xref: /openbmc/linux/sound/aoa/codecs/onyx.c (revision afb46f79)
1 /*
2  * Apple Onboard Audio driver for Onyx codec
3  *
4  * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * GPL v2, can be found in COPYING.
7  *
8  *
9  * This is a driver for the pcm3052 codec chip (codenamed Onyx)
10  * that is present in newer Apple hardware (with digital output).
11  *
12  * The Onyx codec has the following connections (listed by the bit
13  * to be used in aoa_codec.connected):
14  *  0: analog output
15  *  1: digital output
16  *  2: line input
17  *  3: microphone input
18  * Note that even though I know of no machine that has for example
19  * the digital output connected but not the analog, I have handled
20  * all the different cases in the code so that this driver may serve
21  * as a good example of what to do.
22  *
23  * NOTE: This driver assumes that there's at most one chip to be
24  * 	 used with one alsa card, in form of creating all kinds
25  *	 of mixer elements without regard for their existence.
26  *	 But snd-aoa assumes that there's at most one card, so
27  *	 this means you can only have one onyx on a system. This
28  *	 should probably be fixed by changing the assumption of
29  *	 having just a single card on a system, and making the
30  *	 'card' pointer accessible to anyone who needs it instead
31  *	 of hiding it in the aoa_snd_* functions...
32  *
33  */
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
38 MODULE_LICENSE("GPL");
39 MODULE_DESCRIPTION("pcm3052 (onyx) codec driver for snd-aoa");
40 
41 #include "onyx.h"
42 #include "../aoa.h"
43 #include "../soundbus/soundbus.h"
44 
45 
46 #define PFX "snd-aoa-codec-onyx: "
47 
48 struct onyx {
49 	/* cache registers 65 to 80, they are write-only! */
50 	u8			cache[16];
51 	struct i2c_client	*i2c;
52 	struct aoa_codec	codec;
53 	u32			initialised:1,
54 				spdif_locked:1,
55 				analog_locked:1,
56 				original_mute:2;
57 	int			open_count;
58 	struct codec_info	*codec_info;
59 
60 	/* mutex serializes concurrent access to the device
61 	 * and this structure.
62 	 */
63 	struct mutex mutex;
64 };
65 #define codec_to_onyx(c) container_of(c, struct onyx, codec)
66 
67 /* both return 0 if all ok, else on error */
68 static int onyx_read_register(struct onyx *onyx, u8 reg, u8 *value)
69 {
70 	s32 v;
71 
72 	if (reg != ONYX_REG_CONTROL) {
73 		*value = onyx->cache[reg-FIRSTREGISTER];
74 		return 0;
75 	}
76 	v = i2c_smbus_read_byte_data(onyx->i2c, reg);
77 	if (v < 0)
78 		return -1;
79 	*value = (u8)v;
80 	onyx->cache[ONYX_REG_CONTROL-FIRSTREGISTER] = *value;
81 	return 0;
82 }
83 
84 static int onyx_write_register(struct onyx *onyx, u8 reg, u8 value)
85 {
86 	int result;
87 
88 	result = i2c_smbus_write_byte_data(onyx->i2c, reg, value);
89 	if (!result)
90 		onyx->cache[reg-FIRSTREGISTER] = value;
91 	return result;
92 }
93 
94 /* alsa stuff */
95 
96 static int onyx_dev_register(struct snd_device *dev)
97 {
98 	return 0;
99 }
100 
101 static struct snd_device_ops ops = {
102 	.dev_register = onyx_dev_register,
103 };
104 
105 /* this is necessary because most alsa mixer programs
106  * can't properly handle the negative range */
107 #define VOLUME_RANGE_SHIFT	128
108 
109 static int onyx_snd_vol_info(struct snd_kcontrol *kcontrol,
110 	struct snd_ctl_elem_info *uinfo)
111 {
112 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
113 	uinfo->count = 2;
114 	uinfo->value.integer.min = -128 + VOLUME_RANGE_SHIFT;
115 	uinfo->value.integer.max = -1 + VOLUME_RANGE_SHIFT;
116 	return 0;
117 }
118 
119 static int onyx_snd_vol_get(struct snd_kcontrol *kcontrol,
120 	struct snd_ctl_elem_value *ucontrol)
121 {
122 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
123 	s8 l, r;
124 
125 	mutex_lock(&onyx->mutex);
126 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_LEFT, &l);
127 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT, &r);
128 	mutex_unlock(&onyx->mutex);
129 
130 	ucontrol->value.integer.value[0] = l + VOLUME_RANGE_SHIFT;
131 	ucontrol->value.integer.value[1] = r + VOLUME_RANGE_SHIFT;
132 
133 	return 0;
134 }
135 
136 static int onyx_snd_vol_put(struct snd_kcontrol *kcontrol,
137 	struct snd_ctl_elem_value *ucontrol)
138 {
139 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
140 	s8 l, r;
141 
142 	if (ucontrol->value.integer.value[0] < -128 + VOLUME_RANGE_SHIFT ||
143 	    ucontrol->value.integer.value[0] > -1 + VOLUME_RANGE_SHIFT)
144 		return -EINVAL;
145 	if (ucontrol->value.integer.value[1] < -128 + VOLUME_RANGE_SHIFT ||
146 	    ucontrol->value.integer.value[1] > -1 + VOLUME_RANGE_SHIFT)
147 		return -EINVAL;
148 
149 	mutex_lock(&onyx->mutex);
150 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_LEFT, &l);
151 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT, &r);
152 
153 	if (l + VOLUME_RANGE_SHIFT == ucontrol->value.integer.value[0] &&
154 	    r + VOLUME_RANGE_SHIFT == ucontrol->value.integer.value[1]) {
155 		mutex_unlock(&onyx->mutex);
156 		return 0;
157 	}
158 
159 	onyx_write_register(onyx, ONYX_REG_DAC_ATTEN_LEFT,
160 			    ucontrol->value.integer.value[0]
161 			     - VOLUME_RANGE_SHIFT);
162 	onyx_write_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT,
163 			    ucontrol->value.integer.value[1]
164 			     - VOLUME_RANGE_SHIFT);
165 	mutex_unlock(&onyx->mutex);
166 
167 	return 1;
168 }
169 
170 static struct snd_kcontrol_new volume_control = {
171 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
172 	.name = "Master Playback Volume",
173 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
174 	.info = onyx_snd_vol_info,
175 	.get = onyx_snd_vol_get,
176 	.put = onyx_snd_vol_put,
177 };
178 
179 /* like above, this is necessary because a lot
180  * of alsa mixer programs don't handle ranges
181  * that don't start at 0 properly.
