xref: /openbmc/linux/sound/aoa/codecs/onyx.c (revision 22b6e7f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Apple Onboard Audio driver for Onyx codec
4  *
5  * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This is a driver for the pcm3052 codec chip (codenamed Onyx)
8  * that is present in newer Apple hardware (with digital output).
9  *
10  * The Onyx codec has the following connections (listed by the bit
11  * to be used in aoa_codec.connected):
12  *  0: analog output
13  *  1: digital output
14  *  2: line input
15  *  3: microphone input
16  * Note that even though I know of no machine that has for example
17  * the digital output connected but not the analog, I have handled
18  * all the different cases in the code so that this driver may serve
19  * as a good example of what to do.
20  *
21  * NOTE: This driver assumes that there's at most one chip to be
22  * 	 used with one alsa card, in form of creating all kinds
23  *	 of mixer elements without regard for their existence.
24  *	 But snd-aoa assumes that there's at most one card, so
25  *	 this means you can only have one onyx on a system. This
26  *	 should probably be fixed by changing the assumption of
27  *	 having just a single card on a system, and making the
28  *	 'card' pointer accessible to anyone who needs it instead
29  *	 of hiding it in the aoa_snd_* functions...
30  */
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
35 MODULE_LICENSE("GPL");
36 MODULE_DESCRIPTION("pcm3052 (onyx) codec driver for snd-aoa");
37 
38 #include "onyx.h"
39 #include "../aoa.h"
40 #include "../soundbus/soundbus.h"
41 
42 
43 #define PFX "snd-aoa-codec-onyx: "
44 
45 struct onyx {
46 	/* cache registers 65 to 80, they are write-only! */
47 	u8			cache[16];
48 	struct i2c_client	*i2c;
49 	struct aoa_codec	codec;
50 	u32			initialised:1,
51 				spdif_locked:1,
52 				analog_locked:1,
53 				original_mute:2;
54 	int			open_count;
55 	struct codec_info	*codec_info;
56 
57 	/* mutex serializes concurrent access to the device
58 	 * and this structure.
59 	 */
60 	struct mutex mutex;
61 };
62 #define codec_to_onyx(c) container_of(c, struct onyx, codec)
63 
64 /* both return 0 if all ok, else on error */
65 static int onyx_read_register(struct onyx *onyx, u8 reg, u8 *value)
66 {
67 	s32 v;
68 
69 	if (reg != ONYX_REG_CONTROL) {
70 		*value = onyx->cache[reg-FIRSTREGISTER];
71 		return 0;
72 	}
73 	v = i2c_smbus_read_byte_data(onyx->i2c, reg);
74 	if (v < 0) {
75 		*value = 0;
76 		return -1;
77 	}
78 	*value = (u8)v;
79 	onyx->cache[ONYX_REG_CONTROL-FIRSTREGISTER] = *value;
80 	return 0;
81 }
82 
83 static int onyx_write_register(struct onyx *onyx, u8 reg, u8 value)
84 {
85 	int result;
86 
87 	result = i2c_smbus_write_byte_data(onyx->i2c, reg, value);
88 	if (!result)
89 		onyx->cache[reg-FIRSTREGISTER] = value;
90 	return result;
91 }
92 
93 /* alsa stuff */
94 
95 static int onyx_dev_register(struct snd_device *dev)
96 {
97 	return 0;
98 }
99 
100 static const struct snd_device_ops ops = {
101 	.dev_register = onyx_dev_register,
102 };
103 
104 /* this is necessary because most alsa mixer programs
105  * can't properly handle the negative range */
106 #define VOLUME_RANGE_SHIFT	128
107 
108 static int onyx_snd_vol_info(struct snd_kcontrol *kcontrol,
109 	struct snd_ctl_elem_info *uinfo)
110 {
111 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
112 	uinfo->count = 2;
113 	uinfo->value.integer.min = -128 + VOLUME_RANGE_SHIFT;
114 	uinfo->value.integer.max = -1 + VOLUME_RANGE_SHIFT;
115 	return 0;
116 }
117 
118 static int onyx_snd_vol_get(struct snd_kcontrol *kcontrol,
119 	struct snd_ctl_elem_value *ucontrol)
120 {
121 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
122 	s8 l, r;
123 
124 	mutex_lock(&onyx->mutex);
125 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_LEFT, &l);
126 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT, &r);
127 	mutex_unlock(&onyx->mutex);
128 
129 	ucontrol->value.integer.value[0] = l + VOLUME_RANGE_SHIFT;
130 	ucontrol->value.integer.value[1] = r + VOLUME_RANGE_SHIFT;
131 
132 	return 0;
133 }
134 
135 static int onyx_snd_vol_put(struct snd_kcontrol *kcontrol,
136 	struct snd_ctl_elem_value *ucontrol)
137 {
138 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
139 	s8 l, r;
140 
141 	if (ucontrol->value.integer.value[0] < -128 + VOLUME_RANGE_SHIFT ||
142 	    ucontrol->value.integer.value[0] > -1 + VOLUME_RANGE_SHIFT)
143 		return -EINVAL;
144 	if (ucontrol->value.integer.value[1] < -128 + VOLUME_RANGE_SHIFT ||
145 	    ucontrol->value.integer.value[1] > -1 + VOLUME_RANGE_SHIFT)
146 		return -EINVAL;
147 
148 	mutex_lock(&onyx->mutex);
149 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_LEFT, &l);
150 	onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT, &r);
151 
152 	if (l + VOLUME_RANGE_SHIFT == ucontrol->value.integer.value[0] &&
153 	    r + VOLUME_RANGE_SHIFT == ucontrol->value.integer.value[1]) {
154 		mutex_unlock(&onyx->mutex);
155 		return 0;
156 	}
157 
158 	onyx_write_register(onyx, ONYX_REG_DAC_ATTEN_LEFT,
159 			    ucontrol->value.integer.value[0]
160 			     - VOLUME_RANGE_SHIFT);
161 	onyx_write_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT,
162 			    ucontrol->value.integer.value[1]
163 			     - VOLUME_RANGE_SHIFT);
164 	mutex_unlock(&onyx->mutex);
165 
166 	return 1;
167 }
168 
169 static const struct snd_kcontrol_new volume_control = {
170 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
171 	.name = "Master Playback Volume",
172 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
173 	.info = onyx_snd_vol_info,
174 	.get = onyx_snd_vol_get,
175 	.put = onyx_snd_vol_put,
176 };
177 
178 /* like above, this is necessary because a lot
179  * of alsa mixer programs don't handle ranges
180  * that don't start at 0 properly.
