrol)
249 {
250 	struct tas *tas = snd_kcontrol_chip(kcontrol);
251 
252 	if (ucontrol->value.integer.value[0] < 0 ||
253 	    ucontrol->value.integer.value[0] > 177)
254 		return -EINVAL;
255 	if (ucontrol->value.integer.value[1] < 0 ||
256 	    ucontrol->value.integer.value[1] > 177)
257 		return -EINVAL;
258 
259 	mutex_lock(&tas->mtx);
260 	if (tas->cached_volume_l == ucontrol->value.integer.value[0]
261 	 && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
262 		mutex_unlock(&tas->mtx);
263 		return 0;
264 	}
265 
266 	tas->cached_volume_l = ucontrol->value.integer.value[0];
267 	tas->cached_volume_r = ucontrol->value.integer.value[1];
268 	if (tas->hw_enabled)
269 		tas_set_volume(tas);
270 	mutex_unlock(&tas->mtx);
271 	return 1;
272 }
273 
274 static struct snd_kcontrol_new volume_control = {
275 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
276 	.name = "Master Playback Volume",
277 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
278 	.info = tas_snd_vol_info,
279 	.get = tas_snd_vol_get,
280 	.put = tas_snd_vol_put,
281 };
282 
283 #define tas_snd_mute_info	snd_ctl_boolean_stereo_info
284 
285 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
286 	struct snd_ctl_elem_value *ucontrol)
287 {
288 	struct tas *tas = snd_kcontrol_chip(kcontrol);
289 
290 	mutex_lock(&tas->mtx);
291 	ucontrol->value.integer.value[0] = !tas->mute_l;
292 	ucontrol->value.integer.value[1] = !tas->mute_r;
293 	mutex_unlock(&tas->mtx);
294 	return 0;
295 }
296 
297 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
298 	struct snd_ctl_elem_value *ucontrol)
299 {
300 	struct tas *tas = snd_kcontrol_chip(kcontrol);
301 
302 	mutex_lock(&tas->mtx);
303 	if (tas->mute_l == !ucontrol->value.integer.value[0]
304 	 && tas->mute_r == !ucontrol->value.integer.value[1]) {
305 		mutex_unlock(&tas->mtx);
306 		return 0;
307 	}
308 
309 	tas->mute_l = !ucontrol->value.integer.value[0];
310 	tas->mute_r = !ucontrol->value.integer.value[1];
311 	if (tas->hw_enabled)
312 		tas_set_volume(tas);
313 	mutex_unlock(&tas->mtx);
314 	return 1;
315 }
316 
317 static struct snd_kcontrol_new mute_control = {
318 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
319 	.name = "Master Playback Switch",
320 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
321 	.info = tas_snd_mute_info,
322 	.get = tas_snd_mute_get,
323 	.put = tas_snd_mute_put,
324 };
325 
326 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
327 	struct snd_ctl_elem_info *uinfo)
328 {
329 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
330 	uinfo->count = 2;
331 	uinfo->value.integer.min = 0;
332 	uinfo->value.integer.max = 177;
333 	return 0;
334 }
335 
336 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
337 	struct snd_ctl_elem_value *ucontrol)
338 {
339 	struct tas *tas = snd_kcontrol_chip(kcontrol);
340 	int idx = kcontrol->private_value;
341 
342 	mutex_lock(&tas->mtx);
343 	ucontrol->value.integer.value[0] = tas->mixer_l[idx];
344 	ucontrol->value.integer.value[1] = tas->mixer_r[idx];
345 	mutex_unlock(&tas->mtx);
346 
347 	return 0;
348 }
349 
350 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
351 	struct snd_ctl_elem_value *ucontrol)
352 {
353 	struct tas *tas = snd_kcontrol_chip(kcontrol);
354 	int idx = kcontrol->private_value;
355 
356 	mutex_lock(&tas->mtx);
357 	if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
358 	 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
359 		mutex_unlock(&tas->mtx);
360 		return 0;
361 	}
362 
363 	tas->mixer_l[idx] = ucontrol->value.integer.value[0];
364 	tas->mixer_r[idx] = ucontrol->value.integer.value[1];
365 
366 	if (tas->hw_enabled)
367 		tas_set_mixer(tas);
368 	mutex_unlock(&tas->mtx);
369 	return 1;
370 }
371 
372 #define MIXER_CONTROL(n,descr,idx)			\
373 static struct snd_kcontrol_new n##_control = {		\
374 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,		\
375 	.name = descr " Playback Volume",		\
376 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,	\
377 	.info = tas_snd_mixer_info,			\
378 	.get = tas_snd_mixer_get,			\
379 	.put = tas_snd_mixer_put,			\
