xref: /openbmc/linux/security/selinux/ss/services.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 int selinux_policycap_alwaysnetwork;
76 
77 static DEFINE_RWLOCK(policy_rwlock);
78 
79 static struct sidtab sidtab;
80 struct policydb policydb;
81 int ss_initialized;
82 
83 /*
84  * The largest sequence number that has been used when
85  * providing an access decision to the access vector cache.
86  * The sequence number only changes when a policy change
87  * occurs.
88  */
89 static u32 latest_granting;
90 
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context *context, char **scontext,
93 				    u32 *scontext_len);
94 
95 static void context_struct_compute_av(struct context *scontext,
96 				      struct context *tcontext,
97 				      u16 tclass,
98 				      struct av_decision *avd);
99 
100 struct selinux_mapping {
101 	u16 value; /* policy value */
102 	unsigned num_perms;
103 	u32 perms[sizeof(u32) * 8];
104 };
105 
106 static struct selinux_mapping *current_mapping;
107 static u16 current_mapping_size;
108 
109 static int selinux_set_mapping(struct policydb *pol,
110 			       struct security_class_mapping *map,
111 			       struct selinux_mapping **out_map_p,
112 			       u16 *out_map_size)
113 {
114 	struct selinux_mapping *out_map = NULL;
115 	size_t size = sizeof(struct selinux_mapping);
116 	u16 i, j;
117 	unsigned k;
118 	bool print_unknown_handle = false;
119 
120 	/* Find number of classes in the input mapping */
121 	if (!map)
122 		return -EINVAL;
123 	i = 0;
124 	while (map[i].name)
125 		i++;
126 
127 	/* Allocate space for the class records, plus one for class zero */
128 	out_map = kcalloc(++i, size, GFP_ATOMIC);
129 	if (!out_map)
130 		return -ENOMEM;
131 
132 	/* Store the raw class and permission values */
133 	j = 0;
134 	while (map[j].name) {
135 		struct security_class_mapping *p_in = map + (j++);
136 		struct selinux_mapping *p_out = out_map + j;
137 
138 		/* An empty class string skips ahead */
139 		if (!strcmp(p_in->name, "")) {
140 			p_out->num_perms = 0;
141 			continue;
142 		}
143 
144 		p_out->value = string_to_security_class(pol, p_in->name);
145 		if (!p_out->value) {
146 			printk(KERN_INFO
147 			       "SELinux:  Class %s not defined in policy.\n",
148 			       p_in->name);
149 			if (pol->reject_unknown)
150 				goto err;
151 			p_out->num_perms = 0;
152 			print_unknown_handle = true;
153 			continue;
154 		}
155 
156 		k = 0;
157 		while (p_in->perms && p_in->perms[k]) {
158 			/* An empty permission string skips ahead */
159 			if (!*p_in->perms[k]) {
160 				k++;
161 				continue;
162 			}
163 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164 							    p_in->perms[k]);
165 			if (!p_out->perms[k]) {
166 				printk(KERN_INFO
167 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
168 				       p_in->perms[k], p_in->name);
169 				if (pol->reject_unknown)
170 					goto err;
171 				print_unknown_handle = true;
172 			}
173 
174 			k++;
175 		}
176 		p_out->num_perms = k;
177 	}
178 
179 	if (print_unknown_handle)
180 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181 		       pol->allow_unknown ? "allowed" : "denied");
182 
183 	*out_map_p = out_map;
184 	*out_map_size = i;
185 	return 0;
186 err:
187 	kfree(out_map);
188 	return -EINVAL;
189 }
190 
191 /*
192  * Get real, policy values from mapped values
193  */
194 
195 static u16 unmap_class(u16 tclass)
196 {
197 	if (tclass < current_mapping_size)
198 		return current_mapping[tclass].value;
199 
200 	return tclass;
201 }
202 
203 /*
204  * Get kernel value for class from its policy value
205  */
206 static u16 map_class(u16 pol_value)
207 {
208 	u16 i;
209 
210 	for (i = 1; i < current_mapping_size; i++) {
211 		if (current_mapping[i].value == pol_value)
212 			return i;
213 	}
214 
215 	return SECCLASS_NULL;
216 }
217 
218 static void map_decision(u16 tclass, struct av_decision *avd,
219 			 int allow_unknown)
220 {
221 	if (tclass < current_mapping_size) {
222 		unsigned i, n = current_mapping[tclass].num_perms;
223 		u32 result;
224 
225 		for (i = 0, result = 0; i < n; i++) {
226 			if (avd->allowed & current_mapping[tclass].perms[i])
227 				result |= 1<<i;
228 			if (allow_unknown && !current_mapping[tclass].perms[i])
229 				result |= 1<<i;
230 		}
231 		avd->allowed = result;
232 
233 		for (i = 0, result = 0; i < n; i++)
234 			if (avd->auditallow & current_mapping[tclass].perms[i])
235 				result |= 1<<i;
236 		avd->auditallow = result;
237 
238 		for (i = 0, result = 0; i < n; i++) {
239 			if (avd->auditdeny & current_mapping[tclass].perms[i])
240 				result |= 1<<i;
241 			if (!allow_unknown && !current_mapping[tclass].perms[i])
242 				result |= 1<<i;
243 		}
244 		/*
245 		 * In case the kernel has a bug and requests a permission
246 		 * between num_perms and the maximum permission number, we
247 		 * should audit that denial
248 		 */
249 		for (; i < (sizeof(u32)*8); i++)
250 			result |= 1<<i;
251 		avd->auditdeny = result;
252 	}
253 }
254 
255 int security_mls_enabled(void)
256 {
257 	return policydb.mls_enabled;
258 }
259 
260 /*
261  * Return the boolean value of a constraint expression
262  * when it is applied to the specified source and target
263  * security contexts.
264  *
265  * xcontext is a special beast...  It is used by the validatetrans rules
266  * only.  For these rules, scontext is the context before the transition,
267  * tcontext is the context after the transition, and xcontext is the context
268  * of the process performing the transition.  All other callers of
269  * constraint_expr_eval should pass in NULL for xcontext.
270  */
271 static int constraint_expr_eval(struct context *scontext,
272 				struct context *tcontext,
273 				struct context *xcontext,
274 				struct constraint_expr *cexpr)
275 {
276 	u32 val1, val2;
277 	struct context *c;
278 	struct role_datum *r1, *r2;
279 	struct mls_level *l1, *l2;
280 	struct constraint_expr *e;
281 	int s[CEXPR_MAXDEPTH];
282 	int sp = -1;
283 
284 	for (e = cexpr; e; e = e->next) {
285 		switch (e->expr_type) {
286 		case CEXPR_NOT:
287 			BUG_ON(sp < 0);
288 			s[sp] = !s[sp];
289 			break;
290 		case CEXPR_AND:
291 			BUG_ON(sp < 1);
292 			sp--;
293 			s[sp] &= s[sp + 1];
294 			break;
295 		case CEXPR_OR:
296 			BUG_ON(sp < 1);
297 			sp--;
298 			s[sp] |= s[sp + 1];
299 			break;
300 		case CEXPR_ATTR:
301 			if (sp == (CEXPR_MAXDEPTH - 1))
302 				return 0;
303 			switch (e->attr) {
304 			case CEXPR_USER:
305 				val1 = scontext->user;
306 				val2 = tcontext->user;
307 				break;
308 			case CEXPR_TYPE:
309 				val1 = scontext->type;
310 				val2 = tcontext->type;
311 				break;
312 			case CEXPR_ROLE:
313 				val1 = scontext->role;
314 				val2 = tcontext->role;
315 				r1 = policydb.role_val_to_struct[val1 - 1];
316 				r2 = policydb.role_val_to_struct[val2 - 1];
317 				switch (e->op) {
318 				case CEXPR_DOM:
319 					s[++sp] = ebitmap_get_bit(&r1->dominates,
320 								  val2 - 1);
321 					continue;
322 				case CEXPR_DOMBY:
323 					s[++sp] = ebitmap_get_bit(&r2->dominates,
324 								  val1 - 1);
325 					continue;
326 				case CEXPR_INCOMP:
327 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 								    val2 - 1) &&
329 						   !ebitmap_get_bit(&r2->dominates,
330 								    val1 - 1));
331 					continue;
332 				default:
333 					break;
334 				}
335 				break;
336 			case CEXPR_L1L2:
337 				l1 = &(scontext->range.level[0]);
338 				l2 = &(tcontext->range.level[0]);
339 				goto mls_ops;
340 			case CEXPR_L1H2:
341 				l1 = &(scontext->range.level[0]);
342 				l2 = &(tcontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_H1L2:
345 				l1 = &(scontext->range.level[1]);
346 				l2 = &(tcontext->range.level[0]);
347 				goto mls_ops;
348 			case CEXPR_H1H2:
349 				l1 = &(scontext->range.level[1]);
350 				l2 = &(tcontext->range.level[1]);
351 				goto mls_ops;
352 			case CEXPR_L1H1:
353 				l1 = &(scontext->range.level[0]);
354 				l2 = &(scontext->range.level[1]);
355 				goto mls_ops;
356 			case CEXPR_L2H2:
357 				l1 = &(tcontext->range.level[0]);
358 				l2 = &(tcontext->range.level[1]);
359 				goto mls_ops;
360 mls_ops:
361 			switch (e->op) {
362 			case CEXPR_EQ:
363 				s[++sp] = mls_level_eq(l1, l2);
364 				continue;
365 			case CEXPR_NEQ:
366 				s[++sp] = !mls_level_eq(l1, l2);
367 				continue;
368 			case CEXPR_DOM:
369 				s[++sp] = mls_level_dom(l1, l2);
370 				continue;
371 			case CEXPR_DOMBY:
372 				s[++sp] = mls_level_dom(l2, l1);
373 				continue;
374 			case CEXPR_INCOMP:
375 				s[++sp] = mls_level_incomp(l2, l1);
376 				continue;
377 			default:
378 				BUG();
379 				return 0;
380 			}
381 			break;
382 			default:
383 				BUG();
384 				return 0;
385 			}
386 
387 			switch (e->op) {
388 			case CEXPR_EQ:
389 				s[++sp] = (val1 == val2);
390 				break;
391 			case CEXPR_NEQ:
392 				s[++sp] = (val1 != val2);
393 				break;
394 			default:
395 				BUG();
396 				return 0;
397 			}
398 			break;
399 		case CEXPR_NAMES:
400 			if (sp == (CEXPR_MAXDEPTH-1))
401 				return 0;
402 			c = scontext;
403 			if (e->attr & CEXPR_TARGET)
404 				c = tcontext;
405 			else if (e->attr & CEXPR_XTARGET) {
406 				c = xcontext;
407 				if (!c) {
408 					BUG();
409 					return 0;
410 				}
411 			}
412 			if (e->attr & CEXPR_USER)
413 				val1 = c->user;
414 			else if (e->attr & CEXPR_ROLE)
415 				val1 = c->role;
416 			else if (e->attr & CEXPR_TYPE)
417 				val1 = c->type;
418 			else {
419 				BUG();
420 				return 0;
421 			}
422 
423 			switch (e->op) {
424 			case CEXPR_EQ:
425 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 				break;
427 			case CEXPR_NEQ:
428 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 				break;
430 			default:
431 				BUG();
432 				return 0;
433 			}
434 			break;
435 		default:
436 			BUG();
437 			return 0;
438 		}
439 	}
440 
441 	BUG_ON(sp != 0);
442 	return s[0];
443 }
444 
445 /*
446  * security_dump_masked_av - dumps masked permissions during
447  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448  */
449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451 	struct perm_datum *pdatum = d;
452 	char **permission_names = args;
453 
454 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455 
456 	permission_names[pdatum->value - 1] = (char *)k;
457 
458 	return 0;
459 }
460 
461 static void security_dump_masked_av(struct context *scontext,
462 				    struct context *tcontext,
463 				    u16 tclass,
464 				    u32 permissions,
465 				    const char *reason)
466 {
467 	struct common_datum *common_dat;
468 	struct class_datum *tclass_dat;
469 	struct audit_buffer *ab;
470 	char *tclass_name;
471 	char *scontext_name = NULL;
472 	char *tcontext_name = NULL;
473 	char *permission_names[32];
474 	int index;
475 	u32 length;
476 	bool need_comma = false;
477 
478 	if (!permissions)
479 		return;
480 
481 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
482 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
483 	common_dat = tclass_dat->comdatum;
484 
485 	/* init permission_names */
486 	if (common_dat &&
487 	    hashtab_map(common_dat->permissions.table,
488 			dump_masked_av_helper, permission_names) < 0)
489 		goto out;
490 
491 	if (hashtab_map(tclass_dat->permissions.table,
492 			dump_masked_av_helper, permission_names) < 0)
493 		goto out;
494 
495 	/* get scontext/tcontext in text form */
496 	if (context_struct_to_string(scontext,
497 				     &scontext_name, &length) < 0)
498 		goto out;
499 
500 	if (context_struct_to_string(tcontext,
501 				     &tcontext_name, &length) < 0)
502 		goto out;
503 
504 	/* audit a message */
505 	ab = audit_log_start(current->audit_context,
506 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
507 	if (!ab)
508 		goto out;
509 
510 	audit_log_format(ab, "op=security_compute_av reason=%s "
511 			 "scontext=%s tcontext=%s tclass=%s perms=",
512 			 reason, scontext_name, tcontext_name, tclass_name);
513 
514 	for (index = 0; index < 32; index++) {
515 		u32 mask = (1 << index);
516 
517 		if ((mask & permissions) == 0)
518 			continue;
519 
520 		audit_log_format(ab, "%s%s",
521 				 need_comma ? "," : "",
522 				 permission_names[index]
523 				 ? permission_names[index] : "????");
524 		need_comma = true;
525 	}
526 	audit_log_end(ab);
527 out:
528 	/* release scontext/tcontext */
529 	kfree(tcontext_name);
530 	kfree(scontext_name);
531 
532 	return;
533 }
534 
535 /*
536  * security_boundary_permission - drops violated permissions
537  * on boundary constraint.