181  * even alsamixer is one of them... */
182 #define INPUTGAIN_RANGE_SHIFT	(-3)
183 
184 static int onyx_snd_inputgain_info(struct snd_kcontrol *kcontrol,
185 	struct snd_ctl_elem_info *uinfo)
186 {
187 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
188 	uinfo->count = 1;
189 	uinfo->value.integer.min = 3 + INPUTGAIN_RANGE_SHIFT;
190 	uinfo->value.integer.max = 28 + INPUTGAIN_RANGE_SHIFT;
191 	return 0;
192 }
193 
194 static int onyx_snd_inputgain_get(struct snd_kcontrol *kcontrol,
195 	struct snd_ctl_elem_value *ucontrol)
196 {
197 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
198 	u8 ig;
199 
200 	mutex_lock(&onyx->mutex);
201 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &ig);
202 	mutex_unlock(&onyx->mutex);
203 
204 	ucontrol->value.integer.value[0] =
205 		(ig & ONYX_ADC_PGA_GAIN_MASK) + INPUTGAIN_RANGE_SHIFT;
206 
207 	return 0;
208 }
209 
210 static int onyx_snd_inputgain_put(struct snd_kcontrol *kcontrol,
211 	struct snd_ctl_elem_value *ucontrol)
212 {
213 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
214 	u8 v, n;
215 
216 	if (ucontrol->value.integer.value[0] < 3 + INPUTGAIN_RANGE_SHIFT ||
217 	    ucontrol->value.integer.value[0] > 28 + INPUTGAIN_RANGE_SHIFT)
218 		return -EINVAL;
219 	mutex_lock(&onyx->mutex);
220 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
221 	n = v;
222 	n &= ~ONYX_ADC_PGA_GAIN_MASK;
223 	n |= (ucontrol->value.integer.value[0] - INPUTGAIN_RANGE_SHIFT)
224 		& ONYX_ADC_PGA_GAIN_MASK;
225 	onyx_write_register(onyx, ONYX_REG_ADC_CONTROL, n);
226 	mutex_unlock(&onyx->mutex);
227 
228 	return n != v;
229 }
230 
231 static const struct snd_kcontrol_new inputgain_control = {
232 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
233 	.name = "Master Capture Volume",
234 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
235 	.info = onyx_snd_inputgain_info,
236 	.get = onyx_snd_inputgain_get,
237 	.put = onyx_snd_inputgain_put,
238 };
239 
240 static int onyx_snd_capture_source_info(struct snd_kcontrol *kcontrol,
241 	struct snd_ctl_elem_info *uinfo)
242 {
243 	static const char * const texts[] = { "Line-In", "Microphone" };
244 
245 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
246 }
247 
248 static int onyx_snd_capture_source_get(struct snd_kcontrol *kcontrol,
249 	struct snd_ctl_elem_value *ucontrol)
250 {
251 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
252 	s8 v;
253 
254 	mutex_lock(&onyx->mutex);
255 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
256 	mutex_unlock(&onyx->mutex);
257 
258 	ucontrol->value.enumerated.item[0] = !!(v&ONYX_ADC_INPUT_MIC);
259 
260 	return 0;
261 }
262 
263 static void onyx_set_capture_source(struct onyx *onyx, int mic)
264 {
265 	s8 v;
266 
267 	mutex_lock(&onyx->mutex);
268 	onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
269 	v &= ~ONYX_ADC_INPUT_MIC;
270 	if (mic)
271 		v |= ONYX_ADC_INPUT_MIC;
272 	onyx_write_register(onyx, ONYX_REG_ADC_CONTROL, v);
273 	mutex_unlock(&onyx->mutex);
274 }
275 
276 static int onyx_snd_capture_source_put(struct snd_kcontrol *kcontrol,
277 	struct snd_ctl_elem_value *ucontrol)
278 {
279 	if (ucontrol->value.enumerated.item[0] > 1)
280 		return -EINVAL;
281 	onyx_set_capture_source(snd_kcontrol_chip(kcontrol),
282 				ucontrol->value.enumerated.item[0]);
283 	return 1;
284 }
285 
286 static const struct snd_kcontrol_new capture_source_control = {
287 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
288 	/* If we name this 'Input Source', it properly shows up in
289 	 * alsamixer as a selection, * but it's shown under the
290 	 * 'Playback' category.