380 	.private_value = idx,				\
381 }
382 
383 MIXER_CONTROL(pcm1, "PCM", 0);
384 MIXER_CONTROL(monitor, "Monitor", 2);
385 
386 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
387 	struct snd_ctl_elem_info *uinfo)
388 {
389 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
390 	uinfo->count = 1;
391 	uinfo->value.integer.min = 0;
392 	uinfo->value.integer.max = TAS3004_DRC_MAX;
393 	return 0;
394 }
395 
396 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
397 	struct snd_ctl_elem_value *ucontrol)
398 {
399 	struct tas *tas = snd_kcontrol_chip(kcontrol);
400 
401 	mutex_lock(&tas->mtx);
402 	ucontrol->value.integer.value[0] = tas->drc_range;
403 	mutex_unlock(&tas->mtx);
404 	return 0;
405 }
406 
407 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
408 	struct snd_ctl_elem_value *ucontrol)
409 {
410 	struct tas *tas = snd_kcontrol_chip(kcontrol);
411 
412 	if (ucontrol->value.integer.value[0] < 0 ||
413 	    ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
414 		return -EINVAL;
415 
416 	mutex_lock(&tas->mtx);
417 	if (tas->drc_range == ucontrol->value.integer.value[0]) {
418 		mutex_unlock(&tas->mtx);
419 		return 0;
420 	}
421 
422 	tas->drc_range = ucontrol->value.integer.value[0];
423 	if (tas->hw_enabled)
424 		tas3004_set_drc(tas);
425 	mutex_unlock(&tas->mtx);
426 	return 1;
427 }
428 
429 static struct snd_kcontrol_new drc_range_control = {
430 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
431 	.name = "DRC Range",
432 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
433 	.info = tas_snd_drc_range_info,
434 	.get = tas_snd_drc_range_get,
435 	.put = tas_snd_drc_range_put,
436 };
437 
438 #define tas_snd_drc_switch_info		snd_ctl_boolean_mono_info
439 
440 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
441 	struct snd_ctl_elem_value *ucontrol)
442 {
443 	struct tas *tas = snd_kcontrol_chip(kcontrol);
444 
445 	mutex_lock(&tas->mtx);
446 	ucontrol->value.integer.value[0] = tas->drc_enabled;
447 	mutex_unlock(&tas->mtx);
448 	return 0;
449 }
450 
451 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
452 	struct snd_ctl_elem_value *ucontrol)
453 {
454 	struct tas *tas = snd_kcontrol_chip(kcontrol);
455 
456 	mutex_lock(&tas->mtx);
457 	if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
458 		mutex_unlock(&tas->mtx);
459 		return 0;
460 	}
461 
462 	tas->drc_enabled = !!ucontrol->value.integer.value[0];
463 	if (tas->hw_enabled)
464 		tas3004_set_drc(tas);
465 	mutex_unlock(&tas->mtx);
466 	return 1;
467 }
468 
469 static struct snd_kcontrol_new drc_switch_control = {
470 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
471 	.name = "DRC Range Switch",
472 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
473 	.info = tas_snd_drc_switch_info,
474 	.get = tas_snd_drc_switch_get,
475 	.put = tas_snd_drc_switch_put,
476 };
477 
478 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
479 	struct snd_ctl_elem_info *uinfo)
480 {
481 	static char *texts[] = { "Line-In", "Microphone" };
482 
483 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
484 	uinfo->count = 1;
485 	uinfo->value.enumerated.items = 2;
486 	if (uinfo->value.enumerated.item > 1)
487 		uinfo->value.enumerated.item = 1;
488 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
489 	return 0;
490 }
491 
492 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
493 	struct snd_ctl_elem_value *ucontrol)
494 {
495 	struct tas *tas = snd_kcontrol_chip(kcontrol);
496 
497 	mutex_lock(&tas->mtx);
498 	ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
499 	mutex_unlock(&tas->mtx);
500 	return 0;
501 }
502 
503 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
504 	struct snd_ctl_elem_value *ucontrol)
505 {
506 	struct tas *tas = snd_kcontrol_chip(kcontrol);
507 	int oldacr;
508 
509 	if (ucontrol->value.enumerated.item[0] > 1)
510 		return -EINVAL;
511 	mutex_lock(&tas->mtx);
512 	oldacr = tas->acr;
513 
514 	/*
515 	 * Despite what the data sheet says in one place, the
516 	 * TAS_ACR_B_MONAUREAL bit forces mono output even when
517 	 * input A (line in) is selected.
