xref: /openbmc/linux/sound/aoa/codecs/tas.c (revision a06c488d)
1 /*
2  * Apple Onboard Audio driver for tas codec
3  *
4  * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * GPL v2, can be found in COPYING.
7  *
8  * Open questions:
9  *  - How to distinguish between 3004 and versions?
10  *
11  * FIXMEs:
12  *  - This codec driver doesn't honour the 'connected'
13  *    property of the aoa_codec struct, hence if
14  *    it is used in machines where not everything is
15  *    connected it will display wrong mixer elements.
16  *  - Driver assumes that the microphone is always
17  *    monaureal and connected to the right channel of
18  *    the input. This should also be a codec-dependent
19  *    flag, maybe the codec should have 3 different
20  *    bits for the three different possibilities how
21  *    it can be hooked up...
22  *    But as long as I don't see any hardware hooked
23  *    up that way...
24  *  - As Apple notes in their code, the tas3004 seems
25  *    to delay the right channel by one sample. You can
26  *    see this when for example recording stereo in
27  *    audacity, or recording the tas output via cable
28  *    on another machine (use a sinus generator or so).
29  *    I tried programming the BiQuads but couldn't
30  *    make the delay work, maybe someone can read the
31  *    datasheet and fix it. The relevant Apple comment
32  *    is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33  *    that their comment describing how they program
34  *    the filters sucks...
35  *
36  * Other things:
37  *  - this should actually register *two* aoa_codec
38  *    structs since it has two inputs. Then it must
39  *    use the prepare callback to forbid running the
40  *    secondary output on a different clock.
41  *    Also, whatever bus knows how to do this must
42  *    provide two soundbus_dev devices and the fabric
43  *    must be able to link them correctly.
44  *
45  *    I don't even know if Apple ever uses the second
46  *    port on the tas3004 though, I don't think their
47  *    i2s controllers can even do it. OTOH, they all
48  *    derive the clocks from common clocks, so it
49  *    might just be possible. The framework allows the
50  *    codec to refine the transfer_info items in the
51  *    usable callback, so we can simply remove the
52  *    rates the second instance is not using when it
53  *    actually is in use.
54  *    Maybe we'll need to make the sound busses have
55  *    a 'clock group id' value so the codec can
56  *    determine if the two outputs can be driven at
57  *    the same time. But that is likely overkill, up
58  *    to the fabric to not link them up incorrectly,
59  *    and up to the hardware designer to not wire
60  *    them up in some weird unusable way.
61  */
62 #include <stddef.h>
63 #include <linux/i2c.h>
64 #include <asm/pmac_low_i2c.h>
65 #include <asm/prom.h>
66 #include <linux/delay.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
69 #include <linux/slab.h>
70 
71 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
74 
75 #include "tas.h"
76 #include "tas-gain-table.h"
77 #include "tas-basstreble.h"
78 #include "../aoa.h"
79 #include "../soundbus/soundbus.h"
80 
81 #define PFX "snd-aoa-codec-tas: "
82 
83 
84 struct tas {
85 	struct aoa_codec	codec;
86 	struct i2c_client	*i2c;
87 	u32			mute_l:1, mute_r:1 ,
88 				controls_created:1 ,
89 				drc_enabled:1,
90 				hw_enabled:1;
91 	u8			cached_volume_l, cached_volume_r;
92 	u8			mixer_l[3], mixer_r[3];
93 	u8			bass, treble;
94 	u8			acr;
95 	int			drc_range;
96 	/* protects hardware access against concurrency from
97 	 * userspace when hitting controls and during
98 	 * codec init/suspend/resume */
99 	struct mutex		mtx;
100 };
101 
102 static int tas_reset_init(struct tas *tas);
103 
104 static struct tas *codec_to_tas(struct aoa_codec *codec)
105 {