538  */
539 static void type_attribute_bounds_av(struct context *scontext,
540 				     struct context *tcontext,
541 				     u16 tclass,
542 				     struct av_decision *avd)
543 {
544 	struct context lo_scontext;
545 	struct context lo_tcontext;
546 	struct av_decision lo_avd;
547 	struct type_datum *source;
548 	struct type_datum *target;
549 	u32 masked = 0;
550 
551 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
552 				    scontext->type - 1);
553 	BUG_ON(!source);
554 
555 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
556 				    tcontext->type - 1);
557 	BUG_ON(!target);
558 
559 	if (source->bounds) {
560 		memset(&lo_avd, 0, sizeof(lo_avd));
561 
562 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 		lo_scontext.type = source->bounds;
564 
565 		context_struct_compute_av(&lo_scontext,
566 					  tcontext,
567 					  tclass,
568 					  &lo_avd);
569 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
570 			return;		/* no masked permission */
571 		masked = ~lo_avd.allowed & avd->allowed;
572 	}
573 
574 	if (target->bounds) {
575 		memset(&lo_avd, 0, sizeof(lo_avd));
576 
577 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
578 		lo_tcontext.type = target->bounds;
579 
580 		context_struct_compute_av(scontext,
581 					  &lo_tcontext,
582 					  tclass,
583 					  &lo_avd);
584 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
585 			return;		/* no masked permission */
586 		masked = ~lo_avd.allowed & avd->allowed;
587 	}
588 
589 	if (source->bounds && target->bounds) {
590 		memset(&lo_avd, 0, sizeof(lo_avd));
591 		/*
592 		 * lo_scontext and lo_tcontext are already
593 		 * set up.
594 		 */
595 
596 		context_struct_compute_av(&lo_scontext,
597 					  &lo_tcontext,
598 					  tclass,
599 					  &lo_avd);
600 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
601 			return;		/* no masked permission */
602 		masked = ~lo_avd.allowed & avd->allowed;
603 	}
604 
605 	if (masked) {
606 		/* mask violated permissions */
607 		avd->allowed &= ~masked;
608 
609 		/* audit masked permissions */
610 		security_dump_masked_av(scontext, tcontext,
611 					tclass, masked, "bounds");
612 	}
613 }
614 
615 /*
616  * Compute access vectors based on a context structure pair for
617  * the permissions in a particular class.
618  */
619 static void context_struct_compute_av(struct context *scontext,
620 				      struct context *tcontext,
621 				      u16 tclass,
622 				      struct av_decision *avd)
623 {
624 	struct constraint_node *constraint;
625 	struct role_allow *ra;
626 	struct avtab_key avkey;
627 	struct avtab_node *node;
628 	struct class_datum *tclass_datum;
629 	struct ebitmap *sattr, *tattr;
630 	struct ebitmap_node *snode, *tnode;
631 	unsigned int i, j;
632 
633 	avd->allowed = 0;
634 	avd->auditallow = 0;
635 	avd->auditdeny = 0xffffffff;
636 
637 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
638 		if (printk_ratelimit())
639 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
640 		return;
641 	}
642 
643 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
644 
645 	/*
646 	 * If a specific type enforcement rule was defined for
647 	 * this permission check, then use it.
648 	 */
649 	avkey.target_class = tclass;
650 	avkey.specified = AVTAB_AV;
651 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
652 	BUG_ON(!sattr);
653 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
654 	BUG_ON(!tattr);
655 	ebitmap_for_each_positive_bit(sattr, snode, i) {
656 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
657 			avkey.source_type = i + 1;
658 			avkey.target_type = j + 1;
659 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
660 			     node;
661 			     node = avtab_search_node_next(node, avkey.specified)) {
662 				if (node->key.specified == AVTAB_ALLOWED)
663 					avd->allowed |= node->datum.data;
664 				else if (node->key.specified == AVTAB_AUDITALLOW)
665 					avd->auditallow |= node->datum.data;
666 				else if (node->key.specified == AVTAB_AUDITDENY)
667 					avd->auditdeny &= node->datum.data;
668 			}
669 
670 			/* Check conditional av table for additional permissions */
671 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
672 
673 		}
674 	}
675 
676 	/*
677 	 * Remove any permissions prohibited by a constraint (this includes
678 	 * the MLS policy).
679 	 */
680 	constraint = tclass_datum->constraints;
681 	while (constraint) {
682 		if ((constraint->permissions & (avd->allowed)) &&
683 		    !constraint_expr_eval(scontext, tcontext, NULL,
684 					  constraint->expr)) {
685 			avd->allowed &= ~(constraint->permissions);
686 		}
687 		constraint = constraint->next;
688 	}
689 
690 	/*
691 	 * If checking process transition permission and the
692 	 * role is changing, then check the (current_role, new_role)
693 	 * pair.
694 	 */
695 	if (tclass == policydb.process_class &&
696 	    (avd->allowed & policydb.process_trans_perms) &&
697 	    scontext->role != tcontext->role) {
698 		for (ra = policydb.role_allow; ra; ra = ra->next) {
699 			if (scontext->role == ra->role &&
700 			    tcontext->role == ra->new_role)
701 				break;
702 		}
703 		if (!ra)
704 			avd->allowed &= ~policydb.process_trans_perms;
705 	}
706 
707 	/*
708 	 * If the given source and target types have boundary
709 	 * constraint, lazy checks have to mask any violated
710 	 * permission and notice it to userspace via audit.
711 	 */
712 	type_attribute_bounds_av(scontext, tcontext,
713 				 tclass, avd);
714 }
715 
716 static int security_validtrans_handle_fail(struct context *ocontext,
717 					   struct context *ncontext,
718 					   struct context *tcontext,
719 					   u16 tclass)
720 {
721 	char *o = NULL, *n = NULL, *t = NULL;
722 	u32 olen, nlen, tlen;
723 
724 	if (context_struct_to_string(ocontext, &o, &olen))
725 		goto out;
726 	if (context_struct_to_string(ncontext, &n, &nlen))
727 		goto out;
728 	if (context_struct_to_string(tcontext, &t, &tlen))
729 		goto out;
730 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
731 		  "security_validate_transition:  denied for"
732 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
733 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
734 out:
735 	kfree(o);
736 	kfree(n);
737 	kfree(t);
738 
739 	if (!selinux_enforcing)
740 		return 0;
741 	return -EPERM;
742 }
743 
744 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
745 				 u16 orig_tclass)
746 {
747 	struct context *ocontext;
748 	struct context *ncontext;
749 	struct context *tcontext;
750 	struct class_datum *tclass_datum;
751 	struct constraint_node *constraint;
752 	u16 tclass;
753 	int rc = 0;
754 
755 	if (!ss_initialized)
756 		return 0;
757 
758 	read_lock(&policy_rwlock);
759 
760 	tclass = unmap_class(orig_tclass);
761 
762 	if (!tclass || tclass > policydb.p_classes.nprim) {
763 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
764 			__func__, tclass);
765 		rc = -EINVAL;
766 		goto out;
767 	}
768 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
769 
770 	ocontext = sidtab_search(&sidtab, oldsid);
771 	if (!ocontext) {
772 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
773 			__func__, oldsid);
774 		rc = -EINVAL;
775 		goto out;
776 	}
777 
778 	ncontext = sidtab_search(&sidtab, newsid);
779 	if (!ncontext) {
780 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
781 			__func__, newsid);
782 		rc = -EINVAL;
783 		goto out;
784 	}
785 
786 	tcontext = sidtab_search(&sidtab, tasksid);
787 	if (!tcontext) {
788 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
789 			__func__, tasksid);
790 		rc = -EINVAL;
791 		goto out;
792 	}
793 
794 	constraint = tclass_datum->validatetrans;
795 	while (constraint) {
796 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
797 					  constraint->expr)) {
798 			rc = security_validtrans_handle_fail(ocontext, ncontext,
799 							     tcontext, tclass);
800 			goto out;
801 		}
802 		constraint = constraint->next;
803 	}
804 
805 out:
806 	read_unlock(&policy_rwlock);
807 	return rc;
808 }
809 
810 /*
811  * security_bounded_transition - check whether the given
812  * transition is directed to bounded, or not.
813  * It returns 0, if @newsid is bounded by @oldsid.
814  * Otherwise, it returns error code.
815  *
816  * @oldsid : current security identifier
817  * @newsid : destinated security identifier
818  */
819 int security_bounded_transition(u32 old_sid, u32 new_sid)
820 {
821 	struct context *old_context, *new_context;
822 	struct type_datum *type;
823 	int index;
824 	int rc;
825 
826 	read_lock(&policy_rwlock);
827 
828 	rc = -EINVAL;
829 	old_context = sidtab_search(&sidtab, old_sid);
830 	if (!old_context) {
831 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
832 		       __func__, old_sid);
833 		goto out;
834 	}
835 
836 	rc = -EINVAL;
837 	new_context = sidtab_search(&sidtab, new_sid);
838 	if (!new_context) {
839 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
840 		       __func__, new_sid);
841 		goto out;
842 	}
843 
844 	rc = 0;
845 	/* type/domain unchanged */
846 	if (old_context->type == new_context->type)
847 		goto out;
848 
849 	index = new_context->type;
850 	while (true) {
851 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
852 					  index - 1);
853 		BUG_ON(!type);
854 
855 		/* not bounded anymore */
856 		rc = -EPERM;
857 		if (!type->bounds)
858 			break;
859 
860 		/* @newsid is bounded by @oldsid */
861 		rc = 0;
862 		if (type->bounds == old_context->type)
863 			break;
864 
865 		index = type->bounds;
866 	}
867 
868 	if (rc) {
869 		char *old_name = NULL;
870 		char *new_name = NULL;
871 		u32 length;
872 
873 		if (!context_struct_to_string(old_context,
874 					      &old_name, &length) &&
875 		    !context_struct_to_string(new_context,
876 					      &new_name, &length)) {
877 			audit_log(current->audit_context,
878 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
879 				  "op=security_bounded_transition "
880 				  "result=denied "
881 				  "oldcontext=%s newcontext=%s",
882 				  old_name, new_name);
883 		}
884 		kfree(new_name);
885 		kfree(old_name);
886 	}
887 out:
888 	read_unlock(&policy_rwlock);
889 
890 	return rc;
891 }
892 
893 static void avd_init(struct av_decision *avd)
894 {
895 	avd->allowed = 0;
896 	avd->auditallow = 0;
897 	avd->auditdeny = 0xffffffff;
898 	avd->seqno = latest_granting;
899 	avd->flags = 0;
900 }
901 
902 
903 /**
904  * security_compute_av - Compute access vector decisions.