182  * even alsamixer is one of them... */
183 #define INPUTGAIN_RANGE_SHIFT	(-3)
184 
185 static int onyx_snd_inputgain_info(struct snd_kcontrol *kcontrol,
186 	struct snd_ctl_elem_info *uinfo)
187 {
188 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
189 	uinfo->count = 1;
190 	uinfo->value.integer.min = 3 + INPUTGAIN_RANGE_SHIFT;
191 	uinfo->value.integer.max = 28 + INPUTGAIN_RANGE_SHIFT;
192 	return 0;
193 }
194 
195 static int onyx_snd_inputgain_get(struct snd_kcontrol *kcontrol,
196 	struct snd_ctl_elem_value *ucontrol)
197 {
198 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
199 	u8 ig;
200 
201 	mutex_lock(&onyx->mutex);
202 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &ig);
203 	mutex_unlock(&onyx->mutex);
204 
205 	ucontrol->value.integer.value[0] =
206 		(ig & ONYX_ADC_PGA_GAIN_MASK) + INPUTGAIN_RANGE_SHIFT;
207 
208 	return 0;
209 }
210 
211 static int onyx_snd_inputgain_put(struct snd_kcontrol *kcontrol,
212 	struct snd_ctl_elem_value *ucontrol)
213 {
214 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
215 	u8 v, n;
216 
217 	if (ucontrol->value.integer.value[0] < 3 + INPUTGAIN_RANGE_SHIFT ||
218 	    ucontrol->value.integer.value[0] > 28 + INPUTGAIN_RANGE_SHIFT)
219 		return -EINVAL;
220 	mutex_lock(&onyx->mutex);
221 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
222 	n = v;
223 	n &= ~ONYX_ADC_PGA_GAIN_MASK;
224 	n |= (ucontrol->value.integer.value[0] - INPUTGAIN_RANGE_SHIFT)
225 		& ONYX_ADC_PGA_GAIN_MASK;
226 	onyx_write_register(onyx, ONYX_REG_ADC_CONTROL, n);
227 	mutex_unlock(&onyx->mutex);
228 
229 	return n != v;
230 }
231 
232 static struct snd_kcontrol_new inputgain_control = {
233 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
234 	.name = "Master Capture Volume",
235 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
236 	.info = onyx_snd_inputgain_info,
237 	.get = onyx_snd_inputgain_get,
238 	.put = onyx_snd_inputgain_put,
239 };
240 
241 static int onyx_snd_capture_source_info(struct snd_kcontrol *kcontrol,
242 	struct snd_ctl_elem_info *uinfo)
243 {
244 	static char *texts[] = { "Line-In", "Microphone" };
245 
246 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
247 	uinfo->count = 1;
248 	uinfo->value.enumerated.items = 2;
249 	if (uinfo->value.enumerated.item > 1)
250 		uinfo->value.enumerated.item = 1;
251 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
252 	return 0;
253 }
254 
255 static int onyx_snd_capture_source_get(struct snd_kcontrol *kcontrol,
256 	struct snd_ctl_elem_value *ucontrol)
257 {
258 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
259 	s8 v;
260 
261 	mutex_lock(&onyx->mutex);
262 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
263 	mutex_unlock(&onyx->mutex);
264 
265 	ucontrol->value.enumerated.item[0] = !!(v&ONYX_ADC_INPUT_MIC);
266 
267 	return 0;
268 }
269 
270 static void onyx_set_capture_source(struct onyx *onyx, int mic)
271 {
272 	s8 v;
273 
274 	mutex_lock(&onyx->mutex);
275 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
276 	v &= ~ONYX_ADC_INPUT_MIC;
277 	if (mic)
278 		v |= ONYX_ADC_INPUT_MIC;
279 	onyx_write_register(onyx, ONYX_REG_ADC_CONTROL, v);
280 	mutex_unlock(&onyx->mutex);
281 }
282 
283 static int onyx_snd_capture_source_put(struct snd_kcontrol *kcontrol,
284 	struct snd_ctl_elem_value *ucontrol)
285 {
286 	if (ucontrol->value.enumerated.item[0] > 1)
287 		return -EINVAL;
288 	onyx_set_capture_source(snd_kcontrol_chip(kcontrol),
289 				ucontrol->value.enumerated.item[0]);
290 	return 1;
291 }
292 
293 static struct snd_kcontrol_new capture_source_control = {
294 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
295 	/* If we name this 'Input Source', it properly shows up in
296 	 * alsamixer as a selection, * but it's shown under the
297 	 * 'Playback' category.