106 	return container_of(codec, struct tas, codec);
107 }
108 
109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
110 {
111 	if (len == 1)
112 		return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
113 	else
114 		return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
115 }
116 
117 static void tas3004_set_drc(struct tas *tas)
118 {
119 	unsigned char val[6];
120 
121 	if (tas->drc_enabled)
122 		val[0] = 0x50; /* 3:1 above threshold */
123 	else
124 		val[0] = 0x51; /* disabled */
125 	val[1] = 0x02; /* 1:1 below threshold */
126 	if (tas->drc_range > 0xef)
127 		val[2] = 0xef;
128 	else if (tas->drc_range < 0)
129 		val[2] = 0x00;
130 	else
131 		val[2] = tas->drc_range;
132 	val[3] = 0xb0;
133 	val[4] = 0x60;
134 	val[5] = 0xa0;
135 
136 	tas_write_reg(tas, TAS_REG_DRC, 6, val);
137 }
138 
139 static void tas_set_treble(struct tas *tas)
140 {
141 	u8 tmp;
142 
143 	tmp = tas3004_treble(tas->treble);
144 	tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
145 }
146 
147 static void tas_set_bass(struct tas *tas)
148 {
149 	u8 tmp;
150 
151 	tmp = tas3004_bass(tas->bass);
152 	tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
153 }
154 
155 static void tas_set_volume(struct tas *tas)
156 {
157 	u8 block[6];
158 	int tmp;
159 	u8 left, right;
160 
161 	left = tas->cached_volume_l;
162 	right = tas->cached_volume_r;
163 
164 	if (left > 177) left = 177;
165 	if (right > 177) right = 177;
166 
167 	if (tas->mute_l) left = 0;
168 	if (tas->mute_r) right = 0;
169 
170 	/* analysing the volume and mixer tables shows
171 	 * that they are similar enough when we shift
172 	 * the mixer table down by 4 bits. The error
173 	 * is miniscule, in just one item the error
174 	 * is 1, at a value of 0x07f17b (mixer table
175 	 * value is 0x07f17a) */
176 	tmp = tas_gaintable[left];
177 	block[0] = tmp>>20;
178 	block[1] = tmp>>12;
179 	block[2] = tmp>>4;
180 	tmp = tas_gaintable[right];
181 	block[3] = tmp>>20;
182 	block[4] = tmp>>12;
183 	block[5] = tmp>>4;
184 	tas_write_reg(tas, TAS_REG_VOL, 6, block);
185 }
186 
187 static void tas_set_mixer(struct tas *tas)
188 {
189 	u8 block[9];
190 	int tmp, i;
191 	u8 val;
192 
193 	for (i=0;i<3;i++) {
194 		val = tas->mixer_l[i];
195 		if (val > 177) val = 177;
196 		tmp = tas_gaintable[val];
197 		block[3*i+0] = tmp>>16;
198 		block[3*i+1] = tmp>>8;
199 		block[3*i+2] = tmp;
200 	}
201 	tas_write_reg(tas, TAS_REG_LMIX, 9, block);
202 
203 	for (i=0;i<3;i++) {
204 		val = tas->mixer_r[i];
205 		if (val > 177) val = 177;
206 		tmp = tas_gaintable[val];
207 		block[3*i+0] = tmp>>16;
208 		block[3*i+1] = tmp>>8;
209 		block[3*i+2] = tmp;
210 	}
211 	tas_write_reg(tas, TAS_REG_RMIX, 9, block);
212 }
213 
214 /* alsa stuff */
215 
216 static int tas_dev_register(struct snd_device *dev)
217 {
218 	return 0;
219 }
220 
221 static struct snd_device_ops ops = {
222 	.dev_register = tas_dev_register,
223 };
224 
225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
226 	struct snd_ctl_elem_info *uinfo)
227 {
228 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
229 	uinfo->count = 2;
230 	uinfo->value.integer.min = 0;
231 	uinfo->value.integer.max = 177;
232 	return 0;
233 }
234 
235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
236 	struct snd_ctl_elem_value *ucontrol)
237 {
238 	struct tas *tas = snd_kcontrol_chip(kcontrol);
239 
240 	mutex_lock(&tas->mtx);
241 	ucontrol->value.integer.value[0] = tas->cached_volume_l;
242 	ucontrol->value.integer.value[1] = tas->cached_volume_r;
243 	mutex_unlock(&tas->mtx);
244 	return 0;
245 }
246 
247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
248 	struct snd_ctl_elem_value *ucontrol)
249 {
250 	struct tas *tas = snd_kcontrol_chip(kcontrol);
251 
252 	if (ucontrol->value.integer.value[0] < 0 ||
253 	    ucontrol->value.integer.value[0] > 177)
254 		return -EINVAL;
255 	if (ucontrol->value.integer.value[1] < 0 ||