291 	 * If I name it 'Capture Source', it shows up in strange
292 	 * ways (two bools of which one can be selected at a
293 	 * time) but at least it's shown in the 'Capture'
294 	 * category.
295 	 * I was told that this was due to backward compatibility,
296 	 * but I don't understand then why the mangling is *not*
297 	 * done when I name it "Input Source".....
298 	 */
299 	.name = "Capture Source",
300 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
301 	.info = onyx_snd_capture_source_info,
302 	.get = onyx_snd_capture_source_get,
303 	.put = onyx_snd_capture_source_put,
304 };
305 
306 #define onyx_snd_mute_info	snd_ctl_boolean_stereo_info
307 
308 static int onyx_snd_mute_get(struct snd_kcontrol *kcontrol,
309 	struct snd_ctl_elem_value *ucontrol)
310 {
311 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
312 	u8 c;
313 
314 	mutex_lock(&onyx->mutex);
315 	onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &c);
316 	mutex_unlock(&onyx->mutex);
317 
318 	ucontrol->value.integer.value[0] = !(c & ONYX_MUTE_LEFT);
319 	ucontrol->value.integer.value[1] = !(c & ONYX_MUTE_RIGHT);
320 
321 	return 0;
322 }
323 
324 static int onyx_snd_mute_put(struct snd_kcontrol *kcontrol,
325 	struct snd_ctl_elem_value *ucontrol)
326 {
327 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
328 	u8 v = 0, c = 0;
329 	int err = -EBUSY;
330 
331 	mutex_lock(&onyx->mutex);
332 	if (onyx->analog_locked)
333 		goto out_unlock;
334 
335 	onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
336 	c = v;
337 	c &= ~(ONYX_MUTE_RIGHT | ONYX_MUTE_LEFT);
338 	if (!ucontrol->value.integer.value[0])
339 		c |= ONYX_MUTE_LEFT;
340 	if (!ucontrol->value.integer.value[1])
341 		c |= ONYX_MUTE_RIGHT;
342 	err = onyx_write_register(onyx, ONYX_REG_DAC_CONTROL, c);
343 
344  out_unlock:
345 	mutex_unlock(&onyx->mutex);
346 
347 	return !err ? (v != c) : err;
348 }
349 
350 static const struct snd_kcontrol_new mute_control = {
351 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
352 	.name = "Master Playback Switch",
353 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
354 	.info = onyx_snd_mute_info,
355 	.get = onyx_snd_mute_get,
356 	.put = onyx_snd_mute_put,
357 };
358 
359 
360 #define onyx_snd_single_bit_info	snd_ctl_boolean_mono_info
361 
362 #define FLAG_POLARITY_INVERT	1
363 #define FLAG_SPDIFLOCK		2
364 
365 static int onyx_snd_single_bit_get(struct snd_kcontrol *kcontrol,
366 	struct snd_ctl_elem_value *ucontrol)
367 {
368 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
369 	u8 c;
370 	long int pv = kcontrol->private_value;
371 	u8 polarity = (pv >> 16) & FLAG_POLARITY_INVERT;
372 	u8 address = (pv >> 8) & 0xff;
373 	u8 mask = pv & 0xff;
374 
375 	mutex_lock(&onyx->mutex);
376 	onyx_read_register(onyx, address, &c);
377 	mutex_unlock(&onyx->mutex);
378 
379 	ucontrol->value.integer.value[0] = !!(c & mask) ^ polarity;
380 
381 	return 0;
382 }
383 
384 static int onyx_snd_single_bit_put(struct snd_kcontrol *kcontrol,
385 	struct snd_ctl_elem_value *ucontrol)
386 {
387 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
388 	u8 v = 0, c = 0;
389 	int err;
390 	long int pv = kcontrol->private_value;
391 	u8 polarity = (pv >> 16) & FLAG_POLARITY_INVERT;
392 	u8 spdiflock = (pv >> 16) & FLAG_SPDIFLOCK;
393 	u8 address = (pv >> 8) & 0xff;
394 	u8 mask = pv & 0xff;
395 
396 	mutex_lock(&onyx->mutex);
397 	if (spdiflock && onyx->spdif_locked) {
398 		/* even if alsamixer doesn't care.. */
399 		err = -EBUSY;
400 		goto out_unlock;
401 	}
402 	onyx_read_register(onyx, address, &v);
403 	c = v;
404 	c &= ~(mask);
405 	if (!!ucontrol->value.integer.value[0] ^ polarity)
406 		c |= mask;
407 	err = onyx_write_register(onyx, address, c);
408 
409  out_unlock:
410 	mutex_unlock(&onyx->mutex);
411 
412 	return !err ? (v != c) : err;
413 }
414 