905  * @ssid: source security identifier
906  * @tsid: target security identifier
907  * @tclass: target security class
908  * @avd: access vector decisions
909  *
910  * Compute a set of access vector decisions based on the
911  * SID pair (@ssid, @tsid) for the permissions in @tclass.
912  */
913 void security_compute_av(u32 ssid,
914 			 u32 tsid,
915 			 u16 orig_tclass,
916 			 struct av_decision *avd)
917 {
918 	u16 tclass;
919 	struct context *scontext = NULL, *tcontext = NULL;
920 
921 	read_lock(&policy_rwlock);
922 	avd_init(avd);
923 	if (!ss_initialized)
924 		goto allow;
925 
926 	scontext = sidtab_search(&sidtab, ssid);
927 	if (!scontext) {
928 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
929 		       __func__, ssid);
930 		goto out;
931 	}
932 
933 	/* permissive domain? */
934 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
935 		avd->flags |= AVD_FLAGS_PERMISSIVE;
936 
937 	tcontext = sidtab_search(&sidtab, tsid);
938 	if (!tcontext) {
939 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
940 		       __func__, tsid);
941 		goto out;
942 	}
943 
944 	tclass = unmap_class(orig_tclass);
945 	if (unlikely(orig_tclass && !tclass)) {
946 		if (policydb.allow_unknown)
947 			goto allow;
948 		goto out;
949 	}
950 	context_struct_compute_av(scontext, tcontext, tclass, avd);
951 	map_decision(orig_tclass, avd, policydb.allow_unknown);
952 out:
953 	read_unlock(&policy_rwlock);
954 	return;
955 allow:
956 	avd->allowed = 0xffffffff;
957 	goto out;
958 }
959 
960 void security_compute_av_user(u32 ssid,
961 			      u32 tsid,
962 			      u16 tclass,
963 			      struct av_decision *avd)
964 {
965 	struct context *scontext = NULL, *tcontext = NULL;
966 
967 	read_lock(&policy_rwlock);
968 	avd_init(avd);
969 	if (!ss_initialized)
970 		goto allow;
971 
972 	scontext = sidtab_search(&sidtab, ssid);
973 	if (!scontext) {
974 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
975 		       __func__, ssid);
976 		goto out;
977 	}
978 
979 	/* permissive domain? */
980 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
981 		avd->flags |= AVD_FLAGS_PERMISSIVE;
982 
983 	tcontext = sidtab_search(&sidtab, tsid);
984 	if (!tcontext) {
985 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
986 		       __func__, tsid);
987 		goto out;
988 	}
989 
990 	if (unlikely(!tclass)) {
991 		if (policydb.allow_unknown)
992 			goto allow;
993 		goto out;
994 	}
995 
996 	context_struct_compute_av(scontext, tcontext, tclass, avd);
997  out:
998 	read_unlock(&policy_rwlock);
999 	return;
1000 allow:
1001 	avd->allowed = 0xffffffff;
1002 	goto out;
1003 }
1004 
1005 /*
1006  * Write the security context string representation of
1007  * the context structure `context' into a dynamically
1008  * allocated string of the correct size.  Set `*scontext'
1009  * to point to this string and set `*scontext_len' to
1010  * the length of the string.
1011  */
1012 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1013 {
1014 	char *scontextp;
1015 
1016 	if (scontext)
1017 		*scontext = NULL;
1018 	*scontext_len = 0;
1019 
1020 	if (context->len) {
1021 		*scontext_len = context->len;
1022 		if (scontext) {
1023 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1024 			if (!(*scontext))
1025 				return -ENOMEM;
1026 		}
1027 		return 0;
1028 	}
1029 
1030 	/* Compute the size of the context. */
1031 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1034 	*scontext_len += mls_compute_context_len(context);
1035 
1036 	if (!scontext)
1037 		return 0;
1038 
1039 	/* Allocate space for the context; caller must free this space. */
1040 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1041 	if (!scontextp)
1042 		return -ENOMEM;
1043 	*scontext = scontextp;
1044 
1045 	/*
1046 	 * Copy the user name, role name and type name into the context.
1047 	 */
1048 	sprintf(scontextp, "%s:%s:%s",
1049 		sym_name(&policydb, SYM_USERS, context->user - 1),
1050 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1051 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1052 	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053 		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054 		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055 
1056 	mls_sid_to_context(context, &scontextp);
1057 
1058 	*scontextp = 0;
1059 
1060 	return 0;
1061 }
1062 
1063 #include "initial_sid_to_string.h"
1064 
1065 const char *security_get_initial_sid_context(u32 sid)
1066 {
1067 	if (unlikely(sid > SECINITSID_NUM))
1068 		return NULL;
1069 	return initial_sid_to_string[sid];
1070 }
1071 
1072 static int security_sid_to_context_core(u32 sid, char **scontext,
1073 					u32 *scontext_len, int force)
1074 {
1075 	struct context *context;
1076 	int rc = 0;
1077 
1078 	if (scontext)
1079 		*scontext = NULL;
1080 	*scontext_len  = 0;
1081 
1082 	if (!ss_initialized) {
1083 		if (sid <= SECINITSID_NUM) {
1084 			char *scontextp;
1085 
1086 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1087 			if (!scontext)
1088 				goto out;
1089 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1090 			if (!scontextp) {
1091 				rc = -ENOMEM;
1092 				goto out;
1093 			}
1094 			strcpy(scontextp, initial_sid_to_string[sid]);
1095 			*scontext = scontextp;
1096 			goto out;
1097 		}
1098 		printk(KERN_ERR "SELinux: %s:  called before initial "
1099 		       "load_policy on unknown SID %d\n", __func__, sid);
1100 		rc = -EINVAL;
1101 		goto out;
1102 	}
1103 	read_lock(&policy_rwlock);
1104 	if (force)
1105 		context = sidtab_search_force(&sidtab, sid);
1106 	else
1107 		context = sidtab_search(&sidtab, sid);
1108 	if (!context) {
1109 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1110 			__func__, sid);
1111 		rc = -EINVAL;
1112 		goto out_unlock;
1113 	}
1114 	rc = context_struct_to_string(context, scontext, scontext_len);
1115 out_unlock:
1116 	read_unlock(&policy_rwlock);
1117 out:
1118 	return rc;
1119 
1120 }
1121 
1122 /**
1123  * security_sid_to_context - Obtain a context for a given SID.
1124  * @sid: security identifier, SID
1125  * @scontext: security context
1126  * @scontext_len: length in bytes
1127  *
1128  * Write the string representation of the context associated with @sid
1129  * into a dynamically allocated string of the correct size.  Set @scontext
1130  * to point to this string and set @scontext_len to the length of the string.
1131  */
1132 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1133 {
1134 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1135 }
1136 
1137 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1138 {
1139 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1140 }
1141 
1142 /*
1143  * Caveat:  Mutates scontext.
1144  */
1145 static int string_to_context_struct(struct policydb *pol,
1146 				    struct sidtab *sidtabp,
1147 				    char *scontext,
1148 				    u32 scontext_len,
1149 				    struct context *ctx,
1150 				    u32 def_sid)
1151 {
1152 	struct role_datum *role;
1153 	struct type_datum *typdatum;
1154 	struct user_datum *usrdatum;
1155 	char *scontextp, *p, oldc;
1156 	int rc = 0;
1157 
1158 	context_init(ctx);
1159 
1160 	/* Parse the security context. */
1161 
1162 	rc = -EINVAL;
1163 	scontextp = (char *) scontext;
1164 
1165 	/* Extract the user. */
1166 	p = scontextp;
1167 	while (*p && *p != ':')
1168 		p++;
1169 
1170 	if (*p == 0)
1171 		goto out;
1172 
1173 	*p++ = 0;
1174 
1175 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1176 	if (!usrdatum)
1177 		goto out;
1178 
1179 	ctx->user = usrdatum->value;
1180 
1181 	/* Extract role. */
1182 	scontextp = p;
1183 	while (*p && *p != ':')
1184 		p++;
1185 
1186 	if (*p == 0)
1187 		goto out;
1188 
1189 	*p++ = 0;
1190 
1191 	role = hashtab_search(pol->p_roles.table, scontextp);
1192 	if (!role)
1193 		goto out;
1194 	ctx->role = role->value;
1195 
1196 	/* Extract type. */
1197 	scontextp = p;
1198 	while (*p && *p != ':')
1199 		p++;
1200 	oldc = *p;
1201 	*p++ = 0;
1202 
1203 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1204 	if (!typdatum || typdatum->attribute)
1205 		goto out;
1206 
1207 	ctx->type = typdatum->value;
1208 
1209 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1210 	if (rc)
1211 		goto out;
1212 
1213 	rc = -EINVAL;
1214 	if ((p - scontext) < scontext_len)
1215 		goto out;
1216 
1217 	/* Check the validity of the new context. */
1218 	if (!policydb_context_isvalid(pol, ctx))
1219 		goto out;
1220 	rc = 0;
1221 out:
1222 	if (rc)
1223 		context_destroy(ctx);
1224 	return rc;
1225 }
1226 
1227 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1228 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229 					int force)
1230 {
1231 	char *scontext2, *str = NULL;
1232 	struct context context;
1233 	int rc = 0;
1234 
1235 	if (!ss_initialized) {
1236 		int i;
1237 
1238 		for (i = 1; i < SECINITSID_NUM; i++) {
1239 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1240 				*sid = i;
1241 				return 0;
1242 			}
1243 		}
1244 		*sid = SECINITSID_KERNEL;
1245 		return 0;
1246 	}
1247 	*sid = SECSID_NULL;
1248 
1249 	/* Copy the string so that we can modify the copy as we parse it. */
1250 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1251 	if (!scontext2)
1252 		return -ENOMEM;
1253 	memcpy(scontext2, scontext, scontext_len);
1254 	scontext2[scontext_len] = 0;
1255 
1256 	if (force) {
1257 		/* Save another copy for storing in uninterpreted form */
1258 		rc = -ENOMEM;
1259 		str = kstrdup(scontext2, gfp_flags);
1260 		if (!str)
1261 			goto out;
1262 	}
1263 
1264 	read_lock(&policy_rwlock);
1265 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1266 				      scontext_len, &context, def_sid);
1267 	if (rc == -EINVAL && force) {
1268 		context.str = str;
1269 		context.len = scontext_len;
1270 		str = NULL;
1271 	} else if (rc)
1272 		goto out_unlock;
1273 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1274 	context_destroy(&context);
1275 out_unlock:
1276 	read_unlock(&policy_rwlock);
1277 out:
1278 	kfree(scontext2);
1279 	kfree(str);
1280 	return rc;
1281 }
1282 
1283 /**
1284  * security_context_to_sid - Obtain a SID for a given security context.