256 	    ucontrol->value.integer.value[1] > 177)
257 		return -EINVAL;
258 
259 	mutex_lock(&tas->mtx);
260 	if (tas->cached_volume_l == ucontrol->value.integer.value[0]
261 	 && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
262 		mutex_unlock(&tas->mtx);
263 		return 0;
264 	}
265 
266 	tas->cached_volume_l = ucontrol->value.integer.value[0];
267 	tas->cached_volume_r = ucontrol->value.integer.value[1];
268 	if (tas->hw_enabled)
269 		tas_set_volume(tas);
270 	mutex_unlock(&tas->mtx);
271 	return 1;
272 }
273 
274 static struct snd_kcontrol_new volume_control = {
275 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
276 	.name = "Master Playback Volume",
277 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
278 	.info = tas_snd_vol_info,
279 	.get = tas_snd_vol_get,
280 	.put = tas_snd_vol_put,
281 };
282 
283 #define tas_snd_mute_info	snd_ctl_boolean_stereo_info
284 
285 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
286 	struct snd_ctl_elem_value *ucontrol)
287 {
288 	struct tas *tas = snd_kcontrol_chip(kcontrol);
289 
290 	mutex_lock(&tas->mtx);
291 	ucontrol->value.integer.value[0] = !tas->mute_l;
292 	ucontrol->value.integer.value[1] = !tas->mute_r;
293 	mutex_unlock(&tas->mtx);
294 	return 0;
295 }
296 
297 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
298 	struct snd_ctl_elem_value *ucontrol)
299 {
300 	struct tas *tas = snd_kcontrol_chip(kcontrol);
301 
302 	mutex_lock(&tas->mtx);
303 	if (tas->mute_l == !ucontrol->value.integer.value[0]
304 	 && tas->mute_r == !ucontrol->value.integer.value[1]) {
305 		mutex_unlock(&tas->mtx);
306 		return 0;
307 	}
308 
309 	tas->mute_l = !ucontrol->value.integer.value[0];
310 	tas->mute_r = !ucontrol->value.integer.value[1];
311 	if (tas->hw_enabled)
312 		tas_set_volume(tas);
313 	mutex_unlock(&tas->mtx);
314 	return 1;
315 }
316 
317 static struct snd_kcontrol_new mute_control = {
318 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
319 	.name = "Master Playback Switch",
320 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
321 	.info = tas_snd_mute_info,
322 	.get = tas_snd_mute_get,
323 	.put = tas_snd_mute_put,
324 };
325 
326 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
327 	struct snd_ctl_elem_info *uinfo)
328 {
329 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
330 	uinfo->count = 2;
331 	uinfo->value.integer.min = 0;
332 	uinfo->value.integer.max = 177;
333 	return 0;
334 }
335 
336 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
337 	struct snd_ctl_elem_value *ucontrol)
338 {
339 	struct tas *tas = snd_kcontrol_chip(kcontrol);
340 	int idx = kcontrol->private_value;
341 
342 	mutex_lock(&tas->mtx);
343 	ucontrol->value.integer.value[0] = tas->mixer_l[idx];
344 	ucontrol->value.integer.value[1] = tas->mixer_r[idx];
345 	mutex_unlock(&tas->mtx);
346 
347 	return 0;
348 }
349 
350 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
351 	struct snd_ctl_elem_value *ucontrol)
352 {
353 	struct tas *tas = snd_kcontrol_chip(kcontrol);
354 	int idx = kcontrol->private_value;
355 
356 	mutex_lock(&tas->mtx);
357 	if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
358 	 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
359 		mutex_unlock(&tas->mtx);
360 		return 0;
361 	}
362 
363 	tas->mixer_l[idx] = ucontrol->value.integer.value[0];
364 	tas->mixer_r[idx] = ucontrol->value.integer.value[1];
365 
366 	if (tas->hw_enabled)
367 		tas_set_mixer(tas);
368 	mutex_unlock(&tas->mtx);
369 	return 1;
370 }
371 
372 #define MIXER_CONTROL(n,descr,idx)			\
373 static struct snd_kcontrol_new n##_control = {		\
374 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,		\
375 	.name = descr " Playback Volume",		\
376 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,	\
377 	.info = tas_snd_mixer_info,			\
378 	.get = tas_snd_mixer_get,			\
379 	.put = tas_snd_mixer_put,			\