298 	 * If I name it 'Capture Source', it shows up in strange
299 	 * ways (two bools of which one can be selected at a
300 	 * time) but at least it's shown in the 'Capture'
301 	 * category.
302 	 * I was told that this was due to backward compatibility,
303 	 * but I don't understand then why the mangling is *not*
304 	 * done when I name it "Input Source".....
305 	 */
306 	.name = "Capture Source",
307 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
308 	.info = onyx_snd_capture_source_info,
309 	.get = onyx_snd_capture_source_get,
310 	.put = onyx_snd_capture_source_put,
311 };
312 
313 #define onyx_snd_mute_info	snd_ctl_boolean_stereo_info
314 
315 static int onyx_snd_mute_get(struct snd_kcontrol *kcontrol,
316 	struct snd_ctl_elem_value *ucontrol)
317 {
318 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
319 	u8 c;
320 
321 	mutex_lock(&onyx->mutex);
322 	onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &c);
323 	mutex_unlock(&onyx->mutex);
324 
325 	ucontrol->value.integer.value[0] = !(c & ONYX_MUTE_LEFT);
326 	ucontrol->value.integer.value[1] = !(c & ONYX_MUTE_RIGHT);
327 
328 	return 0;
329 }
330 
331 static int onyx_snd_mute_put(struct snd_kcontrol *kcontrol,
332 	struct snd_ctl_elem_value *ucontrol)
333 {
334 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
335 	u8 v = 0, c = 0;
336 	int err = -EBUSY;
337 
338 	mutex_lock(&onyx->mutex);
339 	if (onyx->analog_locked)
340 		goto out_unlock;
341 
342 	onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
343 	c = v;
344 	c &= ~(ONYX_MUTE_RIGHT | ONYX_MUTE_LEFT);
345 	if (!ucontrol->value.integer.value[0])
346 		c |= ONYX_MUTE_LEFT;
347 	if (!ucontrol->value.integer.value[1])
348 		c |= ONYX_MUTE_RIGHT;
349 	err = onyx_write_register(onyx, ONYX_REG_DAC_CONTROL, c);
350 
351  out_unlock:
352 	mutex_unlock(&onyx->mutex);
353 
354 	return !err ? (v != c) : err;
355 }
356 
357 static struct snd_kcontrol_new mute_control = {
358 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
359 	.name = "Master Playback Switch",
360 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
361 	.info = onyx_snd_mute_info,
362 	.get = onyx_snd_mute_get,
363 	.put = onyx_snd_mute_put,
364 };
365 
366 
367 #define onyx_snd_single_bit_info	snd_ctl_boolean_mono_info
368 
369 #define FLAG_POLARITY_INVERT	1
370 #define FLAG_SPDIFLOCK		2
371 
372 static int onyx_snd_single_bit_get(struct snd_kcontrol *kcontrol,
373 	struct snd_ctl_elem_value *ucontrol)
374 {
375 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
376 	u8 c;
377 	long int pv = kcontrol->private_value;
378 	u8 polarity = (pv >> 16) & FLAG_POLARITY_INVERT;
379 	u8 address = (pv >> 8) & 0xff;
380 	u8 mask = pv & 0xff;
381 
382 	mutex_lock(&onyx->mutex);
383 	onyx_read_register(onyx, address, &c);
384 	mutex_unlock(&onyx->mutex);
385 
386 	ucontrol->value.integer.value[0] = !!(c & mask) ^ polarity;
387 
388 	return 0;
389 }
390 
391 static int onyx_snd_single_bit_put(struct snd_kcontrol *kcontrol,
392 	struct snd_ctl_elem_value *ucontrol)
393 {
394 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
395 	u8 v = 0, c = 0;
396 	int err;
397 	long int pv = kcontrol->private_value;
398 	u8 polarity = (pv >> 16) & FLAG_POLARITY_INVERT;
399 	u8 spdiflock = (pv >> 16) & FLAG_SPDIFLOCK;
400 	u8 address = (pv >> 8) & 0xff;
401 	u8 mask = pv & 0xff;
402 
403 	mutex_lock(&onyx->mutex);
404 	if (spdiflock && onyx->spdif_locked) {
405 		/* even if alsamixer doesn't care.. */
406 		err = -EBUSY;
407 		goto out_unlock;
408 	}
409 	onyx_read_register(onyx, address, &v);
410 	c = v;
411 	c &= ~(mask);
412 	if (!!ucontrol->value.integer.value[0] ^ polarity)
413 		c |= mask;
414 	err = onyx_write_register(onyx, address, c);
415 
416  out_unlock:
417 	mutex_unlock(&onyx->mutex);
418 
419 	return !err ? (v != c) : err;
420 }
421 