1285  * @scontext: security context
1286  * @scontext_len: length in bytes
1287  * @sid: security identifier, SID
1288  *
1289  * Obtains a SID associated with the security context that
1290  * has the string representation specified by @scontext.
1291  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1292  * memory is available, or 0 on success.
1293  */
1294 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1295 {
1296 	return security_context_to_sid_core(scontext, scontext_len,
1297 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1298 }
1299 
1300 /**
1301  * security_context_to_sid_default - Obtain a SID for a given security context,
1302  * falling back to specified default if needed.
1303  *
1304  * @scontext: security context
1305  * @scontext_len: length in bytes
1306  * @sid: security identifier, SID
1307  * @def_sid: default SID to assign on error
1308  *
1309  * Obtains a SID associated with the security context that
1310  * has the string representation specified by @scontext.
1311  * The default SID is passed to the MLS layer to be used to allow
1312  * kernel labeling of the MLS field if the MLS field is not present
1313  * (for upgrading to MLS without full relabel).
1314  * Implicitly forces adding of the context even if it cannot be mapped yet.
1315  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1316  * memory is available, or 0 on success.
1317  */
1318 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1319 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1320 {
1321 	return security_context_to_sid_core(scontext, scontext_len,
1322 					    sid, def_sid, gfp_flags, 1);
1323 }
1324 
1325 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1326 				  u32 *sid)
1327 {
1328 	return security_context_to_sid_core(scontext, scontext_len,
1329 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1330 }
1331 
1332 static int compute_sid_handle_invalid_context(
1333 	struct context *scontext,
1334 	struct context *tcontext,
1335 	u16 tclass,
1336 	struct context *newcontext)
1337 {
1338 	char *s = NULL, *t = NULL, *n = NULL;
1339 	u32 slen, tlen, nlen;
1340 
1341 	if (context_struct_to_string(scontext, &s, &slen))
1342 		goto out;
1343 	if (context_struct_to_string(tcontext, &t, &tlen))
1344 		goto out;
1345 	if (context_struct_to_string(newcontext, &n, &nlen))
1346 		goto out;
1347 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1348 		  "security_compute_sid:  invalid context %s"
1349 		  " for scontext=%s"
1350 		  " tcontext=%s"
1351 		  " tclass=%s",
1352 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1353 out:
1354 	kfree(s);
1355 	kfree(t);
1356 	kfree(n);
1357 	if (!selinux_enforcing)
1358 		return 0;
1359 	return -EACCES;
1360 }
1361 
1362 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1363 				  u32 stype, u32 ttype, u16 tclass,
1364 				  const char *objname)
1365 {
1366 	struct filename_trans ft;
1367 	struct filename_trans_datum *otype;
1368 
1369 	/*
1370 	 * Most filename trans rules are going to live in specific directories
1371 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1372 	 * if the ttype does not contain any rules.
1373 	 */
1374 	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1375 		return;
1376 
1377 	ft.stype = stype;
1378 	ft.ttype = ttype;
1379 	ft.tclass = tclass;
1380 	ft.name = objname;
1381 
1382 	otype = hashtab_search(p->filename_trans, &ft);
1383 	if (otype)
1384 		newcontext->type = otype->otype;
1385 }
1386 
1387 static int security_compute_sid(u32 ssid,
1388 				u32 tsid,
1389 				u16 orig_tclass,
1390 				u32 specified,
1391 				const char *objname,
1392 				u32 *out_sid,
1393 				bool kern)
1394 {
1395 	struct class_datum *cladatum = NULL;
1396 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1397 	struct role_trans *roletr = NULL;
1398 	struct avtab_key avkey;
1399 	struct avtab_datum *avdatum;
1400 	struct avtab_node *node;
1401 	u16 tclass;
1402 	int rc = 0;
1403 	bool sock;
1404 
1405 	if (!ss_initialized) {
1406 		switch (orig_tclass) {
1407 		case SECCLASS_PROCESS: /* kernel value */
1408 			*out_sid = ssid;
1409 			break;
1410 		default:
1411 			*out_sid = tsid;
1412 			break;
1413 		}
1414 		goto out;
1415 	}
1416 
1417 	context_init(&newcontext);
1418 
1419 	read_lock(&policy_rwlock);
1420 
1421 	if (kern) {
1422 		tclass = unmap_class(orig_tclass);
1423 		sock = security_is_socket_class(orig_tclass);
1424 	} else {
1425 		tclass = orig_tclass;
1426 		sock = security_is_socket_class(map_class(tclass));
1427 	}
1428 
1429 	scontext = sidtab_search(&sidtab, ssid);
1430 	if (!scontext) {
1431 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1432 		       __func__, ssid);
1433 		rc = -EINVAL;
1434 		goto out_unlock;
1435 	}
1436 	tcontext = sidtab_search(&sidtab, tsid);
1437 	if (!tcontext) {
1438 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1439 		       __func__, tsid);
1440 		rc = -EINVAL;
1441 		goto out_unlock;
1442 	}
1443 
1444 	if (tclass && tclass <= policydb.p_classes.nprim)
1445 		cladatum = policydb.class_val_to_struct[tclass - 1];
1446 
1447 	/* Set the user identity. */
1448 	switch (specified) {
1449 	case AVTAB_TRANSITION:
1450 	case AVTAB_CHANGE:
1451 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1452 			newcontext.user = tcontext->user;
1453 		} else {
1454 			/* notice this gets both DEFAULT_SOURCE and unset */
1455 			/* Use the process user identity. */
1456 			newcontext.user = scontext->user;
1457 		}
1458 		break;
1459 	case AVTAB_MEMBER:
1460 		/* Use the related object owner. */
1461 		newcontext.user = tcontext->user;
1462 		break;
1463 	}
1464 
1465 	/* Set the role to default values. */
1466 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1467 		newcontext.role = scontext->role;
1468 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1469 		newcontext.role = tcontext->role;
1470 	} else {
1471 		if ((tclass == policydb.process_class) || (sock == true))
1472 			newcontext.role = scontext->role;
1473 		else
1474 			newcontext.role = OBJECT_R_VAL;
1475 	}
1476 
1477 	/* Set the type to default values. */
1478 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1479 		newcontext.type = scontext->type;
1480 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1481 		newcontext.type = tcontext->type;
1482 	} else {
1483 		if ((tclass == policydb.process_class) || (sock == true)) {
1484 			/* Use the type of process. */
1485 			newcontext.type = scontext->type;
1486 		} else {
1487 			/* Use the type of the related object. */
1488 			newcontext.type = tcontext->type;
1489 		}
1490 	}
1491 
1492 	/* Look for a type transition/member/change rule. */
1493 	avkey.source_type = scontext->type;
1494 	avkey.target_type = tcontext->type;
1495 	avkey.target_class = tclass;
1496 	avkey.specified = specified;
1497 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1498 
1499 	/* If no permanent rule, also check for enabled conditional rules */
1500 	if (!avdatum) {
1501 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1502 		for (; node; node = avtab_search_node_next(node, specified)) {
1503 			if (node->key.specified & AVTAB_ENABLED) {
1504 				avdatum = &node->datum;
1505 				break;
1506 			}
1507 		}
1508 	}
1509 
1510 	if (avdatum) {
1511 		/* Use the type from the type transition/member/change rule. */
1512 		newcontext.type = avdatum->data;
1513 	}
1514 
1515 	/* if we have a objname this is a file trans check so check those rules */
1516 	if (objname)
1517 		filename_compute_type(&policydb, &newcontext, scontext->type,
1518 				      tcontext->type, tclass, objname);
1519 
1520 	/* Check for class-specific changes. */
1521 	if (specified & AVTAB_TRANSITION) {
1522 		/* Look for a role transition rule. */
1523 		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1524 			if ((roletr->role == scontext->role) &&
1525 			    (roletr->type == tcontext->type) &&
1526 			    (roletr->tclass == tclass)) {
1527 				/* Use the role transition rule. */
1528 				newcontext.role = roletr->new_role;
1529 				break;
1530 			}
1531 		}
1532 	}
1533 
1534 	/* Set the MLS attributes.
1535 	   This is done last because it may allocate memory. */
1536 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1537 			     &newcontext, sock);
1538 	if (rc)
1539 		goto out_unlock;
1540 
1541 	/* Check the validity of the context. */
1542 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1543 		rc = compute_sid_handle_invalid_context(scontext,
1544 							tcontext,
1545 							tclass,
1546 							&newcontext);
1547 		if (rc)
1548 			goto out_unlock;
1549 	}
1550 	/* Obtain the sid for the context. */
1551 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1552 out_unlock:
1553 	read_unlock(&policy_rwlock);
1554 	context_destroy(&newcontext);
1555 out:
1556 	return rc;
1557 }
1558 
1559 /**
1560  * security_transition_sid - Compute the SID for a new subject/object.
1561  * @ssid: source security identifier
1562  * @tsid: target security identifier
1563  * @tclass: target security class
1564  * @out_sid: security identifier for new subject/object
1565  *
1566  * Compute a SID to use for labeling a new subject or object in the
1567  * class @tclass based on a SID pair (@ssid, @tsid).
1568  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1569  * if insufficient memory is available, or %0 if the new SID was
1570  * computed successfully.
1571  */
1572 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1573 			    const struct qstr *qstr, u32 *out_sid)
1574 {
1575 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1576 				    qstr ? qstr->name : NULL, out_sid, true);
1577 }
1578 
1579 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1580 				 const char *objname, u32 *out_sid)
1581 {
1582 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1583 				    objname, out_sid, false);
1584 }
1585 
1586 /**
1587  * security_member_sid - Compute the SID for member selection.
1588  * @ssid: source security identifier
1589  * @tsid: target security identifier
1590  * @tclass: target security class
1591  * @out_sid: security identifier for selected member
1592  *
1593  * Compute a SID to use when selecting a member of a polyinstantiated
1594  * object of class @tclass based on a SID pair (@ssid, @tsid).
1595  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1596  * if insufficient memory is available, or %0 if the SID was
1597  * computed successfully.
1598  */
1599 int security_member_sid(u32 ssid,
1600 			u32 tsid,
1601 			u16 tclass,
1602 			u32 *out_sid)
1603 {
1604 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1605 				    out_sid, false);
1606 }
1607 
1608 /**
1609  * security_change_sid - Compute the SID for object relabeling.
1610  * @ssid: source security identifier
1611  * @tsid: target security identifier
1612  * @tclass: target security class
1613  * @out_sid: security identifier for selected member
1614  *
1615  * Compute a SID to use for relabeling an object of class @tclass
1616  * based on a SID pair (@ssid, @tsid).
1617  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1618  * if insufficient memory is available, or %0 if the SID was
1619  * computed successfully.
1620  */
1621 int security_change_sid(u32 ssid,
1622 			u32 tsid,
1623 			u16 tclass,
1624 			u32 *out_sid)
1625 {
1626 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1627 				    out_sid, false);
1628 }
1629 
1630 /* Clone the SID into the new SID table. */
1631 static int clone_sid(u32 sid,
1632 		     struct context *context,
1633 		     void *arg)
1634 {
1635 	struct sidtab *s = arg;
1636 
1637 	if (sid > SECINITSID_NUM)
1638 		return sidtab_insert(s, sid, context);
1639 	else
1640 		return 0;
1641 }
1642 
1643 static inline int convert_context_handle_invalid_context(struct context *context)
1644 {
1645 	char *s;
1646 	u32 len;
1647 
1648 	if (selinux_enforcing)
1649 		return -EINVAL;
1650 
1651 	if (!context_struct_to_string(context, &s, &len)) {
1652 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1653 		kfree(s);
1654 	}
1655 	return 0;
1656 }
1657 
1658 struct convert_context_args {
1659 	struct policydb *oldp;
1660 	struct policydb *newp;
1661 };
1662 
1663 /*
1664  * Convert the values in the security context
1665  * structure `c' from the values specified
1666  * in the policy `p->oldp' to the values specified
1667  * in the policy `p->newp'.  Verify that the
1668  * context is valid under the new policy.