415 #define SINGLE_BIT(n, type, description, address, mask, flags)	 	\
416 static const struct snd_kcontrol_new n##_control = {			\
417 	.iface = SNDRV_CTL_ELEM_IFACE_##type,				\
418 	.name = description,						\
419 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,			\
420 	.info = onyx_snd_single_bit_info,				\
421 	.get = onyx_snd_single_bit_get,					\
422 	.put = onyx_snd_single_bit_put,					\
423 	.private_value = (flags << 16) | (address << 8) | mask		\
424 }
425 
426 SINGLE_BIT(spdif,
427 	   MIXER,
428 	   SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
429 	   ONYX_REG_DIG_INFO4,
430 	   ONYX_SPDIF_ENABLE,
431 	   FLAG_SPDIFLOCK);
432 SINGLE_BIT(ovr1,
433 	   MIXER,
434 	   "Oversampling Rate",
435 	   ONYX_REG_DAC_CONTROL,
436 	   ONYX_OVR1,
437 	   0);
438 SINGLE_BIT(flt0,
439 	   MIXER,
440 	   "Fast Digital Filter Rolloff",
441 	   ONYX_REG_DAC_FILTER,
442 	   ONYX_ROLLOFF_FAST,
443 	   FLAG_POLARITY_INVERT);
444 SINGLE_BIT(hpf,
445 	   MIXER,
446 	   "Highpass Filter",
447 	   ONYX_REG_ADC_HPF_BYPASS,
448 	   ONYX_HPF_DISABLE,
449 	   FLAG_POLARITY_INVERT);
450 SINGLE_BIT(dm12,
451 	   MIXER,
452 	   "Digital De-Emphasis",
453 	   ONYX_REG_DAC_DEEMPH,
454 	   ONYX_DIGDEEMPH_CTRL,
455 	   0);
456 
457 static int onyx_spdif_info(struct snd_kcontrol *kcontrol,
458 			   struct snd_ctl_elem_info *uinfo)
459 {
460 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
461 	uinfo->count = 1;
462 	return 0;
463 }
464 
465 static int onyx_spdif_mask_get(struct snd_kcontrol *kcontrol,
466 			       struct snd_ctl_elem_value *ucontrol)
467 {
468 	/* datasheet page 30, all others are 0 */
469 	ucontrol->value.iec958.status[0] = 0x3e;
470 	ucontrol->value.iec958.status[1] = 0xff;
471 
472 	ucontrol->value.iec958.status[3] = 0x3f;
473 	ucontrol->value.iec958.status[4] = 0x0f;
474 
475 	return 0;
476 }
477 
478 static const struct snd_kcontrol_new onyx_spdif_mask = {
479 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
480 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
481 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
482 	.info =		onyx_spdif_info,
483 	.get =		onyx_spdif_mask_get,
484 };
485 
486 static int onyx_spdif_get(struct snd_kcontrol *kcontrol,
487 			  struct snd_ctl_elem_value *ucontrol)
488 {
489 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
490 	u8 v;
491 
492 	mutex_lock(&onyx->mutex);
493 	onyx_read_register(onyx, ONYX_REG_DIG_INFO1, &v);
494 	ucontrol->value.iec958.status[0] = v & 0x3e;
495 
496 	onyx_read_register(onyx, ONYX_REG_DIG_INFO2, &v);
497 	ucontrol->value.iec958.status[1] = v;
498 
499 	onyx_read_register(onyx, ONYX_REG_DIG_INFO3, &v);
500 	ucontrol->value.iec958.status[3] = v & 0x3f;
501 
502 	onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
503 	ucontrol->value.iec958.status[4] = v & 0x0f;
504 	mutex_unlock(&onyx->mutex);
505 
506 	return 0;
507 }
508 
509 static int onyx_spdif_put(struct snd_kcontrol *kcontrol,
510 			  struct snd_ctl_elem_value *ucontrol)
511 {
512 	struct onyx *onyx = snd_kcontrol_chip(kcontrol);
513 	u8 v;
514 
515 	mutex_lock(&onyx->mutex);
516 	onyx_read_register(onyx, ONYX_REG_DIG_INFO1, &v);
517 	v = (v & ~0x3e) | (ucontrol->value.iec958.status[0] & 0x3e);
518 	onyx_write_register(onyx, ONYX_REG_DIG_INFO1, v);
519 
520 	v = ucontrol->value.iec958.status[1];
521 	onyx_write_register(onyx, ONYX_REG_DIG_INFO2, v);
522 
523 	onyx_read_register(onyx, ONYX_REG_DIG_INFO3, &v);
524 	v = (v & ~0x3f) | (ucontrol->value.iec958.status[3] & 0x3f);
525 	onyx_write_register(onyx, ONYX_REG_DIG_INFO3, v);
526 
527 	onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
528 	v = (v & ~0x0f) | (ucontrol->value.iec958.status[4] & 0x0f);
529 	onyx_write_register(onyx, ONYX_REG_DIG_INFO4, v);
530 	mutex_unlock(&onyx->mutex);
531 
532 	return 1;
533 }
534 
535 static const struct snd_kcontrol_new onyx_spdif_ctrl = {
