xref: /openbmc/linux/sound/aoa/codecs/tas.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Apple Onboard Audio driver for tas codec
4  *
5  * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
6  *
7  * Open questions:
8  *  - How to distinguish between 3004 and versions?
9  *
10  * FIXMEs:
11  *  - This codec driver doesn't honour the 'connected'
12  *    property of the aoa_codec struct, hence if
13  *    it is used in machines where not everything is
14  *    connected it will display wrong mixer elements.
15  *  - Driver assumes that the microphone is always
16  *    monaureal and connected to the right channel of
17  *    the input. This should also be a codec-dependent
18  *    flag, maybe the codec should have 3 different
19  *    bits for the three different possibilities how
20  *    it can be hooked up...
21  *    But as long as I don't see any hardware hooked
22  *    up that way...
23  *  - As Apple notes in their code, the tas3004 seems
24  *    to delay the right channel by one sample. You can
25  *    see this when for example recording stereo in
26  *    audacity, or recording the tas output via cable
27  *    on another machine (use a sinus generator or so).
28  *    I tried programming the BiQuads but couldn't
29  *    make the delay work, maybe someone can read the
30  *    datasheet and fix it. The relevant Apple comment
31  *    is in AppleTAS3004Audio.cpp lines 1637 ff. Note
32  *    that their comment describing how they program
33  *    the filters sucks...
34  *
35  * Other things:
36  *  - this should actually register *two* aoa_codec
37  *    structs since it has two inputs. Then it must
38  *    use the prepare callback to forbid running the
39  *    secondary output on a different clock.
40  *    Also, whatever bus knows how to do this must
41  *    provide two soundbus_dev devices and the fabric
42  *    must be able to link them correctly.
43  *
44  *    I don't even know if Apple ever uses the second
45  *    port on the tas3004 though, I don't think their
46  *    i2s controllers can even do it. OTOH, they all
47  *    derive the clocks from common clocks, so it
48  *    might just be possible. The framework allows the
49  *    codec to refine the transfer_info items in the
50  *    usable callback, so we can simply remove the
51  *    rates the second instance is not using when it
52  *    actually is in use.
53  *    Maybe we'll need to make the sound busses have
54  *    a 'clock group id' value so the codec can
55  *    determine if the two outputs can be driven at
56  *    the same time. But that is likely overkill, up
57  *    to the fabric to not link them up incorrectly,
58  *    and up to the hardware designer to not wire
59  *    them up in some weird unusable way.
60  */
61 #include <stddef.h>
62 #include <linux/i2c.h>
63 #include <asm/pmac_low_i2c.h>
64 #include <asm/prom.h>
65 #include <linux/delay.h>
66 #include <linux/module.h>
67 #include <linux/mutex.h>
68 #include <linux/slab.h>
69 
70 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
73 
74 #include "tas.h"
75 #include "tas-gain-table.h"
76 #include "tas-basstreble.h"
77 #include "../aoa.h"
78 #include "../soundbus/soundbus.h"
79 
80 #define PFX "snd-aoa-codec-tas: "
81 
82 
83 struct tas {
84 	struct aoa_codec	codec;
85 	struct i2c_client	*i2c;
86 	u32			mute_l:1, mute_r:1 ,
87 				controls_created:1 ,
88 				drc_enabled:1,
89 				hw_enabled:1;
90 	u8			cached_volume_l, cached_volume_r;
91 	u8			mixer_l[3], mixer_r[3];
92 	u8			bass, treble;
93 	u8			acr;
94 	int			drc_range;
95 	/* protects hardware access against concurrency from
96 	 * userspace when hitting controls and during
97 	 * codec init/suspend/resume */
98 	struct mutex		mtx;
99 };
100 
101 static int tas_reset_init(struct tas *tas);
102 
103 static struct tas *codec_to_tas(struct aoa_codec *codec)
104 {