518 	 */
519 	tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
520 	if (ucontrol->value.enumerated.item[0])
521 		tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
522 		      TAS_ACR_B_MON_SEL_RIGHT;
523 	if (oldacr == tas->acr) {
524 		mutex_unlock(&tas->mtx);
525 		return 0;
526 	}
527 	if (tas->hw_enabled)
528 		tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
529 	mutex_unlock(&tas->mtx);
530 	return 1;
531 }
532 
533 static struct snd_kcontrol_new capture_source_control = {
534 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
535 	/* If we name this 'Input Source', it properly shows up in
536 	 * alsamixer as a selection, * but it's shown under the
537 	 * 'Playback' category.
538 	 * If I name it 'Capture Source', it shows up in strange
539 	 * ways (two bools of which one can be selected at a
540 	 * time) but at least it's shown in the 'Capture'
541 	 * category.
542 	 * I was told that this was due to backward compatibility,
543 	 * but I don't understand then why the mangling is *not*
544 	 * done when I name it "Input Source".....
545 	 */
546 	.name = "Capture Source",
547 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
548 	.info = tas_snd_capture_source_info,
549 	.get = tas_snd_capture_source_get,
550 	.put = tas_snd_capture_source_put,
551 };
552 
553 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
554 	struct snd_ctl_elem_info *uinfo)
555 {
556 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
557 	uinfo->count = 1;
558 	uinfo->value.integer.min = TAS3004_TREBLE_MIN;
559 	uinfo->value.integer.max = TAS3004_TREBLE_MAX;
560 	return 0;
561 }
562 
563 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
564 	struct snd_ctl_elem_value *ucontrol)
565 {
566 	struct tas *tas = snd_kcontrol_chip(kcontrol);
567 
568 	mutex_lock(&tas->mtx);
569 	ucontrol->value.integer.value[0] = tas->treble;
570 	mutex_unlock(&tas->mtx);
571 	return 0;
572 }
573 
574 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
575 	struct snd_ctl_elem_value *ucontrol)
576 {
577 	struct tas *tas = snd_kcontrol_chip(kcontrol);
578 
579 	if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
580 	    ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
581 		return -EINVAL;
582 	mutex_lock(&tas->mtx);
583 	if (tas->treble == ucontrol->value.integer.value[0]) {
584 		mutex_unlock(&tas->mtx);
585 		return 0;
586 	}
587 
588 	tas->treble = ucontrol->value.integer.value[0];
589 	if (tas->hw_enabled)
590 		tas_set_treble(tas);
591 	mutex_unlock(&tas->mtx);
592 	return 1;
593 }
594 
595 static struct snd_kcontrol_new treble_control = {
596 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
597 	.name = "Treble",
598 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
599 	.info = tas_snd_treble_info,
600 	.get = tas_snd_treble_get,
601 	.put = tas_snd_treble_put,
602 };
603 
604 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
605 	struct snd_ctl_elem_info *uinfo)
606 {
607 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
608 	uinfo->count = 1;
609 	uinfo->value.integer.min = TAS3004_BASS_MIN;
610 	uinfo->value.integer.max = TAS3004_BASS_MAX;
611 	return 0;
612 }
613 
614 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
615 	struct snd_ctl_elem_value *ucontrol)
616 {
617 	struct tas *tas = snd_kcontrol_chip(kcontrol);
618 
619 	mutex_lock(&tas->mtx);
620 	ucontrol->value.integer.value[0] = tas->bass;
621 	mutex_unlock(&tas->mtx);
622 	return 0;
623 }
624 
625 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
626 	struct snd_ctl_elem_value *ucontrol)
627 {
628 	struct tas *tas = snd_kcontrol_chip(kcontrol);
629 
630 	if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
631 	    ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
632 		return -EINVAL;
633 	mutex_lock(&tas->mtx);
634 	if (tas->bass == ucontrol->value.integer.value[0]) {
635 		mutex_unlock(&tas->mtx);
636 		return 0;
637 	}
638 
639 	tas->bass = ucontrol->value.integer.value[0];
640 	if (tas->hw_enabled)
641 		tas_set_bass(tas);
642 	mutex_unlock(&tas->mtx);
643 	return 1;
644 }