536 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
537 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
538 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
539 	.info =		onyx_spdif_info,
540 	.get =		onyx_spdif_get,
541 	.put =		onyx_spdif_put,
542 };
543 
544 /* our registers */
545 
546 static const u8 register_map[] = {
547 	ONYX_REG_DAC_ATTEN_LEFT,
548 	ONYX_REG_DAC_ATTEN_RIGHT,
549 	ONYX_REG_CONTROL,
550 	ONYX_REG_DAC_CONTROL,
551 	ONYX_REG_DAC_DEEMPH,
552 	ONYX_REG_DAC_FILTER,
553 	ONYX_REG_DAC_OUTPHASE,
554 	ONYX_REG_ADC_CONTROL,
555 	ONYX_REG_ADC_HPF_BYPASS,
556 	ONYX_REG_DIG_INFO1,
557 	ONYX_REG_DIG_INFO2,
558 	ONYX_REG_DIG_INFO3,
559 	ONYX_REG_DIG_INFO4
560 };
561 
562 static const u8 initial_values[ARRAY_SIZE(register_map)] = {
563 	0x80, 0x80, /* muted */
564 	ONYX_MRST | ONYX_SRST, /* but handled specially! */
565 	ONYX_MUTE_LEFT | ONYX_MUTE_RIGHT,
566 	0, /* no deemphasis */
567 	ONYX_DAC_FILTER_ALWAYS,
568 	ONYX_OUTPHASE_INVERTED,
569 	(-1 /*dB*/ + 8) & 0xF, /* line in selected, -1 dB gain*/
570 	ONYX_ADC_HPF_ALWAYS,
571 	(1<<2),	/* pcm audio */
572 	2,	/* category: pcm coder */
573 	0,	/* sampling frequency 44.1 kHz, clock accuracy level II */
574 	1	/* 24 bit depth */
575 };
576 
577 /* reset registers of chip, either to initial or to previous values */
578 static int onyx_register_init(struct onyx *onyx)
579 {
580 	int i;
581 	u8 val;
582 	u8 regs[sizeof(initial_values)];
583 
584 	if (!onyx->initialised) {
585 		memcpy(regs, initial_values, sizeof(initial_values));
586 		if (onyx_read_register(onyx, ONYX_REG_CONTROL, &val))
587 			return -1;
588 		val &= ~ONYX_SILICONVERSION;
589 		val |= initial_values[3];
590 		regs[3] = val;
591 	} else {
592 		for (i=0; i<sizeof(register_map); i++)
593 			regs[i] = onyx->cache[register_map[i]-FIRSTREGISTER];
594 	}
595 
596 	for (i=0; i<sizeof(register_map); i++) {
597 		if (onyx_write_register(onyx, register_map[i], regs[i]))
598 			return -1;
599 	}
600 	onyx->initialised = 1;
601 	return 0;
602 }
603 
604 static struct transfer_info onyx_transfers[] = {
605 	/* this is first so we can skip it if no input is present...
606 	 * No hardware exists with that, but it's here as an example
607 	 * of what to do :) */
608 	{
609 		/* analog input */
610 		.formats = SNDRV_PCM_FMTBIT_S8 |
611 			   SNDRV_PCM_FMTBIT_S16_BE |
612 			   SNDRV_PCM_FMTBIT_S24_BE,
613 		.rates = SNDRV_PCM_RATE_8000_96000,
614 		.transfer_in = 1,
615 		.must_be_clock_source = 0,
616 		.tag = 0,
617 	},
618 	{
619 		/* if analog and digital are currently off, anything should go,
620 		 * so this entry describes everything we can do... */
621 		.formats = SNDRV_PCM_FMTBIT_S8 |
622 			   SNDRV_PCM_FMTBIT_S16_BE |
623 			   SNDRV_PCM_FMTBIT_S24_BE
624 #ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
625 			   | SNDRV_PCM_FMTBIT_COMPRESSED_16BE
626 #endif
627 		,
628 		.rates = SNDRV_PCM_RATE_8000_96000,
629 		.tag = 0,
630 	},
631 	{
632 		/* analog output */
633 		.formats = SNDRV_PCM_FMTBIT_S8 |
634 			   SNDRV_PCM_FMTBIT_S16_BE |
635 			   SNDRV_PCM_FMTBIT_S24_BE,
636 		.rates = SNDRV_PCM_RATE_8000_96000,
637 		.transfer_in = 0,
638 		.must_be_clock_source = 0,
639 		.tag = 1,
640 	},
641 	{
642 		/* digital pcm output, also possible for analog out */
643 		.formats = SNDRV_PCM_FMTBIT_S8 |
644 			   SNDRV_PCM_FMTBIT_S16_BE |
645 			   SNDRV_PCM_FMTBIT_S24_BE,
646 		.rates = SNDRV_PCM_RATE_32000 |
647 			 SNDRV_PCM_RATE_44100 |
648 			 SNDRV_PCM_RATE_48000,
649 		.transfer_in = 0,
650 		.must_be_clock_source = 0,
651 		.tag = 2,
652 	},
653 #ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
654 	/* Once alsa gets supports for this kind of thing we can add it... */
655 	{
656 		/* digital compressed output */
657 		.formats =  SNDRV_PCM_FMTBIT_COMPRESSED_16BE,