1669  */
1670 static int convert_context(u32 key,
1671 			   struct context *c,
1672 			   void *p)
1673 {
1674 	struct convert_context_args *args;
1675 	struct context oldc;
1676 	struct ocontext *oc;
1677 	struct mls_range *range;
1678 	struct role_datum *role;
1679 	struct type_datum *typdatum;
1680 	struct user_datum *usrdatum;
1681 	char *s;
1682 	u32 len;
1683 	int rc = 0;
1684 
1685 	if (key <= SECINITSID_NUM)
1686 		goto out;
1687 
1688 	args = p;
1689 
1690 	if (c->str) {
1691 		struct context ctx;
1692 
1693 		rc = -ENOMEM;
1694 		s = kstrdup(c->str, GFP_KERNEL);
1695 		if (!s)
1696 			goto out;
1697 
1698 		rc = string_to_context_struct(args->newp, NULL, s,
1699 					      c->len, &ctx, SECSID_NULL);
1700 		kfree(s);
1701 		if (!rc) {
1702 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1703 			       c->str);
1704 			/* Replace string with mapped representation. */
1705 			kfree(c->str);
1706 			memcpy(c, &ctx, sizeof(*c));
1707 			goto out;
1708 		} else if (rc == -EINVAL) {
1709 			/* Retain string representation for later mapping. */
1710 			rc = 0;
1711 			goto out;
1712 		} else {
1713 			/* Other error condition, e.g. ENOMEM. */
1714 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1715 			       c->str, -rc);
1716 			goto out;
1717 		}
1718 	}
1719 
1720 	rc = context_cpy(&oldc, c);
1721 	if (rc)
1722 		goto out;
1723 
1724 	/* Convert the user. */
1725 	rc = -EINVAL;
1726 	usrdatum = hashtab_search(args->newp->p_users.table,
1727 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1728 	if (!usrdatum)
1729 		goto bad;
1730 	c->user = usrdatum->value;
1731 
1732 	/* Convert the role. */
1733 	rc = -EINVAL;
1734 	role = hashtab_search(args->newp->p_roles.table,
1735 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1736 	if (!role)
1737 		goto bad;
1738 	c->role = role->value;
1739 
1740 	/* Convert the type. */
1741 	rc = -EINVAL;
1742 	typdatum = hashtab_search(args->newp->p_types.table,
1743 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1744 	if (!typdatum)
1745 		goto bad;
1746 	c->type = typdatum->value;
1747 
1748 	/* Convert the MLS fields if dealing with MLS policies */
1749 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1750 		rc = mls_convert_context(args->oldp, args->newp, c);
1751 		if (rc)
1752 			goto bad;
1753 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1754 		/*
1755 		 * Switching between MLS and non-MLS policy:
1756 		 * free any storage used by the MLS fields in the
1757 		 * context for all existing entries in the sidtab.
1758 		 */
1759 		mls_context_destroy(c);
1760 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1761 		/*
1762 		 * Switching between non-MLS and MLS policy:
1763 		 * ensure that the MLS fields of the context for all
1764 		 * existing entries in the sidtab are filled in with a
1765 		 * suitable default value, likely taken from one of the
1766 		 * initial SIDs.
1767 		 */
1768 		oc = args->newp->ocontexts[OCON_ISID];
1769 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1770 			oc = oc->next;
1771 		rc = -EINVAL;
1772 		if (!oc) {
1773 			printk(KERN_ERR "SELinux:  unable to look up"
1774 				" the initial SIDs list\n");
1775 			goto bad;
1776 		}
1777 		range = &oc->context[0].range;
1778 		rc = mls_range_set(c, range);
1779 		if (rc)
1780 			goto bad;
1781 	}
1782 
1783 	/* Check the validity of the new context. */
1784 	if (!policydb_context_isvalid(args->newp, c)) {
1785 		rc = convert_context_handle_invalid_context(&oldc);
1786 		if (rc)
1787 			goto bad;
1788 	}
1789 
1790 	context_destroy(&oldc);
1791 
1792 	rc = 0;
1793 out:
1794 	return rc;
1795 bad:
1796 	/* Map old representation to string and save it. */
1797 	rc = context_struct_to_string(&oldc, &s, &len);
1798 	if (rc)
1799 		return rc;
1800 	context_destroy(&oldc);
1801 	context_destroy(c);
1802 	c->str = s;
1803 	c->len = len;
1804 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1805 	       c->str);
1806 	rc = 0;
1807 	goto out;
1808 }
1809 
1810 static void security_load_policycaps(void)
1811 {
1812 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1813 						  POLICYDB_CAPABILITY_NETPEER);
1814 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1815 						  POLICYDB_CAPABILITY_OPENPERM);
1816 	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1817 						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
1818 }
1819 
1820 static int security_preserve_bools(struct policydb *p);
1821 
1822 /**
1823  * security_load_policy - Load a security policy configuration.
1824  * @data: binary policy data
1825  * @len: length of data in bytes
1826  *
1827  * Load a new set of security policy configuration data,
1828  * validate it and convert the SID table as necessary.
1829  * This function will flush the access vector cache after
1830  * loading the new policy.
1831  */
1832 int security_load_policy(void *data, size_t len)
1833 {
1834 	struct policydb oldpolicydb, newpolicydb;
1835 	struct sidtab oldsidtab, newsidtab;
1836 	struct selinux_mapping *oldmap, *map = NULL;
1837 	struct convert_context_args args;
1838 	u32 seqno;
1839 	u16 map_size;
1840 	int rc = 0;
1841 	struct policy_file file = { data, len }, *fp = &file;
1842 
1843 	if (!ss_initialized) {
1844 		avtab_cache_init();
1845 		rc = policydb_read(&policydb, fp);
1846 		if (rc) {
1847 			avtab_cache_destroy();
1848 			return rc;
1849 		}
1850 
1851 		policydb.len = len;
1852 		rc = selinux_set_mapping(&policydb, secclass_map,
1853 					 &current_mapping,
1854 					 &current_mapping_size);
1855 		if (rc) {
1856 			policydb_destroy(&policydb);
1857 			avtab_cache_destroy();
1858 			return rc;
1859 		}
1860 
1861 		rc = policydb_load_isids(&policydb, &sidtab);
1862 		if (rc) {
1863 			policydb_destroy(&policydb);
1864 			avtab_cache_destroy();
1865 			return rc;
1866 		}
1867 
1868 		security_load_policycaps();
1869 		ss_initialized = 1;
1870 		seqno = ++latest_granting;
1871 		selinux_complete_init();
1872 		avc_ss_reset(seqno);
1873 		selnl_notify_policyload(seqno);
1874 		selinux_status_update_policyload(seqno);
1875 		selinux_netlbl_cache_invalidate();
1876 		selinux_xfrm_notify_policyload();
1877 		return 0;
1878 	}
1879 
1880 #if 0
1881 	sidtab_hash_eval(&sidtab, "sids");
1882 #endif
1883 
1884 	rc = policydb_read(&newpolicydb, fp);
1885 	if (rc)
1886 		return rc;
1887 
1888 	newpolicydb.len = len;
1889 	/* If switching between different policy types, log MLS status */
1890 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1891 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1892 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1893 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1894 
1895 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1896 	if (rc) {
1897 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1898 		policydb_destroy(&newpolicydb);
1899 		return rc;
1900 	}
1901 
1902 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1903 	if (rc)
1904 		goto err;
1905 
1906 	rc = security_preserve_bools(&newpolicydb);
1907 	if (rc) {
1908 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1909 		goto err;
1910 	}
1911 
1912 	/* Clone the SID table. */
1913 	sidtab_shutdown(&sidtab);
1914 
1915 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1916 	if (rc)
1917 		goto err;
1918 
1919 	/*
1920 	 * Convert the internal representations of contexts
1921 	 * in the new SID table.
1922 	 */
1923 	args.oldp = &policydb;
1924 	args.newp = &newpolicydb;
1925 	rc = sidtab_map(&newsidtab, convert_context, &args);
1926 	if (rc) {
1927 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1928 			" representation of contexts in the new SID"
1929 			" table\n");
1930 		goto err;
1931 	}
1932 
1933 	/* Save the old policydb and SID table to free later. */
1934 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1935 	sidtab_set(&oldsidtab, &sidtab);
1936 
1937 	/* Install the new policydb and SID table. */
1938 	write_lock_irq(&policy_rwlock);
1939 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1940 	sidtab_set(&sidtab, &newsidtab);
1941 	security_load_policycaps();
1942 	oldmap = current_mapping;
1943 	current_mapping = map;
1944 	current_mapping_size = map_size;
1945 	seqno = ++latest_granting;
1946 	write_unlock_irq(&policy_rwlock);
1947 
1948 	/* Free the old policydb and SID table. */
1949 	policydb_destroy(&oldpolicydb);
1950 	sidtab_destroy(&oldsidtab);
1951 	kfree(oldmap);
1952 
1953 	avc_ss_reset(seqno);
1954 	selnl_notify_policyload(seqno);
1955 	selinux_status_update_policyload(seqno);
1956 	selinux_netlbl_cache_invalidate();
1957 	selinux_xfrm_notify_policyload();
1958 
1959 	return 0;
1960 
1961 err:
1962 	kfree(map);
1963 	sidtab_destroy(&newsidtab);
1964 	policydb_destroy(&newpolicydb);
1965 	return rc;
1966 
1967 }
1968 
1969 size_t security_policydb_len(void)
1970 {
1971 	size_t len;
1972 
1973 	read_lock(&policy_rwlock);
1974 	len = policydb.len;
1975 	read_unlock(&policy_rwlock);
1976 
1977 	return len;
1978 }
1979 
1980 /**
1981  * security_port_sid - Obtain the SID for a port.
1982  * @protocol: protocol number
1983  * @port: port number
1984  * @out_sid: security identifier
1985  */
1986 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1987 {
1988 	struct ocontext *c;
1989 	int rc = 0;
1990 
1991 	read_lock(&policy_rwlock);
1992 
1993 	c = policydb.ocontexts[OCON_PORT];
1994 	while (c) {
1995 		if (c->u.port.protocol == protocol &&
1996 		    c->u.port.low_port <= port &&
1997 		    c->u.port.high_port >= port)
1998 			break;
1999 		c = c->next;
2000 	}
2001 
2002 	if (c) {
2003 		if (!c->sid[0]) {
2004 			rc = sidtab_context_to_sid(&sidtab,
2005 						   &c->context[0],
2006 						   &c->sid[0]);
2007 			if (rc)
2008 				goto out;
2009 		}
2010 		*out_sid = c->sid[0];
2011 	} else {
2012 		*out_sid = SECINITSID_PORT;
2013 	}
2014 
2015 out:
2016 	read_unlock(&policy_rwlock);
2017 	return rc;
2018 }
2019 
2020 /**
2021  * security_netif_sid - Obtain the SID for a network interface.
2022  * @name: interface name
2023  * @if_sid: interface SID
2024  */
2025 int security_netif_sid(char *name, u32 *if_sid)
2026 {
2027 	int rc = 0;
2028 	struct ocontext *c;
2029 
2030 	read_lock(&policy_rwlock);
2031 
2032 	c = policydb.ocontexts[OCON_NETIF];
2033 	while (c) {
2034 		if (strcmp(name, c->u.name) == 0)
2035 			break;
2036 		c = c->next;
2037 	}
2038 
2039 	if (c) {
2040 		if (!c->sid[0] || !c->sid[1]) {
2041 			rc = sidtab_context_to_sid(&sidtab,
2042 						  &c->context[0],
2043 						  &c->sid[0]);
2044 			if (rc)
2045 				goto out;
2046 			rc = sidtab_context_to_sid(&sidtab,
2047 						   &c->context[1],
2048 						   &c->sid[1]);
2049 			if (rc)
2050 				goto out;
2051 		}
2052 		*if_sid = c->sid[0];
2053 	} else
2054 		*if_sid = SECINITSID_NETIF;
2055 
2056 out:
2057 	read_unlock(&policy_rwlock);
2058 	return rc;
2059 }
2060 
2061 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2062 {
2063 	int i, fail = 0;
2064 
2065 	for (i = 0; i < 4; i++)
2066 		if (addr[i] != (input[i] & mask[i])) {
2067 			fail = 1;
2068 			break;
2069 		}
2070 
2071 	return !fail;
2072 }
2073 
2074 /**
2075  * security_node_sid - Obtain the SID for a node (host).