645 
646 static struct snd_kcontrol_new bass_control = {
647 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
648 	.name = "Bass",
649 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
650 	.info = tas_snd_bass_info,
651 	.get = tas_snd_bass_get,
652 	.put = tas_snd_bass_put,
653 };
654 
655 static struct transfer_info tas_transfers[] = {
656 	{
657 		/* input */
658 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
659 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
660 		.transfer_in = 1,
661 	},
662 	{
663 		/* output */
664 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
665 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
666 		.transfer_in = 0,
667 	},
668 	{}
669 };
670 
671 static int tas_usable(struct codec_info_item *cii,
672 		      struct transfer_info *ti,
673 		      struct transfer_info *out)
674 {
675 	return 1;
676 }
677 
678 static int tas_reset_init(struct tas *tas)
679 {
680 	u8 tmp;
681 
682 	tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
683 	msleep(5);
684 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
685 	msleep(5);
686 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
687 	msleep(20);
688 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
689 	msleep(10);
690 	tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
691 
692 	tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
693 	if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
694 		goto outerr;
695 
696 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
697 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
698 		goto outerr;
699 
700 	tmp = 0;
701 	if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
702 		goto outerr;
703 
704 	tas3004_set_drc(tas);
705 
706 	/* Set treble & bass to 0dB */
707 	tas->treble = TAS3004_TREBLE_ZERO;
708 	tas->bass = TAS3004_BASS_ZERO;
709 	tas_set_treble(tas);
710 	tas_set_bass(tas);
711 
712 	tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
713 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
714 		goto outerr;
715 
716 	return 0;
717  outerr:
718 	return -ENODEV;
719 }
720 
721 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
722 {
723 	struct tas *tas = cii->codec_data;
724 
725 	switch(clock) {
726 	case CLOCK_SWITCH_PREPARE_SLAVE:
727 		/* Clocks are going away, mute mute mute */
728 		tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
729 		tas->hw_enabled = 0;
730 		break;
731 	case CLOCK_SWITCH_SLAVE:
732 		/* Clocks are back, re-init the codec */
733 		mutex_lock(&tas->mtx);
734 		tas_reset_init(tas);
735 		tas_set_volume(tas);
736 		tas_set_mixer(tas);
737 		tas->hw_enabled = 1;
738 		tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
739 		mutex_unlock(&tas->mtx);
740 		break;
741 	default:
742 		/* doesn't happen as of now */
743 		return -EINVAL;
744 	}
745 	return 0;
746 }
747 
748 #ifdef CONFIG_PM
749 /* we are controlled via i2c and assume that is always up
750  * If that wasn't the case, we'd have to suspend once
751  * our i2c device is suspended, and then take note of that! */
752 static int tas_suspend(struct tas *tas)
753 {
754 	mutex_lock(&tas->mtx);
755 	tas->hw_enabled = 0;
756 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
757 	tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
758 	mutex_unlock(&tas->mtx);
759 	return 0;
760 }
761 
762 static int tas_resume(struct tas *tas)
763 {
764 	/* reset codec */
765 	mutex_lock(&tas->mtx);
766 	tas_reset_init(tas);
767 	tas_set_volume(tas);
768 	tas_set_mixer(tas);
769 	tas->hw_enabled = 1;
770 	mutex_unlock(&tas->mtx);
771 	return 0;
772 }
773 
774 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
775 {
776 	return tas_suspend(cii->codec_data);
777 }
778 
779 static int _tas_resume(struct codec_info_item *cii)
780 {
781 	return tas_resume(cii->codec_data);
782 }
783 #else /* CONFIG_PM */
784 #define _tas_suspend	NULL
785 #define _tas_resume	NULL
786 #endif /* CONFIG_PM */
787 
788 static struct codec_info tas_codec_info = {
789 	.transfers = tas_transfers,
790 	/* in theory, we can drive it at 512 too...