380 	.private_value = idx,				\
381 }
382 
383 MIXER_CONTROL(pcm1, "PCM", 0);
384 MIXER_CONTROL(monitor, "Monitor", 2);
385 
386 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
387 	struct snd_ctl_elem_info *uinfo)
388 {
389 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
390 	uinfo->count = 1;
391 	uinfo->value.integer.min = 0;
392 	uinfo->value.integer.max = TAS3004_DRC_MAX;
393 	return 0;
394 }
395 
396 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
397 	struct snd_ctl_elem_value *ucontrol)
398 {
399 	struct tas *tas = snd_kcontrol_chip(kcontrol);
400 
401 	mutex_lock(&tas->mtx);
402 	ucontrol->value.integer.value[0] = tas->drc_range;
403 	mutex_unlock(&tas->mtx);
404 	return 0;
405 }
406 
407 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
408 	struct snd_ctl_elem_value *ucontrol)
409 {
410 	struct tas *tas = snd_kcontrol_chip(kcontrol);
411 
412 	if (ucontrol->value.integer.value[0] < 0 ||
413 	    ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
414 		return -EINVAL;
415 
416 	mutex_lock(&tas->mtx);
417 	if (tas->drc_range == ucontrol->value.integer.value[0]) {
418 		mutex_unlock(&tas->mtx);
419 		return 0;
420 	}
421 
422 	tas->drc_range = ucontrol->value.integer.value[0];
423 	if (tas->hw_enabled)
424 		tas3004_set_drc(tas);
425 	mutex_unlock(&tas->mtx);
426 	return 1;
427 }
428 
429 static struct snd_kcontrol_new drc_range_control = {
430 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
431 	.name = "DRC Range",
432 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
433 	.info = tas_snd_drc_range_info,
434 	.get = tas_snd_drc_range_get,
435 	.put = tas_snd_drc_range_put,
436 };
437 
438 #define tas_snd_drc_switch_info		snd_ctl_boolean_mono_info
439 
440 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
441 	struct snd_ctl_elem_value *ucontrol)
442 {
443 	struct tas *tas = snd_kcontrol_chip(kcontrol);
444 
445 	mutex_lock(&tas->mtx);
446 	ucontrol->value.integer.value[0] = tas->drc_enabled;
447 	mutex_unlock(&tas->mtx);
448 	return 0;
449 }
450 
451 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
452 	struct snd_ctl_elem_value *ucontrol)
453 {
454 	struct tas *tas = snd_kcontrol_chip(kcontrol);
455 
456 	mutex_lock(&tas->mtx);
457 	if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
458 		mutex_unlock(&tas->mtx);
459 		return 0;
460 	}
461 
462 	tas->drc_enabled = !!ucontrol->value.integer.value[0];
463 	if (tas->hw_enabled)
464 		tas3004_set_drc(tas);
465 	mutex_unlock(&tas->mtx);
466 	return 1;
467 }
468 
469 static struct snd_kcontrol_new drc_switch_control = {
470 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
471 	.name = "DRC Range Switch",
472 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
473 	.info = tas_snd_drc_switch_info,
474 	.get = tas_snd_drc_switch_get,
475 	.put = tas_snd_drc_switch_put,
476 };
477 
478 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
479 	struct snd_ctl_elem_info *uinfo)
480 {
481 	static const char * const texts[] = { "Line-In", "Microphone" };
482 
483 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
484 }
485 
486 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
487 	struct snd_ctl_elem_value *ucontrol)
488 {
489 	struct tas *tas = snd_kcontrol_chip(kcontrol);
490 
491 	mutex_lock(&tas->mtx);
492 	ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
493 	mutex_unlock(&tas->mtx);
494 	return 0;
495 }
496 
497 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
498 	struct snd_ctl_elem_value *ucontrol)
499 {
500 	struct tas *tas = snd_kcontrol_chip(kcontrol);
501 	int oldacr;
502 
503 	if (ucontrol->value.enumerated.item[0] > 1)
504 		return -EINVAL;
505 	mutex_lock(&tas->mtx);
506 	oldacr = tas->acr;
507 
508 	/*
509 	 * Despite what the data sheet says in one place, the
510 	 * TAS_ACR_B_MONAUREAL bit forces mono output even when
511 	 * input A (line in) is selected.