658 		.rates = SNDRV_PCM_RATE_32000 |
659 			 SNDRV_PCM_RATE_44100 |
660 			 SNDRV_PCM_RATE_48000,
661 		.tag = 2,
662 	},
663 #endif
664 	{}
665 };
666 
667 static int onyx_usable(struct codec_info_item *cii,
668 		       struct transfer_info *ti,
669 		       struct transfer_info *out)
670 {
671 	u8 v;
672 	struct onyx *onyx = cii->codec_data;
673 	int spdif_enabled, analog_enabled;
674 
675 	mutex_lock(&onyx->mutex);
676 	onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
677 	spdif_enabled = !!(v & ONYX_SPDIF_ENABLE);
678 	onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
679 	analog_enabled =
680 		(v & (ONYX_MUTE_RIGHT|ONYX_MUTE_LEFT))
681 		 != (ONYX_MUTE_RIGHT|ONYX_MUTE_LEFT);
682 	mutex_unlock(&onyx->mutex);
683 
684 	switch (ti->tag) {
685 	case 0: return 1;
686 	case 1:	return analog_enabled;
687 	case 2: return spdif_enabled;
688 	}
689 	return 1;
690 }
691 
692 static int onyx_prepare(struct codec_info_item *cii,
693 			struct bus_info *bi,
694 			struct snd_pcm_substream *substream)
695 {
696 	u8 v;
697 	struct onyx *onyx = cii->codec_data;
698 	int err = -EBUSY;
699 
700 	mutex_lock(&onyx->mutex);
701 
702 #ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
703 	if (substream->runtime->format == SNDRV_PCM_FMTBIT_COMPRESSED_16BE) {
704 		/* mute and lock analog output */
705 		onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
706 		if (onyx_write_register(onyx,
707 					ONYX_REG_DAC_CONTROL,
708 					v | ONYX_MUTE_RIGHT | ONYX_MUTE_LEFT))
709 			goto out_unlock;
710 		onyx->analog_locked = 1;
711 		err = 0;
712 		goto out_unlock;
713 	}
714 #endif
715 	switch (substream->runtime->rate) {
716 	case 32000:
717 	case 44100:
718 	case 48000:
719 		/* these rates are ok for all outputs */
720 		/* FIXME: program spdif channel control bits here so that
721 		 *	  userspace doesn't have to if it only plays pcm! */
722 		err = 0;
723 		goto out_unlock;
724 	default:
725 		/* got some rate that the digital output can't do,
726 		 * so disable and lock it */
727 		onyx_read_register(cii->codec_data, ONYX_REG_DIG_INFO4, &v);
728 		if (onyx_write_register(onyx,
729 					ONYX_REG_DIG_INFO4,
730 					v & ~ONYX_SPDIF_ENABLE))
731 			goto out_unlock;
732 		onyx->spdif_locked = 1;
733 		err = 0;
734 		goto out_unlock;
735 	}
736 
737  out_unlock:
738 	mutex_unlock(&onyx->mutex);
739 
740 	return err;
741 }
742 
743 static int onyx_open(struct codec_info_item *cii,
744 		     struct snd_pcm_substream *substream)
745 {
746 	struct onyx *onyx = cii->codec_data;
747 
748 	mutex_lock(&onyx->mutex);
749 	onyx->open_count++;
750 	mutex_unlock(&onyx->mutex);
751 
752 	return 0;
753 }
754 
755 static int onyx_close(struct codec_info_item *cii,
756 		      struct snd_pcm_substream *substream)
757 {
758 	struct onyx *onyx = cii->codec_data;
759 
760 	mutex_lock(&onyx->mutex);
761 	onyx->open_count--;
762 	if (!onyx->open_count)
763 		onyx->spdif_locked = onyx->analog_locked = 0;
764 	mutex_unlock(&onyx->mutex);
765 
766 	return 0;
767 }
768 
769 static int onyx_switch_clock(struct codec_info_item *cii,
770 			     enum clock_switch what)
771 {
772 	struct onyx *onyx = cii->codec_data;
773 
774 	mutex_lock(&onyx->mutex);
775 	/* this *MUST* be more elaborate later... */
776 	switch (what) {
777 	case CLOCK_SWITCH_PREPARE_SLAVE:
778 		onyx->codec.gpio->methods->all_amps_off(onyx->codec.gpio);
779 		break;
780 	case CLOCK_SWITCH_SLAVE:
781 		onyx->codec.gpio->methods->all_amps_restore(onyx->codec.gpio);
782 		break;
783 	default: /* silence warning */
784 		break;
785 	}
786 	mutex_unlock(&onyx->mutex);
787 
788 	return 0;
789 }
790 
791 #ifdef CONFIG_PM
792 
793 static int onyx_suspend(struct codec_info_item *cii, pm_message_t state)
794 {
795 	struct onyx *onyx = cii->codec_data;
796 	u8 v;
797 	int err = -ENXIO;
798 
799 	mutex_lock(&onyx->mutex);