105 	return container_of(codec, struct tas, codec);
106 }
107 
108 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
109 {
110 	if (len == 1)
111 		return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
112 	else
113 		return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
114 }
115 
116 static void tas3004_set_drc(struct tas *tas)
117 {
118 	unsigned char val[6];
119 
120 	if (tas->drc_enabled)
121 		val[0] = 0x50; /* 3:1 above threshold */
122 	else
123 		val[0] = 0x51; /* disabled */
124 	val[1] = 0x02; /* 1:1 below threshold */
125 	if (tas->drc_range > 0xef)
126 		val[2] = 0xef;
127 	else if (tas->drc_range < 0)
128 		val[2] = 0x00;
129 	else
130 		val[2] = tas->drc_range;
131 	val[3] = 0xb0;
132 	val[4] = 0x60;
133 	val[5] = 0xa0;
134 
135 	tas_write_reg(tas, TAS_REG_DRC, 6, val);
136 }
137 
138 static void tas_set_treble(struct tas *tas)
139 {
140 	u8 tmp;
141 
142 	tmp = tas3004_treble(tas->treble);
143 	tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
144 }
145 
146 static void tas_set_bass(struct tas *tas)
147 {
148 	u8 tmp;
149 
150 	tmp = tas3004_bass(tas->bass);
151 	tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
152 }
153 
154 static void tas_set_volume(struct tas *tas)
155 {
156 	u8 block[6];
157 	int tmp;
158 	u8 left, right;
159 
160 	left = tas->cached_volume_l;
161 	right = tas->cached_volume_r;
162 
163 	if (left > 177) left = 177;
164 	if (right > 177) right = 177;
165 
166 	if (tas->mute_l) left = 0;
167 	if (tas->mute_r) right = 0;
168 
169 	/* analysing the volume and mixer tables shows
170 	 * that they are similar enough when we shift
171 	 * the mixer table down by 4 bits. The error
172 	 * is miniscule, in just one item the error
173 	 * is 1, at a value of 0x07f17b (mixer table
174 	 * value is 0x07f17a) */
175 	tmp = tas_gaintable[left];
176 	block[0] = tmp>>20;
177 	block[1] = tmp>>12;
178 	block[2] = tmp>>4;
179 	tmp = tas_gaintable[right];
180 	block[3] = tmp>>20;
181 	block[4] = tmp>>12;
182 	block[5] = tmp>>4;
183 	tas_write_reg(tas, TAS_REG_VOL, 6, block);
184 }
185 
186 static void tas_set_mixer(struct tas *tas)
187 {
188 	u8 block[9];
189 	int tmp, i;
190 	u8 val;
191 
192 	for (i=0;i<3;i++) {
193 		val = tas->mixer_l[i];
194 		if (val > 177) val = 177;
195 		tmp = tas_gaintable[val];
196 		block[3*i+0] = tmp>>16;
197 		block[3*i+1] = tmp>>8;
198 		block[3*i+2] = tmp;
199 	}
200 	tas_write_reg(tas, TAS_REG_LMIX, 9, block);
201 
202 	for (i=0;i<3;i++) {
203 		val = tas->mixer_r[i];
204 		if (val > 177) val = 177;
205 		tmp = tas_gaintable[val];
206 		block[3*i+0] = tmp>>16;
207 		block[3*i+1] = tmp>>8;
208 		block[3*i+2] = tmp;
209 	}
210 	tas_write_reg(tas, TAS_REG_RMIX, 9, block);
211 }
212 
213 /* alsa stuff */
214 
215 static int tas_dev_register(struct snd_device *dev)
216 {
217 	return 0;
218 }
219 
220 static const struct snd_device_ops ops = {
221 	.dev_register = tas_dev_register,
222 };
223 
224 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
225 	struct snd_ctl_elem_info *uinfo)
226 {
227 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
228 	uinfo->count = 2;
229 	uinfo->value.integer.min = 0;
230 	uinfo->value.integer.max = 177;
231 	return 0;
232 }
233 
234 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
235 	struct snd_ctl_elem_value *ucontrol)
236 {
237 	struct tas *tas = snd_kcontrol_chip(kcontrol);
238 
239 	mutex_lock(&tas->mtx);
240 	ucontrol->value.integer.value[0] = tas->cached_volume_l;
241 	ucontrol->value.integer.value[1] = tas->cached_volume_r;
242 	mutex_unlock(&tas->mtx);
243 	return 0;
244 }
245 
246 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
247 	struct snd_ctl_elem_value *ucontrol)
248 {
249 	struct tas *tas = snd_kcontrol_chip(kcontrol);
250 
251 	if (ucontrol->value.integer.value[0] < 0 ||
252 	    ucontrol->value.integer.value[0] > 177)
253 		return -EINVAL;