2076  * @domain: communication domain aka address family
2077  * @addrp: address
2078  * @addrlen: address length in bytes
2079  * @out_sid: security identifier
2080  */
2081 int security_node_sid(u16 domain,
2082 		      void *addrp,
2083 		      u32 addrlen,
2084 		      u32 *out_sid)
2085 {
2086 	int rc;
2087 	struct ocontext *c;
2088 
2089 	read_lock(&policy_rwlock);
2090 
2091 	switch (domain) {
2092 	case AF_INET: {
2093 		u32 addr;
2094 
2095 		rc = -EINVAL;
2096 		if (addrlen != sizeof(u32))
2097 			goto out;
2098 
2099 		addr = *((u32 *)addrp);
2100 
2101 		c = policydb.ocontexts[OCON_NODE];
2102 		while (c) {
2103 			if (c->u.node.addr == (addr & c->u.node.mask))
2104 				break;
2105 			c = c->next;
2106 		}
2107 		break;
2108 	}
2109 
2110 	case AF_INET6:
2111 		rc = -EINVAL;
2112 		if (addrlen != sizeof(u64) * 2)
2113 			goto out;
2114 		c = policydb.ocontexts[OCON_NODE6];
2115 		while (c) {
2116 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2117 						c->u.node6.mask))
2118 				break;
2119 			c = c->next;
2120 		}
2121 		break;
2122 
2123 	default:
2124 		rc = 0;
2125 		*out_sid = SECINITSID_NODE;
2126 		goto out;
2127 	}
2128 
2129 	if (c) {
2130 		if (!c->sid[0]) {
2131 			rc = sidtab_context_to_sid(&sidtab,
2132 						   &c->context[0],
2133 						   &c->sid[0]);
2134 			if (rc)
2135 				goto out;
2136 		}
2137 		*out_sid = c->sid[0];
2138 	} else {
2139 		*out_sid = SECINITSID_NODE;
2140 	}
2141 
2142 	rc = 0;
2143 out:
2144 	read_unlock(&policy_rwlock);
2145 	return rc;
2146 }
2147 
2148 #define SIDS_NEL 25
2149 
2150 /**
2151  * security_get_user_sids - Obtain reachable SIDs for a user.
2152  * @fromsid: starting SID
2153  * @username: username
2154  * @sids: array of reachable SIDs for user
2155  * @nel: number of elements in @sids
2156  *
2157  * Generate the set of SIDs for legal security contexts
2158  * for a given user that can be reached by @fromsid.
2159  * Set *@sids to point to a dynamically allocated
2160  * array containing the set of SIDs.  Set *@nel to the
2161  * number of elements in the array.
2162  */
2163 
2164 int security_get_user_sids(u32 fromsid,
2165 			   char *username,
2166 			   u32 **sids,
2167 			   u32 *nel)
2168 {
2169 	struct context *fromcon, usercon;
2170 	u32 *mysids = NULL, *mysids2, sid;
2171 	u32 mynel = 0, maxnel = SIDS_NEL;
2172 	struct user_datum *user;
2173 	struct role_datum *role;
2174 	struct ebitmap_node *rnode, *tnode;
2175 	int rc = 0, i, j;
2176 
2177 	*sids = NULL;
2178 	*nel = 0;
2179 
2180 	if (!ss_initialized)
2181 		goto out;
2182 
2183 	read_lock(&policy_rwlock);
2184 
2185 	context_init(&usercon);
2186 
2187 	rc = -EINVAL;
2188 	fromcon = sidtab_search(&sidtab, fromsid);
2189 	if (!fromcon)
2190 		goto out_unlock;
2191 
2192 	rc = -EINVAL;
2193 	user = hashtab_search(policydb.p_users.table, username);
2194 	if (!user)
2195 		goto out_unlock;
2196 
2197 	usercon.user = user->value;
2198 
2199 	rc = -ENOMEM;
2200 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2201 	if (!mysids)
2202 		goto out_unlock;
2203 
2204 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2205 		role = policydb.role_val_to_struct[i];
2206 		usercon.role = i + 1;
2207 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2208 			usercon.type = j + 1;
2209 
2210 			if (mls_setup_user_range(fromcon, user, &usercon))
2211 				continue;
2212 
2213 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2214 			if (rc)
2215 				goto out_unlock;
2216 			if (mynel < maxnel) {
2217 				mysids[mynel++] = sid;
2218 			} else {
2219 				rc = -ENOMEM;
2220 				maxnel += SIDS_NEL;
2221 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2222 				if (!mysids2)
2223 					goto out_unlock;
2224 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2225 				kfree(mysids);
2226 				mysids = mysids2;
2227 				mysids[mynel++] = sid;
2228 			}
2229 		}
2230 	}
2231 	rc = 0;
2232 out_unlock:
2233 	read_unlock(&policy_rwlock);
2234 	if (rc || !mynel) {
2235 		kfree(mysids);
2236 		goto out;
2237 	}
2238 
2239 	rc = -ENOMEM;
2240 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2241 	if (!mysids2) {
2242 		kfree(mysids);
2243 		goto out;
2244 	}
2245 	for (i = 0, j = 0; i < mynel; i++) {
2246 		struct av_decision dummy_avd;
2247 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2248 					  SECCLASS_PROCESS, /* kernel value */
2249 					  PROCESS__TRANSITION, AVC_STRICT,
2250 					  &dummy_avd);
2251 		if (!rc)
2252 			mysids2[j++] = mysids[i];
2253 		cond_resched();
2254 	}
2255 	rc = 0;
2256 	kfree(mysids);
2257 	*sids = mysids2;
2258 	*nel = j;
2259 out:
2260 	return rc;
2261 }
2262 
2263 /**
2264  * security_genfs_sid - Obtain a SID for a file in a filesystem
2265  * @fstype: filesystem type
2266  * @path: path from root of mount
2267  * @sclass: file security class
2268  * @sid: SID for path
2269  *
2270  * Obtain a SID to use for a file in a filesystem that
2271  * cannot support xattr or use a fixed labeling behavior like
2272  * transition SIDs or task SIDs.
2273  */
2274 int security_genfs_sid(const char *fstype,
2275 		       char *path,
2276 		       u16 orig_sclass,
2277 		       u32 *sid)
2278 {
2279 	int len;
2280 	u16 sclass;
2281 	struct genfs *genfs;
2282 	struct ocontext *c;
2283 	int rc, cmp = 0;
2284 
2285 	while (path[0] == '/' && path[1] == '/')
2286 		path++;
2287 
2288 	read_lock(&policy_rwlock);
2289 
2290 	sclass = unmap_class(orig_sclass);
2291 	*sid = SECINITSID_UNLABELED;
2292 
2293 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2294 		cmp = strcmp(fstype, genfs->fstype);
2295 		if (cmp <= 0)
2296 			break;
2297 	}
2298 
2299 	rc = -ENOENT;
2300 	if (!genfs || cmp)
2301 		goto out;
2302 
2303 	for (c = genfs->head; c; c = c->next) {
2304 		len = strlen(c->u.name);
2305 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2306 		    (strncmp(c->u.name, path, len) == 0))
2307 			break;
2308 	}
2309 
2310 	rc = -ENOENT;
2311 	if (!c)
2312 		goto out;
2313 
2314 	if (!c->sid[0]) {
2315 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2316 		if (rc)
2317 			goto out;
2318 	}
2319 
2320 	*sid = c->sid[0];
2321 	rc = 0;
2322 out:
2323 	read_unlock(&policy_rwlock);
2324 	return rc;
2325 }
2326 
2327 /**
2328  * security_fs_use - Determine how to handle labeling for a filesystem.
2329  * @sb: superblock in question
2330  */
2331 int security_fs_use(struct super_block *sb)
2332 {
2333 	int rc = 0;
2334 	struct ocontext *c;
2335 	struct superblock_security_struct *sbsec = sb->s_security;
2336 	const char *fstype = sb->s_type->name;
2337 
2338 	read_lock(&policy_rwlock);
2339 
2340 	c = policydb.ocontexts[OCON_FSUSE];
2341 	while (c) {
2342 		if (strcmp(fstype, c->u.name) == 0)
2343 			break;
2344 		c = c->next;
2345 	}
2346 
2347 	if (c) {
2348 		sbsec->behavior = c->v.behavior;
2349 		if (!c->sid[0]) {
2350 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351 						   &c->sid[0]);
2352 			if (rc)
2353 				goto out;
2354 		}
2355 		sbsec->sid = c->sid[0];
2356 	} else {
2357 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid);
2358 		if (rc) {
2359 			sbsec->behavior = SECURITY_FS_USE_NONE;
2360 			rc = 0;
2361 		} else {
2362 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2363 		}
2364 	}
2365 
2366 out:
2367 	read_unlock(&policy_rwlock);
2368 	return rc;
2369 }
2370 
2371 int security_get_bools(int *len, char ***names, int **values)
2372 {
2373 	int i, rc;
2374 
2375 	read_lock(&policy_rwlock);
2376 	*names = NULL;
2377 	*values = NULL;
2378 
2379 	rc = 0;
2380 	*len = policydb.p_bools.nprim;
2381 	if (!*len)
2382 		goto out;
2383 
2384 	rc = -ENOMEM;
2385 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386 	if (!*names)
2387 		goto err;
2388 
2389 	rc = -ENOMEM;
2390 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391 	if (!*values)
2392 		goto err;
2393 
2394 	for (i = 0; i < *len; i++) {
2395 		size_t name_len;
2396 
2397 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2398 		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399 
2400 		rc = -ENOMEM;
2401 		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2402 		if (!(*names)[i])
2403 			goto err;
2404 
2405 		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406 		(*names)[i][name_len - 1] = 0;
2407 	}
2408 	rc = 0;
2409 out:
2410 	read_unlock(&policy_rwlock);
2411 	return rc;
2412 err:
2413 	if (*names) {
2414 		for (i = 0; i < *len; i++)
2415 			kfree((*names)[i]);
2416 	}
2417 	kfree(*values);
2418 	goto out;
2419 }
2420 
2421 
2422 int security_set_bools(int len, int *values)
2423 {
2424 	int i, rc;
2425 	int lenp, seqno = 0;
2426 	struct cond_node *cur;
2427 
2428 	write_lock_irq(&policy_rwlock);
2429 
2430 	rc = -EFAULT;
2431 	lenp = policydb.p_bools.nprim;
2432 	if (len != lenp)
2433 		goto out;
2434 
2435 	for (i = 0; i < len; i++) {
2436 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437 			audit_log(current->audit_context, GFP_ATOMIC,
2438 				AUDIT_MAC_CONFIG_CHANGE,
2439 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2440 				sym_name(&policydb, SYM_BOOLS, i),
2441 				!!values[i],
2442 				policydb.bool_val_to_struct[i]->state,
2443 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2444 				audit_get_sessionid(current));
2445 		}
2446 		if (values[i])
2447 			policydb.bool_val_to_struct[i]->state = 1;
2448 		else
2449 			policydb.bool_val_to_struct[i]->state = 0;
2450 	}
2451 
2452 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2453 		rc = evaluate_cond_node(&policydb, cur);
2454 		if (rc)
2455 			goto out;
2456 	}
2457 
2458 	seqno = ++latest_granting;
2459 	rc = 0;
2460 out:
2461 	write_unlock_irq(&policy_rwlock);
2462 	if (!rc) {
2463 		avc_ss_reset(seqno);
2464 		selnl_notify_policyload(seqno);
2465 		selinux_status_update_policyload(seqno);
2466 		selinux_xfrm_notify_policyload();
2467 	}
2468 	return rc;
2469 }
2470 
2471 int security_get_bool_value(int bool)
2472 {
2473 	int rc;
2474 	int len;
2475 
2476 	read_lock(&policy_rwlock);
2477 
2478 	rc = -EFAULT;
2479 	len = policydb.p_bools.nprim;
2480 	if (bool >= len)
2481 		goto out;
2482 
2483 	rc = policydb.bool_val_to_struct[bool]->state;
2484 out:
2485 	read_unlock(&policy_rwlock);
2486 	return rc;
2487 }
2488 
2489 static int security_preserve_bools(struct policydb *p)
2490 {
2491 	int rc, nbools = 0, *bvalues = NULL, i;
2492 	char **bnames = NULL;
2493 	struct cond_bool_datum *booldatum;
2494 	struct cond_node *cur;
2495 
2496 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2497 	if (rc)
2498 		goto out;
2499 	for (i = 0; i < nbools; i++) {
2500 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2501 		if (booldatum)
2502 			booldatum->state = bvalues[i];
2503 	}
2504 	for (cur = p->cond_list; cur; cur = cur->next) {
2505 		rc = evaluate_cond_node(p, cur);
2506 		if (rc)
2507 			goto out;
2508 	}
2509 
2510 out:
2511 	if (bnames) {
2512 		for (i = 0; i < nbools; i++)
2513 			kfree(bnames[i]);
2514 	}
2515 	kfree(bnames);
2516 	kfree(bvalues);
2517 	return rc;
2518 }
2519 
2520 /*
2521  * security_sid_mls_copy() - computes a new sid based on the given
2522  * sid and the mls portion of mls_sid.