422 #define SINGLE_BIT(n, type, description, address, mask, flags)	 	\
423 static struct snd_kcontrol_new n##_control = {				\
424 	.iface = SNDRV_CTL_ELEM_IFACE_##type,				\
425 	.name = description,						\
426 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,			\
427 	.info = onyx_snd_single_bit_info,				\
428 	.get = onyx_snd_single_bit_get,					\
429 	.put = onyx_snd_single_bit_put,					\
430 	.private_value = (flags << 16) | (address << 8) | mask		\
431 }
432 
433 SINGLE_BIT(spdif,
434 	   MIXER,
435 	   SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
436 	   ONYX_REG_DIG_INFO4,
437 	   ONYX_SPDIF_ENABLE,
438 	   FLAG_SPDIFLOCK);
439 SINGLE_BIT(ovr1,
440 	   MIXER,
441 	   "Oversampling Rate",
442 	   ONYX_REG_DAC_CONTROL,
443 	   ONYX_OVR1,
444 	   0);
445 SINGLE_BIT(flt0,
446 	   MIXER,
447 	   "Fast Digital Filter Rolloff",
448 	   ONYX_REG_DAC_FILTER,
449 	   ONYX_ROLLOFF_FAST,
450 	   FLAG_POLARITY_INVERT);
451 SINGLE_BIT(hpf,
452 	   MIXER,
453 	   "Highpass Filter",
454 	   ONYX_REG_ADC_HPF_BYPASS,
455 	   ONYX_HPF_DISABLE,
456 	   FLAG_POLARITY_INVERT);
457 SINGLE_BIT(dm12,
458 	   MIXER,
459 	   "Digital De-Emphasis",
460 	   ONYX_REG_DAC_DEEMPH,
461 	   ONYX_DIGDEEMPH_CTRL,
462 	   0);
463 
464 static int onyx_spdif_info(struct snd_kcontrol *kcontrol,
465 			   struct snd_ctl_elem_info *uinfo)
466 {
467 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
468 	uinfo->count = 1;
469 	return 0;
470 }
471 
472 static int onyx_spdif_mask_get(struct snd_kcontrol *kcontrol,
473 			       struct snd_ctl_elem_value *ucontrol)
474 {
475 	/* datasheet page 30, all others are 0 */
476 	ucontrol->value.iec958.status[0] = 0x3e;
477 	ucontrol->value.iec958.status[1] = 0xff;
478 
479 	ucontrol->value.iec958.status[3] = 0x3f;
480 	ucontrol->value.iec958.status[4] = 0x0f;
481 
482 	return 0;
483 }
484 
485 static struct snd_kcontrol_new onyx_spdif_mask = {
486 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
487 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
488 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
489 	.info =		onyx_spdif_info,
490 	.get =		onyx_spdif_mask_get,
491 };
492 
493 static int onyx_spdif_get(struct snd_kcontrol *kcontrol,
494 			  struct snd_ctl_elem_value *ucontrol)
495 {
496 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
497 	u8 v;
498 
499 	mutex_lock(&onyx->mutex);
500 	onyx_read_register(onyx, ONYX_REG_DIG_INFO1, &v);
501 	ucontrol->value.iec958.status[0] = v & 0x3e;
502 
503 	onyx_read_register(onyx, ONYX_REG_DIG_INFO2, &v);
504 	ucontrol->value.iec958.status[1] = v;
505 
506 	onyx_read_register(onyx, ONYX_REG_DIG_INFO3, &v);
507 	ucontrol->value.iec958.status[3] = v & 0x3f;
508 
509 	onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
510 	ucontrol->value.iec958.status[4] = v & 0x0f;
511 	mutex_unlock(&onyx->mutex);
512 
513 	return 0;
514 }
515 
516 static int onyx_spdif_put(struct snd_kcontrol *kcontrol,
517 			  struct snd_ctl_elem_value *ucontrol)
518 {
519 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
520 	u8 v;
521 
522 	mutex_lock(&onyx->mutex);
523 	onyx_read_register(onyx, ONYX_REG_DIG_INFO1, &v);
524 	v = (v & ~0x3e) | (ucontrol->value.iec958.status[0] & 0x3e);
525 	onyx_write_register(onyx, ONYX_REG_DIG_INFO1, v);
526 
527 	v = ucontrol->value.iec958.status[1];
528 	onyx_write_register(onyx, ONYX_REG_DIG_INFO2, v);
529 
530 	onyx_read_register(onyx, ONYX_REG_DIG_INFO3, &v);
531 	v = (v & ~0x3f) | (ucontrol->value.iec958.status[3] & 0x3f);
532 	onyx_write_register(onyx, ONYX_REG_DIG_INFO3, v);
533 
534 	onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
535 	v = (v & ~0x0f) | (ucontrol->value.iec958.status[4] & 0x0f);
536 	onyx_write_register(onyx, ONYX_REG_DIG_INFO4, v);
537 	mutex_unlock(&onyx->mutex);
538 
539 	return 1;
540 }
541 
542 static struct snd_kcontrol_new onyx_spdif_ctrl = {
