xref: /openbmc/linux/security/selinux/xfrm.c (revision 94cdda6b)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux XFRM hook function implementations.
5  *
6  *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
7  *	      Trent Jaeger <jaegert@us.ibm.com>
8  *
9  *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
10  *
11  *           Granular IPSec Associations for use in MLS environments.
12  *
13  *  Copyright (C) 2005 International Business Machines Corporation
14  *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
15  *
16  *	This program is free software; you can redistribute it and/or modify
17  *	it under the terms of the GNU General Public License version 2,
18  *	as published by the Free Software Foundation.
19  */
20 
21 /*
22  * USAGE:
23  * NOTES:
24  *   1. Make sure to enable the following options in your kernel config:
25  *	CONFIG_SECURITY=y
26  *	CONFIG_SECURITY_NETWORK=y
27  *	CONFIG_SECURITY_NETWORK_XFRM=y
28  *	CONFIG_SECURITY_SELINUX=m/y
29  * ISSUES:
30  *   1. Caching packets, so they are not dropped during negotiation
31  *   2. Emulating a reasonable SO_PEERSEC across machines
32  *   3. Testing addition of sk_policy's with security context via setsockopt
33  */
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/security.h>
37 #include <linux/types.h>
38 #include <linux/netfilter.h>
39 #include <linux/netfilter_ipv4.h>
40 #include <linux/netfilter_ipv6.h>
41 #include <linux/slab.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/skbuff.h>
45 #include <linux/xfrm.h>
46 #include <net/xfrm.h>
47 #include <net/checksum.h>
48 #include <net/udp.h>
49 #include <linux/atomic.h>
50 
51 #include "avc.h"
52 #include "objsec.h"
53 #include "xfrm.h"
54 
55 /* Labeled XFRM instance counter */
56 atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
57 
58 /*
59  * Returns true if the context is an LSM/SELinux context.
60  */
61 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
62 {
63 	return (ctx &&
64 		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
65 		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
66 }
67 
68 /*
69  * Returns true if the xfrm contains a security blob for SELinux.
70  */
71 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
72 {
73 	return selinux_authorizable_ctx(x->security);
74 }
75 
76 /*
77  * Allocates a xfrm_sec_state and populates it using the supplied security
78  * xfrm_user_sec_ctx context.
79  */
80 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
81 				   struct xfrm_user_sec_ctx *uctx,
82 				   gfp_t gfp)
83 {
84 	int rc;
85 	const struct task_security_struct *tsec = current_security();
86 	struct xfrm_sec_ctx *ctx = NULL;
87 	u32 str_len;
88 
89 	if (ctxp == NULL || uctx == NULL ||
90 	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
91 	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
92 		return -EINVAL;
93 
94 	str_len = uctx->ctx_len;
95 	if (str_len >= PAGE_SIZE)
96 		return -ENOMEM;
97 
98 	ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
99 	if (!ctx)
100 		return -ENOMEM;
101 
102 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
103 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
104 	ctx->ctx_len = str_len;
105 	memcpy(ctx->ctx_str, &uctx[1], str_len);
106 	ctx->ctx_str[str_len] = '\0';
107 	rc = security_context_to_sid(ctx->ctx_str, str_len, &ctx->ctx_sid, gfp);
108 	if (rc)
109 		goto err;
110 
111 	rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
112 			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
113 	if (rc)
114 		goto err;
115 
116 	*ctxp = ctx;
117 	atomic_inc(&selinux_xfrm_refcount);
118 	return 0;
119 
120 err:
121 	kfree(ctx);
122 	return rc;
123 }
124 
125 /*
126  * Free the xfrm_sec_ctx structure.
127  */
128 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
129 {
130 	if (!ctx)
131 		return;
132 
133 	atomic_dec(&selinux_xfrm_refcount);
134 	kfree(ctx);
135 }
136 
137 /*
138  * Authorize the deletion of a labeled SA or policy rule.
139  */
140 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
141 {
142 	const struct task_security_struct *tsec = current_security();
143 
144 	if (!ctx)
145 		return 0;
146 
147 	return avc_has_perm(tsec->sid, ctx->ctx_sid,
148 			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
149 			    NULL);
150 }
151 
152 /*
153  * LSM hook implementation that authorizes that a flow can use a xfrm policy
154  * rule.
