xref: /openbmc/linux/security/selinux/ss/sidtab.c (revision 7a2eb736)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the SID table type.
4  *
5  * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6  * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7  *
8  * Copyright (C) 2018 Red Hat, Inc.
9  */
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/atomic.h>
16 #include "flask.h"
17 #include "security.h"
18 #include "sidtab.h"
19 
20 int sidtab_init(struct sidtab *s)
21 {
22 	u32 i;
23 
24 	memset(s->roots, 0, sizeof(s->roots));
25 
26 	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++)
27 		atomic_set(&s->rcache[i], -1);
28 
29 	for (i = 0; i < SECINITSID_NUM; i++)
30 		s->isids[i].set = 0;
31 
32 	atomic_set(&s->count, 0);
33 
34 	s->convert = NULL;
35 
36 	spin_lock_init(&s->lock);
37 	return 0;
38 }
39 
40 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
41 {
42 	struct sidtab_isid_entry *entry;
43 	int rc;
44 
45 	if (sid == 0 || sid > SECINITSID_NUM)
46 		return -EINVAL;
47 
48 	entry = &s->isids[sid - 1];
49 
50 	rc = context_cpy(&entry->context, context);
51 	if (rc)
52 		return rc;
53 
54 	entry->set = 1;
55 	return 0;
56 }
57 
58 static u32 sidtab_level_from_count(u32 count)
59 {
60 	u32 capacity = SIDTAB_LEAF_ENTRIES;
61 	u32 level = 0;
62 
63 	while (count > capacity) {
64 		capacity <<= SIDTAB_INNER_SHIFT;
65 		++level;
66 	}
67 	return level;
68 }
69 
70 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
71 {
72 	u32 l;
73 
74 	if (!s->roots[0].ptr_leaf) {
75 		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
76 					       GFP_ATOMIC);
77 		if (!s->roots[0].ptr_leaf)
78 			return -ENOMEM;
79 	}
80 	for (l = 1; l <= level; ++l)
81 		if (!s->roots[l].ptr_inner) {
82 			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
83 							GFP_ATOMIC);
84 			if (!s->roots[l].ptr_inner)
85 				return -ENOMEM;
86 			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
87 		}
88 	return 0;
89 }
90 
91 static struct context *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc)
92 {
93 	union sidtab_entry_inner *entry;
94 	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
95 
96 	/* find the level of the subtree we need */
97 	level = sidtab_level_from_count(index + 1);
98 	capacity_shift = level * SIDTAB_INNER_SHIFT;
99 
100 	/* allocate roots if needed */
101 	if (alloc && sidtab_alloc_roots(s, level) != 0)
102 		return NULL;
103 
104 	/* lookup inside the subtree */
105 	entry = &s->roots[level];
106 	while (level != 0) {
107 		capacity_shift -= SIDTAB_INNER_SHIFT;
108 		--level;
109 
110 		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
111 		leaf_index &= ((u32)1 << capacity_shift) - 1;
112 
113 		if (!entry->ptr_inner) {
114 			if (alloc)
115 				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
116 							   GFP_ATOMIC);
117 			if (!entry->ptr_inner)
118 				return NULL;
119 		}
120 	}
121 	if (!entry->ptr_leaf) {
122 		if (alloc)
123 			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
124 						  GFP_ATOMIC);
125 		if (!entry->ptr_leaf)
126 			return NULL;
127 	}
128 	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES].context;
129 }
130 
131 static struct context *sidtab_lookup(struct sidtab *s, u32 index)
132 {
133 	u32 count = (u32)atomic_read(&s->count);
134 
135 	if (index >= count)
136 		return NULL;
137 
138 	/* read entries after reading count */
139 	smp_rmb();
140 
141 	return sidtab_do_lookup(s, index, 0);
142 }
143 
144 static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
145 {
146 	return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
147 }
148 
149 static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
150 {
151 	struct context *context;
152 
153 	if (sid != 0) {
154 		if (sid > SECINITSID_NUM)
155 			context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
156 		else
157 			context = sidtab_lookup_initial(s, sid);
158 		if (context && (!context->len || force))
159 			return context;
160 	}
161 
162 	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
163 }
164 
165 struct context *sidtab_search(struct sidtab *s, u32 sid)
166 {
167 	return sidtab_search_core(s, sid, 0);
168 }
169 
170 struct context *sidtab_search_force(struct sidtab *s, u32 sid)
171 {