254 	if (ucontrol->value.integer.value[1] < 0 ||
255 	    ucontrol->value.integer.value[1] > 177)
256 		return -EINVAL;
257 
258 	mutex_lock(&tas->mtx);
259 	if (tas->cached_volume_l == ucontrol->value.integer.value[0]
260 	 && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
261 		mutex_unlock(&tas->mtx);
262 		return 0;
263 	}
264 
265 	tas->cached_volume_l = ucontrol->value.integer.value[0];
266 	tas->cached_volume_r = ucontrol->value.integer.value[1];
267 	if (tas->hw_enabled)
268 		tas_set_volume(tas);
269 	mutex_unlock(&tas->mtx);
270 	return 1;
271 }
272 
273 static const struct snd_kcontrol_new volume_control = {
274 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
275 	.name = "Master Playback Volume",
276 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
277 	.info = tas_snd_vol_info,
278 	.get = tas_snd_vol_get,
279 	.put = tas_snd_vol_put,
280 };
281 
282 #define tas_snd_mute_info	snd_ctl_boolean_stereo_info
283 
284 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
285 	struct snd_ctl_elem_value *ucontrol)
286 {
287 	struct tas *tas = snd_kcontrol_chip(kcontrol);
288 
289 	mutex_lock(&tas->mtx);
290 	ucontrol->value.integer.value[0] = !tas->mute_l;
291 	ucontrol->value.integer.value[1] = !tas->mute_r;
292 	mutex_unlock(&tas->mtx);
293 	return 0;
294 }
295 
296 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct tas *tas = snd_kcontrol_chip(kcontrol);
300 
301 	mutex_lock(&tas->mtx);
302 	if (tas->mute_l == !ucontrol->value.integer.value[0]
303 	 && tas->mute_r == !ucontrol->value.integer.value[1]) {
304 		mutex_unlock(&tas->mtx);
305 		return 0;
306 	}
307 
308 	tas->mute_l = !ucontrol->value.integer.value[0];
309 	tas->mute_r = !ucontrol->value.integer.value[1];
310 	if (tas->hw_enabled)
311 		tas_set_volume(tas);
312 	mutex_unlock(&tas->mtx);
313 	return 1;
314 }
315 
316 static const struct snd_kcontrol_new mute_control = {
317 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
318 	.name = "Master Playback Switch",
319 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
320 	.info = tas_snd_mute_info,
321 	.get = tas_snd_mute_get,
322 	.put = tas_snd_mute_put,
323 };
324 
325 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
326 	struct snd_ctl_elem_info *uinfo)
327 {
328 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
329 	uinfo->count = 2;
330 	uinfo->value.integer.min = 0;
331 	uinfo->value.integer.max = 177;
332 	return 0;
333 }
334 
335 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
336 	struct snd_ctl_elem_value *ucontrol)
337 {
338 	struct tas *tas = snd_kcontrol_chip(kcontrol);
339 	int idx = kcontrol->private_value;
340 
341 	mutex_lock(&tas->mtx);
342 	ucontrol->value.integer.value[0] = tas->mixer_l[idx];
343 	ucontrol->value.integer.value[1] = tas->mixer_r[idx];
344 	mutex_unlock(&tas->mtx);
345 
346 	return 0;
347 }
348 
349 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
350 	struct snd_ctl_elem_value *ucontrol)
351 {
352 	struct tas *tas = snd_kcontrol_chip(kcontrol);
353 	int idx = kcontrol->private_value;
354 
355 	mutex_lock(&tas->mtx);
356 	if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
357 	 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
358 		mutex_unlock(&tas->mtx);
359 		return 0;
360 	}
361 
362 	tas->mixer_l[idx] = ucontrol->value.integer.value[0];
363 	tas->mixer_r[idx] = ucontrol->value.integer.value[1];
364 
365 	if (tas->hw_enabled)
366 		tas_set_mixer(tas);
367 	mutex_unlock(&tas->mtx);
368 	return 1;
369 }
370 
371 #define MIXER_CONTROL(n,descr,idx)			\
372 static const struct snd_kcontrol_new n##_control = {	\
373 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,		\
374 	.name = descr " Playback Volume",		\
375 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,	\
376 	.info = tas_snd_mixer_info,			\
377 	.get = tas_snd_mixer_get,			\
378 	.put = tas_snd_mixer_put,			\
379 	.private_value = idx,				\