543 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
544 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
545 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
546 	.info =		onyx_spdif_info,
547 	.get =		onyx_spdif_get,
548 	.put =		onyx_spdif_put,
549 };
550 
551 /* our registers */
552 
553 static u8 register_map[] = {
554 	ONYX_REG_DAC_ATTEN_LEFT,
555 	ONYX_REG_DAC_ATTEN_RIGHT,
556 	ONYX_REG_CONTROL,
557 	ONYX_REG_DAC_CONTROL,
558 	ONYX_REG_DAC_DEEMPH,
559 	ONYX_REG_DAC_FILTER,
560 	ONYX_REG_DAC_OUTPHASE,
561 	ONYX_REG_ADC_CONTROL,
562 	ONYX_REG_ADC_HPF_BYPASS,
563 	ONYX_REG_DIG_INFO1,
564 	ONYX_REG_DIG_INFO2,
565 	ONYX_REG_DIG_INFO3,
566 	ONYX_REG_DIG_INFO4
567 };
568 
569 static u8 initial_values[ARRAY_SIZE(register_map)] = {
570 	0x80, 0x80, /* muted */
571 	ONYX_MRST | ONYX_SRST, /* but handled specially! */
572 	ONYX_MUTE_LEFT | ONYX_MUTE_RIGHT,
573 	0, /* no deemphasis */
574 	ONYX_DAC_FILTER_ALWAYS,
575 	ONYX_OUTPHASE_INVERTED,
576 	(-1 /*dB*/ + 8) & 0xF, /* line in selected, -1 dB gain*/
577 	ONYX_ADC_HPF_ALWAYS,
578 	(1<<2),	/* pcm audio */
579 	2,	/* category: pcm coder */
580 	0,	/* sampling frequency 44.1 kHz, clock accuracy level II */
581 	1	/* 24 bit depth */
582 };
583 
584 /* reset registers of chip, either to initial or to previous values */
585 static int onyx_register_init(struct onyx *onyx)
586 {
587 	int i;
588 	u8 val;
589 	u8 regs[sizeof(initial_values)];
590 
591 	if (!onyx->initialised) {
592 		memcpy(regs, initial_values, sizeof(initial_values));
593 		if (onyx_read_register(onyx, ONYX_REG_CONTROL, &val))
594 			return -1;
595 		val &= ~ONYX_SILICONVERSION;
596 		val |= initial_values[3];
597 		regs[3] = val;
598 	} else {
599 		for (i=0; i<sizeof(register_map); i++)
600 			regs[i] = onyx->cache[register_map[i]-FIRSTREGISTER];
601 	}
602 
603 	for (i=0; i<sizeof(register_map); i++) {
604 		if (onyx_write_register(onyx, register_map[i], regs[i]))
605 			return -1;
606 	}
607 	onyx->initialised = 1;
608 	return 0;
609 }
610 
611 static struct transfer_info onyx_transfers[] = {
612 	/* this is first so we can skip it if no input is present...
613 	 * No hardware exists with that, but it's here as an example
614 	 * of what to do :) */
615 	{
616 		/* analog input */
617 		.formats = SNDRV_PCM_FMTBIT_S8 |
618 			   SNDRV_PCM_FMTBIT_S16_BE |
619 			   SNDRV_PCM_FMTBIT_S24_BE,
620 		.rates = SNDRV_PCM_RATE_8000_96000,
621 		.transfer_in = 1,
622 		.must_be_clock_source = 0,
623 		.tag = 0,
624 	},
625 	{
626 		/* if analog and digital are currently off, anything should go,
627 		 * so this entry describes everything we can do... */
628 		.formats = SNDRV_PCM_FMTBIT_S8 |
629 			   SNDRV_PCM_FMTBIT_S16_BE |
630 			   SNDRV_PCM_FMTBIT_S24_BE
631 #ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
632 			   | SNDRV_PCM_FMTBIT_COMPRESSED_16BE
633 #endif
634 		,
635 		.rates = SNDRV_PCM_RATE_8000_96000,
636 		.tag = 0,
637 	},
638 	{
639 		/* analog output */
640 		.formats = SNDRV_PCM_FMTBIT_S8 |
641 			   SNDRV_PCM_FMTBIT_S16_BE |
642 			   SNDRV_PCM_FMTBIT_S24_BE,
643 		.rates = SNDRV_PCM_RATE_8000_96000,
644 		.transfer_in = 0,
645 		.must_be_clock_source = 0,
646 		.tag = 1,
647 	},
648 	{
649 		/* digital pcm output, also possible for analog out */
650 		.formats = SNDRV_PCM_FMTBIT_S8 |
651 			   SNDRV_PCM_FMTBIT_S16_BE |
652 			   SNDRV_PCM_FMTBIT_S24_BE,
653 		.rates = SNDRV_PCM_RATE_32000 |
654 			 SNDRV_PCM_RATE_44100 |
655 			 SNDRV_PCM_RATE_48000,
656 		.transfer_in = 0,
657 		.must_be_clock_source = 0,
658 		.tag = 2,
659 	},
660 #ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
661 	/* Once alsa gets supports for this kind of thing we can add it... */
662 	{
663 		/* digital compressed output */
664 		.formats =  SNDRV_PCM_FMTBIT_COMPRESSED_16BE,
665 		.rates = SNDRV_PCM_RATE_32000 |
666 			 SNDRV_PCM_RATE_44100 |