155  */
156 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
157 {
158 	int rc;
159 
160 	/* All flows should be treated as polmatch'ing an otherwise applicable
161 	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
162 	if (!ctx)
163 		return 0;
164 
165 	/* Context sid is either set to label or ANY_ASSOC */
166 	if (!selinux_authorizable_ctx(ctx))
167 		return -EINVAL;
168 
169 	rc = avc_has_perm(fl_secid, ctx->ctx_sid,
170 			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
171 	return (rc == -EACCES ? -ESRCH : rc);
172 }
173 
174 /*
175  * LSM hook implementation that authorizes that a state matches
176  * the given policy, flow combo.
177  */
178 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
179 				      struct xfrm_policy *xp,
180 				      const struct flowi *fl)
181 {
182 	u32 state_sid;
183 
184 	if (!xp->security)
185 		if (x->security)
186 			/* unlabeled policy and labeled SA can't match */
187 			return 0;
188 		else
189 			/* unlabeled policy and unlabeled SA match all flows */
190 			return 1;
191 	else
192 		if (!x->security)
193 			/* unlabeled SA and labeled policy can't match */
194 			return 0;
195 		else
196 			if (!selinux_authorizable_xfrm(x))
197 				/* Not a SELinux-labeled SA */
198 				return 0;
199 
200 	state_sid = x->security->ctx_sid;
201 
202 	if (fl->flowi_secid != state_sid)
203 		return 0;
204 
205 	/* We don't need a separate SA Vs. policy polmatch check since the SA
206 	 * is now of the same label as the flow and a flow Vs. policy polmatch
207 	 * check had already happened in selinux_xfrm_policy_lookup() above. */
208 	return (avc_has_perm(fl->flowi_secid, state_sid,
209 			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
210 			    NULL) ? 0 : 1);
211 }
212 
213 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
214 {
215 	struct dst_entry *dst = skb_dst(skb);
216 	struct xfrm_state *x;
217 
218 	if (dst == NULL)
219 		return SECSID_NULL;
220 	x = dst->xfrm;
221 	if (x == NULL || !selinux_authorizable_xfrm(x))
222 		return SECSID_NULL;
223 
224 	return x->security->ctx_sid;
225 }
226 
227 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
228 					u32 *sid, int ckall)
229 {
230 	u32 sid_session = SECSID_NULL;
231 	struct sec_path *sp = skb->sp;
232 
233 	if (sp) {
234 		int i;
235 
236 		for (i = sp->len - 1; i >= 0; i--) {
237 			struct xfrm_state *x = sp->xvec[i];
238 			if (selinux_authorizable_xfrm(x)) {
239 				struct xfrm_sec_ctx *ctx = x->security;
240 
241 				if (sid_session == SECSID_NULL) {
242 					sid_session = ctx->ctx_sid;
243 					if (!ckall)
244 						goto out;
245 				} else if (sid_session != ctx->ctx_sid) {
246 					*sid = SECSID_NULL;
247 					return -EINVAL;
248 				}
249 			}
250 		}
251 	}
252 
253 out:
254 	*sid = sid_session;
255 	return 0;
256 }
257 
258 /*
259  * LSM hook implementation that checks and/or returns the xfrm sid for the
260  * incoming packet.
261  */
262 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
263 {
264 	if (skb == NULL) {
265 		*sid = SECSID_NULL;
266 		return 0;
267 	}
268 	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
269 }
270 
271 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
272 {
273 	int rc;
274 
275 	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
276 	if (rc == 0 && *sid == SECSID_NULL)
277 		*sid = selinux_xfrm_skb_sid_egress(skb);
278 
279 	return rc;
280 }
281 
282 /*
283  * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
284  */
285 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
286 			      struct xfrm_user_sec_ctx *uctx,
287 			      gfp_t gfp)
288 {
289 	return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
290 }
291 
292 /*
293  * LSM hook implementation that copies security data structure from old to new
294  * for policy cloning.
295  */
296 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
297 			      struct xfrm_sec_ctx **new_ctxp)
298 {
299 	struct xfrm_sec_ctx *new_ctx;
300 
301 	if (!old_ctx)
302 		return 0;
303 
304 	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
305 			  GFP_ATOMIC);
306 	if (!new_ctx)
307 		return -ENOMEM;
308 	atomic_inc(&selinux_xfrm_refcount);
309 	*new_ctxp = new_ctx;
310 
311 	return 0;
312 }
313 
314 /*
315  * LSM hook implementation that frees xfrm_sec_ctx security information.
316  */
317 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
318 {
319 	selinux_xfrm_free(ctx);
320 }
321 
322 /*
323  * LSM hook implementation that authorizes deletion of labeled policies.