380 }
381 
382 MIXER_CONTROL(pcm1, "PCM", 0);
383 MIXER_CONTROL(monitor, "Monitor", 2);
384 
385 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
386 	struct snd_ctl_elem_info *uinfo)
387 {
388 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
389 	uinfo->count = 1;
390 	uinfo->value.integer.min = 0;
391 	uinfo->value.integer.max = TAS3004_DRC_MAX;
392 	return 0;
393 }
394 
395 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
396 	struct snd_ctl_elem_value *ucontrol)
397 {
398 	struct tas *tas = snd_kcontrol_chip(kcontrol);
399 
400 	mutex_lock(&tas->mtx);
401 	ucontrol->value.integer.value[0] = tas->drc_range;
402 	mutex_unlock(&tas->mtx);
403 	return 0;
404 }
405 
406 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
407 	struct snd_ctl_elem_value *ucontrol)
408 {
409 	struct tas *tas = snd_kcontrol_chip(kcontrol);
410 
411 	if (ucontrol->value.integer.value[0] < 0 ||
412 	    ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
413 		return -EINVAL;
414 
415 	mutex_lock(&tas->mtx);
416 	if (tas->drc_range == ucontrol->value.integer.value[0]) {
417 		mutex_unlock(&tas->mtx);
418 		return 0;
419 	}
420 
421 	tas->drc_range = ucontrol->value.integer.value[0];
422 	if (tas->hw_enabled)
423 		tas3004_set_drc(tas);
424 	mutex_unlock(&tas->mtx);
425 	return 1;
426 }
427 
428 static const struct snd_kcontrol_new drc_range_control = {
429 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
430 	.name = "DRC Range",
431 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
432 	.info = tas_snd_drc_range_info,
433 	.get = tas_snd_drc_range_get,
434 	.put = tas_snd_drc_range_put,
435 };
436 
437 #define tas_snd_drc_switch_info		snd_ctl_boolean_mono_info
438 
439 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
440 	struct snd_ctl_elem_value *ucontrol)
441 {
442 	struct tas *tas = snd_kcontrol_chip(kcontrol);
443 
444 	mutex_lock(&tas->mtx);
445 	ucontrol->value.integer.value[0] = tas->drc_enabled;
446 	mutex_unlock(&tas->mtx);
447 	return 0;
448 }
449 
450 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
451 	struct snd_ctl_elem_value *ucontrol)
452 {
453 	struct tas *tas = snd_kcontrol_chip(kcontrol);
454 
455 	mutex_lock(&tas->mtx);
456 	if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
457 		mutex_unlock(&tas->mtx);
458 		return 0;
459 	}
460 
461 	tas->drc_enabled = !!ucontrol->value.integer.value[0];
462 	if (tas->hw_enabled)
463 		tas3004_set_drc(tas);
464 	mutex_unlock(&tas->mtx);
465 	return 1;
466 }
467 
468 static const struct snd_kcontrol_new drc_switch_control = {
469 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
470 	.name = "DRC Range Switch",
471 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
472 	.info = tas_snd_drc_switch_info,
473 	.get = tas_snd_drc_switch_get,
474 	.put = tas_snd_drc_switch_put,
475 };
476 
477 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
478 	struct snd_ctl_elem_info *uinfo)
479 {
480 	static const char * const texts[] = { "Line-In", "Microphone" };
481 
482 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
483 }
484 
485 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
486 	struct snd_ctl_elem_value *ucontrol)
487 {
488 	struct tas *tas = snd_kcontrol_chip(kcontrol);
489 
490 	mutex_lock(&tas->mtx);
491 	ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
492 	mutex_unlock(&tas->mtx);
493 	return 0;
494 }
495 
496 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
497 	struct snd_ctl_elem_value *ucontrol)
498 {
499 	struct tas *tas = snd_kcontrol_chip(kcontrol);
500 	int oldacr;
501 
502 	if (ucontrol->value.enumerated.item[0] > 1)
503 		return -EINVAL;
504 	mutex_lock(&tas->mtx);
505 	oldacr = tas->acr;
506 
507 	/*
508 	 * Despite what the data sheet says in one place, the
509 	 * TAS_ACR_B_MONAUREAL bit forces mono output even when
510 	 * input A (line in) is selected.