172 	return sidtab_search_core(s, sid, 1);
173 }
174 
175 static int sidtab_find_context(union sidtab_entry_inner entry,
176 			       u32 *pos, u32 count, u32 level,
177 			       struct context *context, u32 *index)
178 {
179 	int rc;
180 	u32 i;
181 
182 	if (level != 0) {
183 		struct sidtab_node_inner *node = entry.ptr_inner;
184 
185 		i = 0;
186 		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
187 			rc = sidtab_find_context(node->entries[i],
188 						 pos, count, level - 1,
189 						 context, index);
190 			if (rc == 0)
191 				return 0;
192 			i++;
193 		}
194 	} else {
195 		struct sidtab_node_leaf *node = entry.ptr_leaf;
196 
197 		i = 0;
198 		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
199 			if (context_cmp(&node->entries[i].context, context)) {
200 				*index = *pos;
201 				return 0;
202 			}
203 			(*pos)++;
204 			i++;
205 		}
206 	}
207 	return -ENOENT;
208 }
209 
210 static void sidtab_rcache_update(struct sidtab *s, u32 index, u32 pos)
211 {
212 	while (pos > 0) {
213 		atomic_set(&s->rcache[pos], atomic_read(&s->rcache[pos - 1]));
214 		--pos;
215 	}
216 	atomic_set(&s->rcache[0], (int)index);
217 }
218 
219 static void sidtab_rcache_push(struct sidtab *s, u32 index)
220 {
221 	sidtab_rcache_update(s, index, SIDTAB_RCACHE_SIZE - 1);
222 }
223 
224 static int sidtab_rcache_search(struct sidtab *s, struct context *context,
225 				u32 *index)
226 {
227 	u32 i;
228 
229 	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++) {
230 		int v = atomic_read(&s->rcache[i]);
231 
232 		if (v < 0)
233 			continue;
234 
235 		if (context_cmp(sidtab_do_lookup(s, (u32)v, 0), context)) {
236 			sidtab_rcache_update(s, (u32)v, i);
237 			*index = (u32)v;
238 			return 0;
239 		}
240 	}
241 	return -ENOENT;
242 }
243 
244 static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
245 				 u32 *index)
246 {
247 	unsigned long flags;
248 	u32 count = (u32)atomic_read(&s->count);
249 	u32 count_locked, level, pos;
250 	struct sidtab_convert_params *convert;
251 	struct context *dst, *dst_convert;
252 	int rc;
253 
254 	rc = sidtab_rcache_search(s, context, index);
255 	if (rc == 0)
256 		return 0;
257 
258 	level = sidtab_level_from_count(count);
259 
260 	/* read entries after reading count */
261 	smp_rmb();
262 
263 	pos = 0;
264 	rc = sidtab_find_context(s->roots[level], &pos, count, level,
265 				 context, index);
266 	if (rc == 0) {
267 		sidtab_rcache_push(s, *index);
268 		return 0;
269 	}
270 
271 	/* lock-free search failed: lock, re-search, and insert if not found */
272 	spin_lock_irqsave(&s->lock, flags);
273 
274 	convert = s->convert;
275 	count_locked = (u32)atomic_read(&s->count);
276 	level = sidtab_level_from_count(count_locked);
277 
278 	/* if count has changed before we acquired the lock, then catch up */
279 	while (count < count_locked) {
280 		if (context_cmp(sidtab_do_lookup(s, count, 0), context)) {
281 			sidtab_rcache_push(s, count);
282 			*index = count;
283 			rc = 0;
284 			goto out_unlock;
285 		}
286 		++count;
287 	}
288 
289 	/* bail out if we already reached max entries */
290 	rc = -EOVERFLOW;
291 	if (count >= SIDTAB_MAX)
292 		goto out_unlock;
293 
294 	/* insert context into new entry */
295 	rc = -ENOMEM;
296 	dst = sidtab_do_lookup(s, count, 1);
297 	if (!dst)
298 		goto out_unlock;
299 
300 	rc = context_cpy(dst, context);
301 	if (rc)
302 		goto out_unlock;
303 
304 	/*
305 	 * if we are building a new sidtab, we need to convert the context
306 	 * and insert it there as well
307 	 */
308 	if (convert) {
309 		rc = -ENOMEM;
310 		dst_convert = sidtab_do_lookup(convert->target, count, 1);
311 		if (!dst_convert) {
312 			context_destroy(dst);
313 			goto out_unlock;
314 		}
315 
316 		rc = convert->func(context, dst_convert, convert->args);
317 		if (rc) {
318 			context_destroy(dst);
319 			goto out_unlock;
320 		}
321 
322 		/* at this point we know the insert won't fail */
323 		atomic_set(&convert->target->count, count + 1);
324 	}
325 
326 	if (context->len)
327 		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
328 			context->str);
329 
330 	sidtab_rcache_push(s, count);
331 	*index = count;
332 
333 	/* write entries before writing new count */
334 	smp_wmb();
335 
336 	atomic_set(&s->count, count + 1);
337 