800 	if (onyx_read_register(onyx, ONYX_REG_CONTROL, &v))
801 		goto out_unlock;
802 	onyx_write_register(onyx, ONYX_REG_CONTROL, v | ONYX_ADPSV | ONYX_DAPSV);
803 	/* Apple does a sleep here but the datasheet says to do it on resume */
804 	err = 0;
805  out_unlock:
806 	mutex_unlock(&onyx->mutex);
807 
808 	return err;
809 }
810 
811 static int onyx_resume(struct codec_info_item *cii)
812 {
813 	struct onyx *onyx = cii->codec_data;
814 	u8 v;
815 	int err = -ENXIO;
816 
817 	mutex_lock(&onyx->mutex);
818 
819 	/* reset codec */
820 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
821 	msleep(1);
822 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 1);
823 	msleep(1);
824 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
825 	msleep(1);
826 
827 	/* take codec out of suspend (if it still is after reset) */
828 	if (onyx_read_register(onyx, ONYX_REG_CONTROL, &v))
829 		goto out_unlock;
830 	onyx_write_register(onyx, ONYX_REG_CONTROL, v & ~(ONYX_ADPSV | ONYX_DAPSV));
831 	/* FIXME: should divide by sample rate, but 8k is the lowest we go */
832 	msleep(2205000/8000);
833 	/* reset all values */
834 	onyx_register_init(onyx);
835 	err = 0;
836  out_unlock:
837 	mutex_unlock(&onyx->mutex);
838 
839 	return err;
840 }
841 
842 #endif /* CONFIG_PM */
843 
844 static struct codec_info onyx_codec_info = {
845 	.transfers = onyx_transfers,
846 	.sysclock_factor = 256,
847 	.bus_factor = 64,
848 	.owner = THIS_MODULE,
849 	.usable = onyx_usable,
850 	.prepare = onyx_prepare,
851 	.open = onyx_open,
852 	.close = onyx_close,
853 	.switch_clock = onyx_switch_clock,
854 #ifdef CONFIG_PM
855 	.suspend = onyx_suspend,
856 	.resume = onyx_resume,
857 #endif
858 };
859 
860 static int onyx_init_codec(struct aoa_codec *codec)
861 {
862 	struct onyx *onyx = codec_to_onyx(codec);
863 	struct snd_kcontrol *ctl;
864 	struct codec_info *ci = &onyx_codec_info;
865 	u8 v;
866 	int err;
867 
868 	if (!onyx->codec.gpio || !onyx->codec.gpio->methods) {
869 		printk(KERN_ERR PFX "gpios not assigned!!\n");
870 		return -EINVAL;
871 	}
872 
873 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
874 	msleep(1);
875 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 1);
876 	msleep(1);
877 	onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
878 	msleep(1);
879 
880 	if (onyx_register_init(onyx)) {
881 		printk(KERN_ERR PFX "failed to initialise onyx registers\n");
882 		return -ENODEV;
883 	}
884 
885 	if (aoa_snd_device_new(SNDRV_DEV_CODEC, onyx, &ops)) {
886 		printk(KERN_ERR PFX "failed to create onyx snd device!\n");
887 		return -ENODEV;
888 	}
889 
890 	/* nothing connected? what a joke! */
891 	if ((onyx->codec.connected & 0xF) == 0)
892 		return -ENOTCONN;
893 
894 	/* if no inputs are present... */
895 	if ((onyx->codec.connected & 0xC) == 0) {
896 		if (!onyx->codec_info)
897 			onyx->codec_info = kmalloc(sizeof(struct codec_info), GFP_KERNEL);
898 		if (!onyx->codec_info)
899 			return -ENOMEM;
900 		ci = onyx->codec_info;
901 		*ci = onyx_codec_info;
902 		ci->transfers++;
903 	}
904 
905 	/* if no outputs are present... */
906 	if ((onyx->codec.connected & 3) == 0) {
907 		if (!onyx->codec_info)
908 			onyx->codec_info = kmalloc(sizeof(struct codec_info), GFP_KERNEL);
909 		if (!onyx->codec_info)
910 			return -ENOMEM;
911 		ci = onyx->codec_info;
912 		/* this is fine as there have to be inputs
913 		 * if we end up in this part of the code */
914 		*ci = onyx_codec_info;
915 		ci->transfers[1].formats = 0;
916 	}
917 
918 	if (onyx->codec.soundbus_dev->attach_codec(onyx->codec.soundbus_dev,
919 						   aoa_get_card(),
920 						   ci, onyx)) {
921 		printk(KERN_ERR PFX "error creating onyx pcm\n");
922 		return -ENODEV;
923 	}
924 #define ADDCTL(n)							\
925 	do {								\
926 		ctl = snd_ctl_new1(&n, onyx);				\
927 		if (ctl) {						\