2523  */
2524 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2525 {
2526 	struct context *context1;
2527 	struct context *context2;
2528 	struct context newcon;
2529 	char *s;
2530 	u32 len;
2531 	int rc;
2532 
2533 	rc = 0;
2534 	if (!ss_initialized || !policydb.mls_enabled) {
2535 		*new_sid = sid;
2536 		goto out;
2537 	}
2538 
2539 	context_init(&newcon);
2540 
2541 	read_lock(&policy_rwlock);
2542 
2543 	rc = -EINVAL;
2544 	context1 = sidtab_search(&sidtab, sid);
2545 	if (!context1) {
2546 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547 			__func__, sid);
2548 		goto out_unlock;
2549 	}
2550 
2551 	rc = -EINVAL;
2552 	context2 = sidtab_search(&sidtab, mls_sid);
2553 	if (!context2) {
2554 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555 			__func__, mls_sid);
2556 		goto out_unlock;
2557 	}
2558 
2559 	newcon.user = context1->user;
2560 	newcon.role = context1->role;
2561 	newcon.type = context1->type;
2562 	rc = mls_context_cpy(&newcon, context2);
2563 	if (rc)
2564 		goto out_unlock;
2565 
2566 	/* Check the validity of the new context. */
2567 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2568 		rc = convert_context_handle_invalid_context(&newcon);
2569 		if (rc) {
2570 			if (!context_struct_to_string(&newcon, &s, &len)) {
2571 				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572 					  "security_sid_mls_copy: invalid context %s", s);
2573 				kfree(s);
2574 			}
2575 			goto out_unlock;
2576 		}
2577 	}
2578 
2579 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2580 out_unlock:
2581 	read_unlock(&policy_rwlock);
2582 	context_destroy(&newcon);
2583 out:
2584 	return rc;
2585 }
2586 
2587 /**
2588  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2589  * @nlbl_sid: NetLabel SID
2590  * @nlbl_type: NetLabel labeling protocol type
2591  * @xfrm_sid: XFRM SID
2592  *
2593  * Description:
2594  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595  * resolved into a single SID it is returned via @peer_sid and the function
2596  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597  * returns a negative value.  A table summarizing the behavior is below:
2598  *
2599  *                                 | function return |      @sid
2600  *   ------------------------------+-----------------+-----------------
2601  *   no peer labels                |        0        |    SECSID_NULL
2602  *   single peer label             |        0        |    <peer_label>
2603  *   multiple, consistent labels   |        0        |    <peer_label>
2604  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605  *
2606  */
2607 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2608 				 u32 xfrm_sid,
2609 				 u32 *peer_sid)
2610 {
2611 	int rc;
2612 	struct context *nlbl_ctx;
2613 	struct context *xfrm_ctx;
2614 
2615 	*peer_sid = SECSID_NULL;
2616 
2617 	/* handle the common (which also happens to be the set of easy) cases
2618 	 * right away, these two if statements catch everything involving a
2619 	 * single or absent peer SID/label */
2620 	if (xfrm_sid == SECSID_NULL) {
2621 		*peer_sid = nlbl_sid;
2622 		return 0;
2623 	}
2624 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626 	 * is present */
2627 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628 		*peer_sid = xfrm_sid;
2629 		return 0;
2630 	}
2631 
2632 	/* we don't need to check ss_initialized here since the only way both
2633 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634 	 * security server was initialized and ss_initialized was true */
2635 	if (!policydb.mls_enabled)
2636 		return 0;
2637 
2638 	read_lock(&policy_rwlock);
2639 
2640 	rc = -EINVAL;
2641 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642 	if (!nlbl_ctx) {
2643 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644 		       __func__, nlbl_sid);
2645 		goto out;
2646 	}
2647 	rc = -EINVAL;
2648 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649 	if (!xfrm_ctx) {
2650 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651 		       __func__, xfrm_sid);
2652 		goto out;
2653 	}
2654 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655 	if (rc)
2656 		goto out;
2657 
2658 	/* at present NetLabel SIDs/labels really only carry MLS
2659 	 * information so if the MLS portion of the NetLabel SID
2660 	 * matches the MLS portion of the labeled XFRM SID/label
2661 	 * then pass along the XFRM SID as it is the most
2662 	 * expressive */
2663 	*peer_sid = xfrm_sid;
2664 out:
2665 	read_unlock(&policy_rwlock);
2666 	return rc;
2667 }
2668 
2669 static int get_classes_callback(void *k, void *d, void *args)
2670 {
2671 	struct class_datum *datum = d;
2672 	char *name = k, **classes = args;
2673 	int value = datum->value - 1;
2674 
2675 	classes[value] = kstrdup(name, GFP_ATOMIC);
2676 	if (!classes[value])
2677 		return -ENOMEM;
2678 
2679 	return 0;
2680 }
2681 
2682 int security_get_classes(char ***classes, int *nclasses)
2683 {
2684 	int rc;
2685 
2686 	read_lock(&policy_rwlock);
2687 
2688 	rc = -ENOMEM;
2689 	*nclasses = policydb.p_classes.nprim;
2690 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691 	if (!*classes)
2692 		goto out;
2693 
2694 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695 			*classes);
2696 	if (rc) {
2697 		int i;
2698 		for (i = 0; i < *nclasses; i++)
2699 			kfree((*classes)[i]);
2700 		kfree(*classes);
2701 	}
2702 
2703 out:
2704 	read_unlock(&policy_rwlock);
2705 	return rc;
2706 }
2707 
2708 static int get_permissions_callback(void *k, void *d, void *args)
2709 {
2710 	struct perm_datum *datum = d;
2711 	char *name = k, **perms = args;
2712 	int value = datum->value - 1;
2713 
2714 	perms[value] = kstrdup(name, GFP_ATOMIC);
2715 	if (!perms[value])
2716 		return -ENOMEM;
2717 
2718 	return 0;
2719 }
2720 
2721 int security_get_permissions(char *class, char ***perms, int *nperms)
2722 {
2723 	int rc, i;
2724 	struct class_datum *match;
2725 
2726 	read_lock(&policy_rwlock);
2727 
2728 	rc = -EINVAL;
2729 	match = hashtab_search(policydb.p_classes.table, class);
2730 	if (!match) {
2731 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732 			__func__, class);
2733 		goto out;
2734 	}
2735 
2736 	rc = -ENOMEM;
2737 	*nperms = match->permissions.nprim;
2738 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739 	if (!*perms)
2740 		goto out;
2741 
2742 	if (match->comdatum) {
2743 		rc = hashtab_map(match->comdatum->permissions.table,
2744 				get_permissions_callback, *perms);
2745 		if (rc)
2746 			goto err;
2747 	}
2748 
2749 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750 			*perms);
2751 	if (rc)
2752 		goto err;
2753 
2754 out:
2755 	read_unlock(&policy_rwlock);
2756 	return rc;
2757 
2758 err:
2759 	read_unlock(&policy_rwlock);
2760 	for (i = 0; i < *nperms; i++)
2761 		kfree((*perms)[i]);
2762 	kfree(*perms);
2763 	return rc;
2764 }
2765 
2766 int security_get_reject_unknown(void)
2767 {
2768 	return policydb.reject_unknown;
2769 }
2770 
2771 int security_get_allow_unknown(void)
2772 {
2773 	return policydb.allow_unknown;
2774 }
2775 
2776 /**
2777  * security_policycap_supported - Check for a specific policy capability
2778  * @req_cap: capability
2779  *
2780  * Description:
2781  * This function queries the currently loaded policy to see if it supports the
2782  * capability specified by @req_cap.  Returns true (1) if the capability is
2783  * supported, false (0) if it isn't supported.