338 	rc = 0;
339 out_unlock:
340 	spin_unlock_irqrestore(&s->lock, flags);
341 	return rc;
342 }
343 
344 int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
345 {
346 	int rc;
347 	u32 i;
348 
349 	for (i = 0; i < SECINITSID_NUM; i++) {
350 		struct sidtab_isid_entry *entry = &s->isids[i];
351 
352 		if (entry->set && context_cmp(context, &entry->context)) {
353 			*sid = i + 1;
354 			return 0;
355 		}
356 	}
357 
358 	rc = sidtab_reverse_lookup(s, context, sid);
359 	if (rc)
360 		return rc;
361 	*sid += SECINITSID_NUM + 1;
362 	return 0;
363 }
364 
365 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
366 			       union sidtab_entry_inner *esrc,
367 			       u32 *pos, u32 count, u32 level,
368 			       struct sidtab_convert_params *convert)
369 {
370 	int rc;
371 	u32 i;
372 
373 	if (level != 0) {
374 		if (!edst->ptr_inner) {
375 			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
376 						  GFP_KERNEL);
377 			if (!edst->ptr_inner)
378 				return -ENOMEM;
379 		}
380 		i = 0;
381 		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
382 			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
383 						 &esrc->ptr_inner->entries[i],
384 						 pos, count, level - 1,
385 						 convert);
386 			if (rc)
387 				return rc;
388 			i++;
389 		}
390 	} else {
391 		if (!edst->ptr_leaf) {
392 			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
393 						 GFP_KERNEL);
394 			if (!edst->ptr_leaf)
395 				return -ENOMEM;
396 		}
397 		i = 0;
398 		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
399 			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
400 					   &edst->ptr_leaf->entries[i].context,
401 					   convert->args);
402 			if (rc)
403 				return rc;
404 			(*pos)++;
405 			i++;
406 		}
407 		cond_resched();
408 	}
409 	return 0;
410 }
411 
412 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
413 {
414 	unsigned long flags;
415 	u32 count, level, pos;
416 	int rc;
417 
418 	spin_lock_irqsave(&s->lock, flags);
419 
420 	/* concurrent policy loads are not allowed */
421 	if (s->convert) {
422 		spin_unlock_irqrestore(&s->lock, flags);
423 		return -EBUSY;
424 	}
425 
426 	count = (u32)atomic_read(&s->count);
427 	level = sidtab_level_from_count(count);
428 
429 	/* allocate last leaf in the new sidtab (to avoid race with
430 	 * live convert)
431 	 */
432 	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
433 	if (rc) {
434 		spin_unlock_irqrestore(&s->lock, flags);
435 		return rc;
436 	}
437 
438 	/* set count in case no new entries are added during conversion */
439 	atomic_set(&params->target->count, count);
440 
441 	/* enable live convert of new entries */
442 	s->convert = params;
443 
444 	/* we can safely do the rest of the conversion outside the lock */
445 	spin_unlock_irqrestore(&s->lock, flags);
446 
447 	pr_info("SELinux:  Converting %u SID table entries...\n", count);
448 
449 	/* convert all entries not covered by live convert */
450 	pos = 0;
451 	rc = sidtab_convert_tree(&params->target->roots[level],
452 				 &s->roots[level], &pos, count, level, params);
453 	if (rc) {
454 		/* we need to keep the old table - disable live convert */
455 		spin_lock_irqsave(&s->lock, flags);
456 		s->convert = NULL;
457 		spin_unlock_irqrestore(&s->lock, flags);
458 	}
459 	return rc;
460 }
461 
462 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
463 {
464 	u32 i;
465 
466 	if (level != 0) {
467 		struct sidtab_node_inner *node = entry.ptr_inner;
468 
469 		if (!node)
470 			return;
471 
472 		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
473 			sidtab_destroy_tree(node->entries[i], level - 1);
474 		kfree(node);
475 	} else {
476 		struct sidtab_node_leaf *node = entry.ptr_leaf;
477 
478 		if (!node)
479 			return;
480 
481 		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
482 			context_destroy(&node->entries[i].context);
483 		kfree(node);
484 	}
485 }
486 
487 void sidtab_destroy(struct sidtab *s)
488 {
489 	u32 i, level;
490 
491 	for (i = 0; i < SECINITSID_NUM; i++)
492 		if (s->isids[i].set)
493 			context_destroy(&s->isids[i].context);
494 
495 	level = SIDTAB_MAX_LEVEL;
496 	while (level && !s->roots[level].ptr_inner)
497 		--level;
498 
499 	sidtab_destroy_tree(s->roots[level], level);
500 }
501