324  */
325 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
326 {
327 	return selinux_xfrm_delete(ctx);
328 }
329 
330 /*
331  * LSM hook implementation that allocates a xfrm_sec_state, populates it using
332  * the supplied security context, and assigns it to the xfrm_state.
333  */
334 int selinux_xfrm_state_alloc(struct xfrm_state *x,
335 			     struct xfrm_user_sec_ctx *uctx)
336 {
337 	return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
338 }
339 
340 /*
341  * LSM hook implementation that allocates a xfrm_sec_state and populates based
342  * on a secid.
343  */
344 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
345 				     struct xfrm_sec_ctx *polsec, u32 secid)
346 {
347 	int rc;
348 	struct xfrm_sec_ctx *ctx;
349 	char *ctx_str = NULL;
350 	int str_len;
351 
352 	if (!polsec)
353 		return 0;
354 
355 	if (secid == 0)
356 		return -EINVAL;
357 
358 	rc = security_sid_to_context(secid, &ctx_str, &str_len);
359 	if (rc)
360 		return rc;
361 
362 	ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
363 	if (!ctx) {
364 		rc = -ENOMEM;
365 		goto out;
366 	}
367 
368 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
369 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
370 	ctx->ctx_sid = secid;
371 	ctx->ctx_len = str_len;
372 	memcpy(ctx->ctx_str, ctx_str, str_len);
373 
374 	x->security = ctx;
375 	atomic_inc(&selinux_xfrm_refcount);
376 out:
377 	kfree(ctx_str);
378 	return rc;
379 }
380 
381 /*
382  * LSM hook implementation that frees xfrm_state security information.
383  */
384 void selinux_xfrm_state_free(struct xfrm_state *x)
385 {
386 	selinux_xfrm_free(x->security);
387 }
388 
389 /*
390  * LSM hook implementation that authorizes deletion of labeled SAs.
391  */
392 int selinux_xfrm_state_delete(struct xfrm_state *x)
393 {
394 	return selinux_xfrm_delete(x->security);
395 }
396 
397 /*
398  * LSM hook that controls access to unlabelled packets.  If
399  * a xfrm_state is authorizable (defined by macro) then it was
400  * already authorized by the IPSec process.  If not, then
401  * we need to check for unlabelled access since this may not have
402  * gone thru the IPSec process.
403  */
404 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
405 			      struct common_audit_data *ad)
406 {
407 	int i;
408 	struct sec_path *sp = skb->sp;
409 	u32 peer_sid = SECINITSID_UNLABELED;
410 
411 	if (sp) {
412 		for (i = 0; i < sp->len; i++) {
413 			struct xfrm_state *x = sp->xvec[i];
414 
415 			if (x && selinux_authorizable_xfrm(x)) {
416 				struct xfrm_sec_ctx *ctx = x->security;
417 				peer_sid = ctx->ctx_sid;
418 				break;
419 			}
420 		}
421 	}
422 
423 	/* This check even when there's no association involved is intended,
424 	 * according to Trent Jaeger, to make sure a process can't engage in
425 	 * non-IPsec communication unless explicitly allowed by policy. */
426 	return avc_has_perm(sk_sid, peer_sid,
427 			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
428 }
429 
430 /*
431  * POSTROUTE_LAST hook's XFRM processing:
432  * If we have no security association, then we need to determine
433  * whether the socket is allowed to send to an unlabelled destination.
434  * If we do have a authorizable security association, then it has already been
435  * checked in the selinux_xfrm_state_pol_flow_match hook above.
436  */
437 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
438 				struct common_audit_data *ad, u8 proto)
439 {
440 	struct dst_entry *dst;
441 
442 	switch (proto) {
443 	case IPPROTO_AH:
444 	case IPPROTO_ESP:
445 	case IPPROTO_COMP:
446 		/* We should have already seen this packet once before it
447 		 * underwent xfrm(s). No need to subject it to the unlabeled
448 		 * check. */
449 		return 0;
450 	default:
451 		break;
452 	}
453 
454 	dst = skb_dst(skb);
455 	if (dst) {
456 		struct dst_entry *iter;
457 
458 		for (iter = dst; iter != NULL; iter = iter->child) {
459 			struct xfrm_state *x = iter->xfrm;
460 
461 			if (x && selinux_authorizable_xfrm(x))
462 				return 0;
463 		}
464 	}
465 
466 	/* This check even when there's no association involved is intended,
467 	 * according to Trent Jaeger, to make sure a process can't engage in
468 	 * non-IPsec communication unless explicitly allowed by policy. */
469 	return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
470 			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
471 }
472