512 	 */
513 	tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
514 	if (ucontrol->value.enumerated.item[0])
515 		tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
516 		      TAS_ACR_B_MON_SEL_RIGHT;
517 	if (oldacr == tas->acr) {
518 		mutex_unlock(&tas->mtx);
519 		return 0;
520 	}
521 	if (tas->hw_enabled)
522 		tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
523 	mutex_unlock(&tas->mtx);
524 	return 1;
525 }
526 
527 static struct snd_kcontrol_new capture_source_control = {
528 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
529 	/* If we name this 'Input Source', it properly shows up in
530 	 * alsamixer as a selection, * but it's shown under the
531 	 * 'Playback' category.
532 	 * If I name it 'Capture Source', it shows up in strange
533 	 * ways (two bools of which one can be selected at a
534 	 * time) but at least it's shown in the 'Capture'
535 	 * category.
536 	 * I was told that this was due to backward compatibility,
537 	 * but I don't understand then why the mangling is *not*
538 	 * done when I name it "Input Source".....
539 	 */
540 	.name = "Capture Source",
541 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
542 	.info = tas_snd_capture_source_info,
543 	.get = tas_snd_capture_source_get,
544 	.put = tas_snd_capture_source_put,
545 };
546 
547 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
548 	struct snd_ctl_elem_info *uinfo)
549 {
550 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
551 	uinfo->count = 1;
552 	uinfo->value.integer.min = TAS3004_TREBLE_MIN;
553 	uinfo->value.integer.max = TAS3004_TREBLE_MAX;
554 	return 0;
555 }
556 
557 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
558 	struct snd_ctl_elem_value *ucontrol)
559 {
560 	struct tas *tas = snd_kcontrol_chip(kcontrol);
561 
562 	mutex_lock(&tas->mtx);
563 	ucontrol->value.integer.value[0] = tas->treble;
564 	mutex_unlock(&tas->mtx);
565 	return 0;
566 }
567 
568 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
569 	struct snd_ctl_elem_value *ucontrol)
570 {
571 	struct tas *tas = snd_kcontrol_chip(kcontrol);
572 
573 	if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
574 	    ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
575 		return -EINVAL;
576 	mutex_lock(&tas->mtx);
577 	if (tas->treble == ucontrol->value.integer.value[0]) {
578 		mutex_unlock(&tas->mtx);
579 		return 0;
580 	}
581 
582 	tas->treble = ucontrol->value.integer.value[0];
583 	if (tas->hw_enabled)
584 		tas_set_treble(tas);
585 	mutex_unlock(&tas->mtx);
586 	return 1;
587 }
588 
589 static struct snd_kcontrol_new treble_control = {
590 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
591 	.name = "Treble",
592 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
593 	.info = tas_snd_treble_info,
594 	.get = tas_snd_treble_get,
595 	.put = tas_snd_treble_put,
596 };
597 
598 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
599 	struct snd_ctl_elem_info *uinfo)
600 {
601 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
602 	uinfo->count = 1;
603 	uinfo->value.integer.min = TAS3004_BASS_MIN;
604 	uinfo->value.integer.max = TAS3004_BASS_MAX;
605 	return 0;
606 }
607 
608 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
609 	struct snd_ctl_elem_value *ucontrol)
610 {
611 	struct tas *tas = snd_kcontrol_chip(kcontrol);
612 
613 	mutex_lock(&tas->mtx);
614 	ucontrol->value.integer.value[0] = tas->bass;
615 	mutex_unlock(&tas->mtx);
616 	return 0;
617 }
618 
619 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
620 	struct snd_ctl_elem_value *ucontrol)
621 {
622 	struct tas *tas = snd_kcontrol_chip(kcontrol);
623 
624 	if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
625 	    ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
626 		return -EINVAL;
627 	mutex_lock(&tas->mtx);
628 	if (tas->bass == ucontrol->value.integer.value[0]) {
629 		mutex_unlock(&tas->mtx);
630 		return 0;
631 	}
632 
633 	tas->bass = ucontrol->value.integer.value[0];
634 	if (tas->hw_enabled)
635 		tas_set_bass(tas);
636 	mutex_unlock(&tas->mtx);
637 	return 1;
638 }