511 	 */
512 	tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
513 	if (ucontrol->value.enumerated.item[0])
514 		tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
515 		      TAS_ACR_B_MON_SEL_RIGHT;
516 	if (oldacr == tas->acr) {
517 		mutex_unlock(&tas->mtx);
518 		return 0;
519 	}
520 	if (tas->hw_enabled)
521 		tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
522 	mutex_unlock(&tas->mtx);
523 	return 1;
524 }
525 
526 static const struct snd_kcontrol_new capture_source_control = {
527 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
528 	/* If we name this 'Input Source', it properly shows up in
529 	 * alsamixer as a selection, * but it's shown under the
530 	 * 'Playback' category.
531 	 * If I name it 'Capture Source', it shows up in strange
532 	 * ways (two bools of which one can be selected at a
533 	 * time) but at least it's shown in the 'Capture'
534 	 * category.
535 	 * I was told that this was due to backward compatibility,
536 	 * but I don't understand then why the mangling is *not*
537 	 * done when I name it "Input Source".....
538 	 */
539 	.name = "Capture Source",
540 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
541 	.info = tas_snd_capture_source_info,
542 	.get = tas_snd_capture_source_get,
543 	.put = tas_snd_capture_source_put,
544 };
545 
546 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
547 	struct snd_ctl_elem_info *uinfo)
548 {
549 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
550 	uinfo->count = 1;
551 	uinfo->value.integer.min = TAS3004_TREBLE_MIN;
552 	uinfo->value.integer.max = TAS3004_TREBLE_MAX;
553 	return 0;
554 }
555 
556 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
557 	struct snd_ctl_elem_value *ucontrol)
558 {
559 	struct tas *tas = snd_kcontrol_chip(kcontrol);
560 
561 	mutex_lock(&tas->mtx);
562 	ucontrol->value.integer.value[0] = tas->treble;
563 	mutex_unlock(&tas->mtx);
564 	return 0;
565 }
566 
567 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
568 	struct snd_ctl_elem_value *ucontrol)
569 {
570 	struct tas *tas = snd_kcontrol_chip(kcontrol);
571 
572 	if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
573 	    ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
574 		return -EINVAL;
575 	mutex_lock(&tas->mtx);
576 	if (tas->treble == ucontrol->value.integer.value[0]) {
577 		mutex_unlock(&tas->mtx);
578 		return 0;
579 	}
580 
581 	tas->treble = ucontrol->value.integer.value[0];
582 	if (tas->hw_enabled)
583 		tas_set_treble(tas);
584 	mutex_unlock(&tas->mtx);
585 	return 1;
586 }
587 
588 static const struct snd_kcontrol_new treble_control = {
589 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
590 	.name = "Treble",
591 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
592 	.info = tas_snd_treble_info,
593 	.get = tas_snd_treble_get,
594 	.put = tas_snd_treble_put,
595 };
596 
597 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
598 	struct snd_ctl_elem_info *uinfo)
599 {
600 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
601 	uinfo->count = 1;
602 	uinfo->value.integer.min = TAS3004_BASS_MIN;
603 	uinfo->value.integer.max = TAS3004_BASS_MAX;
604 	return 0;
605 }
606 
607 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
608 	struct snd_ctl_elem_value *ucontrol)
609 {
610 	struct tas *tas = snd_kcontrol_chip(kcontrol);
611 
612 	mutex_lock(&tas->mtx);
613 	ucontrol->value.integer.value[0] = tas->bass;
614 	mutex_unlock(&tas->mtx);
615 	return 0;
616 }
617 
618 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
619 	struct snd_ctl_elem_value *ucontrol)
620 {
621 	struct tas *tas = snd_kcontrol_chip(kcontrol);
622 
623 	if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
624 	    ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
625 		return -EINVAL;
626 	mutex_lock(&tas->mtx);
627 	if (tas->bass == ucontrol->value.integer.value[0]) {
628 		mutex_unlock(&tas->mtx);
629 		return 0;
630 	}
631 
632 	tas->bass = ucontrol->value.integer.value[0];
633 	if (tas->hw_enabled)
634 		tas_set_bass(tas);
635 	mutex_unlock(&tas->mtx);
636 	return 1;