667 			 SNDRV_PCM_RATE_48000,
668 		.tag = 2,
669 	},
670 #endif
671 	{}
672 };
673 
674 static int onyx_usable(struct codec_info_item *cii,
675 		       struct transfer_info *ti,
676 		       struct transfer_info *out)
677 {
678 	u8 v;
679 	struct onyx *onyx = cii->codec_data;
680 	int spdif_enabled, analog_enabled;
681 
682 	mutex_lock(&onyx->mutex);
683 	onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
684 	spdif_enabled = !!(v & ONYX_SPDIF_ENABLE);
685 	onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
686 	analog_enabled =
687 		(v & (ONYX_MUTE_RIGHT|ONYX_MUTE_LEFT))
688 		 != (ONYX_MUTE_RIGHT|ONYX_MUTE_LEFT);
689 	mutex_unlock(&onyx->mutex);
690 
691 	switch (ti->tag) {
692 	case 0: return 1;
693 	case 1:	return analog_enabled;
694 	case 2: return spdif_enabled;
695 	}
696 	return 1;
697 }
698 
699 static int onyx_prepare(struct codec_info_item *cii,
700 			struct bus_info *bi,
701 			struct snd_pcm_substream *substream)
702 {
703 	u8 v;
704 	struct onyx *onyx = cii->codec_data;
705 	int err = -EBUSY;
706 
707 	mutex_lock(&onyx->mutex);
708 
709 #ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
710 	if (substream->runtime->format == SNDRV_PCM_FMTBIT_COMPRESSED_16BE) {
711 		/* mute and lock analog output */
712 		onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
713 		if (onyx_write_register(onyx,
714 					ONYX_REG_DAC_CONTROL,
715 					v | ONYX_MUTE_RIGHT | ONYX_MUTE_LEFT))
716 			goto out_unlock;
717 		onyx->analog_locked = 1;
718 		err = 0;
719 		goto out_unlock;
720 	}
721 #endif
722 	switch (substream->runtime->rate) {
723 	case 32000:
724 	case 44100:
725 	case 48000:
726 		/* these rates are ok for all outputs */
727 		/* FIXME: program spdif channel control bits here so that
728 		 *	  userspace doesn't have to if it only plays pcm! */
729 		err = 0;
730 		goto out_unlock;
731 	default:
732 		/* got some rate that the digital output can't do,
733 		 * so disable and lock it */
734 		onyx_read_register(cii->codec_data, ONYX_REG_DIG_INFO4, &v);
735 		if (onyx_write_register(onyx,
736 					ONYX_REG_DIG_INFO4,
737 					v & ~ONYX_SPDIF_ENABLE))
738 			goto out_unlock;
739 		onyx->spdif_locked = 1;
740 		err = 0;
741 		goto out_unlock;
742 	}
743 
744  out_unlock:
745 	mutex_unlock(&onyx->mutex);
746 
747 	return err;
748 }
749 
750 static int onyx_open(struct codec_info_item *cii,
751 		     struct snd_pcm_substream *substream)
752 {
753 	struct onyx *onyx = cii->codec_data;
754 
755 	mutex_lock(&onyx->mutex);
756 	onyx->open_count++;
757 	mutex_unlock(&onyx->mutex);
758 
759 	return 0;
760 }
761 
762 static int onyx_close(struct codec_info_item *cii,
763 		      struct snd_pcm_substream *substream)
764 {
765 	struct onyx *onyx = cii->codec_data;
766 
767 	mutex_lock(&onyx->mutex);
768 	onyx->open_count--;
769 	if (!onyx->open_count)
770 		onyx->spdif_locked = onyx->analog_locked = 0;
771 	mutex_unlock(&onyx->mutex);
772 
773 	return 0;
774 }
775 
776 static int onyx_switch_clock(struct codec_info_item *cii,
777 			     enum clock_switch what)
778 {
779 	struct onyx *onyx = cii->codec_data;
780 
781 	mutex_lock(&onyx->mutex);
782 	/* this *MUST* be more elaborate later... */
783 	switch (what) {
784 	case CLOCK_SWITCH_PREPARE_SLAVE:
785 		onyx->codec.gpio->methods->all_amps_off(onyx->codec.gpio);
786 		break;
787 	case CLOCK_SWITCH_SLAVE:
788 		onyx->codec.gpio->methods->all_amps_restore(onyx->codec.gpio);
789 		break;
790 	default: /* silence warning */
791 		break;
792 	}
793 	mutex_unlock(&onyx->mutex);
794 
795 	return 0;
796 }
797 
798 #ifdef CONFIG_PM
799 
800 static int onyx_suspend(struct codec_info_item *cii, pm_message_t state)
801 {
802 	struct onyx *onyx = cii->codec_data;
803 	u8 v;
804 	int err = -ENXIO;
805 
806 	mutex_lock(&onyx->mutex);
807 	if (onyx_read_register(onyx, ONYX_REG_CONTROL, &v))
808 		goto out_unlock;