2784  *
2785  */
2786 int security_policycap_supported(unsigned int req_cap)
2787 {
2788 	int rc;
2789 
2790 	read_lock(&policy_rwlock);
2791 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792 	read_unlock(&policy_rwlock);
2793 
2794 	return rc;
2795 }
2796 
2797 struct selinux_audit_rule {
2798 	u32 au_seqno;
2799 	struct context au_ctxt;
2800 };
2801 
2802 void selinux_audit_rule_free(void *vrule)
2803 {
2804 	struct selinux_audit_rule *rule = vrule;
2805 
2806 	if (rule) {
2807 		context_destroy(&rule->au_ctxt);
2808 		kfree(rule);
2809 	}
2810 }
2811 
2812 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2813 {
2814 	struct selinux_audit_rule *tmprule;
2815 	struct role_datum *roledatum;
2816 	struct type_datum *typedatum;
2817 	struct user_datum *userdatum;
2818 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819 	int rc = 0;
2820 
2821 	*rule = NULL;
2822 
2823 	if (!ss_initialized)
2824 		return -EOPNOTSUPP;
2825 
2826 	switch (field) {
2827 	case AUDIT_SUBJ_USER:
2828 	case AUDIT_SUBJ_ROLE:
2829 	case AUDIT_SUBJ_TYPE:
2830 	case AUDIT_OBJ_USER:
2831 	case AUDIT_OBJ_ROLE:
2832 	case AUDIT_OBJ_TYPE:
2833 		/* only 'equals' and 'not equals' fit user, role, and type */
2834 		if (op != Audit_equal && op != Audit_not_equal)
2835 			return -EINVAL;
2836 		break;
2837 	case AUDIT_SUBJ_SEN:
2838 	case AUDIT_SUBJ_CLR:
2839 	case AUDIT_OBJ_LEV_LOW:
2840 	case AUDIT_OBJ_LEV_HIGH:
2841 		/* we do not allow a range, indicated by the presence of '-' */
2842 		if (strchr(rulestr, '-'))
2843 			return -EINVAL;
2844 		break;
2845 	default:
2846 		/* only the above fields are valid */
2847 		return -EINVAL;
2848 	}
2849 
2850 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851 	if (!tmprule)
2852 		return -ENOMEM;
2853 
2854 	context_init(&tmprule->au_ctxt);
2855 
2856 	read_lock(&policy_rwlock);
2857 
2858 	tmprule->au_seqno = latest_granting;
2859 
2860 	switch (field) {
2861 	case AUDIT_SUBJ_USER:
2862 	case AUDIT_OBJ_USER:
2863 		rc = -EINVAL;
2864 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865 		if (!userdatum)
2866 			goto out;
2867 		tmprule->au_ctxt.user = userdatum->value;
2868 		break;
2869 	case AUDIT_SUBJ_ROLE:
2870 	case AUDIT_OBJ_ROLE:
2871 		rc = -EINVAL;
2872 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873 		if (!roledatum)
2874 			goto out;
2875 		tmprule->au_ctxt.role = roledatum->value;
2876 		break;
2877 	case AUDIT_SUBJ_TYPE:
2878 	case AUDIT_OBJ_TYPE:
2879 		rc = -EINVAL;
2880 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881 		if (!typedatum)
2882 			goto out;
2883 		tmprule->au_ctxt.type = typedatum->value;
2884 		break;
2885 	case AUDIT_SUBJ_SEN:
2886 	case AUDIT_SUBJ_CLR:
2887 	case AUDIT_OBJ_LEV_LOW:
2888 	case AUDIT_OBJ_LEV_HIGH:
2889 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2890 		if (rc)
2891 			goto out;
2892 		break;
2893 	}
2894 	rc = 0;
2895 out:
2896 	read_unlock(&policy_rwlock);
2897 
2898 	if (rc) {
2899 		selinux_audit_rule_free(tmprule);
2900 		tmprule = NULL;
2901 	}
2902 
2903 	*rule = tmprule;
2904 
2905 	return rc;
2906 }
2907 
2908 /* Check to see if the rule contains any selinux fields */
2909 int selinux_audit_rule_known(struct audit_krule *rule)
2910 {
2911 	int i;
2912 
2913 	for (i = 0; i < rule->field_count; i++) {
2914 		struct audit_field *f = &rule->fields[i];
2915 		switch (f->type) {
2916 		case AUDIT_SUBJ_USER:
2917 		case AUDIT_SUBJ_ROLE:
2918 		case AUDIT_SUBJ_TYPE:
2919 		case AUDIT_SUBJ_SEN:
2920 		case AUDIT_SUBJ_CLR:
2921 		case AUDIT_OBJ_USER:
2922 		case AUDIT_OBJ_ROLE:
2923 		case AUDIT_OBJ_TYPE:
2924 		case AUDIT_OBJ_LEV_LOW:
2925 		case AUDIT_OBJ_LEV_HIGH:
2926 			return 1;
2927 		}
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934 			     struct audit_context *actx)
2935 {
2936 	struct context *ctxt;
2937 	struct mls_level *level;
2938 	struct selinux_audit_rule *rule = vrule;
2939 	int match = 0;
2940 
2941 	if (!rule) {
2942 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943 			  "selinux_audit_rule_match: missing rule\n");
2944 		return -ENOENT;
2945 	}
2946 
2947 	read_lock(&policy_rwlock);
2948 
2949 	if (rule->au_seqno < latest_granting) {
2950 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951 			  "selinux_audit_rule_match: stale rule\n");
2952 		match = -ESTALE;
2953 		goto out;
2954 	}
2955 
2956 	ctxt = sidtab_search(&sidtab, sid);
2957 	if (!ctxt) {
2958 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2960 			  sid);
2961 		match = -ENOENT;
2962 		goto out;
2963 	}
2964 
2965 	/* a field/op pair that is not caught here will simply fall through
2966 	   without a match */
2967 	switch (field) {
2968 	case AUDIT_SUBJ_USER:
2969 	case AUDIT_OBJ_USER:
2970 		switch (op) {
2971 		case Audit_equal:
2972 			match = (ctxt->user == rule->au_ctxt.user);
2973 			break;
2974 		case Audit_not_equal:
2975 			match = (ctxt->user != rule->au_ctxt.user);
2976 			break;
2977 		}
2978 		break;
2979 	case AUDIT_SUBJ_ROLE:
2980 	case AUDIT_OBJ_ROLE:
2981 		switch (op) {
2982 		case Audit_equal:
2983 			match = (ctxt->role == rule->au_ctxt.role);
2984 			break;
2985 		case Audit_not_equal:
2986 			match = (ctxt->role != rule->au_ctxt.role);
2987 			break;
2988 		}
2989 		break;
2990 	case AUDIT_SUBJ_TYPE:
2991 	case AUDIT_OBJ_TYPE:
2992 		switch (op) {
2993 		case Audit_equal:
2994 			match = (ctxt->type == rule->au_ctxt.type);
2995 			break;
2996 		case Audit_not_equal:
2997 			match = (ctxt->type != rule->au_ctxt.type);
2998 			break;
2999 		}
3000 		break;
3001 	case AUDIT_SUBJ_SEN:
3002 	case AUDIT_SUBJ_CLR:
3003 	case AUDIT_OBJ_LEV_LOW:
3004 	case AUDIT_OBJ_LEV_HIGH:
3005 		level = ((field == AUDIT_SUBJ_SEN ||
3006 			  field == AUDIT_OBJ_LEV_LOW) ?
3007 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008 		switch (op) {
3009 		case Audit_equal:
3010 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011 					     level);
3012 			break;
3013 		case Audit_not_equal:
3014 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015 					      level);
3016 			break;
3017 		case Audit_lt:
3018 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019 					       level) &&
3020 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021 					       level));
3022 			break;
3023 		case Audit_le:
3024 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025 					      level);
3026 			break;
3027 		case Audit_gt:
3028 			match = (mls_level_dom(level,
3029 					      &rule->au_ctxt.range.level[0]) &&
3030 				 !mls_level_eq(level,
3031 					       &rule->au_ctxt.range.level[0]));
3032 			break;
3033 		case Audit_ge:
3034 			match = mls_level_dom(level,
3035 					      &rule->au_ctxt.range.level[0]);
3036 			break;
3037 		}
3038 	}
3039 
3040 out:
3041 	read_unlock(&policy_rwlock);
3042 	return match;
3043 }
3044 
3045 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046 
3047 static int aurule_avc_callback(u32 event)
3048 {
3049 	int err = 0;
3050 
3051 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3052 		err = aurule_callback();
3053 	return err;
3054 }
3055 
3056 static int __init aurule_init(void)
3057 {
3058 	int err;
3059 
3060 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061 	if (err)
3062 		panic("avc_add_callback() failed, error %d\n", err);
3063 
3064 	return err;
3065 }
3066 __initcall(aurule_init);
3067 
3068 #ifdef CONFIG_NETLABEL
3069 /**
3070  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071  * @secattr: the NetLabel packet security attributes
3072  * @sid: the SELinux SID
3073  *
3074  * Description:
3075  * Attempt to cache the context in @ctx, which was derived from the packet in
3076  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077  * already been initialized.
3078  *
3079  */
3080 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081 				      u32 sid)
3082 {
3083 	u32 *sid_cache;
3084 
3085 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086 	if (sid_cache == NULL)
3087 		return;
3088 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089 	if (secattr->cache == NULL) {
3090 		kfree(sid_cache);
3091 		return;
3092 	}
3093 
3094 	*sid_cache = sid;
3095 	secattr->cache->free = kfree;
3096 	secattr->cache->data = sid_cache;
3097 	secattr->flags |= NETLBL_SECATTR_CACHE;
3098 }
3099 
3100 /**
3101  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3102  * @secattr: the NetLabel packet security attributes
3103  * @sid: the SELinux SID
3104  *
3105  * Description:
3106  * Convert the given NetLabel security attributes in @secattr into a
3107  * SELinux SID.  If the @secattr field does not contain a full SELinux
3108  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111  * conversion for future lookups.  Returns zero on success, negative values on
3112  * failure.
3113  *
3114  */
3115 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3116 				   u32 *sid)
3117 {
3118 	int rc;
3119 	struct context *ctx;
3120 	struct context ctx_new;
3121 
3122 	if (!ss_initialized) {
3123 		*sid = SECSID_NULL;
3124 		return 0;
3125 	}
3126 
3127 	read_lock(&policy_rwlock);
3128 
3129 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3130 		*sid = *(u32 *)secattr->cache->data;
3131 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3132 		*sid = secattr->attr.secid;
3133 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134 		rc = -EIDRM;
3135 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136 		if (ctx == NULL)
3137 			goto out;
3138 
3139 		context_init(&ctx_new);
3140 		ctx_new.user = ctx->user;
3141 		ctx_new.role = ctx->role;
3142 		ctx_new.type = ctx->type;
3143 		mls_import_netlbl_lvl(&ctx_new, secattr);
3144 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145 			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146 						   secattr->attr.mls.cat);
3147 			if (rc)
3148 				goto out;
3149 			memcpy(&ctx_new.range.level[1].cat,
3150 			       &ctx_new.range.level[0].cat,
3151 			       sizeof(ctx_new.range.level[0].cat));
3152 		}
3153 		rc = -EIDRM;
3154 		if (!mls_context_isvalid(&policydb, &ctx_new))
3155 			goto out_free;
3156 
3157 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3158 		if (rc)
3159 			goto out_free;
3160 
3161 		security_netlbl_cache_add(secattr, *sid);
3162 
3163 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3164 	} else
3165 		*sid = SECSID_NULL;
3166 
3167 	read_unlock(&policy_rwlock);
3168 	return 0;
3169 out_free:
3170 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3171 out:
3172 	read_unlock(&policy_rwlock);
3173 	return rc;
3174 }
3175 
3176 /**
3177  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3178  * @sid: the SELinux SID
3179  * @secattr: the NetLabel packet security attributes
3180  *
3181  * Description:
3182  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183  * Returns zero on success, negative values on failure.
3184  *
3185  */
3186 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3187 {
3188 	int rc;
3189 	struct context *ctx;
3190 
3191 	if (!ss_initialized)
3192 		return 0;
3193 
3194 	read_lock(&policy_rwlock);
3195 
3196 	rc = -ENOENT;
3197 	ctx = sidtab_search(&sidtab, sid);
3198 	if (ctx == NULL)
3199 		goto out;
3200 
3201 	rc = -ENOMEM;
3202 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203 				  GFP_ATOMIC);
3204 	if (secattr->domain == NULL)
3205 		goto out;
3206 
3207 	secattr->attr.secid = sid;
3208 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209 	mls_export_netlbl_lvl(ctx, secattr);
3210 	rc = mls_export_netlbl_cat(ctx, secattr);
3211 out:
3212 	read_unlock(&policy_rwlock);
3213 	return rc;
3214 }
3215 #endif /* CONFIG_NETLABEL */
3216 
3217 /**
3218  * security_read_policy - read the policy.
3219  * @data: binary policy data
3220  * @len: length of data in bytes
3221  *
3222  */
3223 int security_read_policy(void **data, size_t *len)
3224 {
3225 	int rc;
3226 	struct policy_file fp;
3227 
3228 	if (!ss_initialized)
3229 		return -EINVAL;
3230 
3231 	*len = security_policydb_len();
3232 
3233 	*data = vmalloc_user(*len);
3234 	if (!*data)
3235 		return -ENOMEM;
3236 
3237 	fp.data = *data;
3238 	fp.len = *len;
3239 
3240 	read_lock(&policy_rwlock);
3241 	rc = policydb_write(&policydb, &fp);
3242 	read_unlock(&policy_rwlock);
3243 
3244 	if (rc)
3245 		return rc;
3246 
3247 	*len = (unsigned long)fp.data - (unsigned long)*data;
3248 	return 0;
3249 
3250 }
3251