637 }
638 
639 static const struct snd_kcontrol_new bass_control = {
640 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
641 	.name = "Bass",
642 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
643 	.info = tas_snd_bass_info,
644 	.get = tas_snd_bass_get,
645 	.put = tas_snd_bass_put,
646 };
647 
648 static struct transfer_info tas_transfers[] = {
649 	{
650 		/* input */
651 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
652 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
653 		.transfer_in = 1,
654 	},
655 	{
656 		/* output */
657 		.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
658 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
659 		.transfer_in = 0,
660 	},
661 	{}
662 };
663 
664 static int tas_usable(struct codec_info_item *cii,
665 		      struct transfer_info *ti,
666 		      struct transfer_info *out)
667 {
668 	return 1;
669 }
670 
671 static int tas_reset_init(struct tas *tas)
672 {
673 	u8 tmp;
674 
675 	tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
676 	msleep(5);
677 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
678 	msleep(5);
679 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
680 	msleep(20);
681 	tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
682 	msleep(10);
683 	tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
684 
685 	tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
686 	if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
687 		goto outerr;
688 
689 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
690 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
691 		goto outerr;
692 
693 	tmp = 0;
694 	if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
695 		goto outerr;
696 
697 	tas3004_set_drc(tas);
698 
699 	/* Set treble & bass to 0dB */
700 	tas->treble = TAS3004_TREBLE_ZERO;
701 	tas->bass = TAS3004_BASS_ZERO;
702 	tas_set_treble(tas);
703 	tas_set_bass(tas);
704 
705 	tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
706 	if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
707 		goto outerr;
708 
709 	return 0;
710  outerr:
711 	return -ENODEV;
712 }
713 
714 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
715 {
716 	struct tas *tas = cii->codec_data;
717 
718 	switch(clock) {
719 	case CLOCK_SWITCH_PREPARE_SLAVE:
720 		/* Clocks are going away, mute mute mute */
721 		tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
722 		tas->hw_enabled = 0;
723 		break;
724 	case CLOCK_SWITCH_SLAVE:
725 		/* Clocks are back, re-init the codec */
726 		mutex_lock(&tas->mtx);
727 		tas_reset_init(tas);
728 		tas_set_volume(tas);
729 		tas_set_mixer(tas);
730 		tas->hw_enabled = 1;
731 		tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
732 		mutex_unlock(&tas->mtx);
733 		break;
734 	default:
735 		/* doesn't happen as of now */
736 		return -EINVAL;
737 	}
738 	return 0;
739 }
740 
741 #ifdef CONFIG_PM
742 /* we are controlled via i2c and assume that is always up
743  * If that wasn't the case, we'd have to suspend once
744  * our i2c device is suspended, and then take note of that! */
745 static int tas_suspend(struct tas *tas)
746 {
747 	mutex_lock(&tas->mtx);
748 	tas->hw_enabled = 0;
749 	tas->acr |= TAS_ACR_ANALOG_PDOWN;
750 	tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
751 	mutex_unlock(&tas->mtx);
752 	return 0;
753 }
754 
755 static int tas_resume(struct tas *tas)
756 {
757 	/* reset codec */
758 	mutex_lock(&tas->mtx);
759 	tas_reset_init(tas);
760 	tas_set_volume(tas);
761 	tas_set_mixer(tas);
762 	tas->hw_enabled = 1;
763 	mutex_unlock(&tas->mtx);
764 	return 0;
765 }
766 
767 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
768 {
769 	return tas_suspend(cii->codec_data);
770 }
771 
772 static int _tas_resume(struct codec_info_item *cii)
773 {
774 	return tas_resume(cii->codec_data);
775 }
776 #else /* CONFIG_PM */
777 #define _tas_suspend	NULL
778 #define _tas_resume	NULL
779 #endif /* CONFIG_PM */
780 
781 static struct codec_info tas_codec_info = {
782 	.transfers = tas_transfers,
783 	/* in theory, we can drive it at 512 too...