639 
640 static struct snd_kcontrol_new bass_control = {
641 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
642 	.name = "Bass",
643 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
644 	.info = tas_snd_bass_info,
645 	.get = tas_snd_bass_get,
646 	.put = tas_snd_bass_put,
647 };
648 
649 static struct transfer_info tas_transfers[] = {
650 	{
651 		/* input */
652 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
653 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
654 		.transfer_in = 1,
655 	},
656 	{
657 		/* output */
658 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
659 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
660 		.transfer_in = 0,
661 	},
662 	{}
663 };
664 
665 static int tas_usable(struct codec_info_item *cii,
666 		      struct transfer_info *ti,
667 		      struct transfer_info *out)
668 {
669 	return 1;
670 }
671 
672 static int tas_reset_init(struct tas *tas)
673 {
674 	u8 tmp;
675 
676 	tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
677 	msleep(5);
678 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
679 	msleep(5);
680 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
681 	msleep(20);
682 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
683 	msleep(10);
684 	tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
685 
686 	tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
687 	if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
688 		goto outerr;
689 
690 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
691 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
692 		goto outerr;
693 
694 	tmp = 0;
695 	if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
696 		goto outerr;
697 
698 	tas3004_set_drc(tas);
699 
700 	/* Set treble & bass to 0dB */
701 	tas->treble = TAS3004_TREBLE_ZERO;
702 	tas->bass = TAS3004_BASS_ZERO;
703 	tas_set_treble(tas);
704 	tas_set_bass(tas);
705 
706 	tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
707 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
708 		goto outerr;
709 
710 	return 0;
711  outerr:
712 	return -ENODEV;
713 }
714 
715 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
716 {
717 	struct tas *tas = cii->codec_data;
718 
719 	switch(clock) {
720 	case CLOCK_SWITCH_PREPARE_SLAVE:
721 		/* Clocks are going away, mute mute mute */
722 		tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
723 		tas->hw_enabled = 0;
724 		break;
725 	case CLOCK_SWITCH_SLAVE:
726 		/* Clocks are back, re-init the codec */
727 		mutex_lock(&tas->mtx);
728 		tas_reset_init(tas);
729 		tas_set_volume(tas);
730 		tas_set_mixer(tas);
731 		tas->hw_enabled = 1;
732 		tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
733 		mutex_unlock(&tas->mtx);
734 		break;
735 	default:
736 		/* doesn't happen as of now */
737 		return -EINVAL;
738 	}
739 	return 0;
740 }
741 
742 #ifdef CONFIG_PM
743 /* we are controlled via i2c and assume that is always up
744  * If that wasn't the case, we'd have to suspend once
745  * our i2c device is suspended, and then take note of that! */
746 static int tas_suspend(struct tas *tas)
747 {
748 	mutex_lock(&tas->mtx);
749 	tas->hw_enabled = 0;
750 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
751 	tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
752 	mutex_unlock(&tas->mtx);
753 	return 0;
754 }
755 
756 static int tas_resume(struct tas *tas)
757 {
758 	/* reset codec */
759 	mutex_lock(&tas->mtx);
760 	tas_reset_init(tas);
761 	tas_set_volume(tas);
762 	tas_set_mixer(tas);
763 	tas->hw_enabled = 1;
764 	mutex_unlock(&tas->mtx);
765 	return 0;
766 }
767 
768 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
769 {
770 	return tas_suspend(cii->codec_data);
771 }
772 
773 static int _tas_resume(struct codec_info_item *cii)
774 {
775 	return tas_resume(cii->codec_data);
776 }
777 #else /* CONFIG_PM */
778 #define _tas_suspend	NULL
779 #define _tas_resume	NULL
780 #endif /* CONFIG_PM */
781 
782 static struct codec_info tas_codec_info = {
783 	.transfers = tas_transfers,
784 	/* in theory, we can drive it at 512 too...