928 			ctl->id.device =				\
929 				onyx->codec.soundbus_dev->pcm->device;	\
930 			err = aoa_snd_ctl_add(ctl);			\
931 			if (err)					\
932 				goto error;				\
933 		}							\
934 	} while (0)
935 
936 	if (onyx->codec.soundbus_dev->pcm) {
937 		/* give the user appropriate controls
938 		 * depending on what inputs are connected */
939 		if ((onyx->codec.connected & 0xC) == 0xC)
940 			ADDCTL(capture_source_control);
941 		else if (onyx->codec.connected & 4)
942 			onyx_set_capture_source(onyx, 0);
943 		else
944 			onyx_set_capture_source(onyx, 1);
945 		if (onyx->codec.connected & 0xC)
946 			ADDCTL(inputgain_control);
947 
948 		/* depending on what output is connected,
949 		 * give the user appropriate controls */
950 		if (onyx->codec.connected & 1) {
951 			ADDCTL(volume_control);
952 			ADDCTL(mute_control);
953 			ADDCTL(ovr1_control);
954 			ADDCTL(flt0_control);
955 			ADDCTL(hpf_control);
956 			ADDCTL(dm12_control);
957 			/* spdif control defaults to off */
958 		}
959 		if (onyx->codec.connected & 2) {
960 			ADDCTL(onyx_spdif_mask);
961 			ADDCTL(onyx_spdif_ctrl);
962 		}
963 		if ((onyx->codec.connected & 3) == 3)
964 			ADDCTL(spdif_control);
965 		/* if only S/PDIF is connected, enable it unconditionally */
966 		if ((onyx->codec.connected & 3) == 2) {
967 			onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
968 			v |= ONYX_SPDIF_ENABLE;
969 			onyx_write_register(onyx, ONYX_REG_DIG_INFO4, v);
970 		}
971 	}
972 #undef ADDCTL
973 	printk(KERN_INFO PFX "attached to onyx codec via i2c\n");
974 
975 	return 0;
976  error:
977 	onyx->codec.soundbus_dev->detach_codec(onyx->codec.soundbus_dev, onyx);
978 	snd_device_free(aoa_get_card(), onyx);
979 	return err;
980 }
981 
982 static void onyx_exit_codec(struct aoa_codec *codec)
983 {
984 	struct onyx *onyx = codec_to_onyx(codec);
985 
986 	if (!onyx->codec.soundbus_dev) {
987 		printk(KERN_ERR PFX "onyx_exit_codec called without soundbus_dev!\n");
988 		return;
989 	}
990 	onyx->codec.soundbus_dev->detach_codec(onyx->codec.soundbus_dev, onyx);
991 }
992 
993 static int onyx_i2c_probe(struct i2c_client *client)
994 {
995 	struct device_node *node = client->dev.of_node;
996 	struct onyx *onyx;
997 	u8 dummy;
998 
999 	onyx = kzalloc(sizeof(struct onyx), GFP_KERNEL);
1000 
1001 	if (!onyx)
1002 		return -ENOMEM;
1003 
1004 	mutex_init(&onyx->mutex);
1005 	onyx->i2c = client;
1006 	i2c_set_clientdata(client, onyx);
1007 
1008 	/* we try to read from register ONYX_REG_CONTROL
1009 	 * to check if the codec is present */
1010 	if (onyx_read_register(onyx, ONYX_REG_CONTROL, &dummy) != 0) {
1011 		printk(KERN_ERR PFX "failed to read control register\n");
1012 		goto fail;
1013 	}
1014 
1015 	strscpy(onyx->codec.name, "onyx", MAX_CODEC_NAME_LEN);
1016 	onyx->codec.owner = THIS_MODULE;
1017 	onyx->codec.init = onyx_init_codec;
1018 	onyx->codec.exit = onyx_exit_codec;
1019 	onyx->codec.node = of_node_get(node);
1020 
1021 	if (aoa_codec_register(&onyx->codec)) {
1022 		goto fail;
1023 	}
1024 	printk(KERN_DEBUG PFX "created and attached onyx instance\n");
1025 	return 0;
1026  fail:
1027 	kfree(onyx);
1028 	return -ENODEV;
1029 }
1030 
1031 static void onyx_i2c_remove(struct i2c_client *client)
1032 {
1033 	struct onyx *onyx = i2c_get_clientdata(client);
1034 
1035 	aoa_codec_unregister(&onyx->codec);
1036 	of_node_put(onyx->codec.node);
1037 	kfree(onyx->codec_info);
1038 	kfree(onyx);
1039 }
1040 
1041 static const struct i2c_device_id onyx_i2c_id[] = {
1042 	{ "MAC,pcm3052", 0 },
1043 	{ }
1044 };
1045 MODULE_DEVICE_TABLE(i2c,onyx_i2c_id);
1046 
1047 static struct i2c_driver onyx_driver = {
1048 	.driver = {
1049 		.name = "aoa_codec_onyx",
1050 	},
1051 	.probe = onyx_i2c_probe,
1052 	.remove = onyx_i2c_remove,
1053 	.id_table = onyx_i2c_id,
1054 };
1055 
1056 module_i2c_driver(onyx_driver);
1057