784 	 * but so far the framework doesn't allow
785 	 * for that and I don't see much point in it. */
786 	.sysclock_factor = 256,
787 	/* same here, could be 32 for just one 16 bit format */
788 	.bus_factor = 64,
789 	.owner = THIS_MODULE,
790 	.usable = tas_usable,
791 	.switch_clock = tas_switch_clock,
792 	.suspend = _tas_suspend,
793 	.resume = _tas_resume,
794 };
795 
796 static int tas_init_codec(struct aoa_codec *codec)
797 {
798 	struct tas *tas = codec_to_tas(codec);
799 	int err;
800 
801 	if (!tas->codec.gpio || !tas->codec.gpio->methods) {
802 		printk(KERN_ERR PFX "gpios not assigned!!\n");
803 		return -EINVAL;
804 	}
805 
806 	mutex_lock(&tas->mtx);
807 	if (tas_reset_init(tas)) {
808 		printk(KERN_ERR PFX "tas failed to initialise\n");
809 		mutex_unlock(&tas->mtx);
810 		return -ENXIO;
811 	}
812 	tas->hw_enabled = 1;
813 	mutex_unlock(&tas->mtx);
814 
815 	if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
816 						   aoa_get_card(),
817 						   &tas_codec_info, tas)) {
818 		printk(KERN_ERR PFX "error attaching tas to soundbus\n");
819 		return -ENODEV;
820 	}
821 
822 	if (aoa_snd_device_new(SNDRV_DEV_CODEC, tas, &ops)) {
823 		printk(KERN_ERR PFX "failed to create tas snd device!\n");
824 		return -ENODEV;
825 	}
826 	err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
827 	if (err)
828 		goto error;
829 
830 	err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
831 	if (err)
832 		goto error;
833 
834 	err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
835 	if (err)
836 		goto error;
837 
838 	err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
839 	if (err)
840 		goto error;
841 
842 	err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
843 	if (err)
844 		goto error;
845 
846 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
847 	if (err)
848 		goto error;
849 
850 	err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
851 	if (err)
852 		goto error;
853 
854 	err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
855 	if (err)
856 		goto error;
857 
858 	err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
859 	if (err)
860 		goto error;
861 
862 	return 0;
863  error:
864 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
865 	snd_device_free(aoa_get_card(), tas);
866 	return err;
867 }
868 
869 static void tas_exit_codec(struct aoa_codec *codec)
870 {
871 	struct tas *tas = codec_to_tas(codec);
872 
873 	if (!tas->codec.soundbus_dev)
874 		return;
875 	tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
876 }
877 
878 
879 static int tas_i2c_probe(struct i2c_client *client,
880 			 const struct i2c_device_id *id)
881 {
882 	struct device_node *node = client->dev.of_node;
883 	struct tas *tas;
884 
885 	tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
886 
887 	if (!tas)
888 		return -ENOMEM;
889 
890 	mutex_init(&tas->mtx);
891 	tas->i2c = client;
892 	i2c_set_clientdata(client, tas);
893 
894 	/* seems that half is a saner default */
895 	tas->drc_range = TAS3004_DRC_MAX / 2;
896 
897 	strscpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
898 	tas->codec.owner = THIS_MODULE;
899 	tas->codec.init = tas_init_codec;
900 	tas->codec.exit = tas_exit_codec;
901 	tas->codec.node = of_node_get(node);
902 
903 	if (aoa_codec_register(&tas->codec)) {
904 		goto fail;
905 	}
906 	printk(KERN_DEBUG
907 	       "snd-aoa-codec-tas: tas found, addr 0x%02x on %pOF\n",
908 	       (unsigned int)client->addr, node);
909 	return 0;
910  fail:
911 	mutex_destroy(&tas->mtx);
912 	kfree(tas);
913 	return -EINVAL;
914 }
915 
916 static int tas_i2c_remove(struct i2c_client *client)
917 {
918 	struct tas *tas = i2c_get_clientdata(client);
919 	u8 tmp = TAS_ACR_ANALOG_PDOWN;
920 
921 	aoa_codec_unregister(&tas->codec);
922 	of_node_put(tas->codec.node);
923 
924 	/* power down codec chip */
925 	tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
926 
927 	mutex_destroy(&tas->mtx);
928 	kfree(tas);
929 	return 0;
930 }
931 
932 static const struct i2c_device_id tas_i2c_id[] = {
933 	{ "MAC,tas3004", 0 },
934 	{ }
935 };
936 MODULE_DEVICE_TABLE(i2c,tas_i2c_id);
937 
938 static struct i2c_driver tas_driver = {
939 	.driver = {
940 		.name = "aoa_codec_tas",
941 	},
942 	.probe = tas_i2c_probe,
943 	.remove = tas_i2c_remove,
944 	.id_table = tas_i2c_id,
945 };
946 
947 module_i2c_driver(tas_driver);
948