785 	 * but so far the framework doesn't allow
786 	 * for that and I don't see much point in it. */
787 	.sysclock_factor = 256,
788 	/* same here, could be 32 for just one 16 bit format */
789 	.bus_factor = 64,
790 	.owner = THIS_MODULE,
791 	.usable = tas_usable,
792 	.switch_clock = tas_switch_clock,
793 	.suspend = _tas_suspend,
794 	.resume = _tas_resume,
795 };
796 
797 static int tas_init_codec(struct aoa_codec *codec)
798 {
799 	struct tas *tas = codec_to_tas(codec);
800 	int err;
801 
802 	if (!tas->codec.gpio || !tas->codec.gpio->methods) {
803 		printk(KERN_ERR PFX "gpios not assigned!!\n");
804 		return -EINVAL;
805 	}
806 
807 	mutex_lock(&tas->mtx);
808 	if (tas_reset_init(tas)) {
809 		printk(KERN_ERR PFX "tas failed to initialise\n");
810 		mutex_unlock(&tas->mtx);
811 		return -ENXIO;
812 	}
813 	tas->hw_enabled = 1;
814 	mutex_unlock(&tas->mtx);
815 
816 	if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
817 						   aoa_get_card(),
818 						   &tas_codec_info, tas)) {
819 		printk(KERN_ERR PFX "error attaching tas to soundbus\n");
820 		return -ENODEV;
821 	}
822 
823 	if (aoa_snd_device_new(SNDRV_DEV_CODEC, tas, &ops)) {
824 		printk(KERN_ERR PFX "failed to create tas snd device!\n");
825 		return -ENODEV;
826 	}
827 	err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
828 	if (err)
829 		goto error;
830 
831 	err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
832 	if (err)
833 		goto error;
834 
835 	err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
836 	if (err)
837 		goto error;
838 
839 	err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
840 	if (err)
841 		goto error;
842 
843 	err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
844 	if (err)
845 		goto error;
846 
847 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
848 	if (err)
849 		goto error;
850 
851 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
852 	if (err)
853 		goto error;
854 
855 	err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
856 	if (err)
857 		goto error;
858 
859 	err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
860 	if (err)
861 		goto error;
862 
863 	return 0;
864  error:
865 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
866 	snd_device_free(aoa_get_card(), tas);
867 	return err;
868 }
869 
870 static void tas_exit_codec(struct aoa_codec *codec)
871 {
872 	struct tas *tas = codec_to_tas(codec);
873 
874 	if (!tas->codec.soundbus_dev)
875 		return;
876 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
877 }
878 
879 
880 static int tas_i2c_probe(struct i2c_client *client,
881 			 const struct i2c_device_id *id)
882 {
883 	struct device_node *node = client->dev.of_node;
884 	struct tas *tas;
885 
886 	tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
887 
888 	if (!tas)
889 		return -ENOMEM;
890 
891 	mutex_init(&tas->mtx);
892 	tas->i2c = client;
893 	i2c_set_clientdata(client, tas);
894 
895 	/* seems that half is a saner default */
896 	tas->drc_range = TAS3004_DRC_MAX / 2;
897 
898 	strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
899 	tas->codec.owner = THIS_MODULE;
900 	tas->codec.init = tas_init_codec;
901 	tas->codec.exit = tas_exit_codec;
902 	tas->codec.node = of_node_get(node);
903 
904 	if (aoa_codec_register(&tas->codec)) {
905 		goto fail;
906 	}
907 	printk(KERN_DEBUG
908 	       "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
909 	       (unsigned int)client->addr, node->full_name);
910 	return 0;
911  fail:
912 	mutex_destroy(&tas->mtx);
913 	kfree(tas);
914 	return -EINVAL;
915 }
916 
917 static int tas_i2c_remove(struct i2c_client *client)
918 {
919 	struct tas *tas = i2c_get_clientdata(client);
920 	u8 tmp = TAS_ACR_ANALOG_PDOWN;
921 
922 	aoa_codec_unregister(&tas->codec);
923 	of_node_put(tas->codec.node);
924 
925 	/* power down codec chip */
926 	tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
927 
928 	mutex_destroy(&tas->mtx);
929 	kfree(tas);
930 	return 0;
931 }
932 
933 static const struct i2c_device_id tas_i2c_id[] = {
934 	{ "MAC,tas3004", 0 },
935 	{ }
936 };
937 MODULE_DEVICE_TABLE(i2c,tas_i2c_id);
938 
939 static struct i2c_driver tas_driver = {
940 	.driver = {
941 		.name = "aoa_codec_tas",
942 	},
943 	.probe = tas_i2c_probe,
944 	.remove = tas_i2c_remove,
945 	.id_table = tas_i2c_id,
946 };
947 
948 module_i2c_driver(tas_driver);
949