791 	 * but so far the framework doesn't allow
792 	 * for that and I don't see much point in it. */
793 	.sysclock_factor = 256,
794 	/* same here, could be 32 for just one 16 bit format */
795 	.bus_factor = 64,
796 	.owner = THIS_MODULE,
797 	.usable = tas_usable,
798 	.switch_clock = tas_switch_clock,
799 	.suspend = _tas_suspend,
800 	.resume = _tas_resume,
801 };
802 
803 static int tas_init_codec(struct aoa_codec *codec)
804 {
805 	struct tas *tas = codec_to_tas(codec);
806 	int err;
807 
808 	if (!tas->codec.gpio || !tas->codec.gpio->methods) {
809 		printk(KERN_ERR PFX "gpios not assigned!!\n");
810 		return -EINVAL;
811 	}
812 
813 	mutex_lock(&tas->mtx);
814 	if (tas_reset_init(tas)) {
815 		printk(KERN_ERR PFX "tas failed to initialise\n");
816 		mutex_unlock(&tas->mtx);
817 		return -ENXIO;
818 	}
819 	tas->hw_enabled = 1;
820 	mutex_unlock(&tas->mtx);
821 
822 	if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
823 						   aoa_get_card(),
824 						   &tas_codec_info, tas)) {
825 		printk(KERN_ERR PFX "error attaching tas to soundbus\n");
826 		return -ENODEV;
827 	}
828 
829 	if (aoa_snd_device_new(SNDRV_DEV_CODEC, tas, &ops)) {
830 		printk(KERN_ERR PFX "failed to create tas snd device!\n");
831 		return -ENODEV;
832 	}
833 	err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
834 	if (err)
835 		goto error;
836 
837 	err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
838 	if (err)
839 		goto error;
840 
841 	err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
842 	if (err)
843 		goto error;
844 
845 	err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
846 	if (err)
847 		goto error;
848 
849 	err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
850 	if (err)
851 		goto error;
852 
853 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
854 	if (err)
855 		goto error;
856 
857 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
858 	if (err)
859 		goto error;
860 
861 	err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
862 	if (err)
863 		goto error;
864 
865 	err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
866 	if (err)
867 		goto error;
868 
869 	return 0;
870  error:
871 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
872 	snd_device_free(aoa_get_card(), tas);
873 	return err;
874 }
875 
876 static void tas_exit_codec(struct aoa_codec *codec)
877 {
878 	struct tas *tas = codec_to_tas(codec);
879 
880 	if (!tas->codec.soundbus_dev)
881 		return;
882 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
883 }
884 
885 
886 static int tas_i2c_probe(struct i2c_client *client,
887 			 const struct i2c_device_id *id)
888 {
889 	struct device_node *node = client->dev.of_node;
890 	struct tas *tas;
891 
892 	tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
893 
894 	if (!tas)
895 		return -ENOMEM;
896 
897 	mutex_init(&tas->mtx);
898 	tas->i2c = client;
899 	i2c_set_clientdata(client, tas);
900 
901 	/* seems that half is a saner default */
902 	tas->drc_range = TAS3004_DRC_MAX / 2;
903 
904 	strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
905 	tas->codec.owner = THIS_MODULE;
906 	tas->codec.init = tas_init_codec;
907 	tas->codec.exit = tas_exit_codec;
908 	tas->codec.node = of_node_get(node);
909 
910 	if (aoa_codec_register(&tas->codec)) {
911 		goto fail;
912 	}
913 	printk(KERN_DEBUG
914 	       "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
915 	       (unsigned int)client->addr, node->full_name);
916 	return 0;
917  fail:
918 	mutex_destroy(&tas->mtx);
919 	kfree(tas);
920 	return -EINVAL;
921 }
922 
923 static int tas_i2c_remove(struct i2c_client *client)
924 {
925 	struct tas *tas = i2c_get_clientdata(client);
926 	u8 tmp = TAS_ACR_ANALOG_PDOWN;
927 
928 	aoa_codec_unregister(&tas->codec);
929 	of_node_put(tas->codec.node);
930 
931 	/* power down codec chip */
932 	tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
933 
934 	mutex_destroy(&tas->mtx);
935 	kfree(tas);
936 	return 0;
937 }
938 
939 static const struct i2c_device_id tas_i2c_id[] = {
940 	{ "MAC,tas3004", 0 },
941 	{ }
942 };
943 MODULE_DEVICE_TABLE(i2c,tas_i2c_id);
944 
945 static struct i2c_driver tas_driver = {
946 	.driver = {
947 		.name = "aoa_codec_tas",
948 		.owner = THIS_MODULE,
949 	},
950 	.probe = tas_i2c_probe,
951 	.remove = tas_i2c_remove,
952 	.id_table = tas_i2c_id,
953 };
954 
955 module_i2c_driver(tas_driver);
956