809 	onyx_write_register(onyx, ONYX_REG_CONTROL, v | ONYX_ADPSV | ONYX_DAPSV);
810 	/* Apple does a sleep here but the datasheet says to do it on resume */
811 	err = 0;
812  out_unlock:
813 	mutex_unlock(&onyx->mutex);
814 
815 	return err;
816 }
817 
818 static int onyx_resume(struct codec_info_item *cii)
819 {
820 	struct onyx *onyx = cii->codec_data;
821 	u8 v;
822 	int err = -ENXIO;
823 
824 	mutex_lock(&onyx->mutex);
825 
826 	/* reset codec */
827 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
828 	msleep(1);
829 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 1);
830 	msleep(1);
831 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
832 	msleep(1);
833 
834 	/* take codec out of suspend (if it still is after reset) */
835 	if (onyx_read_register(onyx, ONYX_REG_CONTROL, &v))
836 		goto out_unlock;
837 	onyx_write_register(onyx, ONYX_REG_CONTROL, v & ~(ONYX_ADPSV | ONYX_DAPSV));
838 	/* FIXME: should divide by sample rate, but 8k is the lowest we go */
839 	msleep(2205000/8000);
840 	/* reset all values */
841 	onyx_register_init(onyx);
842 	err = 0;
843  out_unlock:
844 	mutex_unlock(&onyx->mutex);
845 
846 	return err;
847 }
848 
849 #endif /* CONFIG_PM */
850 
851 static struct codec_info onyx_codec_info = {
852 	.transfers = onyx_transfers,
853 	.sysclock_factor = 256,
854 	.bus_factor = 64,
855 	.owner = THIS_MODULE,
856 	.usable = onyx_usable,
857 	.prepare = onyx_prepare,
858 	.open = onyx_open,
859 	.close = onyx_close,
860 	.switch_clock = onyx_switch_clock,
861 #ifdef CONFIG_PM
862 	.suspend = onyx_suspend,
863 	.resume = onyx_resume,
864 #endif
865 };
866 
867 static int onyx_init_codec(struct aoa_codec *codec)
868 {
869 	struct onyx *onyx = codec_to_onyx(codec);
870 	struct snd_kcontrol *ctl;
871 	struct codec_info *ci = &onyx_codec_info;
872 	u8 v;
873 	int err;
874 
875 	if (!onyx->codec.gpio || !onyx->codec.gpio->methods) {
876 		printk(KERN_ERR PFX "gpios not assigned!!\n");
877 		return -EINVAL;
878 	}
879 
880 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
881 	msleep(1);
882 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 1);
883 	msleep(1);
884 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
885 	msleep(1);
886 
887 	if (onyx_register_init(onyx)) {
888 		printk(KERN_ERR PFX "failed to initialise onyx registers\n");
889 		return -ENODEV;
890 	}
891 
892 	if (aoa_snd_device_new(SNDRV_DEV_CODEC, onyx, &ops)) {
893 		printk(KERN_ERR PFX "failed to create onyx snd device!\n");
894 		return -ENODEV;
895 	}
896 
897 	/* nothing connected? what a joke! */
898 	if ((onyx->codec.connected & 0xF) == 0)
899 		return -ENOTCONN;
900 
901 	/* if no inputs are present... */
902 	if ((onyx->codec.connected & 0xC) == 0) {
903 		if (!onyx->codec_info)
904 			onyx->codec_info = kmalloc(sizeof(struct codec_info), GFP_KERNEL);
905 		if (!onyx->codec_info)
906 			return -ENOMEM;
907 		ci = onyx->codec_info;
908 		*ci = onyx_codec_info;
909 		ci->transfers++;
910 	}
911 
912 	/* if no outputs are present... */
913 	if ((onyx->codec.connected & 3) == 0) {
914 		if (!onyx->codec_info)
915 			onyx->codec_info = kmalloc(sizeof(struct codec_info), GFP_KERNEL);
916 		if (!onyx->codec_info)
917 			return -ENOMEM;
918 		ci = onyx->codec_info;
919 		/* this is fine as there have to be inputs
920 		 * if we end up in this part of the code */
921 		*ci = onyx_codec_info;
922 		ci->transfers[1].formats = 0;
923 	}
924 
925 	if (onyx->codec.soundbus_dev->attach_codec(onyx->codec.soundbus_dev,
926 						   aoa_get_card(),
927 						   ci, onyx)) {
928 		printk(KERN_ERR PFX "error creating onyx pcm\n");
929 		return -ENODEV;
930 	}
931 #define ADDCTL(n)							\
932 	do {								\
933 		ctl = snd_ctl_new1(&n, onyx);				\
934 		if (ctl) {						\
935 			ctl->id.device =				\
936 				onyx->codec.soundbus_dev->pcm->device;	\
937 			err = aoa_snd_ctl_add(ctl);			\
938 			if (err)					\
939 				goto error;				\
940 		}							\
941 	} while (0)
942 
943 	if (onyx->codec.soundbus_dev->pcm) {
944 		/* give the user appropriate controls
945 		 * depending on what inputs are connected */
946 		if ((onyx->codec.connected & 0xC) == 0xC)
947 			ADDCTL(capture_source_control);
948 		else if (onyx->codec.connected & 4)
949 			onyx_set_capture_source(onyx, 0);
950 		else
951 			onyx_set_capture_source(onyx, 1);
952 		if (onyx->codec.connected & 0xC)
953 			ADDCTL(inputgain_control);
954 
955 		/* depending on what output is connected,
956 		 * give the user appropriate controls */
957 		if (onyx->codec.connected & 1) {
958 			ADDCTL(volume_control);
959 			ADDCTL(mute_control);
960 			ADDCTL(ovr1_control);
961 			ADDCTL(flt0_control);
962 			ADDCTL(hpf_control);
963 			ADDCTL(dm12_control);
964 			/* spdif control defaults to off */
965 		}
966 		if (onyx->codec.connected & 2) {
967 			ADDCTL(onyx_spdif_mask);
968 			ADDCTL(onyx_spdif_ctrl);
969 		}
970 		if ((onyx->codec.connected & 3) == 3)
971 			ADDCTL(spdif_control);
972 		/* if only S/PDIF is connected, enable it unconditionally */
973 		if ((onyx->codec.connected & 3) == 2) {
974 			onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
975 			v |= ONYX_SPDIF_ENABLE;
976 			onyx_write_register(onyx, ONYX_REG_DIG_INFO4, v);
977 		}
978 	}
979 #undef ADDCTL
980 	printk(KERN_INFO PFX "attached to onyx codec via i2c\n");
981 
982 	return 0;
983  error:
984 	onyx->codec.soundbus_dev->detach_codec(onyx->codec.soundbus_dev, onyx);
985 	snd_device_free(aoa_get_card(), onyx);
986 	return err;
987 }
988 
989 static void onyx_exit_codec(struct aoa_codec *codec)
990 {
991 	struct onyx *onyx = codec_to_onyx(codec);
992 
993 	if (!onyx->codec.soundbus_dev) {
994 		printk(KERN_ERR PFX "onyx_exit_codec called without soundbus_dev!\n");
995 		return;
996 	}
997 	onyx->codec.soundbus_dev->detach_codec(onyx->codec.soundbus_dev, onyx);
998 }
999 
1000 static int onyx_i2c_probe(struct i2c_client *client,
1001 			  const struct i2c_device_id *id)
1002 {
1003 	struct device_node *node = client->dev.of_node;
1004 	struct onyx *onyx;
1005 	u8 dummy;
1006 
1007 	onyx = kzalloc(sizeof(struct onyx), GFP_KERNEL);
1008 
1009 	if (!onyx)
1010 		return -ENOMEM;
1011 
1012 	mutex_init(&onyx->mutex);
1013 	onyx->i2c = client;
1014 	i2c_set_clientdata(client, onyx);
1015 
1016 	/* we try to read from register ONYX_REG_CONTROL
1017 	 * to check if the codec is present */
1018 	if (onyx_read_register(onyx, ONYX_REG_CONTROL, &dummy) != 0) {
1019 		printk(KERN_ERR PFX "failed to read control register\n");
1020 		goto fail;
1021 	}
1022 
1023 	strlcpy(onyx->codec.name, "onyx", MAX_CODEC_NAME_LEN);
1024 	onyx->codec.owner = THIS_MODULE;
1025 	onyx->codec.init = onyx_init_codec;
1026 	onyx->codec.exit = onyx_exit_codec;
1027 	onyx->codec.node = of_node_get(node);
1028 
1029 	if (aoa_codec_register(&onyx->codec)) {
1030 		goto fail;
1031 	}
1032 	printk(KERN_DEBUG PFX "created and attached onyx instance\n");
1033 	return 0;
1034  fail:
1035 	kfree(onyx);
1036 	return -ENODEV;
1037 }
1038 
1039 static int onyx_i2c_remove(struct i2c_client *client)
1040 {
1041 	struct onyx *onyx = i2c_get_clientdata(client);
1042 
1043 	aoa_codec_unregister(&onyx->codec);
1044 	of_node_put(onyx->codec.node);
1045 	kfree(onyx->codec_info);
1046 	kfree(onyx);
1047 	return 0;
1048 }
1049 
1050 static const struct i2c_device_id onyx_i2c_id[] = {
1051 	{ "MAC,pcm3052", 0 },
1052 	{ }
1053 };
1054 MODULE_DEVICE_TABLE(i2c,onyx_i2c_id);
1055 
1056 static struct i2c_driver onyx_driver = {
1057 	.driver = {
1058 		.name = "aoa_codec_onyx",
1059 		.owner = THIS_MODULE,
1060 	},
1061 	.probe = onyx_i2c_probe,
1062 	.remove = onyx_i2c_remove,
1063 	.id_table = onyx_i2c_id,
1064 };
1065 
1066 module_i2c_driver(onyx_driver);
1067